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ABSTRACT

Proper scaling for the mean transverse flow and Reynolds shear stress in a turbulent plane jet is determined using a scaling patch approach.
By seeking an admissible scaling, a key concept in the scaling patch approach, for the mean continuity equation, a proper scale for the mean
transverse flow in a turbulent plane jet is found as Vref ¼ �ddUctr=dx, where d is the jet half width and dUctr=dx is the decay rate of the
mean axial velocity at the jet centerline. By seeking an admissible scaling for the mean axial momentum equation, a proper scale for the
kinematic Reynolds shear stress is found as Ruv;ref ¼ Uctr Vref , which is a mix of the velocity scales in the axial and transverse directions.
Approximation functions for the scaled mean transverse flow and Reynolds shear stress are developed and found to agree well with
experimental and numerical data. Similarities and differences between the scales of the mean transverse flow and Reynolds shear stress in
turbulent plane jets and zero-pressure-gradient turbulent boundary layer flows are clarified.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0043953

I. INTRODUCTION

Free shear flow occurs when there are no solid walls interacting
directly with the flow,1 as in jets, plumes, wakes, and mixing layers; it
is encountered in a broad range of geophysical, environmental, and
engineering flows. Free shear flows are slender, i.e., they spread slowly
in the transverse direction compared to the advection in the stream-
wise direction. Hence, scatter is significant in experimental measure-
ments of the transverse flow, and confusion exists to this day about the
proper scaling of the mean transverse flow. In this paper, we apply a
relatively new scaling patch approach to determine the proper scales
for the mean transverse flow and the Reynolds shear stress in turbulent
plane jets.

As sketched in Fig. 1, a turbulent plane jet is a canonical free
shear turbulent flow, and this flow has been studied for nearly a cen-
tury, analytically and experimentally, and recently by numerical simu-
lation.1–24 Exiting the nozzle, the jet decays in the axial direction and
at the same time spreads transversely. A common measure of the jet
width is the so-called half-value width y1=2, i.e., the local distance of
the point with half the mean centerline velocity Ujy¼y1=2 ¼ 0:5Uctr. At
different locations in the axial direction, the transverse distributions of
mean flow are different. However, in the far field of a jet flow, it has

been observed that the profiles of mean axial flow become self-similar;
the mean axial velocity profiles at different axial locations merge well
onto a single curve if plotted as U=Uctr vs g ¼ y=y1=2,

1,2,7,25 as shown
in Fig. 2. Similar plots can be found in the standard texts on turbulent
flow, including Ref. 1. The scaled mean axial velocity can be approxi-
mated by a Gaussian function U=Uctr � e�ag

2
, as represented by the

dashed curve, with the coefficient a having the standard value, i.e.,
a ¼ lnð2Þ � 0:693. The self-similarity of the mean axial velocity is
convenient in the presentation of experimental or numerical turbulent
plane jet data. More importantly, self-similarity is a concept of funda-
mental significance in the study of turbulent flows.10,17,21,26,27

However, there remain debates on the universality of self-similarity in
free shear turbulence, including turbulent plane jets.

Traditional analysis of free-shear turbulence, including turbulent
jets, can be found in the book by Tennekes and Lumley,25 and it typi-
cally starts with a self-similarity assumption, followed by definitions of
the self-similar mean axial flow with a function f and self-similar
Reynolds shear stress with a function g. The mean continuity equation
was integrated to eliminate the mean transverse velocity from the anal-
ysis, and the traditional analysis resulted in an ordinary differential
equation for the mean momentum equation. In early studies, an eddy
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viscosity model was often used to close the Reynolds shear stress in
order to obtain approximate solutions. In the traditional analysis pre-
sented by Tennekes and Lumley, one velocity scale Uctr was used to
describe the flow, and the Reynolds shear stress was normalized by
U2
ctr. In the analyses of George10 and Cafiero and Vassilicos,21 the

Reynolds shear stress was normalized by a separate scale, not U2
ctr. In

traditional analyses of turbulent jets, the scaling of the mean transverse
flow was not explicitly determined, and the relation among the scaling

of the mean axial flow, mean transverse flow, and Reynolds shear
stress was not clear.

The goal of this paper is to seek proper scaling of the mean trans-
verse flow and Reynolds shear stress using a relatively new scaling
patch approach,29–31 which was developed originally for shear-driven
wall-bounded turbulence. A key concept in the scaling patch approach
is the admissible scaling, which requires that the scaled governing
equations have at least two terms with a nominal order of magnitude
1, and the scaled boundary conditions should also be zero or a nomi-
nal order of magnitude 1. The governing equations can be scaled in
any number of ways, creating an infinite number of versions of dimen-
sionless equations, and all versions are mathematically equivalent, i.e.,
one scaling can be transformed to another by simple rescaling fac-
tors.30,31 However, in different regions of the flow, the relative magni-
tude of the terms may be different, and the balance of terms in each
transport equation might be different. The admissible scaling helps
reveal the relative magnitude of terms, which corresponds to each dis-
tinct dynamical regime for each transport equation. Here, we show
that the admissible scaling can clearly reveal the relative magnitude of
terms in the mean governing equations of turbulent plane jets, which
in turn assists in determining the proper scaling of the mean trans-
verse flow and Reynolds shear stress. This clarifies some missing parts
in traditional analyses. The properly scaled mean transverse flow and
Reynolds shear stress profiles from different axial locations are shown
to merge well onto a single curve; that is to say, they approach a self-
similar state in the far field.

The rest of the paper is organized as follows. In Sec. II, the mean
continuity and mean axial momentum equation are presented. Proper
scales for the mean axial flow, mean transverse flow, and Reynolds
shear stress are determined by seeking admissible scaling for the mean
continuity equation, the mean momentum equation, and the bound-
ary conditions. Approximate equations are developed for the mean
transverse flow and the Reynolds shear stress and found to agree well
with experimental and numerical data. Section III discusses the simi-
larity and difference in the scaling between the turbulent plane jet and
the zero-pressure-gradient turbulent boundary layer. Section IV sum-
marizes the work.

II. ANALYSIS OF THE GOVERNING EQUATIONS

As a jet evolves much more slowly in the axial direction than the
transverse direction, Prandtl’s boundary layer approximation equa-
tions are commonly used for turbulent plane jets.1,2 The mean conti-
nuity equation and the mean momentum equation in the axial
direction are

0 ¼ @U
@x
þ @V
@y

; (1a)

0 ¼ �U @U
@x
� V

@U
@y
þ � @

2U
@y2
þ @Ruv

@y
: (1b)

In this paper, an upper case letter denotes a mean velocity component
and a lower case letter denotes its fluctuation. For example, U is the
mean axial velocity and u is the velocity fluctuation in the axial direc-
tion. V is the mean transverse velocity, and v is the velocity fluctuation
in the transverse direction. The kinematic Reynolds shear stress is
denoted as Ruv ¼ �huvi, where angle brackets denote Reynolds aver-
aging. The boundary conditions for the turbulent plane jet are listed in

FIG. 1. Geometry and coordinate system of a plane jet. The axial direction is
denoted as x and the transverse direction as y. The height of the jet nozzle is bj,
and the jet exit velocity is denoted as Uj. The mean velocity at the centerline is
denoted as Uctr .

FIG. 2. Mean axial velocity and approximate expression using a Gaussian function
(dashed curve), e�ag

2
, where a ¼ lnð2Þ. Experimental data (open symbols) are

from Gutmark and Wygnanski (GW),28 Ramaprian and Chandrasekhara (RC),8 and
Panchapakesan and Lumley (PL).11 Direct numerical simulation data (solid sym-
bols) are from Stanley, Sarkar, and Mellado (SSM),12 and Klein, Sadiki, and
Janicka (KSJ).13 To avoid clutter, DNS data are only plotted for one half of the jet.
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Table I. Note that the mean transverse velocity and Reynolds shear
stress are zero at the jet centerline due to symmetry.

To transform the governing equation into a self-similar form, the
variables are normalized by reference scales and denoted as follows:

g¼def y
dðxÞ ; U�ðgÞ ¼def Uðx; yÞ

Uref ðxÞ
; V�ðgÞ ¼def Vðx; yÞ

Vref ðxÞ
;

R�uvðgÞ¼def Ruvðx; yÞ
Ruv;ref ðxÞ

;

(2)

where d is a measure of the jet width and Uref ;Vref ;Ruv;ref are proper
scales for the mean axial velocity, the mean transverse velocity, and
the kinematic Reynolds shear stress, respectively. Note that in many of
the previous studies of turbulent plane jets, only one velocity scale, the
jet centerline velocity Uctr, is used for all the mean flow variables and
turbulent statistics. Here, we specify different reference scales for U, V,
and Ruv.

We first note that the derivatives of g with respect to x and y are

@g
@x
¼ � 1

d
dd
dx

g; (3a)

@g
@y
¼ 1

d
: (3b)

As a result, the derivative of U with respect to x is

@U
@x
¼ dUref

dx
U� � Uref

d
dd
dx

g
dU�

dg

¼ dUref

dx
þ Uref

d
dd
dx

� �
U� � Uref

d
dd
dx

dðgU�Þ
dg

: (4)

The derivatives of U, V, and Ruv with respect to y are

@U
@y
¼ Uref

d
dU�

dg
; (5a)

@V
@y
¼ Vref

d
dV�

dg
; (5b)

@Ruv

@y
¼ Ruv;ref

d
dR�uv
dg

: (5c)

Substituting the self-similar variables U�;V� and their deriva-
tives, the continuity equation (1a) and the mean momentum equation
(1b) can be presented as

0 ¼ dUref

dx
þ Uref

d
dd
dx

� �
U� � Uref

d
dd
dx

dðgU�Þ
dg

þ Vref

d
dV�

dg
; (6a)

0 ¼ UrefVref

d
U�

dV�

dg
� UrefVref

d
V�

dU�

dg
þ �Uref

d2
d2U�

dg2

þ Ruv;ref

d
dR�uv
dg

: (6b)

The corresponding boundary conditions for the normalized vari-
ables are listed in Table II.

Next, the reference scales Uref ; Vref , and Ruv;ref will be obtained
by seeking admissible scaling for the mean continuity equation, the
mean momentum equation, and the normalized boundary conditions.
Admissible scaling is a key concept in the scaling patch analysis, a rela-
tively new approach originally developed by Fife and co-workers for
shear-driven wall-bounded turbulence.29–31 The scaling patch
approach has been applied to passive scalar transport in a turbulent
pipe or channel flow,32,33 turbulent boundary flow with roughness,34

turbulent Taylor–Couette flow,35 and buoyancy-driven turbulence
convection.36,37

It is well known that, in the far field of turbulent plane jets, the
flowfield can be characterized by a single length scale, i.e., the jet width.
Here, we show that a concept of admissible scaling in the scaling patch
approach can also be applied to free shear turbulence, as in a turbulent
plane jet, to reveal proper scaling of the mean flow. To be an admissi-
ble scaling, the scaled equations must have at least two terms with a
nominal order of magnitude 1. Moreover, the properly scaled bound-
ary conditions should be either zero or of O(1). Therefore, a natural
scale for the mean axial velocity is Uref ¼ Uctr because the scaled
boundary condition at the channel centerline becomes U� ¼ 1 (see
Table II).

A. Admissible scaling for the continuity equation

To obtain a dimensionless mean continuity equation, multiplying
d=Vref by Eq. (6a) produces

0 ¼ d
Vref

dUctr

dx
þ Uctr

Vref

dd
dx

� �
U� � Uctr

Vref

dd
dx

� �
dðgU�Þ

dg
þ dV�

dg
: (7)

For brevity, we introduce a ratio A defined as (its value is determined
in Sec. II B)

A ¼def
Uctr

Vref

dd
dx

d
Vref

dUctr

dx

¼ Uctr

d

dd
dx

dUctr

dx

: (8)

In studies of turbulent jets, power laws are often used to approximate
the growth of the jet width and the decay of the jet centerline velocity.
Using a power law for the jet width as d � c1xn and a power law for
the decay of the jet centerline velocity as Uctr � c2xm, it can be easily
shown that A will be a bounded constant. In Sec. II B [see Eq. (26)],
the ratio A is shown to be A¼ –2, indeed a constant of order 1.

Using the notation A, the dimensionless continuity equation can
be presented as

0 ¼ d
Vref

dUctr

dx

� �
ð1þ AÞU� � A

dðgU�Þ
dg

� �
þ dV�

dg
: (9)

TABLE II. Boundary conditions for normalized variables in the turbulent plane jet.

g ¼ 0 U� ¼ Uctr
Uref

; V� ¼ 0; R�uv ¼ 0

g ¼ 1 U� ¼ 0; V� ¼ V1
Vref
; R�uv ¼ 0

TABLE I. Boundary conditions in the turbulent plane jet.

y¼ 0 U ¼ Uctr; V ¼ 0; Ruv ¼ 0

y ¼ 1 U ¼ 0; V ¼ V1; Ruv ¼ 0
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For Eq. (9) to be an admissible scaling, we can set the mean trans-
verse velocity scale as

Vref ¼ �d
dUctr

dx
: (10)

The definition of Vref in Eq. (10) has a negative sign because the mean
axial velocity at the centerline decreases in the axial direction
(dUctr=dx < 0). Using the definition of A in Eq. (8), the mean trans-
verse velocity scale can also be presented as

Vref ¼ �
Uctr

A
dd
dx
: (11)

Substituting the definition of Vref in Eq. (10), an admissible conti-
nuity equation can be written as

0 ¼ �ð1þ AÞU� þ A
dðgU�Þ
dg

þ dV�

dg
: (12)

Integrating Eq. (12) in the transverse direction from 0 to g and
applying boundary conditions yield the exact solution for the scaled
mean transverse velocity as

V� ¼ �AgU� þ ð1þ AÞ
ðg

0
U�dg: (13)

It has been observed, as shown in Fig. 2, that the normalized
mean axial velocity can be approximated by a Gaussian function:
U�ðgÞ ¼ e�ag

2
, where a ¼ lnð2Þ is due to the definition of U�ðg ¼ 1Þ

¼ 0:5. Using the Gaussian function for U�, the integral of the mean
axial velocity is

ðg

0
U�dg ¼ 1

2

ffiffiffi
p
a

r
erf

ffiffiffi
a
p

g
� �

: (14)

An approximate function for V� is, then, obtained as

V�ðgÞ � �Age�ag
2 þ ð1þ AÞ 1

2

ffiffiffi
p
a

r
erf

ffiffiffi
a
p

g
� �

: (15)

The ratio A is determined as A ¼ –2 by an integral constraint of
the mean momentum equation [see Eq. (26) in Sec. II B]. Thus, an
approximate function for V� is

V�ðgÞ � 2ge�ag
2 � 1

2

ffiffiffi
p
a

r
erf

ffiffiffi
a
p

g
� �

: (16)

Note that the magnitude of the mean transverse flow reaches
a maximum value at the jet edge and jV jmax=Vref ¼ jV�1j � 1:06.
Thus, the scaled boundary condition for V� is also of an order 1,
satisfying the requirement of admissible scaling. Therefore, the
mean transverse velocity outside the turbulent plane jet V1 can
also be used as a reference velocity scale for the mean transverse
flow. The mean transverse velocity normalized by V1 can be
approximated as

V
jV1j

� 1:89ge�ag
2 � 1

2:12

ffiffiffi
p
a

r
erf

ffiffiffi
a
p

g
� �

: (17)

Within the jet core, the mean transverse velocity profile possesses
a local maximum/minimum, and its location and value are

g ¼ 6
1
2

1ffiffiffi
a
p � 60:6; (18a)

V� � 60:38: (18b)

Figure 3 compares experimental and numerical data of the
mean transverse velocity with the approximate equation [Eq. (16)].
Experimental data are from Gutmark and Wygnanski (GW)28 and
Ramaprian and Chandrasekhara (RC).8 Direct numerical simula-
tion (DNS) data are from Stanley, Sarkar, and Mellado (SSM)12

and Klein, Sadiki, and Janicka (KSJ).13 The Reynolds number in
the GW experimental study is Rej ¼

def
Ujbj=� � 30 000, where Uj is

the jet exit velocity, bj is the exit slot height, and � is the kinematic
viscosity. The Reynolds number in the numerical studies of SSM
and KSJ is much lower, at Rej ffi 3 000. The DNS data agree well
with the approximation equation [Eq. (16)]. The deviation
between the data and the approximate function near the edge of
the jet in Fig. 3 is likely caused by (1) the uncertainty in the
measurement of V and (2) the deficiency of using a Gaussian func-
tion to approximate the U profile near the edge of the turbulent
plane jet.

The mean transverse flow in experimental studies of turbulent
plane jets is very small. For example, in the experiment of Ramaprian
and Chandrasekhara,8 the mean transverse velocity was about 0:5� 1
cm/s. Therefore, it was extremely challenging to obtain the accurate
measurement of the mean transverse flow, and the uncertainty was
rather large, as shown by the scatter in Fig. 3. Nevertheless, the experi-
mental data are close to the approximation equation [Eq. (16)]. For
example, at g ¼ �3, the difference between the measurement and the
approximation equation is about 20%, within the uncertainty of exper-
imental measurements. In theory, the mean transverse velocity is anti-
symmetric about the jet centerline. The deviation of experimental data
from anti-symmetry in Fig. 3 is attributed to measurement
uncertainty.

In the work by Cafiero and Vassilicos,21 the mean transverse
velocity was scaled by Uctr dd=dx, and that scale is similar to Vref pro-
posed here. In this paper, an explicit approximation function is devel-
oped for the scaled mean transverse velocity.

FIG. 3. Scaled mean transverse velocity V=Vref ¼ V=ð�ddUctr=dxÞ and the
approximate equation [Eq. (16)]. Data Refs. 8, 12, 13, and 28 as in Fig. 2.
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In studies of turbulent jets, a quantity of interest is the volumetric
flow rate, which can be obtained by integrating Eq. (12) from
g ¼ �1 to g ¼ 1 as

ð1
�1

U�dg ¼ V�1 � V��1
1þ A

¼ 2V�1
1þ A

¼ �2V�1 � 2:12: (19)

Note that the mean transverse flow in a turbulent plane jet is anti-
symmetric about the centerline, i.e., V��1 ¼ �V�1. Thus, the volumet-
ric flow rate in a turbulent plane jet is directly related to the mean
transverse velocity at the edge of the jet. In the dimensional form, the
volumetric flow rate is

ð1
�1

Udy � 2:12Uctrd: (20)

For a turbulent plane jet, it is known that d � x and Uctr � 1=x0:5

[e.g., see Ref. 1]. Thus, the volumetric flow rate of the turbulent plane
jet increases in the axial direction, arising from the entrainment of
ambient fluid into the jet.

B. Admissible scaling for the mean axial momentum
equation

To transform the mean momentum equation into a dimension-
less form, multiplying d=ðUrefVref Þ to Eq. (6b) produces

0 ¼ U�
dV�

dg
� V�

dU�

dg
þ �

dVref

� �
d2U�

dg2
þ Ruv;ref

UrefVref

� �
dR�uv
dg

: (21)

At a sufficiently high Reynolds number, the prefactor to the viscous
force is small, �=ðdVref Þ � 1, meaning that the viscous force is negli-
gible. Therefore, the force balance in a turbulent plane jet is between
the advective force (the first two terms) and the turbulent force (the
last term). To make Eq. (21) an admissible scaling, the reference
Reynolds shear stress has to be set as Ruv;ref ¼ UrefVref . Neglecting the
viscous force, the admissible scaling of the mean momentum equation
becomes

0 ¼ U�
dV�

dg
� V�

dU�

dg
þ dR�uv

dg
: (22)

Applying dV�=dg obtained from Eq. (12), simple mathematical
manipulation transforms the advective term in Eq. (22) as follows:

U�
dV�

dg
� V�

dU�

dg
¼ 2U�

dV�

dg
� dðU�V�Þ

dg

¼ 2U� ð1þ AÞU� � A
dðgU�Þ

dg

� �
� dðU�V�Þ

dg

¼ ð2þ AÞðU�Þ2 � A
dðg ðU�Þ2Þ

dg
� dðU�V�Þ

dg
:

(23)

Thus, the dimensionless mean momentum Eq. (22) can be presented
as

0 ¼ ð2þ AÞðU�Þ2 � A
dðg ðU�Þ2Þ

dg
� dðU�V�Þ

dg
þ dR�uv

dg
: (24)

Integrating Eq. (24) from g ¼ 0 to g ¼ 1 and applying boundary
conditions yield

0 ¼ ð2þ AÞ
ð1
0
ðU�Þ2dg: (25)

For Eq. (25) to be valid, the prefactor has to be zero,

A ¼ �2; (26a)

or

dd
dx
¼ �2 d

Uctr

dUctr

dx
: (26b)

Thus, the integral of the mean axial momentum equation provides a
relation between the jet width growth rate and the jet centerline veloc-
ity decay rate. Integrating Eq. (26b) provides the integral constraint on
the self-similar plane-jet flows as

U2
ctrðxÞdðxÞ ¼ const: (27)

This relation [Eq. (27)] is not new but was derived previously by
Townsend,7 George,10 and Cafiero and Vassilicos.21 Note that the inte-
gral constraint does not dictate a specific function form for UctrðxÞ or
dðxÞ, individually, but it does require the product of U2

ctrðxÞdðxÞ to be
a constant when a jet reaches a self-similar state.

Applying the constraint [Eq. (26)], the mean axial momentum
[Eq. (24)] can be simplified as

0 ¼ �Adðg ðU�Þ2Þ
dg

� dðU�V�Þ
dg

þ dR�uv
dg

: (28)

Integrating Eq. (28) in the transverse direction from 0 to g, applying
boundary conditions and substituting Eq. (13) for V� yield an equa-
tion for the Reynolds shear stress as

R�uv ¼ AgðU�Þ2 þ U�V� ¼ ð1þ AÞU�
ðg

0
U�dg ¼ �U�

ðg

0
U�dg:

(29)

Using a Gaussian function to approximate U�, the scaled
Reynolds shear stress can be approximated as

R�uv � �
ffiffiffi
p
p

2
ffiffiffi
a
p erf

ffiffiffi
a
p

g
� �

e�ag
2
: (30)

The peak magnitude of the scaled Reynolds shear stress occurs at
g � 60:75, and the peak value is jR�uvjmax � 0:45. Figure 4 shows that
the experimental and numerical data of the Reynolds shear stress agree
well with the approximation equation [Eq. (30)]. The deviation in the
DNS data of Klein et al. is likely caused by the low Reynolds number
effect.

In textbooks and previous papers on turbulent jets, Reynolds shear
stress data are typically scaled by U2

ctr. George
10 proposed a different

scale for the Reynolds shear stress as U2
ctr dd=dx. The scale proposed

here Uctrð�d dUctr=dxÞ is related to the George scale by the factor A.
The novelty of the present work is that the scaling is derived from the
relatively new scaling patch approach. Moreover, an explicit approxima-
tion function is developed for the scaled Reynolds shear stress.

Approximating U� by a Gaussian function, the kinematic
momentum flow rate in a turbulent plane jet can be approximated as

ð1
�1
ðU�Þ2dg � 1

21=2

ffiffiffi
p
a

r
� 1:5 (31)
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or in a dimensional form as
ð1
�1

U2dy � 1:5U2
ctrd: (32)

The integral constraint [Eq. (27)] dictates that U2
ctrd is a constant. In

other words, the momentum flux in a turbulent plane jet is
conserved.1,7,10

III. DISCUSSION

In experimental studies of free shear turbulence or a zero-pres-
sure-gradient turbulent boundary layer (ZPG-TBL), it is extremely
challenging to obtain accurate measurements of the mean transverse
or wall-normal velocity due to its small magnitude. Thus, the proper
scaling for the mean transverse or wall-normal flow has not been clear
in previous research. A traditional view of wall-bounded turbulence
holds that friction velocity us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
is a proper velocity scale in

the near-wall region for both the streamwise flow and wall-normal
flow. Here, sw is the wall shear stress and q is the fluid density.25

However, Wei and Klewicki38 recently found that the proper scale for
the mean wall-normal flow in the ZPG-TBL is not the friction velocity
but the mean wall-normal velocity outside the boundary layer V1.
Moreover, Wei and Maciel39 proposed a new mixed scale for the
Reynolds shear stress in the ZPG-TBL as Ruv;ref ¼ U1 V1, where U1
is the free stream velocity. These new findings38,39 are distinctively dif-
ferent from the traditional view, and the new scaling highlights the
critical role of the mean wall-normal velocity in the scaling of the
ZPG-TBL.

In previous studies of turbulent plane jets, the jet centerline veloc-
ity Uctr has been typically used to scale all the mean flow statistics,
including the mean axial flow, the mean transverse flow, and the
Reynolds shear stress. In other free shear turbulence, such as turbulent
wakes or mixing layers, the mean axial velocity scale is also used to
scale the mean transverse flow and Reynolds stresses. If Uctr is used as
a scale for the mean transverse flow in a turbulent plane jet, the mean
continuity equation [Eq. (7)] becomes

0 ¼ d
Uctr

dUctr

dx
þ dd

dx

� �
ðU=UctrÞ �

dd
dx

� �
dðgU=UctrÞ

dg
þ dðV=UctrÞ

dg
:

(33)

The last term in Eq. (33) has a nominal order of magnitude 1, but the
nominal orders of magnitude of the other terms are much smaller
than 1. Hence, Eq. (33) is not an admissible scaling because it has only
one term with a nominal order of magnitude 1. Note that ðU=UctrÞ in
the first term or dðgU=UctrÞ=dg in the second term of Eq. (33) is
�Oð1Þ. Therefore, the last term of Eq. (33) dðV=UctrÞ=dg and V=Uctr

will be much smaller than 1.
If U2

ctr is used as a scale for the Reynolds shear stress in a turbu-
lent plane jet, the mean momentum [Eq. (21)] becomes

0 ¼ ðU=UctrÞ
dðV=UctrÞ

dg
� ðV=UctrÞ

dðU=UctrÞ
dg

þ �

dUctr

� �
d2U=Uctr

dg2
þ dðRuv=U2

ctrÞ
dg

: (34)

The viscous term in Eq. (34) is a high order term and does not con-
tribute to the balance of the equation. Note that ðU=UctrÞ in the
first term or dðU=UctrÞ=dg in the second term of Eq. (34) is
�Oð1Þ, but both dðV=UctrÞ=dg in the first term and V=Uctr in the
second term are much smaller than O(1). Therefore, the last term
of Eq. (34) dðRuv=U2

ctrÞ=dg and Ruv=U2
ctr will also be much smaller

than O(1). It has been observed that the profiles of mean transverse
velocity normalized by Uctr, and especially the profiles of the
Reynolds shear stress normalized by U2

ctr, do not merge to a single
curve, and the magnitude of such scaled profiles is indeed much
smaller than O(1).

In this paper, we show that a proper velocity scale for the mean
transverse flow in a turbulent plane jet is the mean transverse velocity
outside the jet Vref � jV1j, and a proper scale for the Reynolds shear
stress is also a mixed scale Ruv;ref ¼ UrefVref � UctrjV1j. In fact, the
scaling of the mean transverse flow and Reynolds shear stress in turbu-
lent plane jets and ZPG-TBL bears a striking similarity. This similarity
is not surprising because the governing equations for the mean flow in
the outer layer of ZPG-TBL are identical to those for the turbulent
plane jet. However, there are also important differences between the
free shear turbulence and wall-bounded turbulence, most notably in
terms of boundary conditions. In the ZPG-TBL, the boundary condi-
tion for the mean streamwise velocity outside the boundary layer is
U1. In contrast, in the turbulent plane jet, the mean axial velocity out-
side the jet is zero. Another important difference is that the width of
the turbulent plane jet grows linearly in the axial direction,1 but the
growth of the boundary layer thickness in the streamwise direction is
slower than a linear function.2

IV. SUMMARY

The scaling patch approach, originally developed for shear-
driven wall-bounded turbulence, is applied to determine the proper
scales in the turbulent plane jet. A proper velocity scale for the mean
transverse flow is found as Vref ¼ �d dUctr=dx, which is essentially
the mean transverse velocity outside the jet Vref � jV1j. A proper
scale for the Reynolds shear stress is found as Ruv;ref ¼ Uref Vref , which
is a mix of the velocity scales for the mean axial and transverse flows.
The results for the turbulent plane jet are summarized in Table III.

FIG. 4. Scaled Reynolds shear stress Ruv=ð�ddUctr=dxU2
ctrÞ and the approximate

equation [Eq. (30)]. Data Refs. 8, 12, 13, and 28 as in Fig. 2.
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Applying the new scaling, the scaled mean transverse velocity or
Reynolds shear stress profiles at different axial locations merge well
onto a single curve, that is, they display self-similarity. An approximate
function for the self-similar mean transverse velocity profile is devel-
oped as V� � 2ge�ag

2 � 0:5
ffiffiffiffiffiffiffiffi
p=a

p
erf

ffiffiffi
a
p

g
� �

, and an approximation
function for the self-similar Reynolds shear stress profile is developed
as R�uv � �0:5

ffiffiffiffiffiffiffiffi
p=a

p
erf

ffiffiffi
a
p

g
� �

e�ag
2
. These approximation functions

are shown to agree well with experimental and numerical data, making
them useful in assessing the results of future experimental or numeri-
cal studies of the turbulent planet jet.

The present analysis demonstrates that the admissible scaling,
originally developed for wall-bounded turbulence, can also be applied
to free-shear turbulence. In specific, this work reveals the critical role
of the mean transverse flow on the scaling and understanding of
turbulent plane jets. The similarity and differences of the scaling
between the turbulent plane jet and the outer layer of shear-driven
wall-bounded turbulence are also discussed. Previous studies of
wall-bounded turbulence and wall-free turbulence are, to some degree,
separated, and the present work opens a pathway for future work to
advance our understanding of these two different turbulences.
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