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ABSTRACT

Developing reduced-order models for turbulent flows, which contain dynamics over a wide range of scales, is an extremely challenging problem.
In statistical mechanics, the Mori–Zwanzig (MZ) formalism provides a mathematically exact procedure for constructing reduced-order represen-
tations of high-dimensional dynamical systems, where the effects due to the unresolved dynamics are captured in the memory kernel and orthog-
onal dynamics. Turbulence models based on MZ formalism have been scarce due to the limited knowledge of the MZ operators, which originates
from the difficulty in deriving MZ kernels for complex nonlinear dynamical systems. In this work, we apply a recently developed data-driven
learning algorithm, which is based on Koopman’s description of dynamical systems and Mori’s linear projection operator, on a set of fully
resolved isotropic turbulence datasets to extract the Mori–Zwanzig operators. With data augmentation using known turbulence symmetries, the
extracted Markov term, memory kernel, and orthogonal dynamics are statistically converged and the generalized fluctuation–dissipation relation
can be verified. The properties of the memory kernel and orthogonal dynamics, and their dependence on the choices of observables are investi-
gated to address the modeling assumptions that are commonly used in MZ-based models. A series of numerical experiments are then constructed
using the extracted kernels to evaluate the memory effects on prediction. The results show that the prediction errors are strongly affected by the
choice of observables and can be further reduced by including the past history of the observables in the memory kernel.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0070548

I. INTRODUCTION

Direct and accurate computations of complex nonlinear dynami-
cal systems in physical sciences and engineering applications, such as
turbulent flows, are, in general, prohibitively expensive due to the exis-
tence of wide range of length and time scales. This challenge has moti-
vated the development of reduced order models (ROM) to achieve fast
and efficient solutions in practical applications. In the field of turbu-
lence simulations, Reynolds-Averaged Navier–Stokes (RANS) and
large eddy simulations (LES) have been widely adopted as alternatives
for direct numerical simulation (DNS). The computational complexity
is reduced through coarse-graining, which effectively narrows the
range of scales that need to be resolved.1 High-order moments and
their dynamical equations, which account for the effects of unresolved
scales, naturally emerge during the coarse-graining process. The high-

order moments are then truncated, and surrogate models, commonly
referred to as subgrid-scale models, have been developed to
account for the effects from the high-order moments contribu-
tions. Such surrogate models are usually developed under the
assumptions of scale similarity or universality of fully developed
turbulence, and the resulting simplified models are usually
Markovian in nature. Kraichnan2,3 introduced Direct Interaction
Approximation (DIA) as a non-Markovian closure model for tur-
bulence statistics. The evolution of a new quantity, the infinitesi-
mal response function, is employed to model the response of
turbulent flows to infinitesimal perturbations. However, this
method suffers from certain theoretical (inability of reproducing
inertial range behavior) and practical (difficulty in calculating
long-time statistics) weaknesses.4
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The Mori–Zwanzig (MZ) formalism was originally developed in
statistical physics for constructing projection-based low-dimensional,
non-Markovian models for high-dimensional nonlinear dynamical
systems.5,6 It provides a mathematically exact procedure for develop-
ing reduced-order models for high-dimensional systems. This reduc-
tion of dimensionality is achieved by applying a projection operator to
the evolution operator of the original dynamical systems. The resulting
lower-dimensional model, referred to as the generalized Langevin
equation (GLE), consists of a Markovian term, a memory term, and a
noise term. The GLE, as derived in the framework of MZ formalism, is
an exact representation of the dynamics of the reduced-order model.
In the context of RANS and LES modeling, the truncated high-order
moments can be accounted for in the memory integral and noise
terms under the Mori–Zwanzig formalism. However, in most previous
efforts of subgrid-scale modeling, the evolutionary equations are usu-
ally treated as Markovian.

Modeling turbulence under the MZ formalism is extremely chal-
lenging due to the limited understanding of the memory kernels and
orthogonal dynamics. Obtaining the structure of the memory kernel
requires the solution of the unresolved orthogonal dynamics, which is
another high-dimensional nonlinear dynamical system. Despite this
difficulty, the optimal prediction framework developed in Chorin
et al.,7 Givon et al.,8 Chorin and Stinis9 provides a formal procedure
for analyzing the memory effects and developing surrogate models
based on the MZ formalism. One of the major modeling difficulties
using the MZ formalism is determining the structure and length of the
memory term. The widely used t-model approximates the memory
length as equal to simulation time t and has been used by Bernstein,10

Hald and Stinis,11 and Chandy and Frankel12 for prediction of
Burger’s equations, Euler equations, and Navier–Stokes (NS) equa-
tions. Parish and Duraisamy13 later proposed a dynamic-s model to
approximate the memory length using the similarity between two
coarse-graining levels. The renormalized MZ models14,15 embed a
larger class of models that share similar functional forms with MZ for-
malism but with different coefficients to approximate the memory
integral. Stinis,16 and Parish and Duraisamy17 further used finite order
expansion of the orthogonal dynamics and cast it to a set of differential
equations that represent the effects of memory integral with finite
memory length. These MZ-based turbulence models rely on simplified
assumptions and observations of the turbulent flow, most of which
have not been verified due to the difficulty in deriving or extracting
the MZ operators. Gouasmi et al.18 proposed a method for the estima-
tion of the memory integrals using pseudo orthogonal dynamics,
which is only exact for linear dynamics. In previous studies on MZ-
based turbulence modeling, the nonlinear projection operator19 is
used to formulate the GLE, so the resulting Markov and memory ker-
nels are nonlinear functions of resolved variables. Mori’s linear projec-
tion operator, or the finite rank projection operator, is another
commonly used projection operator for MZ formulation. The proce-
dure for evaluatingMarkov operator and memory kernel from numer-
ical data without additional assumptions based on Mori’s linear
projection operator was first proposed in the study by Chorin et al.,19

although the evaluated memory kernel is not explicitly shown. Also,
the finite-rank projection operator is defined in Chorin et al.19 on a set
of orthonormal basis functions, which are not as flexible as the general,
arbitrary observables employed in modern Koopman analysis.20

Okamura,21 andMori and Okamura22 employed an iterative approach

to construct the memory kernel from the correlation functions of the
numerical data. Meyer et al.,23 Meyer et al.24 proposed an iterative
numerical procedures for evaluating memory effects using the auto-
correlation function. Maeyama and Watanabe25 revisited the method
proposed by Chorin et al.19 for extracting the memory kernel and
modeled the effects of small-scale fluctuations on large-scale fluctua-
tions based on the MZ formalism. Importantly, in these recently
proposed methods, the reduced-order space is always restricted to be
one-dimensional, allowing only one “coarse-grained” variable. Such a
severe model reduction could lead to undesirably poor results—there
is only so much information one dynamic variable contains.

The above-mentioned models approach the dimensional reduction
starting with the original nonlinear systems. The challenges in approxi-
mating the memory kernel come from the nonlinearity of the equations.
For the same dynamical system, there exists another formulation, as pro-
posed by Koopman,26 Koopman and Neumann.27 In Koopman’s
description, the system is characterized by a collection of observables
which are functions of the original phase space coordinates. The
Koopmanian formulation describes how observables evolve in an
infinite-dimensional Hilbert space, which is composed of all the possible
observables. The advantage of this formulation is that the evolution of
the observables, which form a vector in the infinite dimensional Hilbert
space, is always linear, even for systems that are nonlinear in the phase-
space picture. The disadvantage of this formulation is that the state space
of the system, which consists of all possible observables, is infinite dimen-
sional. Based on the Koopman representation of dynamical system,
approximate learning methods, such as dynamic mode decomposition
(DMD)28 and extended dynamic mode decomposition (EDMD),20 have
been developed for data-driven modeling of dynamical systems. By com-
bining the Koopman description with MZ formalism, it is possible to
perform a dimensional reduction of the infinite dimensional
Koopmanian linear formulation to a finite, low-dimensional dynamical
system with memory kernels and orthogonal dynamics. Since the
observables evolve in a linear space, the learning problem is convex,
which can greatly simplify the learning of MZ operators. Lin et al.29 pro-
posed a generalized data-driven learning framework for extracting MZ
memory kernel and orthogonal dynamics from high-dimensional data
under the generalized Koopman formulation, and analyzed the proper-
ties of these terms for a Lorenz ‘96 model. Theoretically, Lin et al.29

established the formal connection between Koopman operators and MZ
formalism in both continuous- and discrete-time formulations.
Numerically, motivated by the recent approximate Koopman learning
methods, the algorithms presented in Lin et al.29 learn jointly from time
series of a finite number of dynamic variables, in contrast to the one-
dimensional projection in Meyer et al.23 and Maeyama and Watanabe.25

Learning jointly from multivariate time series is beneficial especially for
those systems with strong interactions among these dynamical variables,
e.g., local interactions in fluid dynamical systems.

In this work, we take the first step to apply the learning algorithm
in Lin et al.29 to a homogeneous isotropic turbulence DNS database to
extract the Markov, memory, and orthogonal (noise) terms for the
coarse-grained Navier–Stokes system. To the authors’ best knowledge,
there has been no study using data-driven methods to accurately
extract MZ terms for Navier–Stokes turbulence, despite the fact that
understanding the properties of the memory kernels and orthogonal
dynamics is crucially important not only to quantitatively address the
assumptions in MZ-based turbulence models but, more generally,
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understand the past memory effects for the coarse-grained NS dynam-
ics. The manuscript is organized as follows: in Sec. II, the MZ formal-
ism, as a generalized Koopman learning framework, is introduced.
The data-driven learning framework for MZ kernels is explained in
Sec. III. The DNS database and post-processing procedures are then
described in Sec. IV. The results and discussions are presented in
Sec. V, and the conclusions are drawn in Sec. VI.

II. MORI–ZWANZIG FORMALISM

Consider the following semi-discrete high-dimensional ordinary
differential equation (ODEs) for the full set of state variables
UðtÞ ¼ ½/1ðtÞ;…;/NðtÞ�T 2 RN :

dUðtÞ
dt
¼ RðUðtÞÞ; Uð0Þ ¼ x; (1)

where R : RN ! RN is a N-dimensional vector of nonlinear real
functions defined on RN and x 2 RN . Due to the difficulties in simu-
lating and analyzing high-dimensional nonlinear dynamical systems,
it is generally desirable to develop low-dimensional representations of
the same system. In order to achieve this reduction of complexity, we
consider the evolution of a set of observables uðx; tÞ :¼ gðUðx; tÞÞ,
where g : RN ! RD is a D-dimensional vector of observables [func-
tions of the phase space variables Uðx; tÞ] and, in general, D<N.
Here, we use Uðx; tÞ to denote the solution to Eq. (1) with the initial
conditions Uð0Þ ¼ x, and gðx; tÞ to denote the observables gðUðx; tÞÞ
at time t. One way to define the observables is to decompose the state
variables U into resolved/relevant variables Ûðx; tÞ ¼ ½/1ðtÞ;…;
/DðtÞ�T 2 RD, and unresolved ones ~U ¼ ½/Dþ1ðtÞ;…;/NðtÞ�T
2 RN�D, and evolutionary equations for the resolved variables Û are
developed to reduce the dimension of the original nonlinear set of
ODEs. In Sec. II B, we will describe a set of coarse-grained observables,
which are derived by applying a spatial filter to the velocity field of the
incompressible Navier–Stokes equations. For a system with sufficient
separation of scales, it might be possible to decompose the system into
slow and fast dynamics; the latter might be modeled as function of the
former and some simple (white) noise. However, in many physical sys-
tems, there exists a continuous spectrum of scales so that the dynamics
of the resolved variables are nonlinearly coupled to the unresolved
ones. To formally solve this problem, Mori,5 and Zwanzig6 developed
the projection-based method to express the effects of the unresolved
variables in terms of the resolved ones. The key result of
Mori–Zwanzig’s formulation of the reduced-dimensional system is the
generalized Langevin equation (GLE), which is characterized by the
emergence of the memory-dependent dynamics—represented as the
convolutional integral of the past history of the resolved variables and
a memory kernel, and orthogonal dynamics—describing the evolution
of unresolved variables in the orthogonal functional space.

A. Derivation of the generalized Langevin equation:
Key construct of Mori–Zwanzig Formalism

In this section, we provide a formal derivation of the
Mori–Zwanzig formalism. Consider the nonlinear ODE system as
shown in Eq. (1), with the initial conditions Uð0Þ ¼ x; x 2 RN . The
evolution of a set of observables uðx; tÞ :¼ gðUðx; tÞÞ, where g :
RN ! RD is a D-dimensional vector of observables, can be posed as
a linear partial differential equation (PDE) in the Liouville form

@

@t
uðx; tÞ ¼Luðx; tÞ; uðx; 0Þ ¼ gðUðx; 0ÞÞ ¼ gðxÞ; (2)

whereL is the Liouville operator

L :¼
XN
i¼1

RiðxÞ@xi : (3)

Thus, the PDE (2) becomes the ODE (1) along the characteristics
curves. A special choice of g in Eq. (2) is giðxÞ :¼ xi; i 2 1;…;D,
which extracts the ith component of the state of the system, x. Using
the semigroup notation, the solution of the linear PDE can be written
as uðx; tÞ ¼ etLgðxÞ, where etL is referred to as the evolution opera-
tor. It can be shown that etLgðxÞ ¼ gðetLxÞ ¼ gðUðx; tÞÞ since etLx
¼ Uðx; tÞ. Alternatively, this can be written as etLUðx; 0Þ ¼ Uðx; tÞ
and we recognize that the operator Kt ¼ etL is the one-parameter
family of Koopman operators. We further remark that the evolution
operator (Koopman operator) etL and the Liouville operatorL com-
mute, that isLetL ¼ etLL. Hence, Eq. (2) becomes

@

@t
etLgðxÞ ¼LetLgðxÞ ¼ etLLgðxÞ: (4)

In order to construct reduced-order representation of the linear
PDE using the reduced D-dimensional vector of observables u, with
the initial condition uðx; 0Þ ¼ gðxÞ, a projection operator, P, needs to
be specified. In this work, we denote L2ðlÞ the Hilbert space of func-
tions endowed with the inner product defined as

hf ; gi :¼
ð
f xð Þg xð Þ dl xð Þ; f ; g 2 L2ðlÞ; (5)

where f and g are L2-integrable functions with respect to the probabil-
ity distribution l. In this work, we adopt a stationary measure for x.
The projection operator P that maps functions f ðxÞ 2 L2ðlÞ into the
subspace Spanfg1ðxÞ;…; gDðxÞg is then defined. The particular choice
of projection operator determines the functional form of the
Mori–Zwanzig formulation. Examples of projection operators include
nonlinear projection operator that relies on the marginalization of the
under-resolved observables6 and finite rank projection operator that
relies on the inner product in the Hilbert space.5 After the projection
operator P is defined, its complement Q is denoted as Q ¼ I � P and
satisfies PQ ¼ QP ¼ 0, where I is the identity operator. We then sub-
stitute the Dyson identity30

etL ¼ etðPþQÞL ¼ etQL þ
ðt
0
eðt�sÞLPLesQLds (6)

in Eq. (4) and arrive at

@

@t
etLgðxÞ
� �

¼ etLLgðxÞ ¼ etLPLgðxÞ þ etLQLgðxÞ

¼ etLPLgðxÞ þ etQLQLgðxÞ

þ
ðt
0
eðt�sÞLPLesQLQLgðxÞds; (7)

which can be written in terms of the observables

@

@t
gðx; tÞ ¼ Mðgðx; tÞÞ þ Fðx; tÞ �

ðt
0
Kðgðx; t � sÞ; sÞds: (8)
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The specific selection of the projection operator will be discussed
below. The above equation is the generalized Langevin equation
(GLE), which contains a Markov transition term, orthogonal dynam-
ics, and a memory kernel that are defined as

Mðgðx; tÞÞ :¼ etLPLgðxÞ (9a)

Fðx; tÞ :¼ etQLQLgðxÞ (9b)

Kðgðx; t � sÞ; sÞ :¼ �eðt�sÞLPLesQLQLgðxÞ; (9c)

with the orthogonality condition PFðx; tÞ ¼ 0. These three components
represent the key construct of Mori–Zwanzig formalism, and the GLE is
exact in describing the dynamics of observables g. Equation (9c) is also
referred to as the nonlinear generalized fluctuation-dissipation (GFD)
relation.6 Note that here we use a negative sign in front of the memory
term following the convention in Mori5 and Zwanzig.6

We remark that Eq. (8) is the general form of the MZ formula-
tion and is not specific to any projection operator. In practice, the
choice of the projection operator is central for constructing the MZ
formalism, because the functional form of the components may vary
drastically for different projection operators. Here, we give some
examples of projections operators that have been employed in the
literature:

• In Mori’s formulation,5 the projection operator relies on the
inner product defined in Eq. (5). With this inner product, the
Mori’s projection operator,5 or the finite rank projection opera-
tor, can be defined onto the span of a set of linearly independent
basis functions giðxÞ; i 2 1;…;D:

Pf gðxÞð Þ :¼
XD
i;j¼1
hf ; gii C�10

� �
i;jgjðxÞ; (10)

where C�10 is the inverse of the covariance matrix
½C0�i;j ¼ hgi; gji; i; j 2 1;…;D. For a special set of orthonormal
basis functions hiðxÞ, the covariance matrix becomes the identity
matrix so that the projection operator can be simplified:

Pf hðxÞð Þ :¼
XD
i¼1
hf ; hiihiðxÞ: (11)

In general, one can use the Gram–Schmidt (G–S) procedure to
identify the set of orthonormal functions hiðxÞ from giðxÞ.

• In Zwanzig’s formulation,6 the observables are chosen to be a
subset of the variables gðxÞ ¼ x̂ and the projection operator is
defined using direct marginalization of the un-resolved variables.
If the probability distribution l for phase-space variable x is
written for resolved/unresolved variables as a density function
qðx̂; ~xÞ, the projection operator is then defined as

Pf x̂ð Þ :¼

ð
f ðx̂; ~xÞqðx̂; ~xÞd~xð

qðx̂; ~xÞd~x
: (12)

The resulting function Pf is generally nonlinear in bvx, so this pro-
jection operator is also termed as nonlinear projection19 or infi-
nite rank projection.31 This nonlinear projection operator has
been adopted in Parish and Duraisamy13,17 to construct

MZ-based models for turbulence, where the initial conditions
were assumed to be fully resolved (i.e., ~x ¼ 0 at t ¼ 0) and the
unresolved observables were assumed to remain centered at 0
and delta distributed.

• A recently proposed Wiener projection is used to link the
Nonlinear Auto-Regressive Moving Average with eXogenous
input (NARMAX) to MZ formalism,32 where the basis functions
g also embed information from past history. Let fn and gn be two
discrete-time zero mean wide-dense stationary processes, where
subscript n denotes the index of time steps, and then the Wiener
projection operator can be written as

Pfn :¼
Xn
i¼1

hign�i; (13)

where the sequence hi is the Wiener filter.

In this work, we focus on the Mori’s finite rank projection opera-
tor and the corresponding constructed MZ kernels, which is the foun-
dation of the data-driven algorithms proposed in Lin et al.29

1. A discrete-time Mori–Zwanzig formalism

Even though the dynamical system discussed above is formulated
in continuous-time, it is common that in high-resolution simulations
or experimental measurements, the outputs are discrete-time snap-
shots, where the temporal derivative is not readily available. Darve
et al.33 formulated the MZ formalism for discrete-time systems. Lin
and Lu32 established the link between NARMAX and MZ formulation
of discrete-time system based on Wiener projections. In this work, we
employ a similar discrete-time description, but we construct the MZ
formulation based on the finite rank projection operator. For com-
pleteness, we introduce the discrete formulation of dynamical system
and corresponding MZ formulation following Lin and Lu,32 Darve
et al.33

We write the dynamical equation for the full set of discrete solu-
tion vector UðnDÞ 2 RN as

Uððnþ 1ÞDÞ ¼ SDðUðnDÞÞ; Uð0Þ ¼ x; (14)

where n and D are the time step and time interval of the discrete-time
snapshots, respectively. Similar to the continuous time derivation, we
define the observables as gðUðnDÞÞ 2 RD, where the components gi
are functions in L2ðlÞ that map the original solution U to a physically
observed quantity of interest: RN ! R. For simplicity, we use gðnDÞ
to denote gðUðnDÞÞ. To describe the evolution of the observables g,
we introduce discrete-time Koopman operator KD that satisfies
½KDg�ðUÞ ¼ ðg � SDÞðUÞ, where the symbol � is used to denote com-
posite functions. By operating the Koopman operator on functions g
and applying to the solution variable at the current state, we can obtain
the observables at the future time step. We apply the Koopman opera-
tor nþ 1 times and derive the evolution of observables:

Knþ1
D g

� �
ðxÞ ¼ Kn

Dðg � SDÞ
� �

ðxÞ ¼ Kn
Dg

� �
ðUðDÞÞ

¼ gðUððnþ 1ÞDÞÞ ¼ gððnþ 1ÞDÞ: (15)

With a given projection operator P on Hilbert space L2ðlÞ and its
complement Q ¼ I � P, we can then write the Dyson identity for the
Koopman operator32
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Knþ1
D ¼

Xn
l¼0

Kn�l
D PKDðQKDÞl þ ðQKDÞnþ1: (16)

We substitute Eq. (16) in Eq. (15) and arrive at the evolutionary equa-
tion for observables g,

gððnþ 1ÞDÞ ¼ Knþ1
D g

� �
ðxÞ

¼
Xn
l¼0

Kn�l
D PKDðQKDÞlg

h i
ðxÞ þ ðQKDÞnþ1g

� �
ðxÞ;

¼ Kn
DPKDg

� �
ðxÞ þ

Xn
l¼1

Kn�l
D PKDðQKDÞlg

h i
ðxÞ

þ ðQKDÞnþ1g
� �

ðxÞ

¼ Xð0ÞD ðgðnDÞÞ þ
Xn
l¼1

XðlÞD ðgððn� lÞDÞÞ þWnþ1ðxÞ:

(17)

The above equation is the discrete-time GLE and can be under-
stood as the discrete counterpart of Eq. (7). The corresponding
Mori–Zwanzig operators can then be identified for the three compo-
nents in Eq. (17),

Xð0ÞD ðgðnDÞÞ ¼ Kn
DPKDg

� �
ðxÞ (18)

Wnþ1ðxÞ ¼ ðQKDÞnþ1g
� �

ðxÞ (19)

XðlÞD ðgððn� lÞDÞÞ ¼ Kn�l
D PKDðQKDÞlg

h i
ðxÞ; (20)

with the orthogonality condition PWnþ1 ¼ 0; 8 n 2N. Equation
(17) is also general, and the specific forms of the MZ operators depend
on the choice of projection operator.

B. Reduced-order construction of Navier–Stokes
equations based on MZ formalism

In Sec. IIA, we have derived and discussed the key components
of MZ formalism and their dependence on the projection operator. In
this section, we first demonstrate their application to Navier–Stokes
turbulence modeling and establish the link between MZ formulation
with the nonlinear projection operators and classical turbulence
modeling approach, i.e., LES. Due to the challenges in extracting the
properties of the corresponding nonlinear MZ operators, we propose
the MZ formulation based on Mori’s finite rank projection operator as
a generalization of Koopman learning framework, which greatly sim-
plifies the learning task and allows us to quantitatively address the
assumptions in modeling.

1. LES and MZ formulation based on nonlinear
projection operator

Consider the three-dimensional discretized velocity field in a fully
resolved numerical simulation viðt; nx; ny; nzÞ, where i 2 1; 2; 3 is the
direction of velocity and nx; ny; nz 2 1; ::;Nx;Ny;Nz the discrete spa-
tial coordinates of the velocity field. We can stack the discretized solu-
tion of the velocity field at time t into a N � 1 vector vðtÞ 2 RN ;
N ¼ 3� Nx � Ny � Nz , and write the discretized incompressible
Navier–Stokes equations with any given numerical scheme into a gen-
eral form ODE, which follows Eq. (1),

dvðtÞ
dt
¼ RðvðtÞÞ; (21)

where R is the nonlinear function that can be viewed as representing
the spatially discretized form of the right-hand side of the
Navier–Stokes equations for given a numerical scheme.

For the spatially discretized NS equations, we can then derive the
discrete-time formulation for the temporally discretized velocity vector
vðnDÞ and arrive at Eq. (14). Here, SD encodes information of the tem-
poral scheme, for example, SDðvÞ ¼ I þ D � RðvÞ for the Euler method
if we assume that the time interval D is very small.

Fully resolving the dynamics of the Navier–Stokes equations
requires prohibitively large amounts of computational resources due
to the wide range of scales for practically relevant problems. In the
classic approach of reduced-order modeling for turbulence, the veloc-
ity field is coarse-grained by applying a spatial filter to reduce the
range of scales that need to be resolved. Here, we denote the solution
vector of the filtered discretized velocity field as �vðtÞ :¼ ½viðt; nx;
ny; nzÞ�T ; nx; ny; nz 2 1;…;Nx;c;Ny;c;Ny;c, where the overline
denotes the spatial filtering. Commonly used spatial filters include
Gaussian filter, box filter, and spectral filter. The size of the computa-
tional mesh required to fully resolve �v is significantly reduced because
of the reduced range of scales, so that Nx;c � Nx; Ny;c � Ny; Nz;c

� Nz and the resolved solution vector �v 2 RD has a reduced dimen-
sion D ¼ 3� Nx;c � Ny;c � Nz;c � N . As a result of spatially filtering
the nonlinear NS equations, high-order moments emerge and the sys-
tem for the resolved variable �v is not closed. Dynamical equations for
the filtered velocities can be written as

d
dt

�vðtÞ ¼ �Rð�vðtÞÞ þ ssgsðvðtÞÞ; (22)

where �Rð�vðtÞÞ takes the same form as the original NS equations but
numerically discretized on a coarser grid and is fully closed, while
ssgsðvðtÞÞ denotes the unclosed sub-grid scale contributions. Transport
equations for the higher-order moments can also be derived, such as
equations for the sub-grid stress (SGS) in LES, but they depend on
even higher-order unclosed terms. In practice, the resulting infinite
dimensional system is truncated to include only the resolved variable
Û ¼ �v , and a sub-grid model is used to compensate for the effects
from the unresolved moments/scales, which is usually Markovian:
ssgsð�vðtÞÞ.

In the framework of MZ formalism, we can employ a nonlinear
projection operator similar to that used in Parish and Duraisamy34

and write an evolution equation for the reduced-order variable �v as a
GLE that consists of a Markov term, a memory term, and orthogonal
dynamics:

d
dt

�vðtÞ ¼ Mð�vðtÞÞ �
ðt
0
K �vðt � sÞ; sð Þdsþ FðtÞ: (23)

We remark that there may exist a projection operator that one
can apply to the filtered NS equations and establish the connection
between the terms in Eq. (22) and the terms in MZ formulation Eq.
(23), but it is challenging to perform quantitative analyses of the sub-
grid model in the MZ framework. In this section, we hope to shed
some light on turbulence modeling from the perspective of MZ for-
malism. The traditional sub-grid scales models that are based on
assumptions of scale similarity, universality of fully developed
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turbulence, etc. have been shown to be inadequate in many complex
flow problems, such as transitional flows, flows with separation, etc.
Alternatively, we can develop turbulence models from the MZ frame-
work, where more complex flow phenomena, such as transition to tur-
bulence, can be incorporated into the memory kernel and orthogonal
dynamics. This will alleviate the need for strong assumptions based on
universality of fully developed turbulence to relate the small-scale fluc-
tuations to velocities at the resolved scale �v . With the addition of
memory kernel and orthogonal dynamics, MZ-based turbulence mod-
els have the potential of resolving the issues in traditional turbulence
modeling. On the other hand, it is generally difficult to accurately
model the Markov term, memory kernel, and orthogonal dynamics
due to limited knowledge of their properties and the challenge in
extracting MZ operators using data/observations.

We also remark that the difficulty of extracting the memory ker-
nel and orthogonal dynamics originates from two aspects: nonlinearity
of the Navier–Stokes equations and that of the projection operator. In
Sec. II B 2, we solve this issue by introducing Mori’s finite rank projec-
tion operator and discuss its relation to the Koopman learning frame-
work, which lays the foundation for the extraction of MZ kernels
using a data-driven algorithm. We also remark that we only expressed
Smagorinsky-type sub-grid models35 in Eq. (22) for simplicity, while
there exists a wider range of models, such as the one-equation model,36

the dynamic model,37 etc., in which certain memory effects are incor-
porated, even though indirectly.

2. MZ formulation based on Mori’s projection operator

In the Koopman learning framework,26 the same dynamical sys-
tem in Eq. (1) can be characterized by a collection of observables g,
which are functions of the physical-space variables U. The system can
then be cast from a finite-dimensional system of nonlinear ODEs
describing the physical variables to an infinite-dimensional system of
linear ODEs that describes all possible observables. In Koopman’s for-
mulation, the observables evolve on an infinite-dimensional Hilbert
spaceH, which is composed of all possible observables.

In the Koopman framework, deriving a closed-form solution is
equivalent to identifying a set of observables whose dynamics are
invariant in a subspace, which is linearly spanned by the set of the
observables. In general, it is very challenging to identify the finite set of
observables that close the dynamics and one has to resort to approxi-
mation methods to close the dynamics. Naturally, we can leverage the
Mori–Zwanzig formalism and the inner product in the Hilbert space
to construct the dynamical equations for the finite set of observables.
Lin et al.29 showed that by using Mori’s finite rank projection operator
[Eq. (10)], which depends on the inner product of two functions, both
the Koopman27 and MZ formulations operate in a shared Hilbert
space. The advantage of using Mori’s projection operator is that the
projected low-dimensional functions are linear, which significantly
simplifies the derivation/learning of the MZ kernels. This is in contrast
to the MZ construction based on nonlinear projection operators as
discussed in Sec. II B 1. Following Lin et al.,29 the MZ formulations
when using the Mori’s projection operator with linearly independent
basis functions g can be written as

d
dt
g tð Þ ¼ M � g tð Þ �

ðt
0
K t � sð Þ � g sð Þ dsþF tð Þ; (24)

where M and vK(t), t 8� 0, are D�D matrices. Similarly, the discrete
counterpart of MZ formulation based on Mori’s projection operator for
the discrete-time observable gðnDÞ ¼ gðUðnDÞÞ can be written as29

gððnþ 1ÞDÞ ¼ X 0ð Þ
D � gðnDÞ þ

Xn
‘¼1

X ‘ð Þ
D � gððn� lÞDÞ þWnþ1

¼
Xn
‘¼0

X ‘ð Þ
D � gððn� lÞDÞ þWnþ1: (25)

Note that in the discrete form, Xð0ÞD is the Markov operator, XðlÞD ;
l 2 1; 2; 3… are the memory kernels, Wnþ1 is the orthogonal dynam-
ics, and D represents the discrete time step.29 There is also a switch of
sign in the memory kernel between the two types of formulation in
Eqs. (24) and (25), which is because of the conventions in continuous
and discrete formulations. In the rest of the paper, the MZ formulation
will be mainly discussed using the discrete form, due to the fact that it
simplifies the calculation by replacing integral with summation and
temporal derivatives with numerical values.

We remark that Eq. (24) [or Eq. (25) for discrete-time formula-
tion] is a special case of the general MZ formulation [Eqs. (7) and
(17)], where the projection operator is chosen to be the finite rank pro-
jection operator. The basis functions g are not limited to the original
physical-space variables, but can be any linearly independent functions
of U. Naturally, we can construct an MZ formulation for the
Navier–Stokes equations using Mori’s projection operator. The form
of the MZ formulation follows that in Eq. (24).

So far, we have presented two different Mori–Zwanzig formula-
tions for the NS equations [Eqs. (24)/(25) and (23)/(17)], and their dif-
ferences can be understood from two different perspectives. First, the
projection operators are different: Eq. (23) employs a projection opera-
tor based on truncation, which results in a nonlinear Markov operator
and memory kernels, while Eq. (24) is based on Mori’s projection
operator, which results in linear Markov and memory kernels. We
have discussed the relation between Eq. (23) and LES modeling and
difficulties of deriving/extracting corresponding memory kernels and
orthogonal dynamics in Sec. II B 1. This difficulty can be alleviated
using the linear MZ formulation in Eq. (24), but there is no direct link
to classical LES modeling. Second, the solution vectors are different: Eq.
(23) describes the evolution of physical-space variables (the filtered
velocity field in the context of LES), while Eq. (24) describes the
observables g, which can be nonlinear functions of physical-space vari-
ables. The observables can also include the physical-space variables
themselves in their set.

Given the simplicity of the Markov operator and memory kernels
when using Mori’s linear projection operator, we show that the
Mori–Zwanzig operators can be extracted in a relatively straightforward
manner using this formulation, unlike the one based on a nonlinear pro-
jection operator. We also continue the discussions using the discrete-
time formulation because: (i) observations and simulation results are
usually discrete and fully resolved time derivatives are usually not readily
available, and (ii) discrete-time formulation can avoid the errors induced
by numerically integrating the continuous-time counterpart.

C. The evolution of the two-time correlation matrix

In this section, we derive the evolution equation of the two-time
correlation matrix C, which is the foundation of the learning
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algorithm. For Mori’s projection operator, we choose to use the initial
condition gð0Þ as the basis of the projected linear subspace. We then
apply an inner product lhvgTð0Þri to Eq. (25) and obtain an evolu-
tionary equation for the two-time correlation function, CðnDÞ,

CðnDÞ ¼ hgðnDÞ; vgTð0Þi; (26)

Cððnþ 1ÞDÞ ¼ X 0ð Þ
D � CðnDÞ þ

Xn
‘¼1

X ‘ð Þ
D � Cððn� lÞDÞ

¼
Xn
‘¼0

X ‘ð Þ
D � Cððn� lÞDÞ: (27)

Note that with this procedure, we exploit the orthogonality between
the basis function gð0Þ and the noise Wnþ1 to remove the complex
orthogonal dynamics in the evolution equation of C. The resulting for-
mula [Eq. (27)] builds the foundation for the data-driven learning
algorithm.

D. Generalized fluctuation-dissipation relation

The relation between the memory kernel and the orthogonal
dynamics, i.e., Eq. (9c), is commonly referred to as the generalized
fluctuation-dissipation relation (GFD). There exist different interpreta-
tions of this relation but, in general, it imposes a structural relation
between the memory kernel and orthogonal dynamics. Thus, these
operators cannot be approximated using models in an arbitrary man-
ner. This relation has been used to estimate the memory kernel when
a model for orthogonal dynamics is proposed.18

When constructing the MZ formulation using Mori’s projection
operator, a specific form of the GFD can be derived for the two-time
correlation matrix, if the Liouville operator L is anti-self-adjoint with
respect to the chosen inner product,

hf ;Lhi ¼ �hLf ; hi; (28)

for any functions f and h of the physical-space variable U. Note that
the anti-self-adjoint property depends on the choice of the inner prod-
uct. Lin et al.29 showed that the Liouville operator of a dynamical sys-
tem is anti-self-adjoint if the inner product is defined as the
temporally averaged value of the product of the test functions evalu-
ated on a long trajectory, provided the observables are bounded along
the trajectory. The specific GFD for the discrete-time MZ formulation
with Mori’s projection operator is29

XðlÞD ¼ �hWlþ1; vW
T
1 iC�1ð�DÞ; 8l 2 1; 2; 3…; (29)

where Cð�DÞ ¼ CTðDÞ. This non-trivial relation should be satisfied if
the kernels are correctly extracted from the data and will be verified
using numerical data.

III. DATA-DRIVEN LEARNING OF THE MZ OPERATORS
AND ORTHOGONAL DYNAMICS

In this section, we briefly describe the learning algorithm pro-
posed in Lin et al.29 The learning procedure is based on Eq. (27) and
starts by calculating the two-time correlation matrix CðnDÞ
¼ hgðnDÞ; gð0ÞTi. As mentioned in Sec. IIA, the evaluation of the
inner product requires taking the expectation value against the station-
ary distribution dl or temporally and uniformly sampling/averaging
along a long trajectory. For non-stationary systems, the distribution of

the system state is time-dependent. Thus, the inner product needs to
be performed over an ensemble of simulations, whose initial condi-
tions are drawn from the initial distribution of the states for each spe-
cific problem. In this work, we focus on stationary turbulent flows.

Given a long and evenly spaced trajectory of a physical space var-
iable (velocity field) from the fully resolved direct numerical simula-
tion UðnDÞ; n 2 0; 1…Nt � 1, the two-time correlation matrix
CðnDÞ can be calculated as

C nDð Þ ¼ 1
Nt � n

XNt�n�1

i¼0
gðU nþ ið ÞDð ÞÞ � gTðU iDð ÞÞ; (30)

where Nt is the total number of snapshots and NtD� Tl , where Tl is
the integral timescale of turbulence. The calculation of the two-time
correlation matrix consumes majority of the computational time of
the proposed algorithm. To speed up the computation for large
dynamical systems, one can impose sparsity constraints on the correla-
tion matrix. In this work, we implement known symmetries of the
physical system for data augmentation, which can further improve the
accuracy in extracting Mori–Zwanzig operators without generating
more data. For isotropic turbulence with triply periodic boundaries,
periodicity and rotational symmetries are satisfied and can be used to
facilitate data augmentation. This can be implemented in the calcula-
tion of the two-time correlation matrix. Suppose there exist Ns sym-
metric representations of the same physical-space variable
SnsðUÞ; ns ¼ 1;…Ns, where Sns is the symmetry operator that pre-
serve the statistics of the original physical-space variables U. One of
such operator could be rotating the velocity field such that
u1 ! u2; u2 ! u3; u3 ! u1, and the dynamics are the same for all
the symmetric representations. Naturally, Eq. (30) can then be modi-
fied to

C nDð Þ ¼ 1
Ns

1
Nt � n

XNs

ns¼1

XNt�n�1

i¼0
gðSnsðU nþ ið ÞDð ÞÞÞ

� gTðSnsðU iDð ÞÞÞ: (31)

After the calculation of two-time correlation matrix CðnDÞ, we
can set n¼ 0 in Eq. (27) to obtain the Markov operator Xð0ÞD ,

Xð0ÞD ¼ CðDÞ � C�1ð0Þ: (32)

We can then recursively solve for the memory kernel XðnÞD using two-
time correlation matrix CðnDÞ, Eq. (27) and previously solved low-
order XðlÞD ; l < n,

XðnÞD ¼ ðCððnþ 1ÞDÞ �
Xn�1
l¼0

XðlÞD Cððn� lÞDÞÞ � C�1ð0Þ: (33)

After we obtain the memory kernel, the orthogonal dynamics
can then be extracted for each section in the trajectory using
Eq. (25),

WðiÞnþ1 ¼ gðUððiþ nþ 1ÞDÞÞ �
Xn�1
l¼0

XðlÞD gðUððiþ n� lÞDÞÞ: (34)

After obtaining WðiÞnþ1, the properties of the orthogonal dynamics can
be studied, such as the two-time correlation hWnþ1; vWT

1 i, etc.
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IV. GROUND TRUTH TURBULENCE DATA

The “ground-truth” data are generated from the Eulerian DNS
solution of the incompressible Navier–Stokes equations on a (2p, 2p,
2p) domain,

@vi
@t
þ @vivj

@xj
¼ � @p

@xi
þ � @

2vi
@xjxj

; (35)

where pressure p is obtained by solving the Poisson equation which
enforces the zero velocity divergence constraint, and � is the
Kinematic viscosity. The isotropic turbulence is generated on a 1283

grid using the pseudo-spectral method. A large-scale forcing term is
applied to prevent turbulence from decaying. Time advancement is
achieved through Adams–Bashforth–Moulton method. The Taylor
Reynolds number when the turbulence reaches a statistically steady
state is approximately 100. See Petersen and Livescu,38 and Daniel
et al.39 for more details on the numerical method.

After the turbulent flow becomes fully developed, the 3D snap-
shots of the flow field are stored in consecutive time steps to generate a
long trajectory of turbulence data. The total length of the trajectory is
approximately 3000Tl , where Tl is the integral timescale. We then
apply the post-processing procedure to obtain the low-dimensional
coarse-grained observables. The choices of observables could signifi-
cantly affect the properties of the Markov operator, memory kernels,
and the noise; therefore, in this study, we select several sets of observ-
ables that are closely related to the canonical turbulence modeling
approach (LES) and turbulence theory. To summarize, the following
procedures are used in this work to obtain the observables: (1) similar
to LES, we first apply spatial filters to the velocity field at each time
step with a wide range of filter sizes lD to obtain the filtered velocity vi ,
(2) various types of observables, such as filtered velocity, pressure, sub-
grid stress, kinetic energy, etc., are computed, (3) the selected observ-
ables on the fine mesh (128� 128� 128) are then uniformly sampled
onto a coarse mesh (4� 4� 4), and (4) the resulting observables at
each time step are stacked into a single vector. Following these coarse-
graining steps, a dimension reduction from 3� 1283 physical-space
variables to nobs � 43 observables can be achieved, where nobs is total
number of function/variable types. We include the filtered velocities in
all sets of observables. In this work, we consider the following four sets
of observables for extracting MZ kernels:

• Observable set 1 (nobs ¼ 3): v1 ; v2 ; v3
• Observable set 2 (nobs ¼ 15): v1 ; v2 ; v3 ; v1 v1 ; v2 v2 ; v3 v3 ; v1 v2 ;
v1 v3 ; v2 v3 ; v1v1 � v1 v1 ; v2v2 � v2 v2 ; v3v3 � v3 v3 ; v1v2 � v1 v2 ;
v1v3 � v1 v3 ; v2v3 � v2 v3 ,

• Observable set 3 (nobs ¼ 14): v1 ; v2 ; v3 ; v1 v1 þ v2 v2 þ v3 v3 ,
S11, S22, S12, S13, S23, W12, W13, W23, SijSij; WijWij, where

Sij ¼ 1
2

@vi
@xj
þ @vj

@xi

� �
; Wij ¼ 1

2
@vi
@xj
� @vj

@xi

� �
• Observable set 4 (nobs ¼ 15): v1 ; v2 ; v3 ;

@v1v1
@x1

; @v2v2@x2
; @v3v3@x3

;
@v1v2
@x1

; @v1v2@x2
; @v1v3@x1

; @v1v3@x3
; @v2v3@x2

; @v2v3@x3
; @

�p
@x1
; @

�p
@x2
; @

�p
@x3

.

Note that in observable set 3, not all components of the strain
rate tensor Sij are chosen as basis functions for observables because
there exists a linear dependence of the diagonal components from the
incompressibility condition. In addition to the above-mentioned func-
tions for each set of the observables, a constant function g0 ¼ 1 is
added to every set of observables, making the total number of

observables nobs � 43 þ 1. In Fig. 1, we show the 2D velocity vector
field and contours of observables in different observable sets to help
the readers understand the flow field.

V. RESULTS

In this section, we present the results and properties of the
extracted MZ kernels. We first address the statistical convergence of
the learned MZ operators from “ground-truth” data. The non-trivial
GFD relation between the memory kernels and orthogonal dynamics
is also verified. The properties of the Markov operator, memory kernel,
and noise, and their dependence on different choices of observables
are then analyzed. Finally, we conduct numerical experiments using
the extracted kernels to investigate the effects of adding the memory
kernel on prediction.

A. Statistical convergence

The statistical convergence of the computed two-time correlation
matrix C and the learned kernel is an important factor in the proposed
learning algorithm29 and needs to be confirmed in order to reduce the
effects of statistical variability on the analysis. The accurate computa-
tion of the two-time correlation matrix C in the ergodic system
requires averaging over a long trajectory. This requires a large amount
of data samples, which represent the distribution of the stationary sys-
tem. As described in Sec. IV, we performed fully resolved simulations
to generate a long trajectory of 3D turbulence data and stored total Nt

3D snapshots of velocity fields. In the convergence test, three different
sampling methods are used to sample from the database:

• Method 1: The convergence test data are randomly sampled from
the total Nt snapshots.

• Method 2: The total Nt snapshots are first coarsely sampled in
time to make sure that any two snapshots are at least one integral
timescale apart. An integral timescale Tl 	 Nintdt corresponds to
approximately Nt=Nint snapshots. The convergence test data are
then randomly sampled from the Nt=Nint snapshots. This proce-
dure ensures that the data are not temporally correlated and are
truly independent samples from the stationary distribution.

• Method 3: Similar to Method 2, but the time differences between
two snapshots are reduced to half integral timescale. This works
as an intermediate case between Method 1 and Method 2.

After obtaining the samples from the database, we apply the
post-processing procedure as discussed in Sec. IV to the 3D simulation
data in order to generate the vectors of observables g. In the conver-
gence test, the observable set 1 is chosen with the a spatial filtering
length p=8. Data augmentation-based periodicity and rotational sym-
metry are also performed for the statistical convergence test. The dis-
crete time step D is chosen to be 10dt. Figure 2 shows the percentage
changes of the Frobenius norm of the learned Markov operator and
memory kernels with different number of samples, where the percent-

age change is calculated using formula:
jjjXð‘ÞD jjF;nþ1�jjX

ð‘Þ
D jjF;nj

jjXð‘ÞD jjF;n
. Here, the

subscript F denotes the Frobenius norm and n denotes the number of

samples used for calculating the Markov operator Xð0ÞD and memory

kernels XðlÞD ; l 2 1; 2; 3…. The percentage error fluctuates as the num-
ber of sample increases, but there exists a converging trend for the
upper bound of the fluctuations. By using the largest number of
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samples from the database, the upper bound of the fluctuations can be
reduced to 10�7 
 10�6, implying that the final percentage error is
less than 10�6. Further increasing the number of samples only yields
negligible improvements in the accuracy of the learned kernels. It is

also interesting to note that there is no difference in the rate of con-
vergence among the three sampling methods. Considering this, we
will use Method 1 for sampling, as it uses the largest amount of data,
thus resulting in the smallest statistical error in the learned kernel.

FIG. 1. 2 D snapshots of the flow field and observables from the DNS data. (a) Filtered velocity vector field (found in all observable sets), (b) sub-filter stress (found in observ-
able set 2), (c) magnitude of strain rate tensor (found in observable set 3), (d) magnitude of rotation tensor (found in observable set 3), (e) filtered pressure gradient (found in
observable set 4), and (f) gradient of sub-filter stress (found in observable set 4).

FIG. 2. The percentage error of Frobenius norm of the learned (a) Markov operator Xð0ÞD and (b) memory kernel XðlÞD for a time delay of approximately 5 Kolmogorov time

scales (sg 	 5:7� 10�2) as the number of samples increases is shown to verify the statistical convergence. The percentage error is calculated as
jjjXð‘ÞD jjF;nþ1�jjX

ð‘Þ
D jjF;n j

jjXð‘Þ
D
jjF;n

.
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Considering that for large matrices like the Markov term and
memory kernel the convergence of their Frobenius norm does not nec-
essarily translate to the convergence of individual components of the
matrices, we provide further test to ensure the full convergence of each
component. Figure 3 shows the convergence of the learned individual
components of the Markov operator and memory kernels as the num-
ber of samples increases. Three components, ½Xð0ÞD �1;1; ½X

ð0Þ
D �1;2, and

½Xð0ÞD �1;4, are shown in Fig. 3(a), which correspond to Markovian con-
tributions from different observables. It can be seen that both ½Xð0ÞD �1;1
(representing contributions from v1 to v1 ) and ½Xð0ÞD �1;4 (represents
contributions from v1 to v1 at neighboring points) values achieve con-
vergence when the number of samples is larger than 105. On the other
hand, the component ½Xð0ÞD �1;2 (representing contributions from v1 to
v2 ) shows a decreasing trend as the number of sample increases and
reaches almost three orders of magnitude smaller than the dominant
components in the matrix. Intuitively, the correlation between velocity
components should vanish in an isotropic turbulent field, which
implies that ½Xð0ÞD �1;2 is trivial in the Markov operator, and further
increasing samples would result in negligible improvements. Ideally,
one could inject known physics into the learning framework to impose
constraints on the learned kernels. However, in our first attempt in
extracting MZ operators, we only apply the physical symmetries in the
learning and let the data to inform/reveal the structure of the MZ oper-
ators. Figure 3(b) shows similar results for the memory kernel Xð1ÞD ,
which provide evidence for the convergence of the learning procedure.

B. Generalized fluctuation–dissipation relation

The generalized fluctuation–dissipation relation (GFD) refers to
the subtle self-consistent relationship between the learned memory
kernel Xð‘ÞD and orthogonal dynamics Wlþ1 with a suitable choice of
projection operator. The specific GFD has been derived in Lin et al.29

for Mori’s projection operator. This relation can be used to verify the

correctness of the learned memory kernel and orthogonal dynamics.
In Fig. 4, we present the comparison between the left-hand-side (LHS)
and the RHS of Eq. (29). The computed LHS aligns well with the RHS,
confirming that the GFD relation is satisfied.

C. Properties of the learned Mori–Zwanzig operators

There have been very few attempts to perform quantitative analy-
sis of the memory kernels and orthogonal dynamics of Navier–Stokes
equations, due to the difficulty in developing tools for accurately and
efficiently extracting them with nonlinear projection operators. The
lack of knowledge makes it difficult to justify various assumptions on
turbulence models based on MZ. In this section, we unveil some of the
important properties of the extracted memory kernels and orthogonal
dynamics with the current learning framework, in order to lay founda-
tions for future turbulence model development.

In the discrete Mori–Zwanzig formulation, a hyper-parameter
that is not related to the physical system is the discrete time interval D.
Given a database for a long trajectory with fixed temporal step dt, one
can extract the corresponding Markov operator and memory kernels
with the discrete time interval D being an integer number of the tem-
poral step D ¼ ndt. Lin et al.29 showed that for the Lorenz ’96 system,
the memory kernels extracted with different D values collapse onto
each other after applying a normalization factor D�2. Figure 5 shows
the components of the extracted memory kernel (observable set 1)
with different D values as a function of the time delay (normalized by
Kolmogorov timescale sg 	 5:7� 10�2) for the NS turbulence sys-
tem. After proper normalization, the memory kernels extracted with
different D values also collapse onto the same curve, despite a minute
smoothing at the largest value (D ¼ 0:32). This shows that the struc-
ture of the memory kernel and memory length do not depend strongly
on the discrete time interval D after proper scaling.

FIG. 3. The convergence of components in the learned Markov operator (a) and memory kernel (b) as the number of samples increases.
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1. The effects of spatial filters

One of the most important assumptions in MZ-based models is
about the length of the memory kernel. In the popular t-model,11

which has been applied to many nonlinear dynamical systems and
achieved certain success, the convolution integral of the memory term
is carried out using a simple left-hand quadrature rule, which can be
interpreted as assuming an infinite long memory length. Other MZ-
based models13,16,17,40 also make various assumptions and approxima-
tions on the length and shape of the memory kernel.

In Fig. 6, we present the Frobenius norm of Markov operator and
the temporal decay of memory kernel. Two types of spatial filters that
are commonly used in LES are also used here to compute the coarse-
grained observables, in order to understand the effects of the filter type
on memory length. In addition, the coarse-graining length scale, as
reflected by the filtering length lD, is also examined. Figure 6(a) shows
the dependence of Markovian contribution on the spatial filter sizes
(normalized by Kolmogorov length scale g). It is noted that the
Markovian contribution decreases as the filtering size increases. In Fig.
6(b), the Frobenius norm of memory kernel (normalized by its corre-
sponding Markov operator) is plotted against the normalized time
delay. From Fig. 6(b), we can make a few important observations.
First, the Frobenius norm of the memory kernel does not decrease to
zero with a finite time delay; however, it becomes 2–3 orders of

magnitude smaller at a time delay around several Kolmogorov time-
scales. This indicates that using finite support in the memory inte-
gral can be a reasonable modeling assumption because the
contributions from large time delays are generally negligible.
Second, the difference between the two different spatial filter types is
small, but the effects of the filtering length scale are significant. With
larger filtering sizes, the temporal decay of the memory kernel
becomes slower, making the finite memory length longer, which
indicates a shift of dynamical contributions from Markov term to
memory integral. Generally, when the filtering length scale increases,
the range of scales that can be resolved by the coarse-grained observ-
ables becomes smaller. In this case, more past history of the observ-
ables needs to be included in the dynamics and, as discussed later, in
the prediction, because the memory kernel formally characterizes
the interactions between the coarse-grained dynamical variables
and the under-resolved degrees of freedom. These observations
suggest a qualitative statement that the more we coarse-grain the
observables, the less Markovian the coarse-grained model should be.

So far, we have shown that the finite memory length assumption
in the MZ-based models for NS turbulence is generally reasonable.
However, the quantitative estimation of such memory length/timescale
can be challenging. Various approximation methods have been pro-
posed to calculate the finite memory length to construct MZ-based
models for turbulence. Parish and Duraisamy13 used a dynamical

FIG. 4. Numerical validation of the discrete-time GFD relation for D ¼ 10dt. The individual components of the matrices in the GFD relation [Eq. (29)],

½XðlÞD � Cð�DÞ�ij and �½hWlþ1;WT
1 i�ij ; i; j 2 1; 2; 3; 4 are shown as a function of normalized time delay using Kolmogorv timescale. The LHS of Eq. (29) is computed

using the learned memory kernel, XðlÞD and two-time correlation matrix Cð�DÞ. It is in very good agreement with the RHS: two-time correlation of the learned orthog-
onal dynamics �hWlþ1;WT

1 i.
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procedure based on Germano identity41 and Parish and Duraisamy17

used the spectral radius of the Jacobian of resolved variables to esti-
mate the finite memory length. With the extracted memory kernels in
the current study, we are able to calculate the timescales of the mem-
ory kernel and use them to verify the assumptions in these models.
Figure 7 shows the extracted timescales (normalized by Kolmogorov
timescale) for various spatial filtering sizes (normalized by
Kolmogorov scale). Two methods are employed for the calculation:
(1) the integral of the memory kernel divided by the value at the small-
est time delay and (2) the time delay when the memory kernel
dropped to 10% of the maximum value. Note that we used a mean
timescale based on the Frobenius norm to quantify the finite memory
length, but the timescales may vary for different components of the
memory kernel. We observe that the memory length is generally short,
within the range of several Kolmogorov timescales. The memory
length increases with the increase in the coarse-graining size, in agree-
ment with those estimated by previously proposed models. There
exists a weak dependence on the type of filters, which should be taken
into account for modeling.13 We remark that it may seem that includ-
ing memory integral may significantly increase the storage overhead,

but when conducting reduced-order simulations using MZ-based
models, it may not be necessary to store all the past information to cal-
culate the memory kernel. Methods have been proposed based on the
quadrature rule to model the memory integral as an additional set of
ODEs,40 which are solved alongside the main coarse-grained equa-
tions. One of the aims of this work is to provide validation for con-
structingMZ-based memory closure models.

Addressing the noise/orthogonal dynamics is another essential
component in developing models in Mori–Zwanzig formalism.
Similar to the memory kernel, it is extremely difficult to theoretically
model the high-dimensional orthogonal dynamics, especially in the
absence of data. To circumvent this difficulty, previous models based
on MZ formalism have been focused on the projected image, where
the noise term vanishes due to its orthogonality to the projection oper-
ator. Under the current learning framework, the noise term can be
numerically extracted using the DNS database. By analyzing its prop-
erties, we hope to shed some light on the modeling of the orthogonal
dynamics.

Figure 8(a) shows the temporal two-time correlation of the noise,
as well as the PDFs of the orthogonal dynamics for the same set of

FIG. 5. The components of the learned memory kernel for different discrete time intervals D ¼ 0:01; 0:02; 0:04; 0:032 as a function of normalized time delay. The normaliza-
tion is performed using Kolmogorov timescale, sg 	 5:7� 10�2. The observable set 1 is used for computing the memory kernels.
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observables as in Fig. 6. We observe that noise term has a similar tem-
poral decay to the memory kernel. This behavior is expected, due to
the GFD relation. Thus, Eq. (29) states that the temporal autocorrela-
tion matrix of orthogonal dynamics hWlþ1;WT

1 i with a time delay lD
should be equal to the memory kernel with same time delay multiplied
by a constant matrix Cð�DÞ, so it is reasonable for them to have

similar temporal decay. That is to say, if one seeks to derive a model
for the noise with short temporal correlation, the corresponding mem-
ory kernel should have a similar temporal length. This property has
been used to develop consistent MZ-based reduced-order models. On
the other hand, the decay of the Frobenius norm of the two-time cor-
relation of noise is not monotonic, different from that of the memory
kernel. Between the time delay of 5sg 
 15sg, there is a transient
behavior in the temporal decorrelation, which contains the nonlinear
dynamics that cannot be fully represented by the chosen observables
in the linear space. This transient behavior becomes less significant
with the increase in the filter size. If the correlation decays fast enough
and the transient behavior happens after the fast decay and becomes
trivial, the modeling can be greatly simplified by considering the corre-
lation on a shorter timescale. Figure 8(b) shows the normalized PDFs
of the orthogonal dynamics with different filter sizes and a reference
Gaussian distribution. The PDFs of the noise do not depend on the
time delay (results not shown), so we only include in Fig. 8 the PDFs
of the shortest time delay. With the increase in the filter size, it can be
seen that the noise becomes more Gaussian-like and there is a trade-
off between the timescale of the correlation and the “Gaussian-like”
shape of the PDF.

2. The effects of observable choices on the extracted
operators

Similar to the Koopman learning, choosing the appropriate set of
observables that can best close the original dynamics systems in the
linear space is an important task in the current MZ learning frame-
work, with another layer of complexity due to the existence of memory
kernel and orthogonal dynamics. Here, we investigate the effects of dif-
ferent sets of observables on the properties of the learned kernels.

FIG. 6. (a) The Frobenius norm of Markov operator as a function of normalized filter sizes (normalized by Kolmogorov length scale, g 	 2:62� 10�2) and (b) normalized
Frobenius norm of the learned memory kernel for observable set 1, jjXð‘ÞD jjF as a function of normalized time delay. Two types of spatial filters, Gaussian and box filters, with
various filtering length scales are applied to the physical-space variables.

FIG. 7. The dependence of timescale of the extracted memory kernel on the length
scale of the filter for observable set 1. Two different methods are used to estimate
the timescale: 1. sint: timescale estimated using the integral of the memory kernel
and 2. s90 timescale estimated based on the location where the memory kernel
drops to 10% of the value at smallest time delay.
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These sets are described in Sec. IV and correspond to different aspects
of NS equations and turbulence variables. Figure 9 shows the
Frobenius norm of the learned memory kernels for four sets of observ-
ables and the Frobenius norm of the corresponding orthogonal
dynamics. It is obvious from Fig. 9 that the choices of observables for
constructing MZ-based models can significantly influence the proper-
ties of the extracted operators. The observable sets 2 and 4 have a simi-
lar magnitude of the memory kernel and the rate of decay as
compared to observable set 1. On the other hand, observable set 3,
which contains variables that are related to small-scale turbulence

phenomena, exhibits a transient process of the memory effect: the
faster early decay of the memory kernel is related to variables that are
short-time correlated; the later increase then shows the intermittent
behavior of the chosen observables. From the modeling perspective, it
is more challenging to devise an accurate model that can reproduce
the transient memory decay of the observable set 3. As for the proper-
ties of the orthogonal dynamics, all four sets of observables show a cer-
tain level of transient behavior rather than exponential decay.

The memory kernels shown in Fig. 9 contain components from
all the observables in each set. For observables with different

FIG. 8. (a) The Frobenious norm of the learned temporal correlation of the noise for observable set 1, jjhWlþ1;WT
1 ijjF as a function of normalized time delay and (b) PDFs

of the orthogonal dynamics. The time delay is normalized by Kolmogorov timescale, sg 	 5:7� 10�2.

FIG. 9. (a) The Frobenius norm of the learned memory kernel and (b) two-time correlation of orthogonal dynamics (right) as a function of time delay for different sets of observ-
ables. The time delay is normalized by Kolmogorov timescale, sg 	 5:7� 10�2, and the discrete time interval is D ¼ 0:01.
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dimensions and magnitudes, the Frobenius norm may hide important
information about the properties of the extracted kernels. This makes
it difficult to study how the quantities of interest, e.g., filtered velocities,
are affected by the different choices of observables. To understand this,
we extract from the learned kernels the subset of the matrices that cor-
respond to the filtered velocity, which has the same dimension in all
observable sets. The Frobenius norms of the subset of the extracted
kernels are compared across different sets of observables and shown in
Fig. 10. We observe that the properties of the memory kernel for the
filtered velocity are not significantly modified by including more
observables in sets 2 and 3, even though the memory kernels for the
full set of observables exhibit significant differences. On the other
hand, for the observable set 4, the contribution from memory kernel is
reduced and the decay of the memory kernel becomes smoother. A
similar trend is observed for the noise, with a smaller magnitude and
smoother rate of decay. We conclude from these observations that by
using observable set 4, which contains the RHS of the governing equa-
tions, the contribution to dynamics shifts from memory kernel to the
Markov term. By comparing Figs. 9 and 10, we note that different sets
of observables may exhibit different memory kernel structure and
length. This implies that the modeling strategy may need to be
changed for different observables. We also remark that simply adding
more observables is not necessarily guaranteed to improve the proper-
ties of memory kernel for modeling, as shown by the results of
observable set 3.

D. Numerical experiments on memory effects

In this section, we conduct numerical experiments to illustrate
the advantage of including memory kernels for prediction. Consider
the following procedure: (a) after we apply the learning algorithm for a
set of observables g with a time interval D, we generate additional

samples (>2� 104) on the trajectories of the same observables using
the fully resolved simulation. These samples had not been used in the
learning of the corresponding kernels. Within each sample, the snap-
shots are also evenly spaced in time with the same time interval D. (b)
The total length of the trajectories is longer than the timescale of the
memory kernel. (c) We then use the additional snapshots to predict
d ¼ nD into the future using the following formula recursively:

gpredððnþ 1ÞDÞ ¼ X 0ð Þ
D � gðnDÞ þ

Xn
‘¼1

X ‘ð Þ
D � gððn� lÞDÞ; (36)

which is the discrete GLE [Eq. (25)] with the assumption that the
orthogonal dynamics Wnþ1 ¼ 0, and calculate the errors on the pre-
diction. (d) The errors are then averaged over samples to reduce statis-
tical variability. In this work, we choose the L2-norm as the measure of
prediction error, which is calculated as

e2 ¼ jjgpred � gDNSjj
2; (37)

where gpred and gDNS denote the observables from predictions and the
“ground-truth” DNS simulations.

Figure 11 shows the L2-norm of the prediction errors using the
discrete Mori–Zwanzig formulation with different memory lengths for
prediction. The memory length is normalized using Kolmogorov
timescale. We also consider different discrete time intervals
D ¼ 0:01; 0:02; 0:05; 0:1 for learning the MZ operators. The chosen
prediction horizons d are 0.1 and 0.2, which are multiples of the dis-
crete time intervals. We point out that the first point on the plot has
memory length 0.0 so that it corresponds to Markovian models and
can be viewed as the Koopman prediction. It is evident from Fig. 11
that the prediction errors decrease when past histories are included in
the memory kernel. As the memory length further increases past one

FIG. 10. (a) The Frobenius norm of the learned memory kernel and (b) two-time correlation of orthogonal dynamics for the shared observables among the four sets (filtered
velocity) as a function of time delay. The time delay is normalized by Kolmogorov timescale, sg 	 5:7� 10�2, and the discrete time interval is D ¼ 0:01.
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Kolmogorov timescale, their effects on the prediction errors vary for
different discrete time intervals D.

For the smallest time interval, the prediction error increases and
then saturates when the memory length is larger than 4sg. Our numer-
ical results suggest the existence of an optimal memory length when
the MZ operators are extracted with small time intervals D. When the
discrete time interval increases, the optimal memory length disappears
and the prediction errors decrease and saturate after a certain memory
length. The smallest prediction errors can be achieved when the dis-
crete time interval D matches with the prediction horizon.

For a longer prediction horizon d ¼ 0:2, similar observations can
be made on the improvement of prediction errors by including past
history. On the other hand, when the discrete time interval D matches
with the prediction horizon, the error actually becomes larger than
that of the smaller discrete time interval, which shows that there also
exists an optimal discrete time interval for the selected prediction hori-
zon. For the larger prediction horizon, the overall improvement by
including past history is around 23%. Note that the prediction errors
depend on the accumulated magnitude of the orthogonal dynamics,
which is neglected in the current prediction method. A possible expla-
nation is that when the discrete time interval D is small, we need more
steps to advance the observables so that the magnitude of the accumu-
lated orthogonal dynamics that are missed in the prediction is larger.
On the other hand, when the discrete time interval is too large (com-
pared to the timescale of memory kernel), the projected image across
such a large step can become small, which in turn will increase the
magnitude of orthogonal dynamics. This may explain why the predic-
tion error is large for discrete time interval D ¼ 0:2. Additionally, one
should also take into account the different timescales of chosen observ-
ables, which may further complicate the process of choosing the opti-
mal discrete interval.

The effects on prediction by choosing different sets of observables
are explored next. Figure 12 compares the prediction errors of the

quantities of interest (filtered velocity) across the four sets of observ-
ables presented above. The prediction horizon is d ¼ 0:05 and it is the
same as discrete time interval, so we only need to solve the discrete
MZ formulation (without a model for orthogonal dynamics) for one
step. In addition to the prediction improvement by including past his-
tory, the prediction errors vary drastically across the four sets of
observables. Including turbulence physics-based observables like strain
rate tensor, vorticity, and kinetic energy leads to negligible improve-
ment on the prediction error for the observables of interest, namely,
filtered velocities. By including the sub-grid stress, a commonly used
observable in traditional turbulence modeling approaches, we can
observe a marginal improvement. The largest improvement can be
seen for the observable set 4, where the observables are the terms in
the filtered governing equations. There is over 50% improvement on
the prediction error by using observable set 4 compared to the other
sets. The majority of the improvement by selecting observable set 4
comes from the Markov term, which is consistent with the results
shown above. Further improvement in prediction can be achieved by
including the past history in the memory term. The percentage
improvement over the corresponding Markovian prediction method is
also different for different sets of observables: around 4% for observ-
able set 1–3 and 8.5% for the observable set 4. Overall, we can con-
clude that the choice of observables significantly affects the prediction
capability of the learned MZ kernels.

In the current numerical experiments for prediction, in order to
focus on the importance of the memory effects and observable selec-
tion, we neglect an important component of the MZ formalism,
namely, the orthogonal dynamics/noise. The orthogonal dynamics
encode the unresolved initial conditions of the dynamics and are cru-
cial to reproducing the correct statistical properties of the original sys-
tem. In practice, it is desirable to select a set of observables with a
smaller magnitude of the orthogonal dynamics and shorter temporal
correlation, which adds another layer of complexity for selecting the

FIG. 11. Comparison of prediction errors of different discrete time intervals D ¼ 0:01; 0:02; 0:05; 0:10; 0:2 as a function of the normalized memory length for observable set
1. The memory length is normalized by Kolmogorov timescale, sg 	 5:7� 10�2. The prediction horizon is (a) 0.1 and (b) 0.2, as is a multiple of the discrete time intervals.
The error is calculated using the observables at the final prediction time.
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observables. Our extracted noise exhibits complicated/nontrivial two-
time correlation, meaning that the orthogonal dynamics can only be
modeled by highly nontrivial colored noise.

VI. CONCLUSIONS

Developing reduced-order models for turbulence is a challenging
problem due to the existence of a wide range of scales with compli-
cated nonlinear interactions. Traditional modeling strategies based on
filtering or moment closure (LES, RANS) are derived mostly based on
physical intuitions. On the other end of the spectrum, Mori–Zwanzig
(MZ) formalism provides a formal mathematical procedure for deriva-
tion of low-dimensional representations of high-dimensional nonlin-
ear dynamical systems. The outcome of applying the MZ formalism is
the emergence of a memory term and orthogonal dynamics. To reduce
the computational complexity compared to the original system, mod-
els for these terms need to be developed, which requires a comprehen-
sive understanding of their mathematical properties. However, efforts
of directly extracting these terms in turbulent flows have been scarce,
so the understanding of their properties is limited. In this work, we are
the first to apply a data-driven algorithm to a fully resolved turbulence
simulation dataset to extract the memory kernel and orthogonal
dynamics and analyze their properties. This provides a foundation for
developing accurate MZ-based turbulence models including contribu-
tions frommemory and orthogonal dynamics.

With data augmentation using known turbulence symmetries,
the Markov, memory kernels, and orthogonal dynamics can be suc-
cessfully extracted using a reasonable amount of data and are shown
to be statistically converged. The subtle generalized fluctuation-
dissipation relation, which is a natural outcome of MZ formalism, is
verified numerically using the extracted kernels and two-time correla-
tion function of the orthogonal dynamics. This confirms the accuracy
and correctness of the learning procedure and the learned MZ kernels.
The memory kernels are shown to have a strong dependence on the

spatial filtering sizes and weak dependence on filtering type. The
Frobenius norm of the memory kernel exhibits a fast decay, indicating
that the finite memory length modeling assumption is reasonable. The
timescales of the memory kernels are then calculated and qualitative
agreement can be observed with previous studies. The two-time corre-
lation matrix of the orthogonal dynamics exhibits similar dependence
on the spatial filtering size as the memory kernel. With a larger filter
size, the PDF of orthogonal dynamics becomes more Gaussian-like.
The effects of different observables choices on the extracted kernels are
then examined. We observe that expanding the set of observables
using nonlinear functions may significantly influence the decay of the
memory kernel. On the other hand, the memory lengths of the added
nonlinear observables are different, implying that a multi-timescale
model may be needed for the expanded observable set. By using the
observable set 4, which includes the terms on right-hand-side of the
filtered NS equations, the magnitude of the memory kernel decreases.
This is explained as a shift of contributions from memory term to the
Markov term.

The advantages of including past history in prediction using MZ-
based models are studied by comparing the prediction error with only
the Markovian term. The results show that the L2 prediction error is
lowered by including the memory integral, especially for longer pre-
dicting horizon. When using kernels extracted on a smaller discrete
time interval, there exists an optimal memory length for calculating
the memory integral. On the other hand, for larger discrete time inter-
val, the improvement on prediction saturates when long enough past
history is used. The optimal discrete time interval may also change for
different prediction horizons, which is related to the relative magni-
tude of discrete time interval and memory length. Finally, the influ-
ence of observable choices on prediction is investigated. It is shown
that the improvement on prediction of filtered velocity is marginal
when including physics-based observables. By using equation-based
observables (observable set 4), the improvement of the Markovian

FIG. 12. Comparison of (a) L2-norm of prediction errors and (b) percentage improvement in prediction for different sets of observables as a function of the normalized memory
length. The L2-norm of prediction errors The memory length is normalized by Kolmogorov timescale, sg 	 5:7� 10�2. The prediction horizon is 0.05, the same as the dis-
crete time interval D. The error is calculated using the shared observables (filtered velocity) at the final prediction time.
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model is significant. In addition, including the memory integral fur-
ther improves the prediction accuracy and the percentage increase in
accuracy is also larger for observable set 4. In this study, we only show
the improvements in prediction due to the addition of memory effects,
but without the orthogonal dynamics. When proper models for
orthogonal dynamics are proposed and used for prediction, the predic-
tion should significantly improve. Future work will be dedicated to
developing MZ-based turbulence models from the following perspec-
tives: (a) discovering observables with suitable properties for modeling
(finite memory length and simple profile of the memory kernel) and
(b) devising stochastic models for orthogonal dynamics that satisfy the
learned statistical properties.

In this work, we limit the scope of our research to homogeneous
isotropic turbulence (HIT), which is the simplest type of turbulence
flow. This is because the understanding of the MZ operators for turbu-
lence is very limited and starting from HIT enables us to investigate
the properties of MZ operators for fundamental turbulent dynamics
without additional effects. However, the MZ learning algorithm can
also be applied to more complex turbulent flows. When using the pro-
posed MZ learning algorithm, one needs to pay attention to the nature
of the problem. For non-stationary flows, since the distribution of the
system state is time-dependent, one performs averaging over an
ensemble of simulations, whose initial conditions are drawn from the
initial distribution of the states for each specific problem. This is differ-
ent to the sampling method used in the paper for an ergodic system,
where the underlying distribution of the state is stationary. For this
case, one can simply sample from a long trajectory of data. In addition,
for flows with heterogeneity and anisotropy, special attention should
be paid to not enforce the type of symmetry that is not satisfied by the
dynamics. Another factor that may complicate the learning of MZ
operators for complex turbulent flows is the choices of observables.
One needs to identify observables that can represent the flow field of
interest and also embed the dynamics of the system in the linear space.
This selection procedure might rely on the domain knowledge of spe-
cific applications.
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