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Late-time quadratic growth in single-mode Rayleigh-Taylor instability
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The growth of the two-dimensional single-mode Rayleigh-Taylor instability (RTI) at low Atwood number
(A = 0.04) is investigated using Direct Numerical Simulations. The main result of the paper is that, at long times
and sufficiently high Reynolds numbers, the bubble acceleration becomes stationary, indicating mean quadratic
growth. This is contrary to the general belief that single-mode Rayleigh-Taylor instability reaches a constant
bubble velocity at long times. At unity Schmidt number, the development of the instability is strongly influenced
by the perturbation Reynolds number, defined as Rep ≡ λ

√
Agλ/(1 + A)/ν. Thus, the instability undergoes

different growth stages at low and high Rep . A new stage, chaotic development, was found at sufficiently high
Rep values, after the reacceleration stage. During the chaotic stage, the instability experiences seemingly random
acceleration and deceleration phases, as a result of complex vortical motions, with strong dependence on the
initial perturbation shape (i.e., wavelength, amplitude, and diffusion thickness). Nevertheless, our results show
that the mean acceleration of the bubble front becomes constant at late times, with little influence from the
initial shape of the interface. As Rep is lowered to small values, the later instability stages, chaotic development,
reacceleration, potential flow growth, and even the exponential growth described by linear stability theory, are
subsequently no longer reached. Therefore, the results suggest a minimum Reynolds number and a minimum
development time necessary to achieve all stages of single-mode RTI development, requirements which were not
satisfied in the previous studies of single-mode RTI.
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I. INTRODUCTION

Rayleigh-Taylor instability (RTI) is an interfacial instability
that occurs when a high-density fluid is accelerated or sup-
ported against gravity by a low-density fluid. This instability is
of fundamental importance in a multitude of applications, from
fluidized beds, oceans, and atmosphere, to inertial or magnetic
confinement fusion, and to astrophysics. The interface between
the two fluids is unstable to any perturbation with a wavelength
larger than the cutoff due to surface tension (for the immiscible
case) or mass diffusion (for the miscible case). In this case,
small perturbations grow to large amplitudes. At early times,
if the initial perturbation amplitudes are small compared to
their wavelength and the growth is not dominated by diffusive
effects, the flow can be described by the linearized equations
and the amplitudes grow exponentially with time. Later, the
nonlinear effects become important and smaller and larger
wave numbers are generated by nonlinear interactions. The
interface evolves into bubbles of lighter fluid and spikes
of heavier fluid penetrating the opposed fluid. There is a
complex phenomenology associated with the evolution of RTI,
including formation, competition, and amalgamation of spikes
and bubbles, entrainment, and, eventually, turbulence.

Although RTI has been subjected to intense research
over the last 50 years, a large number of open questions
remain unanswered about this instability and even first order
global quantities are not completely understood and still give
rise to intense debate [1–3]. Before the 1980s, most RTI
studies were either experimental or analytical. However, it is
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notoriously difficult, in laboratory experiments, to accurately
characterize the initial conditions and provide the detailed
measurements needed for turbulence model development and
validation. More recently, with the advance in supercomputer
power, numerical simulations are becoming an ever more
important tool in the study of RTI [4]. Nevertheless, many
of the earlier numerical studies report growth rates which are
significantly lower than those obtained in many experiments.
Recent simulations suggest that the difference is due to low
wave number perturbations inherent in many RTI experimental
approaches [2,3,5]. Thus, given the difficulty in controlling the
initial conditions in laboratory experiments, high-resolution
Direct Numerical Simulations (DNS) of RTI, enabled by the
present generation of supercomputers, becomes a natural tool
for exploring such hypotheses and, eventually, settling the open
questions regarding RTI.

Using DNS, we have systematically studied the develop-
ment and dependence on initial conditions of single-mode
RTI. This is a type of RTI which starts with a single-mode
initial perturbation. Single-mode RTI presents symmetries in
the initial conditions which the flow has to preserve at all
times. Thus, the tips of the bubbles and spikes always lie
along the symmetry lines. In addition, the initial wavelength is
always preserved, as the distance between these symmetry
lines, and the corresponding mode dominates at all times.
Besides its own interest, single-mode RTI has also been used as
a building block for the study of multimode RTI development
(e.g., Ref. [6]). Despite its apparent simplicity, single-mode
RTI is still not well understood and continues to be the focus
of research in experimental (e.g., with two-dimensional (2D)
perturbations [7–10] and three-dimensional (3D) perturbations
[8]), numerical [11–15], and theoretical [16] studies. In the
previous experimental studies, the duration of the instability
evolution is relatively short (HB/λ � 1), while numerical
simulations with longer development time have relatively low

046405-11539-3755/2012/86(4)/046405(14) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.046405


TIE WEI AND DANIEL LIVESCU PHYSICAL REVIEW E 86, 046405 (2012)

Reynolds numbers, and a complete picture of the instability
evolution is still lacking. For example, the bubble front has
been thought to approach and maintain a constant “terminal ve-
locity” at late times (i.e., linear bubble height growth, HB ∼ t),
based on the assumption that the flow remains potential near
the tip of the bubble. However, while the vorticity is zero in this
region due to symmetry conditions, the induced velocities due
to vortical motions inside the bubble become strong enough to
render such potential flow solutions inadequate at long times,
as our results below show. Nevertheless, many models for the
growth of multimode RTI still use in some form the potential
flow hypothesis.

In the earlier experimental studies, due to the size limita-
tions of the facilities (HB/λ < 1), the bubble front velocity
seemed constant near the end of the measurements. However,
Glimm et al. [12] and Ramaprabhu et al. [13] performed
longer numerical simulations (HB/λ ≈ 2) and showed that
the bubble front undergoes a reacceleration after its velocity
reaches a plateau. This reacceleration was then confirmed
experimentally by Wilkinson et al. [8], using a longer
experimental apparatus. Nevertheless, it is not clear how long
the reacceleration should last and what happens at longer
times at high Reynolds numbers. For example, the recent
low-resolution results of Ramaprabhu et al. [15] seem to show
a return to linear growth. The results presented here point to a
different picture at high Reynolds numbers.

The previous simulations of single-mode RTI are mostly
Implicit Large Eddy Simulations (ILES) and, to the best of
our knowledge, no Direct Numerical Simulations (i.e., using
physical molecular transport properties and resolving all dy-
namically relevant scales) have been reported for this problem.
The distinction is important since, as our results show, complex
vortical motions dominate the late-time evolution, and good
small-scale resolution is important to capture the vortical
interactions. For example, using ILES, Ramaprabhu et al. [15]
conducted simulations of 3D single-mode RTI, covering a
wide range of Atwood numbers, with cross-sectional meshes
from 82 to 1282. They report that the reacceleration stage
cannot last forever (which is consistent with our simulations),
and the flow transitions into a new stage, which they named
“chaotic mixing.” During this “chaotic mixing” stage, the lines
of symmetry within the bubbles and spikes of single-mode RTI,
which the flow should preserve, are broken in their simulations.
While we also call the late-time regime revealed by our results
as “chaotic development,” this is different than the “chaotic
mixing” regime in the Ramaprabhu et al. [15] study. Thus,
our results (which do maintain the flow symmetries at all
times) show that, at high enough Reynolds numbers, the bubble
acceleration becomes stationary, with large fluctuations and
nonzero average, corresponding to mean quadratic growth. The
late-time bubble and spike velocities presented in Ramaprabhu
et al. [15] are not chaotic and decrease lower than the
“potential flow velocity.” Differences between 2D and 3D
cases notwithstanding, our results show a similar behavior for
the bubble acceleration at low Reynolds number values (see
Sec. III C2). Our designation of “chaotic development” regime
refers only to the high Reynolds number, late-time quadratic
growth stage, which was not seen in Ref. [15].

Here, the first fully resolved simulations of single-mode RTI
are presented. A more complete picture of the growth stages

in single-mode RTI has been revealed by these simulations,
especially the presence of a new stage, chaotic development
(CD), which occurs after the reacceleration stage. Our results
show that single-mode RTI undergoes different growth stages
as the Reynolds number increases from small to large values.
Therefore, the results suggest a minimum Reynolds number
(and a minimum numerical resolution) necessary to observe all
stages of single-mode RTI development. This condition was
not satisfied in the previous numerical simulations of single-
mode RTI. Also lacking in the previous studies is a systematic
investigation of the effects of the Reynolds number and initial
perturbation shape (i.e., wavelength, amplitude, and diffusion
thickness). Thus, the thickness of the initial diffusion layer
and amplitude of the perturbation vary considerably among
experiments and simulations of single- and multimode RTI. In
order to understand the differences among these studies, we
have also investigated the role of the initial perturbation shape
on the instability development. All the simulations presented
here are 2D.

The rest of the paper is organized as follows. Section II
gives a brief description of the governing equations and
numerical methodology. In the results Sec. III, the evolution
of the instability at high-perturbation Reynolds number is
first examined, followed by a discussion of the effects of
the perturbation Reynolds number and the mean growth of
instability in the new, chaotic development stage. The last part
of the results section addresses the role of perturbation shape
on the instability evolution. Section IV gives a summary of
findings and conclusions. In the Appendix the verification and
validation of the numerical approach are presented.

II. GOVERNING EQUATIONS AND
NUMERICAL METHODOLOGY

A. Governing equations

In this paper we restrict our attention to miscible incom-
pressible materials. Thus, the two pure fluids have constant, but
different, microscopic densities. In this case, the specific vol-
ume and density of the mixture are related to the microscopic
densities, ρl , and mass fractions, Yl , by [4]

v = 1

ρ
= YH

ρH

+ YL

ρL

, (2.1)

which simply states that the total mass inside a control volume
is the sum of the masses of the two fluids. The index l = H,L

refers to the pure heavy and light fluids, respectively, and
YH + YL = 1. Although the Atwood number considered here
is small (A ≡ ρH −ρL

ρH +ρL
= 0.04), we do not use the Boussinesq

approximation, which may obscure high order effects at
low, but finite, A. Therefore, the density fluctuations are not
neglected in the momentum equations, and the mixture density
ρ and the specific volume v change in both space and time as
the mass fractions evolve. We call this a variable-density (VD)
flow, as opposed to the Boussinesq approximation [17,18].

The equations describing the instability development can be
derived from the compressible Navier-Stokes equations with
full multicomponent diffusion by taking the limit c → ∞ (c is
the speed of sound) which defines the incompressible limit (see
Ref. [4] for the derivation). The limiting process removes the
pressure and temperature gradient effects, so that the diffusion
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operator becomes Fickian in the resulting incompressible
equations. Since no other assumption is imposed, the resulting
equations are non-Boussinesq. One consequence is that the
divergence of velocity is not zero; the energy equation as well
as the species transport equations lead to a formula for the
velocity divergence in terms of the derivatives of the density
field.

The variable-density equations have been used in several
previous studies [4,17,19–22]. In nondimensional form, they
are

∂

∂t
ρ + (ρuj ),j = 0, (2.2)

∂

∂t
(ρui) + (ρuiuj ),j = −p,i + τij,j + 1

Fr2
ρgi, (2.3)

uj,j = − 1

Re0Sc
(ln ρ),jj . (2.4)

The viscous stress is Newtonian with

τij = ρ

Re0

[
ui,j + uj,i − 2

3
uk,kδij

]
, (2.5)

and the diffusion coefficient D is constant. Note that
Eqs. (2.2)–(2.3) are the usual continuity and momentum trans-
port equations for compressible flows. Equations (2.2)–(2.4)
describe the mixing, at any density ratio, between incom-
pressible materials or compressible materials in low-speed,
low-acceleration flows, when the fluids participating in the
mixing maintain quasiconstant microscopic densities. The
designation of low-speed flow is in relation to the sound speed;
since this does not appear in the VD equations, these equations
can admit arbitrarily large velocities describing systems with
correspondingly high sound speeds. If the densities of the two
fluids are commensurate, then the mixture density is close to
its average value, and Eqs. (2.2)–(2.4) lead to the Boussinesq
approximation (see Ref. [17] for the derivation).

In Eqs. (2.2)–(2.4), ui is the velocity in direction i, ρ

is the mixture density, and p is the pressure. The mixture
density varies between ρL = 1 and ρH = (1 + A)/(1 − A).
The nondimensional parameters in Eqs. (2.2)–(2.4) are the
computational Reynolds number, Re0 = L0U0/ν0, Schmidt
number, Sc = ν0/D, and Froude number, Fr = U 2

0 /(gL0),
where U0 and L0 are reference velocity and length scales,
respectively, gi are the components of the unit vector in
the direction of gravity, g = (0,0, − 1), and the kinematic
viscosity, ν0 = μ/ρ, and mass diffusion coefficient D are
assumed constant. Note that, in general, the dynamic vis-
cosity μ is a weaker function of density; the assumption
ν0 constant ensures a uniform Sc throughout the flow. The
independent variables are the time t and space variables xi .
Equations (2.2)–(2.4) have periodic boundary conditions in
the horizontal direction and slip wall conditions are applied in
the direction of gravity.

B. Numerical methodology

All simulations presented here were performed with the
CFDNS code [23]. The numerical approach is the same as that
described in Ref. [18] and is summarized briefly below. For this
problem, we used sixth-order compact finite differences [24]
in the vertical (nonperiodic) direction and spectral differencing

in the horizontal (periodic) direction. To account for the
difference in accuracy between the compact finite differences
scheme and the Fourier differentiation, the grid spacing is
25% smaller in the vertical direction. For this grid size, in an
incompressible isotropic homogeneous turbulence simulation,
the error at the Kolmogorov microscale η is around 1% for the
compact method, when ηkmax is maintained above 1.5 [25].
Nevertheless, since the Kolmogorov microscale is not well
defined for the flow considered here, resolution studies were
performed to verify that the solution was converged.

The time integration was performed with a third-
order predictor-corrector Adams-Bashforth-Moulton method
coupled with a pressure projection method, similar to
Refs. [20,21]. The main difference is how the pressure equation
was handled. The variable density equations lead to a variable
coefficient (nonlinear) Poisson equation for pressure, as shown
in Ref. [17]. This equation can be split into an explicit
equation for the dilatational component of ∇P/ρ, which is
related to mass conservation, and an implicit equation for the
solenoidal (curl) component of ∇P/ρ, which is related to
the baroclinic term in the vorticity equation [17,22]. Instead
of interpolating the velocity from the previous step to solve
the pressure equation, as done in Refs. [20,21], the pressure
equation is solved without additional approximations. This
avoids the introduction of errors that are the same order as the
interpolation method in both mass conservation and baroclinic
production of vorticity.

In this paper, only 2D simulations are considered. In all
simulations, Sc = 1 and the Froude number is chosen such
that the mesh Grashoff number [20], Gr	 ≡ 2Ag	3

h/ν
2
0 , is

below 1 (a value of 0.88 was used in simulations), to ensure
that the solution is well resolved. Here, 	h is the mesh size
in the horizontal direction and the mesh size in the vertical
direction is 	v = 0.8	h. The Atwood number in most of the
simulations presented here is A = 0.04. One simulation was
also performed at A = 0.155, in order to compare the results
to the experiment of Waddell et al. [7].

The density is initialized to follow an error function profile
in the vertical direction, which is consistent to the solution to
the pure diffusion equation:

ρ = 0.5 {1 + erf [Yvz + ζ (x)]} (ρH − ρL) + ρL, (2.6)

with the slope coefficient Yv chosen such that eight grid points
lie across the initial diffusion layer. For the 2D case considered
here, the dependence on the second horizontal direction is
removed, so that the perturbation inside the error function
profile ζ is given by

ζ (x) = A sin

(
2πx

λ0

)
, (2.7)

where A and λ0 are the amplitude and wavelength of ζ . Note
that the actual amplitude of the perturbation of the density
profile is A/Yv .

III. RESULTS

In this section, the main results of the paper are discussed.
A perturbation Reynolds number Rep is identified as strongly
influencing the nature of instability development. The full
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range of development stages is obtained at high enough per-
turbation Reynolds numbers and this is presented first. Thus,
at large values of Rep, a new stage, which we named chaotic
development, is found at late times, after the reacceleration
stage. The results show that the mean acceleration of the
bubble front becomes constant during this stage, indicating
quadratic growth. At lower values of this Reynolds number,
the vortical interactions are inhibited, and the instability no
longer reaches the later growth stages. This effect is discussed
next. The last part of the results section addresses the role
of the perturbation shape on the instability evolution. For
single-mode RTI, formula (2.6) shows that the parameters
characterizing the initial density field are the Atwood number,
wavelength λ0, and Yv and A. Alternatively, Yv and A can be
rewritten as the initial perturbation height, δp|t=0 = A/Yv , and
thickness of the initial diffusion layer based on the 1% density
level, δν |t=0 = 1.645/Yv . The last two parameters have only
been scarcely studied and, thus, are the main focus of our initial
conditions study for single-mode RTI. All cases presented here
have A = 0.04.

A. Growth stages in single-mode RTI

The development of single-mode RTI is usually divided
into a number of stages, depending on which physical effect
dominates the instability growth. At Sc = 1, we found that
this development and the transition (or lack thereof) to the
subsequent stages is strongly influenced by a perturbation
Reynolds number, Rep, defined by

Rep ≡
λ

√
A

1+A
gλ

ν
, (3.1)

where the Atwood number dependence follows Refs. [26–28].
Figure 1 illustrates the evolution of the instability at five
different Rep, from left to right, Rep = 100 (a), 210 (b),
400 (c), 1500 (d), 10 000 (e), 20 000 (f ). For each Rep,
density contours at four time instances are shown. From top
to bottom, t

√
Ag/λ = 0,2,4,6. All the simulations start from

the same initial perturbation as shown in Figs. 1(a1)–1(f1). At
low Rep, the growth is dominated by viscous diffusion even at
very late times [e.g., see Fig. 1(a4)]. In contrast, at higher Rep,
the evolution at late times is dominated by complex vortical
motions [e.g., see Fig. 1(f4)].

Figure 2 presents the evolution of the mixing layer width
based on the 1% density level, H0.01, which is defined as the
maximum vertical distance between the points where the mean
density equals ρL + 0.01(ρH − ρL) and ρH − 0.01(ρH − ρL)
[19]. Also shown in Fig. 2 is the normalized bubble front speed,
FrB , which is commonly called bubble Froude number in the
literature [13] and defined as

FrB ≡ uB√
A

1+A
gλ

. (3.2)

At high enough Rep values, the instability undergoes a
number of stages, including a late time “chaotic” stage, when
the bubble velocity fluctuates seemingly randomly around a
mean trajectory, which was never studied before. However, as
Rep is lowered to small values, the later instability stages are
subsequently no longer reached. To provide the full picture

of the development stages, the evolution of the instability at
high Rep is presented first, followed by a discussion of Rep

effects.

1. Growth stages at high Rep

Assuming that the initial perturbation has small amplitude,
the stages we identified in the present study as describing the
velocity of the tip of the bubble at high Rep are illustrated in
Fig. 3:

(1) DG: Diffusive growth (described by the solution to the
heat equation)

(2) EG: Exponential growth (described by the linear stabil-
ity theory)

(3) PFG: Potential flow growth (described by the potential
flow theory)

(4) RA: Reacceleration
(5) CD: Chaotic development
As far as we know, the chaotic development stage was

first mentioned in Ref. [29] and this is the first time the
growth properties are discussed during this stage. The term
“chaotic mixing” has also been used recently by Ramaprabhu
et al. [15] to describe the late-time behavior of 3D single-mode
RTI. However, as explained in the Introduction, there are
fundamental differences between the two designations. Thus,
the results in Ref. [15] show a return to constant bubble velocity
(or continuous decrease in the bubble velocity) at late times
and “chaotic mixing” refers to the complex behavior within
each bubble or spike which, in their simulations, does not
preserve the flow symmetries. We call “chaotic development”
the late-time stage, seen only if Rep is large enough, when
the bubble acceleration itself fluctuates seemingly randomly
around a mean positive value, corresponding to mean quadratic
growth. We have also obtained a return to constant velocity
growth (or velocities smaller than potential flow velocity)
at small Rep values; however, we do not call this “chaotic
development.” As shown below, the flow itself should behave
chaotically only between the symmetry lines associated to the
initial conditions.

The transition between the stages is, in general, gradual.
For example, between the EG and PFG stages, a “free fall”
stage has been defined by Gardner et al. [30]. Below, we
discuss each growth stage, with emphasis on the CD stage.
The DG and EG stages are discussed in detail in the Appendix,
in the Verification and Validation section; here we consider
only some characteristic values defining the transition between
these regimes.

DG to EG transition: It is known that the presence of
mass diffusivity introduces a cutoff wavelength, λcutoff, below
which the diffusive effects always dominate. For λ < λcutoff,
the instability never develops and the mixing layer grows
through pure diffusion [31]. However, even if the wavelength
is larger than the cutoff, mass diffusion can still dominate
at early times, under certain conditions. A rough estimate
of the importance of purely diffusive effects at early times
can be made by calculating the ratio of the velocities at the
tip of the bubble in the DG and EG regimes, δ̇ν/δ̇p. Using
well-known analytical results for the pure diffusion equation
in one dimension and assuming that the LST results hold in
the EG stage, such that δ̇p ≈ δp/n, it yields that, in the DG
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FIG. 1. (Color online) The effects of Rep on the density contours in single-mode RTI. Red is heavy fluid, ρH = 1.0833, and blue is light
fluid, ρL = 1.0. From left to right: Rep = 100 (a), 210 (b), 400 (c), 1500 (d), 10 000 (e), and 20 000 (f). From top to bottom: The corresponding
time instances of the density contours, given in terms of t

√
Ag/λ, are ≈ 0.0 (1), 2.0 (2), 4.0 (3), and 6.0 (4), respectively. All simulation

have a horizontal size Lh = 2048 and grid sizes from (a) to (f): 512 × 3200, 2048 × 7680, 2048 × 7680, 1024 × 6400, 2048 × 7680, and
2048 × 12 800, respectively.
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FIG. 2. The effect of perturbation Reynolds number: (a) Normalized mixing layer width and (b) normalized bubble front speed. The solid
horizontal line (FrB = 0.32) represents the analytical prediction of Oron et al. [27] and the potential flow model of Goncharov [28].

regime:

δν

2(t + t0)

1

nδp

	 1. (3.3)

For the definition used, δν = H0.01/2. The DG stage condition
becomes then

2.16

RepSc δν

λ

δp

λ

√
1 + A n

nI

	 1, (3.4)

where n/nI is the ratio between the linear growth rate in
the presence of diffusive and viscous effects (A5) and the
growth rate given by formula (A4). In addition, since Sc
appears explicitly, one could replace the perturbation Reynolds
number with a perturbation Pèclet number, Pep ≡ RepSc. The
DG range will not occur if Pep and/or the layer width, due to
either the perturbation amplitude or diffusion layer thickness,
is large enough. Alternatively, the instability transitions to
the EG stage described by the LST as the relation above
is no longer satisfied due to the increase in the layer
width.

FIG. 3. Growth stages of single-mode Rayleigh-Taylor instabili-
ties at high Rep .

EG to PFG transition: The LST is valid as long as the
nonlinear terms are negligible in the governing equations. In
the present simulations, quantitative values for the bubble or
spike heights (based on the 1% density values) defining the
end of the EG regime are

HB/Sk � 0.67–1.33 or
HB/S

λ
� 0.1–0.2. (3.5)

With increasing the bubble and spike speed, the differential
velocity on the two sides of the interfaces leads to the
development of the Kelvin-Helmholtz instability on the edges
of the bubbles and spikes. Initially, the wrinkle of the interface
is largest near the centerline (far from the bubble and spike
tip). From then on, the interface rolls up into a vortex at each
intersection with the centerline and the size of each vortex
grows with time. Nevertheless, not long after the nonlinear
effects become important, the vortical motions generated by
the Kelvin-Helmholtz instability are weak, and the flow at the
tip of the bubble is still potential.

This potential flow regime is characterized by a “quasi-
constant” bubble front speed. The “quasiconstant” velocity
has long been observed in both experimental and numerical
studies and was often called “terminal velocity” (which is
misleading; see below). This was perhaps believed to be
true since the vorticity itself remains zero at the tip of the
bubble due to symmetry. In the previous studies, using either a
drag model (e.g., Refs. [26,27]), a potential flow model (e.g.,
Refs. [28,32,33]), or a simple dimensional analysis,

√
gλ, has

been commonly taken to characterize this “quasiconstant”
bubble front speed. Irrespective of the appropriateness of
the modeling assumptions, the differences among the various
predictions seem to be primarily the inclusion (or not)
of the dependence on density ratio and the value of the
proportionality constant. Here, we compare the results with
the form used in Refs. [26–28].

The drag model of Birkhoff [26] predicts a bubble velocity
uB such that FrB ≈ 0.35, while the drag model of Oron et al.
[27] and the potential flow model of Goncharov [28] both
predict FrB ≈ 0.32 for 2D perturbations and FrB ≈ 0.56 for
3D perturbations. Our simulations exhibit FrB results close to
these values during the PFG stage, as shown in Fig. 2. Similar
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values are also reported in the recent experimental study of
White et al. [9].

Reacceleration (RA) stage: As the fluid accelerates due to
the buoyancy forces, the initial vortices grow larger and start
interacting. One of the first consequences of this interaction
is that the vortices split and form pairs of counter-rotating
vortices (one for each bubble and spike) which start self-
propelling towards the tips of the bubbles and spikes. As
more vortex pairs split, the motions become more complicated;
however, the first vortex pair still moves on an accelerating
trajectory such that the induced velocity at the tips of the
bubble or spike continues to increase. The consequence is
that the velocity in these regions is no longer the solution to
a potential flow problem and the tips of the bubble or spike
undergo a reacceleration stage. This stage was first shown
by Glimm et al. [12] and further discussed by Ramaprabhu
et al. [13]. It was also confirmed experimentally in Ref. [8].
In the present simulations, quantitative values for the bubble
height (based on the 1% density values) when the vortical
motions start to affect the velocity of the tip of the bubble are:

HBk ≈ 4.7 or
HB

λ
≈ 0.75 (3.6)

Note that, when the vortical interactions begin to affect the
velocity at the edges of the layer, the bubble and spike sides
start to differentiate, even at A = 0.04. Since the spike side
has a more complex behavior than the bubble side and is not
well predicted by the potential flow theory at higher A, the
estimates given here are only for the bubble side.

However, the RA stage can not last indefinitely. At most,
the reacceleration lasts until the vortex pairs reach the mixing
layers at the tips of the bubble or spike, so that the induced
velocity can no longer increase. For the miscible case, the
vortices start interacting with the mixing layer some time
before their cores approach the layer edges. In addition, the
continuous generation of vortical motions near the centerline,
where the shearing velocity is the largest, quickly leads to com-
plex vortical interactions, which affect the velocity induced by
the first vortex pairs. Quantitative values for the end of the reac-
celeration stage, based on the current low A simulations, are

HBk ≈ 7.5 or
HB

λ
≈ 1.2. (3.7)

Chaotic development (CD) stage: Based on the study of vortex
motions in 2D flows, Aref [34] suggested a general notion
of “a threshold for chaotic behavior” in point-vortex systems.
Thus, for a given flow geometry, there will be a maximum
number of vortices, N∗, that can have integrable dynamics.
For N � N∗, the vortex motion is at worst quasiperiodic in
time. For N > N∗, the dynamics is chaotic with aperiodic
behavior and extreme sensitivity to initial conditions. N∗ is
3 for unbounded flows, but the introduction of boundaries or
background potential flow in general reduces N∗.

Although the vortices in RTI are not point vortices, there are,
we believe, some common features that make the Aref study
relevant to the vortex motions in RTI. As shown in Fig. 1, the
vortices generated above and below the original vortex core
move towards the tips of the bubble or spike. These vortices
subsequently break up or merge, eventually leading to complex
vortical interactions. Since the induced velocity at the edges

of the layer depends on these interactions, the layer edges
will undergo seemingly random acceleration and deceleration
phases with varying intensity. Compounding the sensitivity of
the velocities of the layer edges to the inner vortical motions is
the relative weak efficiency of the instability for transforming
the potential energy into vertical kinetic energy. For example,
for multimode RTI, the growth is known to be quadratic, with
the layer width H ≈ αAgt2 at long times, where α is the
growth coefficient and ranges from 0.02 to 0.1 in various
numerical simulations and physical experiments [1,19,35].
This is much lower than the 0.5 prefactor corresponding
to the free fall, so that most of the potential energy is
converted into turbulent motions within the layer and is then
lost through viscous dissipation. This weak efficiency is the
result of friction on the sides of bubbles and spikes, with the
subsequent development of the Kelvin-Helmholtz instability.
A similar mechanism is present in the single-mode case and the
corresponding growth rate is discussed below. A consequence
of the inefficient conversion of potential into vertical kinetic
energy is that the vertical development of the layer is the
result of a delicate balance of terms in the mean momentum
equations and the velocities of the edges of the layer are
sensitive to slight changes in these terms, for example, due
to the complex vortical motions. Note that our designation of
“chaotic development stage” refers to the seemingly random
evolution of the layer front acceleration, with its strong
sensitivity to small changes in the initial perturbation shape
(see below). Nevertheless, with respect to the vortical motions,
even though this flow keeps the symmetries in the initial
conditions, the symmetry lines act as slip walls, and the vortical
motions in between these lines are also chaotic.

2. Growth stages at low Rep

As Rep is lowered to small values, the later instability
stages: chaotic development, reacceleration, potential flow
growth, and even the exponential growth described by the
linear stability theory are subsequently no longer reached.
Alternatively, as Rep is increased from very small values, the
instability undergoes a set of “transitions” as the layer develops
and reaches the stages listed above: EG, PFG, RA, and, finally,
CD. The Rep influence on the transition to the EG stage can
be inferred from formula (3.4). Below these “transitions” to
subsequent stages are discussed.

“Transition” to the PFG stage: The influence of Rep on
the early development of the mixing layer can been seen from
the contour plots shown in Fig. 1. The density contours in
Figs. 1(a1)–1(a4) clearly indicate that, at low Rep, the whole
mixing layer is dominated by diffusive processes, including
the regions near the tips of the bubble or spike. Thus, at very
low Rep, the potential flow theory can not be applied and the
constant velocity stage is not observed (see Fig. 2).

With increasing the perturbation Reynolds number, the
diffusive effects become less important outside the narrow
interface region. Figure 2(b) shows that for Rep � 200, the
instability undergoes a stage when nonlinear effects are impor-
tant, yet the bubble or spike fronts are far from the influence
of the initial vortex roll-up. This Rep value is consistent with
the study of Zukoski [36]. During this stage, the flow at the
tips of the bubble or spike can be approximated as potential
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and the velocity of the instability front approaches a plateau,
with a value similar to that obtained at high Rep (see above).

“Transition” to the RA stage: Further increasing Rep does
not change much the plateau in the velocity of the instability
front (except for some minor overshoot and undershoot);
however, the reduced diffusive effects allow the initial vortices
to break into vortex pairs (see Fig. 1). For Rep � 300, the
induced velocity generated by the vortex pairs reaccelerates
the instability. If Rep is not large enough, these vortex pairs
dissipate as they approach the tips of the bubble or spike
and the flow returns towards the PFG stage. It is possible
that, at intermediate Rep values, the instability will undergo
multiple reaccelerations and returns to the PFG stage or simply
become dominated by diffusive effects such that further vortex
generation is no longer possible; however, the asymptotic time
behavior was not investigated for this case.

“Transition” to the CD stage: As Rep is increased to large
values, the diffusive effects are small enough to allow complex
vortical motions and interactions, with vortex break-ups and
mergers. This can be clearly seen in Fig. 1: At high Rep

the mixing layer exhibits a wide range of vortical structures
[e.g., see Fig. 1(f4)]. In contrast, no vortex structure exists
at low Rep. The velocity of the tips of the bubble or spike
are sensitive to the induced velocities resulting from the
vortical structures and, thus, are very sensitive to details of
the vortical interactions. Since such complex motions have
nonintegrable dynamics, the bubble or spike velocities present
chaotic temporal behavior. As shown in Fig. 2, the perturbation
Reynolds number for the starting of the “transition” to the CD
stage is about Rep ≈ 2000, and the mixing layer development
becomes fully chaotic for cases with Rep � 10 000. The
formula for the perturbation Reynolds number is similar to
that which would result from the “transition” considerations
made by Dimotakis [37]. Although this flow does not become
turbulent, it is interesting that the Rep values obtained for the
“transition” to the CD stage are comparable to those observed
in many canonical turbulent flows, as required for a fully
turbulent mixing state.

B. Layer growth during the CD stage

As explained above, at high enough Rep values, the growth
rate fluctuates with time during the CD stage; however, it
appears that the velocity does not fluctuate around a constant
value. In order to determine the nature of the late time growth,
Fig. 4(a) shows the normalized acceleration of the bubble front,
ḦB/(2Ag). At late times, the acceleration becomes stationary,
fluctuating around a constant value ≈0.035. This indicates
quadratic growth, similar to the multimode case. With this
value, the mean time variation of the normalized bubble front
velocity in the CD stage [Fig. 4(b)] is

FrB ≈ 0.07 t

√
Ag

λ
+ 0.26 (3.8)

Note that the time when the instability reaches a mean
quadratic growth depends on the initial perturbation shape
(see below). The bubble front speed can also been presented
as a function of the normalized bubble front height:

FrB ≈ 0.35(
√

HB/λ − 1.1) + 0.5 (3.9)

In these variables, the start of the CD stage is relatively
insensitive to the initial conditions, so it was explicitly included
in formula (3.9) as the 1.1 value.

These results show that there is no fundamental difference
between the single-mode and multimode RTI growth, as
previously believed (e.g., Refs. [32,33]). In addition, the results
reconcile the apparent contradiction between the previously
believed constant velocity single-mode growth and recent
results showing fast quadratic growth (with α values larger than
those routinely obtained in numerical simulations) for initial
perturbations with a pronounced peak at k = 1 [3]. Therefore,
single-mode RTI results could be used to understand the
growth of laterally confined RTI (when the k = 1 mode
dominates the spectrum).

For the multimode miscible case, the definition of the RTI
layer width is not unique and several formulas are being used
in the literature [19]. Since the value of the growth coefficient

FIG. 4. Development of instability in the CD stage (at high Rep). Results are from simulations with three wavelengths λ = 256, 512, 1024.
The simulations have been run using similar computational allocations, so that the λ = 256 simulation, which uses the smallest mesh, is

the longest. (a) The acceleration of the bubble front becomes stationary at late times, fluctuating around a value αB = ḦB/(2Ag) ≈ 0.035
(represented by the solid horizontal line). (b) Normalized bubble front speed. The dashed straight lines are described by Eqs. (3.8) and (3.9).
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FIG. 5. (Color online) Density contours of initial perturbation shape. a–d: IC-A, IC-B, IC-C, IC-D. Red is heavy fluid, ρH = 1.0833, and
blue is light fluid, ρL = 1.0. Note that the scale in the vertical direction is stretched to highlight the initial perturbation.

α depends on the definition of the layer width, in order
to facilitate comparisons with the multimode case, we also
give the corresponding values using the mixing layer width
definitions of Cook and Dimotakis [21], α ≈ 0.04, and Youngs
[38], α ≈ 0.08. The bubble height from Ref. [21] is HB =
1/2

∫ ∞
−∞ XP (ρ̄) dz, where XP (ρ̄) is the maximum product in

a fast reaction analogy (see also Ref. [39]). The bubble height
from Ref. [38] is HB = βW , where W = ∫ ∞

−∞ F1F2 d z, F1

and F2 are the average volume fractions of the two fluids,
and the coefficient β accounts for the diffuse variation of the
volume fraction near the bubble edge of the layer. Here β = 3.7
was used, which is the usual value at A = 0.04 in multimode
simulations. While the results on the growth of 2D multimode
RTI are scarce compared to the 3D literature, we note that the
α values calculated above seem to be slightly larger than those
reported in 2D multimode RTI simulations (e.g., Ref. [40]).

C. Effects of initial perturbation amplitude
δ p|t=0 and diffusion layer thickness δν|t=0

The parameters characterizing the initial density field (2.7)
for single-mode RTI are the Atwood number, wavelength λ0,
initial perturbation height, δp|t=0 = A/Yv , and the thickness
of the initial diffusion layer. Based on 1% density level, this
thickness is δν |t=0 = 1.645/Yv . The last two parameters have
only been scarcely studied [21,41], nevertheless they can vary

widely among the experiments and numerical simulations.
Thus, these parameters are the main focus of our initial
conditions study for single-mode RTI.

Four different initial conditions, shown in Fig. 5, are used to
study the effects of the initial perturbation shape, characterized
by δp|t=0 and δν |t=0. Cases IC-A, IC-B, and IC-C have the
same diffusion layer thickness (δν |t=0), but the perturbation
amplitude (δp|t=0) in IC-B and IC-C is 1/5 and 1/25 that of
case IC-A. Case IC-D has the same perturbation amplitude as
IC-B, but five times larger diffusion layer thickness.

1. The effects of δ p|t=0 and δν|t=0 at high Rep

The effects of the initial conditions are first examined at
Rep = 20 000, which ensures that the instability transitions
into the CD stage at late time. Figure 6 shows the evolution of
the mixing layer width and FrB for the four cases considered,
and Fig. 7 shows the correspondent density contours at four
time instances in the instability development, t

√
Ag/λ =

0,2,4,5.5. As expected [see also formula (3.4)], both δp|t=0 and
δν |t=0 affect the development at early times. Thus, the decrease
in the initial layer thickness (due to both the perturbation
amplitude and diffusion thickness) causes a delay in the
development of mixing layer. For example, case IC-A [see
Figs. 7(a1)–7(a4)] develops the fastest, followed by cases
IC-B [see Figs. 7(b1)–7(b4)] and IC-D [see Figs. 7(d1)–7(d4)]

FIG. 6. The effects of the initial perturbation shape at high perturbation Reynolds number, Rep ≈ 20 000: (a) Mixing layer width and
(b) normalized bubble front speed.
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FIG. 7. (Color online) The effects of initial conditions on the density contours in single-mode RTI at high Rep (≈20 000). a–d: IC-A, IC-B,
IC-C, IC-D. The four time instances of the density contours are 1, 2, 3, 4: t

√
Ag/λ ≈ 0.0,2.0,4.0,5.5. The grid size in all four simulations is

2048 × 12800, corresponding to a horizontal domain size Lh = 2048.

which have similar evolutions, and, finally, case IC-C [see
Figs. 7(c1)–7(c4)]. Nevertheless, these evolutions simply

collapse if an appropriate time shifting is used (see the inset in
Fig. 6). In particular, all cases reach the same velocity during
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FIG. 8. The effects of initial perturbation shape at low perturbation Reynolds number, Rep ≈ 400: (a) Mixing layer width and (b) normalized
bubble front speed.

the PFG stage so that the potential flow theory result is not
affected. During the PFG stage, the flow at the tip of the
bubble or spike is affected by the local interface curvature
which depends on the perturbation wavelength and Atwood
number, but has little influence from the initial diffusion layer
thickness and perturbation amplitude.

Nevertheless, the initial vortex breakup into vortex pairs
critically depends on both δp|t=0 and δν |t=0. As a result, the
subsequent vortical interactions will also be very sensitive
to details of the initial perturbation shape. Therefore, as
the velocities of the layer edges start to be affected by the
vortical motions, they become, once again, sensitive to the
initial conditions, represented by δp|t=0 and δν |t=0. The strong
sensitivity on the initial conditions in the CD stage can be seen
in Fig. 6: The bubble front speed varies irregularly and any
difference in initial conditions results in completely different
instantaneous evolution of the flow.

2. The effects of δ p|t=0 and δν|t=0 at low Rep

Since at low Rep the later stages of the instability growth
are not reached (and especially the CD stage, where the
initial conditions play a significant role), the effects of initial
conditions are restricted to the stages where such effects can be
captured through a simple time shifting (see above). Figure 8
shows that the effects of δp|t=0 and δν |t=0 on single-mode RTI
at moderate Rep, such that the CD and part of the RA stage
are not reached. Indeed, the insets clearly indicate that, in this
case, the mixing layer width and bubble velocity corresponding
to different initial conditions collapse well with proper time
shifting.

IV. SUMMARY AND CONCLUSIONS

The growth of single-mode RTI at low Atwood number
(A = 0.04) has been investigated using DNS, with emphasis
on the effects of initial conditions and Reynolds number. The
findings are summarized below:

(1) Perturbation Reynolds number Rep: A perturbation
Reynolds number is identified as strongly influencing the

nature of instability development. Thus, the instability un-
dergoes different growth stages at low and high Rep.

(2) Growth stages: The full range of development stages
is obtained at high enough Rep. These stages are diffusional
growth (DG), exponential growth (EG), potential flow growth
(PFG), reacceleration (RA), and chaotic development (CD).
The chaotic development stage has not been attained in
the previous studies either due to too short a development
time or too low a Reynolds number. The designation of
“chaotic development stage” refers to the seemingly random
evolution of the layer front acceleration, with its strong
sensitivity to small changes in the initial perturbation shape.
Thus, during this stage, the instability experiences random
acceleration and deceleration phases as a result of complex
vortical motions. These motions and, consequently, the bubble
or spike acceleration, are very sensitive to details of the
initial perturbation shape, even though the initial conditions
dependence is minimal during the intermediate stages of the
instability evolution. As Rep is lowered to small values, the
later instability stages are subsequently no longer reached.

(3) Transition among growth stages: As Rep is increased
from small values, the instability reaches the next development
stages by undergoing a set of “transitions.”

(4) Quadratic growth in the CD stage: During the CD
stage, the bubble front acceleration is stationary, such that the
mean instability growth is quadratic, contrary to the general
belief of late time constant velocity growth. Even though the
instantaneous acceleration values are very sensitive to the
initial perturbation shape, the mean value has little influence
from the initial shape of the interface. The results show that
the growth coefficient αB has the approximate values 0.035,
0.04, and 0.08 for the bubble height calculated based on 1%
density level, Cook and Dimotakis [21], and Youngs [38]
formulas, respectively.

(5) Role of initial perturbation shape: The simulations show
that the initial perturbation amplitude (δp|t=0) and diffusion
thickness (δν |t=0), which characterize the initial shape of the
perturbation, affect the early (DG, EG) and later stages (RA
and especially CD at high Rep). However, these parameters
have a minimal role during the potential flow growth stage
(PFG) and the “constant” bubble velocity prediction remains
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robust for this stage. In the CD stage, the initial perturbation
shape affects the instantaneous acceleration value, but this does
not seem to change the mean behavior.

A. Implication for LES modeling

The perturbation Reynolds number, Rep, has very important
implications on the Large Eddy Simulations (LES) of single-
mode RTI. In LES, with or without explicit subgrid scale (SGS)
modeling, an “effective” perturbation Reynolds number can
be defined using the SGS (or numerical) viscosity, νLES, as
λ
√

Agλ/(1 + A)/νLES. LES of single-mode RTI with coarse
mesh may suffer from a low Rep effect, due to an insufficient
range of scales allowed by the mesh. Such an effect can be
clearly seen in the ILES results of Ramaprabhu et al. [13] (see
their Figs. 11 and 12), Glimm et al. [12] (their Fig. 1), Francois
et al. [42], and Ramaprabhu et al. [15]. In those studies,
the changing of meshes [12,13] or numerical methods [42]
gave different growth rates, due to the implicit change in the
effective perturbation Reynolds number. In coarse mesh (or
lower effective Rep) simulations, the later instability stages
(RA and CD) were not observed. The reacceleration was
observed only when the meshes used were fine enough. Even in
those cases (e.g., Ref. [15]) the flow returned to bubble front
velocities smaller than the potential flow result, presumably
due to insufficiently high Reynolds numbers. In addition, when
small-scale vortical motions were generated and seemingly
influenced the growth, there is a clear interference between
the physical and numerical vorticity production mechanisms,
indicated by the breaking of the symmetries which should be
preserved by the flow. Due to the sensitivity of the instability
growth to the vortical motions, this raises significant questions
on the relevance of ILES techniques to the single-mode RTI.
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APPENDIX: VERIFICATION AND VALIDATION

To verify the numerical approach, the simulation results
were compared to the analytical solution to the pure diffusion
equation and the linear stability theory (LST). In the nonlinear
stage, the simulation results were also compared to the
experimental measurements of Waddell et al. [7]. Finally,
extensive resolution studies were performed to ensure that
the solution is converged.

1. Comparison with analytical and theoretical results

Pure diffusion equation: When the mass diffusivity is large
or for very small gravity or amplitude to wavelength ratio of the
initial perturbation, the early flow development is dominated
by diffusive effects. In this case the layer shape follows the
solution to the pure diffusion equation [21]:

ρ = 0.5

{
1 + erf

[
z

2
√

(t + t0)/(Re0Sc)

]}
(ρH − ρL) + ρL,

(A1)
with 1/[2

√
t0/(Re0Sc)] = Yv . For the layer width based on the

1% density values, the pure diffusion equation yields [21]:

H0.01(t) ≈ 6.58
√

(t + t0)/(Re0Sc). (A2)

The diffusive growth stage from high diffusivity simulations is
in excellent agreement with equation (A2). A separate figure
is not given to show the comparison, because the diffusive
growth stage is of little interest to the present study.

Linear stability theory (LST): If the initial perturbations of
the interface are small, so that higher order terms can be ne-
glected in a Taylor expansion around the unperturbed position
of the interface, yet the linear buoyancy terms dominate the
diffusive terms, the early flow stages can be described by the
linearized form of the dynamical equations. The result is that
small amplitude perturbations grow exponentially with time
as

H (t) = h0 cosh(nt) + u0

n
sinh(nt). (A3)

FIG. 9. Comparison between the numerical results and LST: (a) Bubble height from DNS (data points) at low wave number when the
idealized LST formula (A3) (solid curve) becomes accurate. (b) Wave-number dependence of the growth rate n from simulation (data points)
and the analytical approximation of Duff et al. [31] (dashed line). For reference, the solid curve is given by n = √

Agk.
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FIG. 10. Comparison between DNS results and the experiment
of Waddell et al. [7]. The bubble, HB , and spike, HS , heights are
calculated based on the 1% density levels and the location of the
unperturbed interface, such that HB + HS = H0.01.

where h0 is the initial amplitude of the perturbation and v0 the
initial normal velocity at the interface.

In the ideal case of two incompressible immiscible inviscid
fluids without surface tension, with an infinite density gradient
at the interface and with an infinitesimal perturbation, the
exponent in Eq. (A3) is given by the well-known formula [43]

n =
√

Agk, (A4)

where k is the wave number of the perturbation. For the
nondimensionalization considered here, the formula reduces to
nτ = √

L0k, where τ = √
L0/(Ag) is the reference time scale.

Additional effects, such as surface tension, viscosity, mass
diffusion, gradual gradient of density, and compressibility have
been studied by various authors, e.g., Refs. [31,44,45].

A comparison of the bubble amplitude growth computed
from the simulation and from the analytical result (A4) is
shown in Fig. 9(a), during the linear stage of the instability
growth. In this case, the wave number of the perturbations
is kept very small, k = 7.67e − 4, to minimize the diffusive
effects. Figure 9(a) shows excellent agreement between the

numerical result and the analytical result. The bubble height
HB is calculated based the 1% density level.

At larger wave numbers, the diffusive effects become
important and the growth rate is different than formula (A4).
A good approximation for the linear stage growth rate which
accounts for diffusive effects is given by Duff et al. [31]:

n =
√

Agk

ψ(A,a)
+ ν2

0k4 − (ν0 + D)k2, (A5)

where ψ is a function of A and a (here a is related
to the thickness of the initial diffusive layer; see their
Fig. 10). Formula (A5) gives the growth rate with about
10% accuracy. The nondimensional version of this formula is

nτ =
√

L0k

ψ(A,a) + (L0k)2Fr2

A
− (1 + 1

Sc
)(L0k)2

√
Fr2

A
. Figure 9(b)

shows the wave-number variation of the numerical growth
rate and the corresponding values computed with (A5). For
reference, the growth rate given by formula (A4) is also shown.
Figure 9(b) displays good agreement between DNS results and
the analytical results of (A5).

2. Comparison with experimental results

A simulation was also carried out to match the single-mode
experiment of Waddell et al. [7]. The materials used in the
experiment are miscible and comprise of salt water and a water-
alcohol solutions, resulting in A ≈ 0.155. The simulation
results agree well with the experimental measurements, as
shown in Fig. 10. Note that the mixing layer width at the latest
time is rather small in the experiment due to the size limitation
of the experimental facility.

3. Resolution studies

To ensure that the numerical solution is fully converged,
systematic mesh refinement tests have also been performed.
The mixing layer width, H0.01, and normalized bubble front
speed obtained with different mesh sizes, 	h = 4.0,2.0,1.0,
and 0.5, are shown in Figs. 11(a) and 11(b). The results display
good convergence between simulations with 	h = 2.0,1.0 and
0.5. The maximum relative difference in the mixing layer width

FIG. 11. Convergence of the mixing layer width and bubble front speed under grid refinement. (a) Normalized mixing layer width versus
time and (b) normalized bubble front speed, FrB . The dashed line represents the prediction of the drag model [27] and potential flow model [28].
See Sec. III A for a discussion on these models and FrB definition.
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values between simulations with 	h = 1.0 and 	h = 0.5 is
smaller than 0.1% {[H	h=1.0(t) − H	h=0.5(t)]/H	h=0.5(t) <

0.001}. In addition, the convergence rate from 	h = 2.0 to
	 = 0.5 is close to 6, which is the order of the method in
the vertical direction. Note that the grid size in the vertical di-

rection is 	v = 0.8	h. The simulation results reported in this
paper were obtained with 	h = 1.0. The simulations were also
verified to maintain the required symmetry and yield identical
results if the number of perturbation waves inside the domain
and the horizontal domain size are proportionately increased.
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