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ABSTRACT

Proper scaling in turbulent planar plumes is investigated here using a scaling patch approach. Based on the scaled boundary conditions, a
proper velocity scale for the mean axial flow is the plume centerline velocity Uref ¼ Uctr, and a proper temperature scale for the temperature
excess is Href ¼ Tctr � T1, where Tctr is the plume centerline temperature and T1 is the ambient fluid temperature. By seeking an
admissible scaling, a key concept in the scaling patch approach, for the mean continuity, mean momentum, and mean energy equations,
respectively, the following is found: (1) a proper scale for the mean transverse flow is Vref ¼ ðdd=dxÞUctr, where dd=dx is the growth rate of
the plume width. (2) A proper scale for the Reynolds shear stress is Rvu;ref ¼ UctrVref ¼ ðdd=dxÞU2

ctr, a mix of the scales for the mean axial
and transverse flows. (3) A proper scale for the turbulent heat flux is Rvh;ref ¼ VrefHctr, a mix of the scales for the mean transverse flow and
mean temperature excess. The mean transverse flow thus plays a critical role in the scaling of turbulent planar plumes. Approximate
functions are developed for the scaled mean transverse flow, Reynolds shear stress, and turbulent temperature flux, and are found to agree
favorably with experimental and numerical simulation data. The integral analysis of the mean momentum equation yields a Richardson
number Ri, which remains invariant in the axial direction. The Richardson number is defined as Ri ¼def gbHctrdt=ðUctrVref Þ � 1=

ffiffiffi
2
p

, where g
is the gravitational acceleration, b is the thermal expansion coefficient, and dt is the plume half-width based on the mean temperature profile.
This Richardson number arises directly from the scaling patch analysis of the mean momentum equation, including both the streamwise and
transverse velocity scales.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0050189

I. INTRODUCTION

Plumes are generated from a source of buoyancy, for example,
smoke rising from a burning cigarette. The fluid in contact with the
heat source reaches a higher temperature. The temperature excess, in
turn, creates a local density deficiency relative to the ambient fluid,
driving lighter fluids upwards in a gravitational field. As the lighter flu-
ids rise in the vertical direction, ambient fluids are entrained to
broaden the plume. An image of a planar plume is illustrated in Fig. 1.
The axial or vertical direction is in the x-direction, and the transverse
flow is in the y-direction.1

Plumes are ubiquitous in both natural and man-made environ-
ments, for example, fire plumes, cooling tower plumes, and chimney
exhausts. Fire plumes have been studied extensively to improve the
design of smoke detectors and sprinkler systems in buildings and atri-
ums of large shopping plazas. In many coastal cities, pretreated sewage
is discharged as buoyant plumes through submarine outfalls located
on the sea bed, and a better understanding of plumes can be used to
improve water quality control and for risk assessment. On the

theoretical side, knowledge of buoyant plumes advances our under-
standing of general free shear turbulence and, in particular, the buoy-
ancy effect on the structure of free shear turbulence. Therefore,
turbulent plumes have been investigated by numerous researchers,
experimentally, analytically, and numerically.2–14

While the scaling for the mean axial flow (in the streamwise or
vertical direction in Fig. 1) and mean temperature distributions in tur-
bulent plumes is well established,15,16 the proper scaling for the mean
transverse flow, the Reynolds shear stress, and turbulent heat flux has
not been settled. The magnitude of the mean transverse flow in turbu-
lent plumes is very small, lower than 0.01 m/s in most experimental
studies. Therefore, it is extremely challenging to obtain accurate mean
transverse velocity measurements. Traditional analyses of turbulent
plumes avoid the explicit scaling of V by integrating the mean continu-
ity equation. The purpose of the present paper is to determine explic-
itly the proper scaling of the mean transverse flow, the Reynolds shear
stress, and turbulent heat flux in turbulent planar plumes using a rela-
tively new scaling patch approach, and clarify the relations among the
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scalings in the mean axial and transverse flows and turbulent transport
terms.

One of the earliest theoretical analyses of plumes dates back to
1937, by Zeldovich,17 who performed a similarity analysis of turbulent
plumes. The first quantitative plume study was carried out by Schmidt
in 1941,18 who used mixing-length hypotheses to obtain expressions
for the mean velocity and temperature profiles in both planar and
round plumes. In the 1950s, more similarity analyses were conducted
by Rouse et al.,19 Batchelor,20 Morton et al.,21 and Priestley and Ball.22

Rouse et al.19 derived similarity solutions for planar and round plumes
and verified the solutions with experimental measurements in plumes
above a single gas burner and above a line of gas burners. Batchelor20

proposed similarity solutions for turbulent plumes for both planar and
round geometries in neutral and stratified environments. Morton
et al.21 made three assumptions about plumes including (i) the profiles
of the vertical velocity and buoyancy are similar at all heights, (ii) the
entrainment rate at any height is proportional to the characteristic
velocity at that height, and (iii) the fluids are incompressible and do
not change the volume on mixing. Priestley and Ball22 did not make
an assumption about the entrainment, but assumed that the mean
shear stress is proportional to the square of the mean plume velocity.
Morton et al.21 extended the analysis to nonsimilar situations. The
classical plume theory developed by Zeldovich, Rouse et al., Batchelor,
and Morton et al. was reviewed by Hunt and Van den Bremer.23 More
reviews on plumes were given by Chen and Rodi,24 List,25 Ramaprian
and Chandrasekhara,15 and Baines.26

Broadly speaking, previous analytical studies of plumes can be
classified into three categories: dimensional, integral, and differential
analyses. Knowledge gained from dimensional analysis is insightful

but limited because the governing equations are not directly employed.
Integral analysis examines the flow through integration of the mass,
momentum, and energy equations; to account for the turbulent effects,
certain assumptions have to be made. One popular assumption is the
universal entrainment coefficient.21 However, experimental measure-
ments have indicated that the assumption of a universal entrainment
coefficient is incorrect.16 In previous differential analyses of plumes,
the mean transverse flow was not explicitly addressed. Instead, the
mean continuity equation was integrated to avoid the explicit analysis
of the mean transverse flow.

High-quality measurements are critical to appraise the analyses
of turbulent flows, including turbulent planar plumes. In the 1970s
and 1980s, two comprehensive experimental studies of turbulent pla-
nar plumes were performed by Kotsovinos16 and Ramaprian and
Chandrasekhara.15 Recently, numerical simulations have become an
important tool in investigating turbulent planar plumes. Numerical
simulations of planar plumes have been performed by Malin and
Spalding,27 Kalita et al.,7 and Dewan et al.9

In this paper, a relatively new scaling patch approach is applied
to determine the proper scaling in turbulent planar plumes. Scaling
patch approach was originally developed for shear-driven wall-
bounded turbulence by Fife and coworkers.28–31 Whereas some of the
concepts and ideas in the scaling patch approach are similar to previ-
ous scaling approaches, the logical train of thought in the new
approach is distinctly different.30,31 The scaling patch approach has
been applied to passive scalar transport in the turbulent pipe or chan-
nel flow,32–34 turbulent boundary flow with roughness,35,36 turbulent
Taylor–Couette flow,37 buoyancy-driven turbulent convection,38,39

and more recently in turbulent planar jet.40

The objective of scaling patch analysis is to reveal naturally the
relative magnitudes of different terms in an engineering equation.
Such an equation typically consists of the balance of more than two
terms. However, different terms do not contribute equally to the bal-
ance of the equation. The relative magnitudes of terms are not clear
when the equation is presented in a dimensional form. Through a sys-
tematic transformation of the dimensional equation into a dimension-
less form, the scaling patch approach is able to determine the proper
scale for each term in the equation. A balance equation can be scaled
in any number of ways, creating an infinite number of versions of
dimensionless equations, and all versions are mathematically equiva-
lent; that is, one scaling can be transformed to another by simple re-
scaling factors.30,31 However, only a certain scaling reflects naturally
the local balance of terms. For example, in a region of the flow, if the
scaled distance is of O(1), then the leading order balance within that
region should also be of O(1).

In scaling patch analysis of turbulent flow, the governing equa-
tions for different moments are transformed into dimensionless forms,
as an admissible scaling. For a dimensionless equation to be an admis-
sible scaling, at least two terms must have a nominal order of magni-
tude 1.30,31,39 Here, we show that the admissible scaling can clearly
reveal the relative magnitude of terms in the mean governing equa-
tions of turbulent planar plume, which in turn assists in determining
the proper scaling of the mean transverse flow, Reynolds shear stress,
and turbulent heat flux.

In Sec. II, the governing equations for the mean flow and heat
transport are presented. In Sec. III, proper scaling in the far field of
turbulent plumes is determined by seeking admissible scaling for the

FIG. 1. Illustration of a planar plume. Image is from the experiment of Kotsovinos.1

x denotes the axial direction pointing upwards, and y denotes the transverse direc-
tion. Gravity is in the vertical direction, pointing downwards. The shapes of the
mean axial velocity U, mean transverse velocity V, and the mean temperature T are
also sketched.
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mean continuity equation, the mean energy equation, and the mean
momentum equation in the axial direction. Approximate functions for
the scaled mean transverse flow, kinematic Reynolds shear stress, and
turbulent temperature flux are developed and compared with experi-
mental data. Section IV summarizes the work.

II GOVERNING EQUATIONS OF TURBULENT PLUMES

As in other free-shear turbulent flows, planar plumes are
“slender”; that is, they spread slowly in the transverse direction.
Therefore, Prandtl’s boundary layer equations are used to describe tur-
bulent planar plumes.41,42 In this work, we focus on a region far away
from the plume origin and assume a statistical steady state. The mean
continuity, mean momentum equation, and mean energy equations,
respectively, are

0 ¼ @U
@x
þ @V
@y

; (1a)

0 ¼ � U
@U
@x
þ V

@U
@y

� �
þ @Rvu

@y
þ gbH; (1b)

0 ¼ � U
@H
@x
þ V

@H
@y

� �
þ @Rvh

@y
; (1c)

where g is the gravitational acceleration pointing in the negative
x-direction, and b is the thermal expansion coefficient. Here, an
uppercase letter denotes a mean flow or temperature variable. U is the
mean axial velocity and V is the mean transverse velocity, T is the
mean temperature, T1 is the ambient temperature, and H¼def T � T1
is the mean temperature excess. Rvu ¼ �hvui is the kinematic
Reynolds shear stress, and Rvh ¼ �hvhi is the turbulent temperature
flux. A lowercase letter denotes a fluctuation quantity. u and v are the
velocity fluctuations in the streamwise and transverse directions,
respectively, and h is the temperature fluctuation. The angle brackets
h i denote Reynolds averaging.

In the mean momentum Eq. (1b), the Oberbeck–Boussinesq
approximation is used to approximate the buoyancy force by the tem-
perature excess,41,42 as gbðT � T1Þ or gbH. For most fluids of engi-
neering interest, within a limited variation of temperature, b is nearly
a constant. Note that it is assumed that the plume is fully turbulent
and the viscous force and molecular heat diffusion are negligible com-
pared to the turbulent transport of momentum or heat.41

The corresponding boundary conditions for turbulent planar
plumes are listed in Table I. Due to symmetry, the Reynolds shear
stress and turbulent temperature flux are zero at the plume centerline.

III. SCALING ANALYSIS OF THE GOVERNING
EQUATIONS

It is observed that at a sufficient distance from the plume origin
(x� 20D whereD is the nozzle height15) the planar plume approaches
a self-similar state; that is, the properly scaled mean flow profiles at

different axial locations merge onto a single curve.43 Here, the self-
similar variables are defined as follows

g ¼def y
dðxÞ ; (2a)

U�ðgÞ ¼def Uðx; yÞ
Uref ðxÞ

; V�ðgÞ ¼def Vðx; yÞ
Vref ðxÞ

; H�ðgÞ ¼def Tðx; yÞ � T1
Href ðxÞ

;

(2b)

R�vuðgÞ ¼
def Rvuðx; yÞ

Rvu;ref ðxÞ
; R�vhðgÞ ¼

def Rvhðx; yÞ
Rvh;ref ðxÞ

; (2c)

where d is a measure of the plume width. Uref ;Vref ;Tref ;Rvu;ref ;Rvh;ref ,
respectively, are the proper scales for the mean axial velocity, the mean
transverse velocity, the temperature excess, the kinematic Reynolds
shear stress, and the turbulent transport of heat. These scales will be
determined in the following analysis.

To express the governing equations using the self-similar varia-
bles, we first note that the derivatives of g with respect to x and y are

@g
@x
¼ � 1

d
dd
dx

g; (3a)

@g
@y
¼ 1

d
: (3b)

Subsequently, the derivatives of U and H with respect to x are

@U
@x
¼ @ðUrefU�Þ

@x
¼ dUref

dx
U� þ Uref

dU�

dg
@g
@x

¼ dUref

dx
U� � Uref

d
dd
dx

g
dU�

dg
; (4a)

@H
@x
¼ @ðHrefH

�Þ
@x

¼ dHref

dx
H� þHref

dH�

dg
@g
@x

¼ dHref

dx
U� �Href

d
dd
dx

g
dH�

dg
; (4b)

and the derivatives of U, H, V, Rvu, and Rvh with respect to y are

@U
@y
¼ Uref

d
dU�

dg
; (5a)

@H
@y
¼ Href

d
dH�

dg
; (5b)

@V
@y
¼ Vref

d
dV�

dg
; (5c)

@Rvu

@y
¼ Rvu;ref

d
dR�vu
dg

; (5d)

@Rvh

@y
¼ Rvh;ref

d
dR�vh
dg

: (5e)

Substituting the definitions of the self-similar variables in Eqs.
(2a), (2b), (2c) and their derivatives in Eqs. (4) and (5) into the mean
continuity Eq. (1a), the mean momentum Eq. (1b), and the mean
energy Eq. (1c), the mean equations can be expressed, using the self-
similar variables, as

0 ¼ dUref

dx
U� � Uref

d
dd
dx

g
dU�

dg
þ Vref

d
dV�

dg
; (6a)

TABLE I. Boundary conditions at the plume centerline y¼ 0 and far away from the
plume y ¼ 61.

y¼ 0 U ¼ Uctr; V ¼ 0; H ¼ Tctr � T1; Rvu ¼ 0; Rvh ¼ 0:
y ¼ 61 U ¼ 0; V ¼ V61; H ¼ 0; Rvu ¼ 0; Rvh ¼ 0:

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 055101 (2021); doi: 10.1063/5.0050189 33, 055101-3

Published under license by AIP Publishing

https://scitation.org/journal/phf


0 ¼ UrefVref

d
U�

dV�

dg
� UrefVref

d
V�

dU�

dg
þ Rvu;ref

d
dR�vu
dg
þ gbHrefH

�;

(6b)

0 ¼ �Uref
dHref

dx
U�H� þ UrefHref

d
dd
dx

gU�
dH�

dg

� VrefHref

d
V�

dH�

dg
þ Rvh;ref

d
dR�vh
dg

: (6c)

The scaled boundary conditions at the centerline and far away from
the plume are listed in Table II.

In this paper, the proper scales for Uref ; Vref ; Rvu;ref , and Rvh;ref

are determined by the scaling patch approach. In this approach, the
proper scaled boundary conditions should be either zero or of O(1).
As listed in Table II, all the scaled boundary conditions are 0, except
for U�jg¼0; H�jg¼0, and V�jg¼61. Hence, setting the scaled boundary
conditions U�jg¼0 ¼ 1 and H�jg¼0 ¼ 1 leads to the commonly used
scales for the mean axial flow and mean temperature excess41 as
Uref ¼ Uctr and Href ¼ Tctr � T1, respectively. The proper scale for
the mean transverse flow Vref will be determined from the analysis of
the mean continuity equation. It turns out that jV1j � �1:06Vref [see
Eqs. (13) and (16) below]. In other words, the scaled boundary condi-
tion for the mean transverse flow is also of order jV�jg¼1 ¼ Oð1Þ.

Next, we will first determine a proper scale for the mean trans-
verse flow by seeking an admissible scaling for the mean continuity
equation, then a proper scale for the turbulent heat flux from the
mean energy equation, and a proper scale of the Reynolds shear stress
from the mean momentum equation in the axial direction.

A. Admissible scaling of the mean continuity equation

To transform the mean continuity equation into a dimensionless
form, Eq. (6a) is multiplied by d=Vref to yield

0 ¼ d
Vref

dUctr

dx

� �
U� � Uctr

Vref

dd
dx

� �
g
dU�

dg
þ dV�

dg
: (7)

The nominal orders of magnitudes of the three terms on the right side
of Eq. (7) are d=Vref dUctr=dx; Uctr=Vref dd=dx, and 1. For Eq. (7) to
be an admissible scaling, that is, at least two terms with a nominal
order of magnitude 1, one choice is to set the scale for the mean trans-
verse flow as

Vref ¼ Uctr
dd
dx
; (8)

and the dimensionless continuity equation becomes

0 ¼ BU� � g
dU�

dg
þ dV�

dg
; (9)

where B denotes the ratio

B ¼def d
Uctr

dUctr

dx
dd
dx

: (10)

Empirically, it is observed that Uctr is approximately constant in the far
fields of turbulent planar plumes,15 which leads to dUctr=dx ¼ 0 and
B¼ 0. Physically, along the centerline, the plume is under the opposing
actions of buoyancy and turbulent shear forces (see Fig. 7). The constant
centerline plume velocity implies a balance of the two opposing forces.
As B is zero, the mean continuity Eq. (9) can be simplified as

0 ¼ �g
dU�

dg
þ dV�

dg
: (11)

An exact solution for the mean transverse velocity can be
obtained by integrating Eq. (9) in the transverse direction from 0
to g as

V� ¼ gU� �
ðg

0
U�dg: (12)

The mean transverse velocity at plume edge is then

V�1 ¼ �
ð1
0
U�dg: (13)

Note that V�1 is negative and V��1 is positive, since ambient fluids are
entrained from two sides toward the core of the plume.

Empirically, it has been observed that the mean axial velocity and
the mean temperature excess can be approximated by a Gaussian
function43 as

U�ðgÞ � e�ag
2
; (14)

where a is a constant. If the plume half-width is defined as
U�ðy ¼ y0:5uÞ ¼ 0:5, then a ¼ lnð2Þ. The Gaussian approximation
given by Eq. (14) is compared with experimental data in Fig. 2.

TABLE II. Scaled boundary conditions at the plume centerline g¼ 0 and far away
from the plume centerline g ¼ 61.

g¼ 0
U� ¼ Uctr

Uref
; V� ¼ 0; H� ¼ Tctr � T1

Href
; R�vu ¼ 0; R�vh ¼ 0:

g ¼ 61
U� ¼ 0; V� ¼ V61

Vref
; H� ¼ 0; R�vu ¼ 0; R�vh ¼ 0:

FIG. 2. Comparison of the scaled mean axial velocity U� data with Eq. (14)
(dashed green curve). The reference mean axial velocity is the plume centerline
velocity, Uref ¼ Uctr . d is the plume half width based on the mean axial velocity pro-
file d ¼ y0:5u. Experimental data are from Kotsovinos and List1 (KL) and
Ramaprian and Chandrasekhara4 (RC).
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Overall, the agreement is good, but the deviation is noticeable near the
plume edge.

Using a Gaussian function for U�, an approximate function for
the mean transverse velocity can be obtained from Eq. (12) as

V�ðgÞ � ge�ag
2 �

ffiffiffi
p
p

2
ffiffiffi
a
p erf

ffiffiffi
a
p

g
� �

: (15)

The mean transverse velocity far away from the plume center-
line is

V�1 ¼
V1
Vref
¼ �

ð1
0
U�dg � �

ffiffiffi
p
p

2
ffiffiffi
a
p � �1:06; (16)

or

V1
Uref
¼ �1:06 dd

dx
: (17)

Thus, the scaled boundary condition for the mean transverse flow V�1
is also of O(1), satisfying the requirement of the scaling patch
approach.31

Due to its small magnitude, experimental data for V are very
scarce, and the uncertainty in the measurements is significant. The
approximation given by Eq. (15) is compared with experimental data
of Ramaprian and Chandrasekhara4 in Fig. 3. While Eq. (15) captures
the trend of V� well, there are noticeable differences between the
experimental data and the approximation equation. More data are
needed to evaluate the validity of the analysis and the approximate
function.

A prominent feature of the mean transverse flow is that V� is
essentially zero around the core of the plume, and its magnitude
increases monotonically toward the plume edge. The shape of the
mean transverse flow in a turbulent planar plume is distinctively dif-
ferent from that in a turbulent plane jet, although the mean axial
velocity profiles in these two free-shear turbulent flows are nearly
identical.40

In studies of turbulent plumes, a quantity of interest is the volu-
metric flow rate, which can approximated from Eqs. (13) and (16) as

ð1
�1

U�dg ¼ 2jV�1j � 2:12; (18)

or in a dimensional form asð1
�1

Udy ¼ 2jV�1jUctrd � 2:12Uctrd: (19)

Note that in a turbulent planar plume Uctr ¼ const and d � x.15 Hence,
the volumetric flow rate of the plume increases in the axial direction,
arising from the entrainment of ambient fluids into the plume.

B. Admissible scaling of the mean energy equation

To transform the mean energy equation into a dimensionless
form, Eq. (6c) is multiplied by d=ðVrefHref Þ to yield

0 ¼ � Uctr

Vref

d
Hctr

dHctr

dx

� �
U�H� þ gU�

dH�

dg
� V�

dH�

dg

þ Rvh;ref

VrefHctr

� �
dR�vh
dg

: (20)

Physically, turbulent transport is important to balance the mean
energy equation in turbulent planar plumes. Thus, an admissible scal-
ing of the mean energy equation requires that the turbulence term in
Eq. (20) must have a nominal order of magnitude 1, leading to a scale
for the turbulent temperature flux as Rvh;ref ¼ VrefHctr.

Using results from the analysis of the mean continuity equation,
it can be shown that

gU�
dH�

dg
� V�

dH�

dg
¼ gU�

dH�

dg
� gU� �

ðg

0
U�dg

� �
dH�

dg

¼ d
dg

H�
ðg

0
U�dg

	 

� U�H�: (21)

The dimensionless mean energy Eq. (20) can then be presented
as

0 ¼ � Uctr

Vref

d
Hctr

dHctr

dx
þ 1

� �
U�H� þ d

dg
ðH�

ðg

0
U�dgÞ þ dR�vh

dg
:

(22)

Integrating Eq. (22) in the transverse direction from g¼ 0 to
g ¼ 1 and applying boundary conditions yields an integral
constraint

Uctr

Vref

d
Hctr

dHctr

dx
þ 1

� � ð1
0
ðU�H�Þdg ¼ 0: (23)

Since
Ð1
0 ðU�H

�Þdg is not zero, the integral constraint for the mean
energy equation dictates that the pre-factor in Eq. (23) must be zero, or

Uctr

Vref

d
Hctr

dHctr

dx
¼ �1: (24)

The relation between the mean temperature excess decay rate
dHctr=dx and the plume width growth dd=dx can be obtained from
Eq. (24) by substituting the definition of Vref :

dHctr

dx
¼ � dd

dx
Hctr

d
: (25)FIG. 3. Comparison of V� ¼ V=Vref data with the approximation equation (15),

where Vref ¼ Uctr dd=dx. The experimental data are from Chandrasekhara4 (RC).
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As the plume width d is proportional to x, Eq. (25) indicates that
the mean temperature excess decreases inversely with the distance
from the origin of the plume: Hctr ¼ ðTctr � T1Þ � 1=x.42

Applying the integral constraint Eq. (24), the dimensionless
mean energy Eq. (20) can be simplified as

0 ¼ U�H� þ gU�
dH�

dg

� �
� V�

dH�

dg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hadve

þ dR�vh
dg|ffl{zffl}
Hturb

: (26)

The dimensionless mean energy Eq. (26) represents the balance
of two physical processes: an advective temperature transport and a
turbulent temperature transport. The distributions of these two terms
are illustrated in Fig. 4. Not surprisingly, the advective term has to be
in balance with the turbulence term across the plume. Near the core of
the plume, the advective term is positive and peaks at the plume cen-
terline, and the turbulent term is negative. The advective term consists
of one component from the axial direction and the other from the
transverse direction, as shown in Fig. 4. Near the plume core, the
advective heat transport is dominated by the axial component
�U�@H�=x�, while V�dH�=dg is essentially zero because V� � 0.
Away from the plume core, advection in the transverse direction
becomes more important.

Substituting Eq. (21) into Eq. (26), the dimensionless mean
energy equation can be simplified as

0 ¼ d
dg
ðH�

ðg

0
U�dgÞ þ dR�vh

dg
: (27)

This dimensionless equation is an admissible scaling, because both
terms have a nominal order of magnitude 1. Integrating Eq. (27) in the
transverse direction from 0 to g and applying boundary conditions
yields the solution for the turbulent heat flux R�vh as

R�vh ¼ �H�
ðg

0
U�dg: (28)

It has been observed4 that the mean temperature excess can also
be approximated by a Gaussian function as

H�ðgÞ � e�bg
2
; (29)

where b is

b ¼ lnð2Þ
ðy0:5t=y0:5uÞ2

: (30)

y0:5t or dt is the plume half-width based on the profile of the mean
temperature excess, and y0:5u or d is the plume half-width based on
the profile of the mean axial velocity. It is observed that y0:5t is slightly
larger than y0:5u. Consequently, b is slightly smaller than a ¼ lnð2Þ.
The approximate Eq. (29) for the mean excess temperature is com-
pared with experimental data in Fig. 5, and the agreement is reason-
ably good.

Using Gaussian functions to approximateU� and H�, an approx-
imate function for R�vh can be obtained as

R�vhðgÞ � �
ffiffiffi
p
p

2
ffiffiffi
a
p erf

ffiffiffi
a
p

g
� �

e�bg
2
: (31)

The approximate Eq. (31) for R�vh is compared with the exper-
imental data of Ramaprian and Chandrasekhara (RC)4 and the
simulation data of Dewan et al. (DKD)9 in Fig. 6. The general trend
of Eq. (31) agrees with the experimental data, but the magnitude is
larger. The cause of this discrepancy is not clear to the authors.
However, it is known that the measurements of temperature and
Rvh typically have lower accuracy and a higher level of uncer-
tainty.4 More data, especially high-quality simulation data, are
required to check the validity of approximate Eq. (31). In the
Reynolds-averaged Navier–Stokes (RANS) simulations of Dewan
et al.,9 three versions of the buoyancy extended k� �� t02 model-
ing were used. Figure 6 shows noticeable variations among differ-
ent models as well as the experimental data, and the turbulent
temperature flux profile from their model M2 agrees well with Eq.
(31), except near the plume edge.

Figure 6 shows that the turbulent temperature flux profile in tur-
bulent planar plumes is anti-symmetric about the plume centerline,
and possesses a prominent peak and trough. From the approximate

FIG. 4. Distribution of advective and turbulent terms in the mean energy Eq. (26).
The curves are computed from Eq. (14) for U�, Eq. (15) for V�, Eq. (29) for H�,
and Eq. (31) for R�vh.

FIG. 5. Comparison of the scaled mean temperature excess data and the
Gaussian Eq. (29) (dash curve). The reference temperature excess scale is
Href ¼ Tctr � T1. Experimental data are from Kotsovinos and List1 (KL) and
Ramaprian and Chandrasekhara4 (RC).
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Eq. (31), the location and magnitude of the peak and trough in the
profile of the turbulent temperature flux can be estimated as

g � 60:856; (32a)

jR�vhjmax � 0:513: (32b)

A quantity of interest in turbulent plumes is the heat flow rate or
temperature flow rate (per unit qcp), which can be obtained in dimen-
sionless form asð1

�1
ðU�H�Þdg �

ð1
�1
ðe�ag2 e�bg2Þdg � 1:57; (33)

and in dimensional form asð1
�1
ðUHÞdy � 1:57UctrHctrd: (34)

Note that Hctr � 1=x and d � x. Hence, the temperature flow rate in
a turbulent planar plume does not vary in the axial direction; that is, it
is conserved.

C. Admissible scaling of the mean axial-momentum
equation

To transform the mean momentum equation into a dimension-
less form, Eq. (6b) is multiplied by d=ðUctrVref Þ to yield

0 ¼ U�
dV�

dg
� V�

dU�

dg
þ Rvu;ref

UctrVref

� �
dR�vu
dg
þ gbHctrd

UctrVref

� �
H�: (35)

For turbulent plumes, the turbulent force should remain important in
the balance of the mean momentum equation. Thus, an admissible
scaling for the mean momentum equation requires that the turbulence
term in Eq. (35) must have a nominal order of magnitude 1. A proper
scale for the Reynolds shear stress is then Rvu;ref ¼ UctrVref .
Accordingly, an admissible scaling of the mean momentum equation
can be presented as

0 ¼ U�
dV�

dg
� V�

dU�

dg
þ dR�vu

dg
þ gbHctrd

UctrVref

� �
H�: (36)

The mean momentum Eq. (36) represents the balance of three
forces: an advective force, a buoyancy force, and a turbulent force, and
the distributions of the three forces are illustrated in Fig. 7. The buoy-
ancy force is always a driving force of the plume, and the advective
force is always negative, a drag force. Around the core of the plume,
the turbulent force is a drag force, but near the plume edge, turbulent
force acts as a driving force. The advective force consists of two com-
ponents U�dV�=dg and �V�dU�=dd, with comparable contribution,
as shown in Fig. 7.

Using dV�=dg from Eq. (9) and V� from Eq. (12), the advective
force in Eq. (36) can be presented as

U�
dV�

dg
� V�

dU�

dg
¼ 2U�

dV�

dg
� dðU�V�Þ

dg

¼ �ðU�Þ2 þ d
dg

U�
ðg

0
U�dg

	 

:

(37)

Substituting Eq. (37) into Eq. (36), the dimensionless mean
momentum equation can be written as

0 ¼ �ðU�Þ2 þ d
dg

U�
ðg

0
U�dg

	 

þ dR�vu

dg
þ gbHctrd

UctrVref
H�: (38)

Integrating Eq. (38) in the transverse direction from g¼ 0 to
g ¼ 1 and applying boundary conditions yields an integral
constraint:

gbHctrd
UctrVref

¼

ð1
0
ðU�Þ2dgð1

0
H�dg

: (39)

The left side of Eq. (39) can be interpreted as a turbulence Richardson
number,39,44 defined using five basic parameters in a turbulent planar
plume: gb, Uctr;Vref ;Hctr; and d.

FIG. 6. Comparing the approximate equation (31) for R�vh with experimental and
numerical data. Experimental data are from Ramaprian and Chandrasekhara4

(RC), RANS simulation with three models by Dewan et al.9 (DKD).

FIG. 7. Distributions of forces in the mean momentum balance Eq. (36). The curves
are computed from Eq. (14) for U�, Eq. (15) for V�, Eq. (29) for H�, and Eq. (45)
for R�vu.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 055101 (2021); doi: 10.1063/5.0050189 33, 055101-7

Published under license by AIP Publishing

https://scitation.org/journal/phf


In the far field of turbulent planar plumes, both
Ð1
0 ðU�Þ

2dg andÐ1
0 H�dg are constants. Hence, the Richardson number remains
invariant in the self-similar region of turbulent planar plumes. If U�

and H� are approximated by Gaussian functions, the integrals in Eq.
(39) become

ð1
0
ðU�Þ2dg �

ffiffiffi
p
p

erf
ffiffiffi
2
p ffiffiffi

a
p

g
� �

23=2
ffiffiffi
a
p

����
g¼1

g¼0
¼

ffiffiffi
p
p

23=2
ffiffiffi
a
p ; (40a)

ð1
0

H�dg �
ffiffiffi
p
p

erf
ffiffiffi
b
p

g
� �

2
ffiffiffi
b
p

����
g¼1

g¼0
¼

ffiffiffi
p
p

2
ffiffiffi
b
p : (40b)

Therefore, the Richardson number for turbulent planar plume can be
approximated as

gbHctrd
UctrVref

� 1ffiffiffi
2
p

ffiffiffi
b
p
ffiffiffi
a
p ¼ 1ffiffiffi

2
p y0:5u

y0:5t
; (41)

or

gbHctrdt
UctrVref

� 1ffiffiffi
2
p : (42)

In previous studies of plumes, the mean transverse velocity was
avoided in the analysis through the integration of the mean continuity
equation. Hence, Vref was not present in the previous results of
plumes.

Equation (42) also provides an indirect determination of the
mean transverse velocity V1. In experimental studies of turbulent pla-
nar plumes, it is extremely challenging to obtain accurate measure-
ments of the mean transverse velocity due to its small magnitude. On
the other hand, the direct measurements of Hctr; Uctr, and dt can be
obtained with higher level of accuracy. From Eq. (42), V1 can be
obtained as

jV1j � Vref �
ffiffiffi
2
p

gbHctrdt
Uctr

: (43)

Integrating the dimensionless mean momentum Eq. (38) yields
an expression for the scaled kinematic Reynolds shear stress as

R�vuðgÞ ¼
ðg

0
ðU�Þ2dg� U�

ðg

0
U�dg� gbHctrd

UctrVref

ðg

0
H�dg: (44)

Using Gaussian functions to approximateU� andH�, an approx-
imate function for the kinematic Reynolds shear stress can be obtained
from Eq. (44) as

R�vuðgÞ �
ffiffiffi
p
p

23=2
ffiffiffi
a
p ðerf

ffiffiffiffiffi
2a
p

g
� �

� erf
ffiffiffi
b
p

g
� �

Þ �
ffiffiffi
p
p

2
ffiffiffi
a
p erf

ffiffiffi
a
p

g
� �

e�ag
2
:

(45)

Empirically, Eq. (45) can be approximated by a simpler function as

R�vuðgÞ � �0:606 erf
ffiffiffi
a
p

g
� �

e�ag
2
: (46)

The experimental and numerical simulation data of Reynolds
shear stress are compared with Eqs. (45) and (46) in Fig. 8. The
approximation equations agree reasonably well with experimental
data. The RANS simulation data of Dewan et al.9 show the same shape
as the approximate equations, but the magnitude is slightly larger.

Figure 8 shows that the profile of the Reynolds shear stress is also
anti-symmetric about the plume centerline, and features a prominent
peak and trough. The location and magnitude of the peak and trough
in the profile of R�vu can be approximated from Eq. (46) as follows:

g � 60:732; (47a)

jR�vujmax � 0:261: (47b)

The new scaling and approximate function for the Reynolds
shear stress will be useful in subsequent studies of plumes. The
approximate function can also help the understanding of the flow
structures in turbulent plumes.

IV. SUMMARY

In the far field of turbulent planar plumes, it is observed that the
mean axial flow and mean temperature approach a self-similar state,
that is, properly scaled mean axial flow or mean temperature excess
profiles at different axial locations merge onto a single curve.
However, previous studies of turbulent plumes failed to demonstrate a
self-similar state for the normalized mean transverse flow or Reynolds
shear stress profiles. This contradiction was also present in studies of
other free-shear turbulent flows, such as jets, wakes, or mixing layers.
One hypothesis was that there is not one universal self-similar state,
and the variation of the normalized mean transverse flow in the axial
direction was attributed to the memory of the initial conditions. In
this paper, we show that the mean transverse flow, Reynolds shear
stress, and turbulent heat flux also approach a self-similar state if prop-
erly scaled. The proper scaling is useful in presenting experimental
and numerical simulation data, as well as evaluating different turbulent
models for wall-free turbulence. More importantly, proper scaling is
crucial to advance our understanding of the underlying physics in
wall-free turbulence.

The proper scaling in turbulent planar plumes is investigated
here by a relatively new scaling patch approach, originally developed
for wall-bounded turbulence. Specifically, proper scales are determined
by seeking admissible scaling for the mean governing equations and
boundary conditions. By setting the scaled boundary conditions at the

FIG. 8. Comparing the approximate equation (45) for R�vu with the experimental
data of Ramaprian and Chandrasekhara4 (RC), and RANS simulation with three
models by Dewan et al.9 (DKD).
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plume center to be 1, the commonly used scales for the mean axial
flow and mean temperature excess are reproduced as Uref ¼ Uctr and
Href ¼ Hctr, respectively. From an admissible scaling of the mean con-
tinuity equation, a proper scale for the mean transverse flow is found
as Vref ¼ ðdd=dxÞUctr. Similarly, a proper scale for the Reynolds shear
stress is found as Rvu;ref ¼ UctrVref from an admissible scaling of the
mean momentum equation, and a proper scaling for the turbulent
temperature flux is found as Rvh;ref ¼ VrefHctr from an admissible
scaling of the mean energy equation. Analytical and approximate
equations are developed for the scaled mean transverse flow, Reynolds
shear stress, and turbulent heat flux and are found to agree favorably
with experimental and numerical data. These approximate equations
are useful in subsequent experimental and numerical studies of turbu-
lent planar plumes. For the reader’s convenience, the analysis results
of turbulent planar plumes are summarized in Table III.

The present analysis reveals the critical role of the mean trans-
verse flow in the scaling of the flow and heat transport in a turbulent
planar plume. In previous studies of turbulent free-shear flows, the
scale for the mean transverse flow rarely received any attention. The
mean continuity equation is typically integrated to remove the mean
transverse flow from the analysis. However, recent studies of wall-
bounded turbulent flow45,46 and turbulent planar jet40 have revealed
that the mean transverse velocity scale is critical in the proper scaling
of the mean momentum equations. In this work, we show that the
proper scale for the Reynolds shear stress is a mix of the scales for
the mean axial and transverse flows, Uctr Vref . A proper scale for the

turbulent temperature flux is also a mix of scales for the mean trans-
verse flow and mean temperature excess, VrefHctr. Thus, the mean
transverse velocity scale is essential in the scaling of the mean flow and
heat transport in turbulent plumes.

The present work reveals striking similarities between turbulent
planar plumes and other free-shear turbulence, such as jets40 and the
outer layer of wall-bounded turbulence.45,47 However, there are also
important differences between turbulent plumes and other free-
shear turbulence, for example, the existence of buoyancy force in the
mean momentum equation for turbulent plumes. The influence of
buoyancy force in turbulent plumes can be quantified by a
Richardson number Ri ¼ ðgbHctrdtÞ=ðUctrVref Þ, defined by the key
parameters of turbulent plumes: the buoyancy parameter gb, the
bulk temperature difference Hctr, the plume width dt, and velocity
scales for the mean axial and transverse flows. From the global inte-
gral of the mean momentum equation, the Richardson number is
found to be a constant Ri � 1=

ffiffiffi
2
p

once the turbulent plume reaches
a self-similar state. This Richardson number arises naturally from
the scaling patch analysis of the mean momentum equation and
directly reflects the ratio between the buoyancy and turbulence
forces in a turbulent plume. Thus, this Richardson number is closely
related to the underlying physics in a turbulent plume. The discovery
of this Richardson number demonstrates the power of the scaling
patch approach, which unifies the analysis of the pressure- or shear-
driven wall-bounded turbulence and buoyancy-driven wall-free tur-
bulent plumes.

TABLE III. Summary of turbulent planar plume results.

Mean axial velocity scale Uref ¼ Uctr

Mean transverse velocity scale
Vref ¼

dd
dx

Uctr

Mean temperature excess scale Href ¼ Tctr � T1
Reynolds shear stress scale

Rvu;ref ¼ UctrVref ¼
dd
dx

U2
ctr

Turbulent temperature flux scale
Rvh;ref ¼ VrefHctr ¼

dd
dx

UctrðTctr � T1Þ
Mean continuity equation

0 ¼ �g
dU�

dg
þ dV�

dg
Mean momentum equation

0 ¼ U�
dV�

dg
� V�

dU�

dg
þ dR�vu

dg
þ gbHctrd

UctrVref
H�

Mean energy equation
0 ¼ U�H� þ gU�

dH�

dg
� V�

dH�

dg
þ dR�vh

dg
Equation for V�

V� ¼ gU� �
ðg

0
U�dg � ge�ag

2 � 1
2

ffiffiffi
p
a

r
erf

ffiffiffi
a
p

g
� �

Equation for R�vu R�vu ¼
ðg

0
ðU�Þ2dg� U�

ðg

0
U�dg� gbHctrd

UctrVref

ðg

0
H�dg

Equation for R�vh R�vh ¼ �H�
ðg

0
U�dg � � 1

2

ffiffiffi
p
a

r
erf

ffiffiffi
a
p

g
� �

e�bg
2

Volumetric flow rate
ð1
�1

U�dg ¼ 2jV�1j or
Ð1
�1 Udy � 2:12Uctrd:

Temperature flow rate
ð1
�1
ðU�H�Þdg � 1:57 or

ð1
�1
ðUHÞdy � 1:57UctrHctrd
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