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A second-moment closure model is proposed for describing turbulence quantities in
flows where large density fluctuations can arise due to mixing between different density
fluids, in addition to compressibility or temperature effects. The turbulence closures
used in this study are an extension of those proposed by Besnard et al., which include
closures for the turbulence mass flux and density-specific-volume covariance. Current
engineering models developed to capture these extended effects due to density variations
are scarce and/or greatly simplified. In the present model, the density effects are included
and the results are compared to direct numerical simulations (DNS) and experimental
data for flow instabilities with low to moderate density differences. The quantities
compared include Reynolds stresses, turbulent mass flux, mixture density, density-
specific-volume covariance, turbulent length scale, turbulence and material mix time
scales, turbulence dissipation, and mix widths and/or growth rates. These comparisons
are made within the framework of three very different classes of flows: shear-driven,
Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Overall, reasonable agreement
is seen between experiments, DNS, and averaging models.

Keywords: turbulence; mixing; variable density; Reynolds stress; closure model;
Rayleigh–Taylor; Richtmyer–Meshkov; direct numerical simulation; shocks; Favre av-
erage; compressible flows; density fluctuations

1. Introduction

Density fluctuations in turbulent flows are encountered in many practical applications, rang-
ing from Inertial Confinement Fusion (ICF), atmospheric and oceanic flows, astrophysics,
and many flows of engineering interest. In general, turbulent density fluctuations have been
studied in conjunction with compressibility effects (e.g., in aeronautics) or as a result of
temperature changes (e.g., in combustion). Such flows have been the subject of numerous
fundamental turbulence studies and many modeling strategies now exist. Nevertheless,
large density variations can also occur due to mixing of different density fluids. In this case,
fundamental turbulence studies as well as specific engineering models are scarce.

To distinguish from other effects, variable-density (VD) flows are described as having
large density variations that arise due to mixing between different density fluids. The
differential acceleration effects in VD flows are usually characterized by the Atwood number
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2 J.D. Schwarzkopf et al.

(A):

A ≡ ρmax − ρmin

ρmax + ρmin
, (1)

where the Atwood number is bounded between 0 and 1. At low A, the densities are
commensurate and the density fluctuations can be neglected in the advective terms. At high
A, the density fluctuations can no longer be neglected in the advective terms and higher order
nonlinearities arise in the governing equations. For example, for air interpenetrating helium,
for which the density ratio is ≈7, the Atwood number is A≈0.75. For air and hydrogen,
A≈0.85. Similar Atwood numbers occur for mixing between liquid hydrocarbons and air.

There have been several in-depth studies on the nature of VD turbulent flows. Livescu
and Ristorcelli [1] point out that in VD flows, even if the fluids participating in the mixing are
individually incompressible, the velocity is not solenoidal and the specific volume becomes
a dependent variable. They also showed that the density-specific-volume covariance can be
expressed in the form of a series of the density PDF moments:

υ ′ρ ′ = −ρ ′2

ρ̄2

[
1 − iρ

ρ ′3

(ρ ′2)3/2
+ i2

ρ

ρ ′4

(ρ ′2)2
− i3

ρ

ρ ′5

(ρ ′2)5/2
+ . . .

]
, (2)

where iρ = ρrms/ρ̄. In the Boussinesq limit (i.e., in the range of 0 ≤ A ≤ 0.05, [1], [2]),

higher order effects can be neglected, i.e., υ ′ρ ′ ≈ −ρ ′2/ρ̄2, or iρ = 0. Second moment
models have been developed around this assumption, yet applied to moderate Atwood
number turbulent flows. However, this assumption is not valid at higher Atwood numbers.
Using direct numerical simulations (DNS), Livescu et al. [2] showed that even for a moderate
Atwood of 0.5, υ ′ρ ′/(−ρ ′2/ρ̄2) �= 1, but varied by as much as 25% near the edges of the
mixing zone. Livescu et al. [3] also highlight the importance of using the density-specific-
volume covariance, which appears in the moment equations in the VD case, as opposed to
the density variance, which appears in the moment equations for the Boussinesq case.

Although DNS is a useful tool for investigating flow and/or mixing physics, the com-
putational power required to apply it to engineering problems can be enormous. As an
interim solution, Favre or ensemble averaging provides an avenue by which engineers can
obtain reasonable results in a short period of time. Most engineering models addressing
VD turbulence are simple extensions of compressible turbulence models (e.g., [4], etc.),
using the density variance as a prognostic variable, so that they are appropriate only in the
Boussinesq limit. One exception is the system of Favre-averaged equations to simulate VD-
compressible turbulent flows, developed by Besnard et al. [5]. Their approach of modeling
the turbulent moments in a mixture of several fluids presented several new quantities, not
addressed in previous studies. These include the turbulent mass flux (ρ̄ai = ρ ′u′

i) and the
density-specific-volume covariance (b = −ρ ′υ ′), where υ ′ is the fluctuation of the specific
volume.

Banjeree et al. [6] discuss a restriction to the work of Besnard et al. [5] for the incom-
pressible case and a simple expression for b, strictly valid for immiscible materials. Their
model (BHR k-S-a) uses the turbulent viscosity hypothesis to model the components of the
Reynolds stress tensor, which assumes isotropy in regions where there are no mean velocity
gradients. In addition, the turbulent diffusion terms were also modeled using the isotropic
turbulent viscosity. These simple models did compare well with the experimental data, but
they are missing the ability to compute the correct Reynolds stress anisotropy (for flows
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Journal of Turbulence 3

Figure 1. Schematics of (a) SD (plan view), (b) pressure-driven (Rayleigh–Taylor), and (c) shock-
driven instabilities. The interfaces of these different density fluids form mixing regions when pressure
and/or velocity gradients are present.

which are clearly anisotropic) and they also had to vary the coefficients from flow to flow
to achieve a good match. Stalsberg-Zarling and Gore [7] studied an extension to this model
by including the transport equation for density-specific-volume covariance and a modified
version of the turbulent viscosity hypothesis. Again, this model cannot capture the effects
of Reynolds stress anisotropy in regions where velocity gradients are negligible.

Grègoire et al. [4] also presented a second-order turbulence model, very similar to
the work of Besnard et al. [5]. Thus, they treat the fully compressible case, but they still
make simplifying assumptions on the second moment, ρ ′υ ′, which are only valid in the
Boussinesq limit. Their results compared well with shock tube data, e.g., the experimental
work of Poggi et al. [8] and Andronov et al. [9]. Although Poggi et al. did measure second-
moment statistics, Andronov et al. did not. Thus, the major comparison between the two
experiments and the model was the mix width. Grègoire et al. did not extend their model to
other classes of flows such as shear-driven (SD) or Rayleigh–Taylor (RT) mixing, primarily
because DNS and experimental data were unavailable at that time.

Here, the fully compressible case is considered along with a transport equation for b,
so that a no-mix or Boussinesq assumption is not necessary. In addition, to account for
anisotropies in turbulent energy, we compute the components of the Reynolds stress using
a transport equation. This also allows an anisotropic form of the turbulent diffusion terms
to be included in constitutive models.

The purpose of this paper is twofold. First, we are interested in highlighting the impor-
tance of using the density-specific-volume covariance for a moment closure of VD turbulent
flows, as opposed to the density variance, which is appropriate only in the Boussinesq limit.
Second, we will apply a variable-density second-moment closure model, with the cor-
rect constitutive relations, to several different genres of flows, specifically, SD instability,
Rayleigh–Taylor instability, and Richtmyer–Meshkov (RM) instability showing reasonable
comparisons to DNS and experimental data. A schematic of these flows is shown in Fig-
ure 1 and the details of each flow are further discussed in §5.1, §5.2, §7.1, §7.2, and §7.3.
These three classes of flows cover a wide range of applications where density fluctuations
are expected to be important.

2. Governing equations

2.1 Instantaneous equations

The governing equations describing the flow of miscible mixtures of compressible materials
are shown below [10, 11]
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4 J.D. Schwarzkopf et al.

Continuity:

∂ρ

∂t
+ (ρuj ),j = 0. (3)

Momentum:

∂ (ρui)

∂t
+ (ρuiuj + Pδij ),j = τij,j + ρgi. (4)

Energy:

∂

∂t
(ρE) + (ρujE + Puj ),j = (

τijui − qc
j − qd

j

)
,j

. (5)

Species Mass Fraction:

∂ (ρcn)

∂t
+ (

ρcnuj

)
,j

= −jn
,j , (6)

where ρ is the material density, u is the fluid velocity, P is the pressure, τ is the molecular
shear stress tensor, g is gravity, E is the total energy, qc is the conductive heat flux, qd is the
interdiffusional enthalpy flux, c is the mass fraction of species n, and j is the diffusive mass
fraction. The above equations should be supplemented with equations of state (pressure and
caloric) and expressions for the molecular transport terms: viscous stresses, conduction,
enthalpy diffusion, and mass diffusion.

2.2 Favre-averaged equations

Assuming a statistical description of turbulence, the governing equations are averaged over
ensembles of independent realizations. The instantaneous variables in Equations (3)–(6)
are decomposed into mean and deviation terms, such as ui = ūi + u′

i . Favre averages are
then formed from the resultant terms, where ũi = ūi + ρ ′u′

i/ρ̄, u′′
i = u′

i − ρ ′u′
i/ρ̄, and

ρu′′
i = 0. Neglecting the molecular transport terms, the averaged equations are:
Continuity:

∂ρ̄

∂t
+ (

ρ̄ũj

)
,j

= 0. (7)

Momentum:

∂ (ρ̄ũi)

∂t
+ (

ρ̄ũi ũj + P̄ δij + ρ̄R̃ij

)
,j

= ρ̄gi . (8)

Energy:

∂

∂t

(
ρ̄Ẽ
)+ (

ρ̄ũj Ẽ
)
,j

= −(P̄ ũj ),j − (ρ̄ũi R̃ij ),j −
(
P ′u′

j

)
,j

−
(
ρI ′′ u′′

j

)
,j

− 1

2

(
ρu′′

i u′′
i u

′′
j

)
,j

− q̄d
j,j . (9)
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Journal of Turbulence 5

Species Mass Fraction:

∂ (ρ̄c̃n)

∂t
+ (

ρ̄ũj c̃
n
)
,j

= −
(
ρu′′

j c
′′n
)

,j
(10)

where R̃ij is the Favre-averaged Reynolds stress (R̃ij = ρu′′
i u

′′
j /ρ̄).

Similar to Reynolds averaging, the Favre average technique introduces additional un-
closed terms, namely the Reynolds stress, the turbulent transport of the turbulent internal
and kinetic energy, the turbulent flow work, and the turbulent transport of species n. A set
of closure models is needed to complete the system of equations.

3 Closure models

In this section, models are proposed to close the additional turbulence quantities shown in
Equations (8)–(10). This involves modeling (a) the Reynolds stress, (b) turbulent contribu-
tions to the total energy, (c) interdiffusional enthalpy flux, and (d) the turbulent transport
of species n. Ultimately, a set of constitutive relations and transport equations are sought to
close the above equation set.

3.1 Reynolds stresses

Transport equations for the Reynolds stresses are derived from first principles. However,
several models need to be incorporated to close the equation. The derivation of the Favre-
averaged Reynolds stress transport equation can be found in [5, 12]. The exact equation is
shown as follows:

∂
(
ρ̄R̃ij

)
∂t

+ ∂

∂xk

(
ρ̄ũkR̃ij

) =

Production︷ ︸︸ ︷
ai

∂P̄

∂xj

+ aj

∂P̄

∂xi

− ρ̄R̃ik

∂ũj

∂xk

− ρ̄R̃jk

∂ũi

∂xk

−ai

∂τ̃jk

∂xk

− aj

∂τ̃ik

∂xk

− ∂

∂xk

ρu′′
i u

′′
ju

′′
k+

∂

∂xk

(
u′′

i τ
′′
jk+u′′

j τ
′′
ik

)
− ∂

∂xj

u′′
i P

′− ∂

∂xi

u′′
jP

′

︸ ︷︷ ︸
Transport

+ P ′ ∂u′′
i

∂xj

+ P ′ ∂u′′
j

∂xi︸ ︷︷ ︸
Pressure Strain

− τ ′′
jk

∂u′′
i

∂xk

− τ ′′
ik

∂u′′
j

∂xk︸ ︷︷ ︸
Dissipation

. (11)

The terms in the above equation are grouped into production, transport, pressure strain,
and dissipation categories. The molecular shear terms are neglected and the remaining
production terms are in closed form. The transport, pressure strain, and dissipation terms
require models to close the above equation.

As a starting point, the transport terms are modeled as turbulent diffusion, using a
formulation originally proposed by Daly and Harlow [13]. The pressure strain terms act
to transfer energy between the components of the Reynolds stress tensor. These terms
are traditionally modeled by a slow return to isotropy component and a rapid distortion
component. Rotta [14] introduced a model for the slow return to isotropy, and Naot et al.
[15] introduced the isotropization of production (IP) model for the rapid distortion effects.
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6 J.D. Schwarzkopf et al.

This model was used by Launder et al. [16] and is traditionally referred to as the LRR-IP
model.

The LRR-IP model for the pressure strain terms has been used since 1975 [16] and
applied to a variety of engineering flows showing reasonable results and numerical stability
with minimal computational power. Recently, several advanced models for the pressure
strain terms have been investigated by Banerjee et al. [17], and the IP model (with the
correct coefficients) produced reasonable results. Grègoire et al. [4] also used the IP model
and showed good results in RM flows. Given the uncertainty of properly modeling the
turbulent mass flux and its constitutive relations, the LRR-IP model was chosen as a
starting place with the intent of eventually adopting more advanced models for the pressure
strain terms.

The last term in the above equation denotes dissipation and represents the conversion
of turbulent energy to heat. Ideally, this term should be modeled in an anisotropic form, but
at high Reynolds numbers, where an inertial subrange exists, the dissipation is assumed to
be isotropic. The buoyancy effects and anomalous anisotropy in the dissipation range [2,
3] will be addressed in a future work. Using these assumptions, the modeled form of the
exact equation is then

∂(ρ̄R̃ij )

∂t
+ (ρ̄ũkR̃ij ),k =

Production︷ ︸︸ ︷[
aiP̄,j + aj P̄,i

]− ρ̄
[
R̃ikũj,k + R̃jkũi,k

]
+ Cr

(
S√
K

ρ̄R̃knR̃ij,n

)
,k︸ ︷︷ ︸

Diffusion

−Cr3ρ̄

√
K

S

(
R̃ij − 1

3
R̃kkδij

)
︸ ︷︷ ︸

Return to Isotropy

−
Rapid Distortion︷ ︸︸ ︷

Cr1
[
aiP̄,j + aj P̄,i

]+ Cr2ρ̄
[
R̃ikũj,k + R̃jkũi,k

]
− Cr2

2

3
ρ̄R̃mkũm,kδij + Cr1

2

3
akP̄,kδij︸ ︷︷ ︸

Rapid Distortion

− ρ̄
2

3

K
√

K

S
δij︸ ︷︷ ︸

Dissipation

, (12)

where K is the Favre-averaged turbulent kinetic energy (K ≡ R̃ii/2), S is the tur-
bulent length scale (S ≡ K3/2/ε), and ai is the mass-weighted turbulent velocity
(ai ≡ −u′′

i = ρ ′u′
i/ρ̄). The first two terms on the right-hand side (RHS) are the production,

and the remaining terms are models. It is noted that the model for the diffusion term is not
the symmetric form, but this simplified model is applicable to 1-D-type flows.

In the equation above, closures are needed for the turbulent length scale (S) and the
turbulent mass flux (ρai). These quantities are discussed below.

3.2 Length scale

Two equation models, such as the traditional k–ε model, have proven to be robust in a
variety of flow regimes, which is an advantage over zero- or one-equation models. For high-
Reynolds-number flows, this approach works well. However, as the turbulence becomes
more anisotropic, two-equation models tend to fail [18]. In the present study, a turbulence
length scale equation is preferred over a dissipation equation because physical intuition
can be associated with it even at early times, when the dissipation may not be well defined
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Journal of Turbulence 7

in flows such as RT or RM instabilities. For instance, initializing a perturbation along an
interface or knowing that turbulent eddies, generated by mixing binary fluids, cannot exceed
the mix width are a few examples of physical intuition.

In order to obtain a transport equation for the turbulent length scale, first the turbulence
energy equation is scaled using dimensional arguments [21] to obtain a dissipation equation
of the form

∂ (ρ̄ε)

∂t
+ (ρ̄ũj ε),j = −Cε1

ε

K
ρ̄R̃ij ũi,j + Cε

(
K

ε
ρ̄R̃knε,n

)
,k

− C2ερ̄
ε2

K

+C3ε

ε

K
aj P̄,j . (13)

Several researchers [4, 5, 6, 19] have added an additional production term of the form
−C4ερ̄εūj,j to potentially correct the behavior of the production term during compression
and expansion [20]. However, they also set the coefficient to zero, which is justified for SD
and RT flows, but the coefficient may require a non-zero value for RM flows (this is further
discussed in §7.3). Using the definition of ε ( = K3/2/S) and the turbulent kinetic energy
equation (which is half the trace of Equation (12)), a transport equation for the turbulent
length scale can be developed. The modeled form is shown as

∂ (ρ̄S)

∂t
+ (

ρ̄ũj S
)
,j

=
(

Cε1− 3

2

)
S

K
ρ̄R̃ij ũi,j +

(
C2ε− 3

2

)
ρ̄K1/2−

(
C3ε − 3

2

)
S

K
aj P̄,j

+Cε

S2

K3/2

(
K

S
ρ̄R̃knS,n

)
,k

+ Cε

3

2

S

K
ρ̄R̃knK,n

(
S

K1/2

)
,k

. (14)

To simplify the model, it is assumed that the diffusion-like terms can be modeled as

Cε

S2

K3/2

(
K

S
ρ̄R̃knS,n

)
,k

+ Cε

3

2

S

K
ρ̄R̃knK,n

(
S

K1/2

)
,k

≈ Cs

(
S√
K

ρ̄R̃knS,n

)
,k

. (15)

The modeled form of the turbulent length scale equation is then

∂ (ρ̄S)

∂t
+ (

ρ̄ũj S
)
,j

=− S

K

(
3

2
−C1

)
ρ̄R̃ij ũi,j + S

K

(
3

2
−C3

)
aj P̄,j −

(
3

2
−C2

)
ρ̄
√

K︸ ︷︷ ︸
Net Production

+ Cs

(
S√
K

ρ̄R̃knS,n

)
,k︸ ︷︷ ︸

Diffusion

, (16)

where Cs and C1. . .3 are coefficients. The terms on the RHS of the above equation are the
net production and diffusion terms. The second term on the RHS of the above equation can
be a production or destruction term, but it is typically described as the production one due
to mixing of multiple materials in the absence of mean velocity gradients. The third term
is derived from the dissipation term [21], but here it can be a production term if C2 > 3/2.
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8 J.D. Schwarzkopf et al.

3.3 Mass flux

The turbulent mass flux (ρ̄ai) is a result of Favre averaging. This term represents the
coupling of the fluctuating density and velocity and is zero for incompressible, single-
phase flows. It is the dominant form of advection in RT instabilities and also contributes to
the production of the Reynolds stress in the presence of a pressure gradient. Simplifications
to modeling this term have been studied by Dimonte and Tipton [22]. However, Livescu et
al. [2] suggest that the rate of the turbulent mass flux is dependent on a delicate balance of
large terms, implying that simple models may be calibrated for specific flows but the same
calibration might not be valid for a wide variety of flows.

A general equation for the turbulent mass flux was derived from first principles by
Besnard et al. [5] and the exact equation is shown as follows:

∂ (ρ̄ai)

∂t
+ (ρ̄ũkai),k = b(P̄,i − τ̄ki,k) − R̃ikρ̄,k + ρ̄ (akai),k − ρ̄akūi,k

− ρ̄

(
ρ ′u′

iu
′
k

ρ̄

)
,k

+ ρ̄υ ′ (P ′
,i − τ ′

ki,k

)
, (17)

where b is the density-specific-volume covariance. The first two terms on the RHS are the
production mechanisms. The third and fourth terms act like redistribution and/or advection
(with the advection velocity equal to the mass flux) terms, while the fifth term is turbulence
transport and the last term denotes destruction. To simplify the modeling approach, the
molecular viscosity is neglected in the above equation.

The turbulence transport term is modeled using a gradient diffusion hypothesis

− ρ̄

(
ρ ′u′

iu
′
k

ρ̄

)
,k

≈ ρ̄Ca

[(
S√
K

R̃knai,n

)
+
(

S√
K

R̃inak,n

)]
,k

. (18)

For 1-D type simulations, the two terms can be combined. The last term is modeled as
a simple decay of the form

ρ̄υ ′P ′
,i ≈ −Ca1ρ̄

√
K

S
ai. (19)

The above equation was suggested by Besnard et al. [5]. However, additional studies to
improve this simple decay model and/or determine a transport equation for the left-hand
side of Equation (19) are underway. Substituting equations (18) and (19) into Equation (17),
a model for the turbulent mass flux is then obtained as follows:

∂ (ρ̄ai)

∂t
+ (ρ̄ũkai)k = bP̄,i − R̃ikρ̄,k − ρ̄akūi,k︸ ︷︷ ︸

Net Production

+ ρ̄ (akai),k︸ ︷︷ ︸
Redistribution

+ ρ̄Ca

(
S√
K

R̃knai,n

)
,k︸ ︷︷ ︸

Diffusion

− Ca1ρ̄

√
K

S
ai︸ ︷︷ ︸

Destruction

, (20)
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where a closure model is needed for b. The redistribution term serves to reallocate the
turbulent mass flux across the mixing layer.

3.4 Density-specific-volume covariance

The density-specific-volume covariance, b ≡ −ρ ′ (1/ρ)′, is a nonnegative measure of how
well the instantaneous density and specific volume properties of the fluid agree (i.e., it can
be shown that b = ρ ′2/ρ̄ρ, [5, 6]). If b = 0, the fluid is perfectly mixed. For completely
segregated materials (e.g., the immiscible case) and binary systems, b has a simple formula:
b = α1α2 (ρ1 − ρ2)2 /ρ2ρ1 [6], where α1 and α2 are the volume fractions associated with
the different fluid components in a binary system. As the density ratio in a binary system
increases, b increases to infinity, while the normalized density variance remains bounded.

The role of υ ′ρ ′ is to moderate the turbulent mass flux production due to a pressure
gradient [2]. In the Boussinesq limit (i.e., A < 0.05), the higher order terms in Equation (2)
can be neglected, and the normalized density variance is applicable to low Atwood flows,
where ρ′ << ρ̄ [5]. Models using the density variance rather than the density-specific-
volume covariance are presented in [4]. Livescu et al. [2] compare the normalized density
variance to the density-specific-volume covariance in a Rayleigh–Taylor (RT) simulation.
They show that as the Atwood is raised, the density-specific-volume correlation is larger
in magnitude than the normalized density variance on the heavy fluid (bubble) side and
vice versa on the light fluid (spike) side. Thus, the energy conversion rate can be higher
in the light fluid and lower in the heavy fluid when the higher order terms are neglected
and the difference increases significantly with A [2]. This substantiates the need to model
the density-specific-volume covariance as opposed to the density variance for large density
differences leading to high Atwood numbers.

The transport equation for density-specific volume covariance was first derived by
Besnard et al. [5], in the following form:

∂b

∂t
+ ūkb,k = −b + 1

ρ̄
(ρ̄ak),k − ρ̄

(
υ ′u′

k

)
,k

− 2ρ̄
(
υ ′d

)
, (21)

where d is the dilatation (= u′
k,k) and υ ′ is the fluctuating specific volume. The transport

term (υ ′u′
k) is a second-order quantity and is unclosed. In order to close the equations, at

the second level, we rewrite (υ ′u′
k), by using the condition ρυ = 1 [2], and apply Reynolds

decomposition to formulate

υ ′u′
k = −ρ ′u′

k

ρ̄
ῡ − ρ ′υ ′u′

k

ρ̄
. (22)

Modeling the triple correlation using a gradient diffusion hypothesis yields a practical
form

υ ′u′
k = −ak

b + 1

ρ̄
− Cb

S√
K

R̃kn

ρ̄
b,n. (23)
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10 J.D. Schwarzkopf et al.

By substituting Equation (23) into Equation (21) and multiplying by the mean density,
a modeled form for b can be obtained

∂ (ρ̄b)

∂t
+ (ρ̄bũk),k = −2 (b + 1) akρ̄,k + 2ρ̄akb,k + ρ̄2Cb

(
S

ρ̄
√

K
R̃knb,n

)
,k

− 2ρ̄2εb, (24)

where εb

(= υ′d) is the dissipation of b. The first term on the RHS is the main production
mechanism, followed by redistribution, diffusion, and destruction terms.

There are several models that could be used to determine εb. A rigorous form can be
adopted where the transport equation for εb can be derived from the continuity equation.
This method requires converting the density to specific volume, then multiplying by the
dilatation, decomposing, and averaging. The general form of the transport equation for εb

is then

∂

∂t
(ρ̄εb) + (

ρ̄εbũj

)
,j

= ρ̄υ ′ ∂d

∂t
+ ρ̄ūj υ ′d,j − ρ̄aj εb,j + ρ̄εbaj,j + ρ̄εbũj,j − ρ̄ῡ,j u

′
j d

− ρ̄(υ ′u′
j d)

,j
+ ρ̄u′

jυ
′d,j + ρ̄ῡd2 + 2ρ̄υ ′d2. (25)

The first two terms on the RHS of Equation (25) correspond to the material derivative
of the dilatation and the fluctuating specific volume. An expression for these terms can
be found by taking the divergence of the momentum equation and multiplying it by the
fluctuating specific volume and then ensemble averaging. Although the above approach
would be a more rigorous start for building a closure for εb, several complicated terms
involving pressure fluctuation gradients coupled to specific volume gradients arise. The
data necessary to pursue such a path are limited and will be discussed in a future work. For
now, we will use a simple approach, by adopting the form of a decay model. Such a decay
model was proposed by Besnard et al. [5], where εb is approximated as

εb ≈ Cb1

2

√
K

S

b

ρ̄
. (26)

Substituting Equation (26) into Equation (24), the modeled equation for the density-
specific-volume covariance is then

∂ (ρ̄b)

∂t
+ (ρ̄bũk),k = − 2 (b + 1) akρ̄,k︸ ︷︷ ︸

Production

+ 2ρ̄akb,k︸ ︷︷ ︸
Redistribution

+ ρ̄2Cb

(
S

ρ̄
√

K
R̃mnb,n

)
,m︸ ︷︷ ︸

Diffusion

− Cb1ρ̄

√
K

S
b︸ ︷︷ ︸

Destruction

. (27)

Equations (16), (20), and (27) supply the necessary closure to the VD Reynolds stress
model (Equation (12)).
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3.5 Total specific energy

In the total energy equation (9), the turbulent transport terms are modeled using the gradient
diffusion hypothesis

− (P ′u′
j ),j − (ρI ′′ u′′

j ),j − 1

2

(
ρu′′

i u′′
i u

′′
j

)
,j

≈
(

ρ̄R̃ij

S√
K

[CkK,j + Cekeff T̃,j ]

)
,i

,

(28)

where the pressure flow work term is neglected when compared to the other terms and the
turbulent transport of internal energy is modeled in the form of turbulent conduction. The
exact terms can also be modeled using the turbulent viscosity (νt = CµsS

√
K) concept.

The interdiffusional enthalpy flux (q̄d
j ) was also incorporated based on the work of Cook

[11]. The total energy equation is then shown as

∂

∂t
(ρ̄Ẽ) + (ρ̄ũj Ẽ),j = −(P̄ ūj ),j − (ũi ρ̄R̃ij ),j

+
(

ρ̄R̃ij

S√
K

[
CkK,j + Ce

Cv

Prt
T̃,j + Cch̄

nc̃n
,j

])
,i

(29a)

or using the turbulent viscosity

∂

∂t
(ρ̄Ẽ) + (ρ̄ũj Ẽ),j =−(P̄ ūj ),j − (ũi ρ̄R̃ij ),j +

(
ρ̄vt

[
K,j + Cv

Prt
T̃,j + 1

σc

h̄nc̃n
,j

])
,i

,

(29b)

where C = 3Cµ/2σ , σ c = 0.75, h is the enthalpy, and the turbulent Prandtl number is de-
fined as Prt = Cvνt/keff . The average internal energy is Ĩ = Ẽ − 1

2 ρ̄ũi ũi − K; the average
temperature is determined from the caloric equation of state Ĩ = CvT̃ , and the average
pressure of the gaseous mixture is modeled by the ideal-gas equation of state

P̄ = (1 − γ ) ρ̄Ĩ , (30)

where γ is the ratio of specific heats.

3.6 Species mass fractions

In the species mass fraction equation (10), the turbulent transport terms are modeled using
the gradient diffusion hypothesis, such as

−
(
ρu′′

j c
′′n
)

,j
≈
(

Cc

S√
K

ρ̄R̃jmc̃n
,m

)
,j

= J n
j,j , (31)

where c̃n
,m is the mean concentration gradient of the species n. The modeled mass fraction

transport equation then becomes

∂ (ρ̄c̃n)

∂t
+ (ρ̄ũj c̃

n),j = J n
j,j . (32)
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12 J.D. Schwarzkopf et al.

4. VD turbulence equations

In summary, the model consists of the Favre-averaged VD continuity, momentum, energy,
and mass fraction equations ((7), (8), (29), (32)), supplemented with equations for second-
order quantities, such as the Reynolds stress, turbulence length scale, mass flux, and density-
specific-volume correlation ((12), (16), (20), (27)) and equations of state for the internal
energy and pressure. This closes the system of equations. The exact and modeled forms of
the equations are shown in Appendixes A.1 and A.2 for convenience.

5. Model calibration

The models for VD turbulence contain several coefficients that need calibration. The ideal
method to calibrate these coefficients is to simplify the flow in various configurations, such
that most of the terms are zero and the remaining nonzero terms are different for each of
the configurations considered. In previous studies of single-phase, Boussinesq flows, the
first flow used in calibration of moment closures is the isotropic, homogeneous turbulence
decay. Under these conditions, the gradients of mean quantities are zero, leaving a time rate
of change balanced by the decay rate. This allows calibration of the decay coefficient and
is the method used to determine the dissipation coefficient in the dissipation or turbulence
length scale equation. Similarly, the production and diffusion coefficients are also found
from simple flows. For instance, in wall flows, the coefficients in the dissipation equation
are related, and a simple expression can be developed to determine the value of the diffusion
coefficient based on the value of the remaining coefficients [23].

Similar ideas can be used to determine the coefficients for the set of VD equations.
Ideally, data from the isotropic, homogeneous decay of a fluid mixture can be used to
determine the coefficients of the destruction terms in the turbulent mass flux and the
density-specific-volume covariance equations. These data would also show if the single-
phase destruction coefficient for the turbulent length scale is valid for the destruction of
turbulence energy in the mix region of VD flows. However, such fundamental experimental
data for this type of flow are unavailable. Therefore, an interim solution is to reduce
the VD equations to single-phase and apply the known coefficients where necessary. The
remaining coefficients can be calibrated by applying the VD equations to instabilities that
promote mixing, such as shear-driven (Kelvin–Helmholtz or in short KH) and pressure-
driven (Rayleigh–Taylor) instabilities. These canonical instabilities allow calibration of the
remaining model coefficients.

5.1 SD instability

An SD instability arises at the interface between two bulk stream fluids having different
mean velocities, shown in Figure 1(a). Under certain conditions, the instability along the
interface curls the initially parallel streams into vortical structures, which grow and entrain
more pure fluid on either side of the interface, all the while becoming increasingly more
effective at small-scale mixing. For low Mach number and constant density fluids, the
turbulent mass flux and the density-specific-volume covariance are negligible. For this
case, the Reynolds stress and the turbulent length scale equations are reduced to

Reynolds Stress:

∂R̃11

∂t
+ (ũkR̃11),k = 2 (Cr2 − 1) R̃1kũ1,k − Cr2

2

3
R̃mkũm,k + Cr

(
S√
K

R̃kmR̃11,m

)
,k

−Cr3

√
K

S
(R̃11) + 2

3
(Cr3 − 1)

K
√

K

S
, (33)
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∂R̃22

∂t
+ (ũkR̃22),k = 2 (Cr2 − 1) R̃2kũ2,k − Cr2

2

3
R̃mkũm,k + Cr

(
S√
K

R̃kmR̃22,m

)
,k

−Cr3

√
K

S
R̃22 + 2

3
(Cr3 − 1)

K
√

K

S
, (34)

∂R̃12

∂t
+ (ũkR̃12),k = (Cr2 − 1) (R̃1kũ2,k + R̃2kũ1,k) + Cr

∂

∂xk

(
S√
K

R̃km

∂R̃12

∂xm

)

−Cr3

√
K

S
R̃12. (35)

Turbulent length scale:

∂S

∂t
+ (ũj S),j = − S

K

(
3

2
− C1

)
R̃ij ũi,j −

(
3

2
− C2

)√
K + Cs

(
S√
K

R̃mnS,n

)
,m

.

(36)

The coefficients that will be calibrated based on the shear-driven instability data are
Cr2, Cr3, Cr, C1, C2, and Cs. The experimental data of Bell and Mehta [24], who studied a
spatially growing layer, and the DNS of Rogers and Moser [25], who studied a temporally
growing layer, are mainly used for this calibration. The mixing thickness Reynolds numbers
were ∼30,600 and ∼20,000 [25], respectively. In this study, the model was set up as a
temporally growing layer.

For single-phase turbulence, the coefficient Cr2 = 0.6 agrees with rapid distortion theory
[21]. The coefficient C2 (= 1.92) is found from isotropic homogeneous turbulence decay.
The coefficient associated with the slow return to isotropy, Cr3 (= 1.8), is given by Launder
[26].

As a starting point, the diffusion coefficients Cr and Cs will be estimated based on
the studies of Livescu et al. [2] and Banerjee et al. [27]. They showed that the turbulent
viscosity coefficient Cµ should be 0.28 in the RT mixing layer rather than 0.09, which is
found from shear layers. The DNS results of Ristorcelli and Clark [28] showed that the
turbulent length scale (S) is fairly constant across the low Atwood number RT mix. Using
the data from [28], Banerjee et al. [6] found that σ s should be approximately 0.1 to obtain
a flat profile for the turbulent length scale. The formulation C = 3Cµ /2σ can be used
to extend the value of the diffusion coefficient based on isotropic turbulent viscosity to
anisotropic diffusion [4]; in this case, Cr = 0.42 and Cs = 4.2. Although these coefficients
were used as a starting point, it was found that the self-similar dimensionless mix width
visually agreed with the experimental data [24] and DNS [25]. In addition, Banerjee et al.
[6] showed that the isotropic turbulent viscosity diffusion models for turbulent energy also
matched the data of Bell and Mehta [24].

The coefficient C1 = 1.44 has been applied to a wide set of data ranging from single-
phase highly curved duct flows [18] to particle-laden channel flows [29], both of which
used the dissipation equation. It is a standard constant that is used in many computational
fluid dynamics (CFD) packages and applied to many engineering phenomena. However, a
comparison of the second-moment model using C1 = 1.44 to experimental and DNS data
is shown in Figure 2. In this figure, all three Reynolds stress components underpredict the
dimensionless magnitude of the data. Since the coefficients for rapid distortion are fixed
(Cr2 = 0.6, [21]), the remaining coefficient that can affect the magnitudes of the Reynolds
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14 J.D. Schwarzkopf et al.

Figure 2. Comparison of a second-moment closure prediction with DNS results (Rogers and Moser
[25]) and experimental data (Bell and Mehta [24]) with C1 = 1.44, η = (y − yc l)/δ, where yc l is the
value at the centerline of the mixing layer.

stress is C1, which is related to the self-similar growth rate of a shear layer. The self-similar
growth rate (β) of a temporal SD mixing layer is given by [21]

β ≈ 1

Us

dδ

dt
, (37)

where Us is the characteristic velocity and δ is the mixing layer width. The model prediction
of the growth rate is improved by lowering the coefficient C1. The predicted growth rate
is 0.065 (0.045) for C1 = 1.2 (1.44), respectively. The lower value of C1 provides growth
rates that are closer to those reported by various authors: 0.069 [21], 0.076 [24]. To account
for these considerations, C1 = 1.2 is used in the present model.

The coefficients for a second-moment closure applied to single-phase, single-
component SD instabilities are provided in Table 1. The traditional coefficients used in
the dissipation equation are also provided in Table 1 for comparison.

5.2 Buoyancy or pressure-driven instability

Buoyancy or pressure-driven instabilities arise when two fluids with different densities
share a common interface in the presence of acceleration, shown in Figure 1(b). The
acceleration is usually associated with a body force, such as gravity. A canonical example

Table 1. Coefficients for single-phase, single-component flows.

Cr2 Cr3 Cr Cs C1 C2

ε-eqn. 0.6 1.8 0.22 0.15 1.44 1.92
S-eqn. 0.6 1.8 0.42 4.2 1.2 1.92
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Journal of Turbulence 15

is the RT instability in which a heavy fluid is set above a lighter fluid. The heavy fluid
penetrates (spikes) and lighter fluid rises (bubbles) creating a mixing zone. In the classical
RT instability, the flow is homogeneous in the horizontal directions, so that the governing
equations can be plane-averaged and the turbulence quantities become one-dimensional.
The equations, simplified for this flow, are shown below

Reynolds Stress:

∂(ρ̄R̃22)

∂t
+ (ρ̄a3R̃22),3 = Cr

(
S√
K

ρ̄R̃knR̃22,n

)
,k

− Cr3ρ̄

√
K

S

(
R̃22 − 1

3
R̃kk

)

−Cr2
2

3
ρ̄R̃33a3,3 + Cr1

2

3
a3P̄,3 − ρ̄

2

3

K
√

K

S
, (38)

∂(ρ̄R̃33)

∂t
+ (ρ̄a3R̃33),3 = 2 (1 − Cr1) a3P̄,3 + 2ρ̄ (Cr2 − 1) R̃33a3,3

+Cr

(
S√
K

ρ̄R̃knR̃33,n

)
,k

− Cr3ρ̄

√
K

S

(
R̃33 − 1

3
R̃kk

)

−Cr2
2

3
ρ̄R̃33a3,3 + Cr1

2

3
a3P̄,3 − ρ̄

2

3

K
√

K

S
. (39)

Turbulent mass flux:

∂ (ρ̄a3)

∂t
= bP̄,3 − (R̃33 + a3a3)ρ̄,3 + ρ̄Ca

(
S√
K

R̃kna3,n

)
,k

− Ca1ρ̄a3

√
K

S
. (40)

Density-specific-volume covariance:

∂ (ρ̄b)

∂t
+ (ρ̄a3b),3 = 2ρ̄a3b,3 − 2 (b + 1) a3ρ̄,3 + ρ̄2Cb

(
S

ρ̄
√

K
R̃knb,n

)
,k

−Cb1ρ̄

√
K

S
b.

(41)

Turbulence length scale:

∂ (ρ̄S)

∂t
+ (ρ̄a3S),3 = − S

K

(
3

2
− C1

)
ρ̄R̃33a3,3 −

(
3

2
− C2

)
ρ̄
√

K

+Cs

(
S√
K

ρ̄R̃knS,n

)
,k

+ S

K

(
3

2
− C3

)
a3P̄,3. (42)

Species Concentration:

∂ (ρ̄c̃n)

∂t
+ (ρ̄a3c̃

n),3 =
(

Cc

S√
K

ρ̄R̃33c̃
n
,3

)
,3

. (43)

The coefficients that will be calibrated based on the RT instability data are Cr1, Ca,
Ca1, Cb, Cb1, C3, and Cc. Two datasets from some of the largest RT simulations to date are
mainly used for this calibration. First is at A = 0.04, from Livescu et al. [3], and second is
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16 J.D. Schwarzkopf et al.

the A = 0.5 simulation of Cabot and Cook [30] as analyzed by Livescu et al. [2]. The two
datasets report bulk Reynolds numbers of 35,000 and 32,000 based on the visual thickness,
respectively, and they are denoted hereafter as RT1 and RT2.

5.2.1 Calibrating the coefficient for the destruction term within the turbulent mass flux
equation

The RT1 and RT2 datasets provide information to calibrate the coefficient Ca1. The coef-
ficient Ca1 can be found by setting the exact destruction term to the modeled form. The
coefficient should then behave as

Ca1 ≈ −υ ′
(

∂P ′

∂xi

)
S

ai

√
K

. (44)

Ruffin et al. [31] and Chassaing [32] suggested Ca1 = 3.0, 5.3 respectively. Here, we
calibrate the value of Ca1 using the RT1 [3] and RT2 [30, 2] datasets described above. Figure
3 shows the coefficient Ca1 across the dimensionless mix zone for the two Atwood numbers.
Although a typical decay model for ai may not be appropriate to close the destruction term,
due to the complexities of modeling the specific volume pressure gradient correlation,
ρ̄υ ′P ′

,i , the simple decay model was adopted here, as a starting point. Thus, Ca1 is taken
as 3.2, which was determined by averaging over a portion of the mixing layer. Further
extensions of this model will be presented in future work.

Figure 3. The variation of Ca1 across the mixing layer of a Rayleigh–Taylor instability. The self-
similar DNS data at A = 0.04 (Livescu et al. [3]) and A = 0.5 (Cabot and Cook [30], Livescu et al.
[2]) were used to determine Ca1 from Equation (44).
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Figure 4. The variation of Cb1 across the mixing layer of a Rayleigh–Taylor instability. The self-
similar DNS data at A = 0.04 (Livescu et al. [3]) and A = 0.5 (Cabot and Cook [2], Livescu et al. [3])
were used to determine Cb1 from Equation (45).

5.2.2 Calibrating the coefficient for the destruction term within the density-specific-
volume covariance equation

RT1 and RT2 datasets also provide information to calibrate the coefficient Cb1. The method
of determining Cb1 is similar to the method for determining Ca1. By setting the modeled
form of the destruction term equal to the actual destruction term, Cb1 can be obtained

Cb1 ≈ 2ρ̄υ ′d
S

b
√

K
. (45)

Figure 4 shows the value of Cb1 for RT1 and RT2. The value is reasonably constant
across the layer and a value of 2.0 was chosen to be consistent with the production terms
in Equation (27). This suggests that the turbulence and mixing time scales are nearly equal
when the flow is self-similar [28].

5.2.3 Calibrating growth rates and diffusion coefficients

The dimensionless growth rate (α) of the mixing layer can be computed from a quadratic
formulation for the mix width, h(t), derived by Ristorcelli and Clark [28]. An equivalent
formula, which avoids the time derivative, is given in [3]

α =
(

h(t)1/2 − h(t0)1/2

(Ag)1/2 (t − t0)

)2

, (46)
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18 J.D. Schwarzkopf et al.

Table 2. Coefficients for single-phase, single and multicomponent flows

Cr1 Cr2 Cr3 Cr Ca Ca1 Cb Cb1 Cc Cs C1 C2 C3 Cµ

ε-eqn. 0.3 0.6 1.8 0.22 0.18 3.0 0.18 3.0 0.18 0.15 1.44 1.92 0.95 0.09
S-eqn. 0.3 0.6 1.8 0.42 0.3 3.2 0.3 2.0 0.56 4.2 1.2 1.92 1.2 0.28

The coefficients for ε-eqn. are given in [4].

where, t0 is an arbitrary time in the self-similar regime. The formulation used to compute
the total mixing layer width, h(t), is that of Andrews and Spalding [33] defined as

h(t) = 6
∫ ∞

−∞
fv (1 − fv) dz, where fv = ρmix − ρmin

ρmax − ρmin
, (47)

and where the factor of six derives from considering the width of a linear profile. Coefficients
C3, Ca, and Cb were set to match the dimensionless growth rates and the dimensionless
mixing layer width. At A = 0.04, the α produced by the model is 0.041, compared to 0.0412
found from RT1. At A = 0.5, the α given by the model is 0.046, compared to 0.0416 found
from RT2. Both of these comparisons were made with C3 set to 1.2. The coefficients Ca and
Cb were set to 0.3 to match the nondimensional width between the experimental [27] and
DNS data. The value for Cc was chosen based on the relationship Cc = (3/2) Cµs/σc where
Cµs = 0.28 and a turbulent Schmidt number taken as σ c = 0.75, suggested by [4]. The
coefficient Cr1 was taken as 0.3, also suggested in Ref. [4] and further discussed in §7.2.2.

5.3 Model coefficients

Based on the above methods, the model coefficients were found from DNS and experimental
data for SD and RT instabilities. A list of coefficients are shown in Table 2 along with the
coefficients used by Grègoire et al. [4], which used a dissipation equation and is shown
for comparison. Overall, it was found that C3 is the major contributor to the RT mixing
layer growth, whereas C1 is the major contributor to the shear-driven mixing layer growth.
The remaining differences are in the diffusion terms and are primarily due to the different
definitions of the turbulence time scale.

6. Numerical method

The Reynolds stress model was implemented into a compressible 3D Eulerian hydrocode
[34]. The code uses a Godunov scheme to solve the mass, momentum, and energy equations
while equations for the turbulence and mix quantities are solved using traditional finite-
volume methods. Adaptive Mesh Refinement (AMR) is also used near the interfaces of
materials or shocks, where density, pressure, and velocity gradients are the basic criteria
for mesh refinement (additional information on AMR can be found in [34] and [35]). The
boundary conditions are reflective or symmetric and the domain was sized such that the
flow did not reach the boundaries.

To ensure that the solution is independent of the mesh, a grid resolution study was
performed. For self-similar flows, the run time was extended to ensure that a self-similar
state was achieved; e.g., in SD flows, d(R11/(
U)2)/dt ∼ 0, and in RT mixing, db/dt ∼ 0, and
that the growth parameter α (based on the total mixing layer width) reaches a self-similar
value [30]. For the RM simulation, the local mesh size (∼78 µm) was decreased by a factor
of 2 until the axial Reynolds stress component was found to be visually similar (∼ 9 µm).
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The number of grid points used in each simulation were 8000, 13,024, and 5118, and
time steps were on the order of 10−8, 10−6, and 10−8 for SD, RT, and RM flows, respectively.
All runs were completed in less than 24 hours on eight CPUs.

6.1 Initialization

For gravity-induced turbulence (RT), the turbulent kinetic energy and turbulence length
scale were initialized with small but nonzero values that were constant across the domain.
The turbulent kinetic energy was then evenly distributed across the diagonal components
of the Reynolds stress tensor while the off-diagonal components were initialized to zero.

For shear- and shock-induced turbulence (KH & RM), the turbulent kinetic energy was
initialized as Ko = ζ (
U )2, where ζ is the turbulence intensity (assumed to be ∼1%) and

U is the change in velocity across the interface. The jump conditions were set up at the
interface of the materials or regions. The turbulent kinetic energy was then isotropically
distributed across the diagonal components of the Reynolds stress tensor, while the off-
diagonal components were initialized to zero. The turbulent length scale was initialized
based on the perturbation scales at the interface. The turbulent mass flux was initialized
as zero across the domain and the density-specific-volume covariance was initialized as
the two-fluid value at the interface of the fluids; additional studies on initialization are
currently underway. Since the code is compressible, the temperature was increased in the
RT simulation to suppress shock formations.

7. Results

In order to validate the capability of the model, it is applied to three sets of instabilities
that create a turbulent mixing zone (TMZ). First is a temporal SD mixing layer, where the
model is compared to DNS [25] and experimental data [24]. Second is an RT mixing layer
that is driven by an initial discontinuity in the pressure gradient at the interface between
two fluids with different densities. The test data are the two DNS datasets, RT1 and RT2
described above, along with the experimental data of Banerjee et al. [27]. Finally, the model
is applied to the RM instability, where a shock is passed through an interface between
different density fluids. For this case, the model is compared with the measurements of
turbulence quantities in a shock tube, provided by Poggi et al. [8].

7.1 SD instability

The experimental dataset of Bell and Mehta [24] and the DNS of Rogers and Moser [25],
both addressing the constant density case, are used to test the model which was set up as a
temporally growing mixing layer. The Reynolds stress data are nondimensionalized by the
square of the velocity difference and compared in Figure 5(a).

Overall, the second-moment closure is in reasonable agreement with the two datasets.
However, it is noticed that the model does not accurately predict the magnitude of R22, and
although not shown, the model predicts that R22 = R33, which is contrary to both datasets.
This may be a weakness in the models that were chosen to represent the pressure strain
terms and the turbulence length scale, the latter of which is assumed to be isotropic.

The mean velocity profile, shown in Figure 5(b), compares well with the error function
theory (described in [21, 24]) and both the experimental data and DNS in the self-similar
regime.
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20 J.D. Schwarzkopf et al.

Figure 5. Comparison of a second-moment closure with DNS results (Rogers and Moser [25]) and
experimental data (Bell and Mehta [24]); (a) Reynolds stress components and (b) velocity profile
comparisons are made with C1 = 1.2, see Figure 2 caption for the definition of η.

7.2 RT instability

RT instabilities arise when an external acceleration is applied in the direction of a dense fluid
over a light fluid (shown in Figure 1(b)). In RT flows, the main production mechanisms are
the pressure gradient coupled to the density-specific-volume covariance and the Reynolds
stress coupled to the density–velocity covariance.

7.2.1 Nondimensionalization procedure

The Rayleigh–Taylor (RT) Direct Numerical Simulation (DNS) results of Cabot and Cook
[30] analyzed by Livescu et al. [2] at moderate Atwood and Livescu et al. [3] at low At-
wood numbers (0.5 and 0.04, respectively) were used to evaluate the coefficients and tune
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the Favre-averaged model. In order to compare the model with the DNS and experimen-
tal results, the following nondimensionalization procedure was taken to account for the
differences in length and time scales. The length scales were nondimensionalized by the
mixing layer width, h(t) – the total width, determined by Equation (47). The time scales
were nondimensionalized by

τ =
(

h(t)

A |g|
)1/2

= √
αt, (48)

where α is the dimensionless growth rate of the mix layer in the self-similar regime. This
nondimensionalization procedure collapses the RT DNS once a self-similar state has been
reached. Here, the velocity scale is defined as: λ = h(t)/

√
αt = ḣ/2

√
α and λ2 = ḣ2/4α

[28]. Using this technique, the turbulent kinetic energy and turbulent mass flux can be
collapsed and shown to be independent of temporal and spatial growth, as shown in Figure 6
for DNS.

Figure 6. Actual RT DNS data (left) showing spatial and temporal growth; dimensionless RT DNS
data that is invariant of temporal and spatial growth (right), A = 0.5. Legend: t/

√
l0/|Ag| = t1(31),

t2(27.5), t3(25), t4(22.5), where l0 is the dominant initial wavelength of the perturbation [2].
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22 J.D. Schwarzkopf et al.

Figure 7. Direct comparison of (a) the volume fraction and (b) the density-specific-volume covari-
ance produced by a second-moment closure model to DNS [3] and experimental data [27] for RT
mixing, A = 0.04. The DNS and Model are compared in the self-similar region with α = 0.04. The
experiment (Exp.) and Model2 are compared in a non-self-similar region with α = 0.13.

7.2.2 Comparing the second-moment model to RT DNS at low Atwood

The RT2 DNS set and the experimental data [27] are used to compare the model at a low
Atwood number (0.04). The experimental data [27] report α∼0.13, whereas DNS shows
that the self-similar α∼0.04 [3]. Although these differ by a factor of ∼3, the model, DNS
and experimental data agree on the volume fraction profile over the dimensionless mix
width, shown in Figure 7(a). When comparing the density-specific-volume covariance (b),
the experimental data over predict the DNS, shown in Figure 7(b). This over prediction is
thought to be caused by the difference in growth rates, which may be caused by the effects
of a low wave number in the experiments (current studies are underway to investigate these
differences).

In order to avoid a direct comparison between the DNS and the experiment, the initial
conditions were reconfigured to simulate a larger growth rate. The α of the model was altered
by adjusting the initial value of the turbulent length scale until it was ∼0.13 at 3.5 s (where
the experimental data was captured) and referred to as Model2. The differences between
Model and DNS and Model2 and Exp. are of similar magnitude. Overall, a reasonable
agreement is seen between the model, experimental data, and DNS, despite the differences
in α.

Comparisons of the mass-weighted turbulent velocity and the turbulent kinetic energy
between DNS results, experimental data, and the second-moment model are shown in
Figures 8 and 8(b), respectively. These quantities are not a direct comparison as they
have been nondimensionalized by length and time scales h(t) and

√
αt, respectively. Still,

reasonable agreement between the model, experimental, and DNS data are shown.
The Reynolds stress components are compared and shown in Figure 9(a). The model

overpredicts the R33 component when compared to DNS data, whereas the R11 ( = R22)
component agrees well with the DNS data. The overprediction in R33 could be due to the
coefficient Cr1 having an incorrect value, and Cr1 = 0.4 would provide a better match.
However, improvements to the turbulence mass flux model may also show a better match
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Figure 8. Comparison of (a) the dimensionless mass-weighted turbulent velocity and (b) the dimen-
sionless turbulent kinetic energy produced by a second-moment model. The Model is compared to
the DNS [3] in a self-similar region with α = 0.04. The Model2 is compared to the experimental data
[27] in a non-self-similar region with α = 0.13. All the data are for A = 0.04.

between the Reynolds stress model and DNS. Since the match was reasonable, we chose to
use the suggested coefficient and further investigated the effects of the destruction of the
turbulent mass flux on ai and Rij. A comparison of the ratio of the streamwise and spanwise
RMS velocities is also shown in Figure 9(b). Again, the DNS, model and experimental data
agree rather well.

7.2.3 Comparing the second-moment model to RT DNS at moderate Atwood

The DNS data of Cabot and Cook [30], presented by Livescu et al. [2], are used to compare
the model at a moderate Atwood number (0.5). Direct comparisons of the effects of mass
and mixing are shown in Figure 10. The density profile compares very well with the DNS
data while the second-moment model overpredicts the density-specific-volume covariance
when compared to the DNS, similar to the low Atwood case.

Comparisons of the dimensionless Reynolds stress components and the turbulent kinetic
energy are shown in Figure 11 (a) and (b). The model overpredicts the R33 component and
agrees well with the R11 component, similar to the low Atwood case. The model also appears
to capture the asymmetry or shift of the peak turbulent energy toward the spike side. This
is primarily driven by the asymmetry found in both the turbulent mass flux and density-
specific-volume covariance and a reason that the density-specific-volume covariance should
be computed rather than the density variance which is only valid at low Atwood (i.e., the
Boussinesq limit). The second-moment model compares well with the DNS predictions.
Based on the simple decay model used, the dimensionless mass-weighted turbulent velocity
also matches reasonably well with the moderate Atwood DNS, shown in Figure 11(c).

The turbulence length scale and dissipation are compared to DNS data and are shown in
Figure 12. The dimensionless turbulent length scale compares well with the DNS data and
is not only found to be about one-quarter of the mixing layer width but also a reasonable pre-
diction of the asymmetry. The dissipation is modeled as ε = K3/2/S, and the dimensionless
dissipation shows to overpredict the DNS. This is thought to be due to the overprediction
of the turbulent energy which is partly due to the overprediction in the turbulent mass flux.
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24 J.D. Schwarzkopf et al.

Figure 9. Comparison of (a) the dimensionless Reynolds stress components, and (b) the ratio of the
root-mean-square (RMS) velocities. Model is compared to DNS data [3] in a self-similar region with
α = 0.04. Model2 is compared with experimental data [27] in a non-self-similar region with α =
0.13. For all cases, A = 0.04.

The inverse turbulent time scale (
√

K/S) and inverse material or mix time scale (ρ̄εb/b)
are shown in Figure 13. These appear to be reasonable comparisons to DNS data.

7.2.4 Anisotropy

A true test of the Reynolds stress model (given in Equation (12)) is to compare the anisotropy.
The dimensionless anisotropy tensor is defined as

bij = R̃ij

R̃kk

− 1

3
δij (49)
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Figure 10. Direct comparison of (a) the second-moment model and DNS [2] for density and (b) the
density-specific-volume covariance for 0.5 Atwood.

Figure 11. Comparison of second-moment model predictions with DNS [2] results for (a) Reynolds
stress, (b) turbulent kinetic energy, (c) Favre-averaged turbulent velocity for 0.5 Atwood.
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26 J.D. Schwarzkopf et al.

Figure 12. Comparison of second-moment model predictions with DNS [2] results for (a) turbulent
length scale, and (b) turbulence dissipation for 0.5 Atwood.

with realizable limits −1/3 < bij < 2/3. The model proposed in Equation (11) adopted
Daly and Harlow’s [13] expression for the transport terms and assumed high-Reynolds-
number flows such that the turbulent length scale is isotropic. The pressure strain terms
were modeled by Rotta’s [14] return to isotropy model and Naot et al.’s [15] isotropization
of production (IP) model. These models are the simplest form and assume that an energy
cascade exists.

A comparison of b33 for RT instabilities is shown in Figure 14 for low- and moder-
ate Atwood numbers. The RT1 and RT2 datasets are shown for comparison. The model
compares reasonably well for symmetrical, low Atwood data. However, at high Atwood
values, a nonsymmetrical form develops over the mix width. The model poorly predicts

Figure 13. Comparison of (a) the dimensionless inverse turbulent time scale and (b) the inverse
material or mix time scale for 0.5 Atwood.
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Figure 14. Comparison of the anisotropy in RT-type flows for low and moderate Atwood, (a) A =
0.04, and (b) A = 0.5. The prediction is compared to DNS [2].

the anisotropy on the bubble side. This could partly be due to the fact that the coefficient
for the decay of ai was assumed constant, when it really should be a factor of 2 greater on
the outer edge of the bubble side (see Figure 3). This would suppress the main production
mechanism in the transport equation for Rij, and therefore a simple decay model to represent

ρ̄υ ′P ′
,i warrants further studies. This is an example where one cannot criticize the models

within Rij until the additional quantities have adequate models. Currently, we are using the
simplest/robust models available and documenting their strengths and weaknesses; future
work is underway to improve on these models.

7.3 RM instability

The third application is the RM instability. Unlike the previous flows considered, this
instability does not reach a self-similar form and, as a consequence, may challenge the
turbulence models that were developed using this assumption. The RM instability arises
when a shock is passed through an interface that separates two different density fluids,
shown in Figure 1(c).

Poggi et al. [8] appeared to be the first to collect turbulence data within this type of
mixing using laser Doppler anemometry (LDA). In this experiment, a vertical shock tube
with a cross section of 8 × 8 cm2 was used. The heavy fluid (SF6) was separated from
the lighter fluid (air) using a thin membrane. A thin wire mesh was also placed above the
membrane to help control the initial perturbation scales. The upward propagating shock
(Mach = 1.45) created a mixing layer when it impacted the interface. After reshock,
turbulence was evident. Poggi et al. [8] were able to seed the two fluids to obtain turbulent
measurements within the mixing layer at moderate Atwood number (0.67). Since then,
there have been no repeated attempts to verify this dataset.

Grègoire et al. [4] compared their second-order turbulence model to the experimental
data of Poggi et al. [8]. The primary differences between their model and the present
model are in modeling the second moment υ ′ρ ′ and using the turbulent length scale
rather than dissipation. It is noted that there are no experimental data provided for υ ′ρ ′ or
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other production mechanisms such as ρ ′u′/ρ̄ in RM-type flows, and therefore a detailed
comparison is unavailable. This is one of the primary reasons of comparing these statistics to
RT flows and then applying the calibrated results to RM flows. In this study, the coefficients
were not calibrated or tuned for this type of instability. Thus, the model coefficients (shown
in Table 2) were applied to RM instabilities.

The shock tube problem discussed above was set up as 1-D. The governing equations
are (R33 = R22):

Reynolds Stress:

∂(ρ̄R̃11)

∂t
+ (ρ̄ũ1R̃11),1 = 2 (1 − Cr1) a1P̄,1 + 2ρ̄ (Cr2 − 1) R̃11ũ1,1

+Cr

(
S√
K

ρ̄R̃11R̃11,1

)
,1

− Cr3ρ̄

√
K

S

(
R̃11 − 1

3
R̃kk

)

−Cr2
2

3
ρ̄R̃11ũ1,1 + Cr1

2

3
a1P̄,1 − ρ̄

2

3

K
√

K

S
, (50)

∂
(
ρ̄R̃22

)
∂t

= Cr

(
S√
K

ρ̄R̃11R̃22,1

)
,1

− Cr3ρ̄

√
K

S

(
R̃22 − 1

3
R̃kk

)

−Cr2
2

3
ρ̄R̃11ũ1,1 + Cr1

2

3
a1P̄,1 − ρ̄

2

3

K
√

K

S
. (51)

Turbulent mass flux:

∂ (ρ̄a1)

∂t
+ (ρ̄ũ1a1),1 = bP̄,1 − R̃11ρ̄,1 − ρ̄a1 (ũ1 − a1),1 + ρ̄ (a1a1),1

+ ρ̄Ca

(
S√
K

R̃11a1,1

)
,1

− Ca1ρ̄a1

√
K

S
. (52)

Density-specific-volume covariance:

∂ (ρ̄b)

∂t
+ (ρ̄ũ1b),1 = 2ρ̄a1b,1 − 2 (b + 1) a1ρ̄,1 + ρ̄2Cb

(
S

ρ̄
√

K
R̃11b,1

)
,1

− Cb1ρ̄b

√
K

S
.

(53)

Turbulent length scale:

∂ (ρ̄S)

∂t
+ (ρ̄ũ1S),1 = − S

K

(
3

2
− C1

)
ρ̄R̃11ũ1,1 −

(
3

2
− C2

)
ρ̄
√

K

+Cs

(
S√
K

ρ̄R̃11S,1

)
,1

+ S

K

(
3

2
− C3

)
a1P̄,1 − C4ρ̄Sū1,1. (54)

Species Concentration:

∂ (ρ̄c̃n)

∂t
+ (ρ̄ũ1c̃

n),1 =
(

Cc

S√
K

ρ̄R̃11c̃
n
,1

)
,1

. (55)
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Figure 15. Comparison of velocity profile at 161 mm from the initial interface. Data are given in
Poggi et al. [8].

The above-modeled equations are applied to the experiment of Poggi et al. [8], described
above. The velocity is compared with the experimental data and shown in Figure 15. The
velocity difference between the model and experiment at the second plateau is attributed to
turbulent boundary layer effects, where an acceleration of the fluid is seen in the experiments
[8]. Boundary layer effects were not accounted for in this model; however, Mügler and
Gauthier [36] showed that the data and experiments match rather well when these effects
are considered. Overall, the model agrees reasonably well with the velocity data.

The Favre-averaged Reynolds stresses can be converted to Reynolds-averaged by the
following relationship:

u′
iu

′
j = R̃ij + aiaj −

ρ ′u′
iu

′
j

ρ̄
. (56)

The last two terms in the above equation should be of the same order, which was
determined as ∼1% of the Favre-averaged Reynolds stress and therefore the last two terms
are neglected in the following comparisons.

During the simulation of the data of Poggi et al. [8], it was found that the value for the
coefficient C4 = 0 produced a high axial Reynolds stress, but by including the compress-
ibility term (−C4ρ̄Sūj,j , shown in Eqn. (54) and in Ref. [6]) in the length scale equation
(discussed in §3.2) with the coefficient C4 = −1.2, a reasonable agreement between the
simulation and experimental data was achieved. A comparison of R11 over time is shown in
Figure 16. At positions 161 and 178.5 mm beyond the initial interface, which is in the decay
region after the first shock but before reshock, the model compares reasonably well with
the experimental data. Poggi et al. [8] showed additional data at 51 and 125 mm beyond the
initial interface, and although not shown here, the current model underpredicts this data,
similar to [4]. The spike in R11, between 1.85 and 1.9 ms (at 178.5 mm), is due to the second
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Figure 16. Second-moment model compared to axial Reynolds stress data from the CEA shock tube
experiment [2].

reshock. Overall, a reasonable agreement is seen between the model and experimental data.

Data for the Reynolds stress anisotropy at 169 mm are found in [4]. Here, the model is
compared with the data and shown in Figure 17. The two components compare reasonably
well with the data, although much of the data in the transverse direction are within the
measurement noise.

An important factor in this experiment is the growth rate of the mixing layer. The
interface of air and SF6, based on a 1% concentration level, is plotted and compared with
the experimental data, shown in Figure 18. The model compares reasonably well with the
experimental data after the first shock. However, it underpredicts the measured growth after
the second reshock.

Figure 17. Comparison of the Reynolds stress components to the experimental data of CEA shock
tube experiment (data found in [4, 8]). Measurement position is 169 mm beyond the initial interface.
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Figure 18. Prediction of the turbulent mixing zone (TMZ) boundaries by a second-moment model
and compared to the measured data of Poggi et al. [8].

8. Summary and conclusions

A set of higher order closure equations for a second-moment model, originally derived by
Besnard et al. (1992), was further developed and applied to a broad set of single-phase and
variable density turbulence data, spanning from free shear flow to shock-induced mixing.
This second-moment closure includes higher order closures, namely, the turbulent mass flux
and the density-specific-volume covariance. Other works involving higher order closures
simplify the density-specific-volume covariance to the Boussinesq limit.

In this study, we document several strengths and areas of improvement for the second-
moment closure applied to single and variable density flows:

1. First, we illustrate that the Boussinesq limit for the density-specific-volume covari-
ance is not appropriate for high Atwood instabilities. Instead of modeling the density
variance, a model was proposed for the density-specific-volume covariance based
on the work of Besnard et al. (1992). At moderate Atwood number Rayleigh–Taylor
flows, the model does show asymmetry with the peak values of the density-specific-
volume covariance occurring on the lighter side of the fluid interface, similar to
DNS.

2. To improve on the asymmetry, an exact equation for the destruction term of the
density-specific-volume covariance was derived and presented. However, the neces-
sary data needed to further develop this equation was found to be limited (current
efforts to obtain this data are underway). Therefore, a simple decay model was
adopted and the coefficients for this model were calibrated to the exact terms found
in DNS of Rayleigh–Taylor instabilities. This calibration showed that the decay
coefficient was constant across the mixing layer.

3. It was also found during the calibration process that a simple decay model is not
appropriate for the destruction rate of the turbulence mass flux in Rayleigh–Taylor
flows. The coefficient shows a wide variation over the mix width and can differ by
as much as a factor of 2 near the outer edges of the mixing zone. This appears to be
inconsistent with the suggested values found in previous literature.
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4. In single-phase shear flow, the value of C1 = 1.44, within the turbulent length
scale equation, underpredicted the Reynolds stress components and the growth rate
of the experimental data and DNS. Decreasing this value to 1.2 showed a better
comparison of the Reynolds stress components and growth rate between the model,
experimental data, and DNS. However, contrary to the data, the modeled form of the
pressure strain terms within the Reynolds stress equation does not appear to capture
the proper anisotropy within the diagonal components, but it does capture the shear
component.

5. The model coefficients were calibrated to single-phase shear and variable density
Rayleigh–Taylor experiments/DNS. The model was then applied to a shock tube
and compared to the experimental data measured by Poggi et al. [8]. The purpose of
this exercise was to understand if the model could capture the effect of a completely
different type of flow that was not used during the calibration process. Overall, the
model does a reasonable job at capturing the anisotropy in the Reynolds stress and
the mix width after the first reshock when the compressibility term is included in the
turbulence length scale equation with C4 = −1.2; implying that this term should
not be neglected in shocked flows. However, additional data are needed to compare
mix quantities in this flow regime.

The second-moment model presented in this study was compared to DNS and exper-
imental data for SD, Rayleigh–Taylor, and RM instabilities. These comparisons include
Reynolds stress components and anisotropy, turbulent and material mixing time scales,
density-specific-volume covariance, turbulent length scale and dissipation, growth rates
and mix widths, turbulent mass flux and mean velocity profiles, turbulent kinetic energy,
and density variation and volume fraction. This model is considered an improvement over
previously developed models, which use turbulent viscosity [6, 7] and density variance
[4]. Overall, the second-moment model for variable density turbulence compares well with
DNS and experimental data. Future work to improve this model should focus on developing
models for the destruction of the density-specific-volume covariance and turbulent mass
flux along with improving the pressure strain model and developing transport equations for
nonisotropic dissipation or turbulent length scale.
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Appedix

A.1 Exact Euler equations for variable density turbulence
Continuity:

∂ρ̄

∂t
+ (ρ̄ũj ),j = 0.

Momentum:

∂ (ρ̄ũi)

∂t
+ (

ρ̄ũi ũj + P̄ δij + ρ̄R̃ij

)
,j

= ρ̄gi .

Energy:

∂

∂t
(ρ̄Ẽ) + (ρ̄ũj Ẽ),j = −(P̄ ūj ),j −(ρ̄ũi R̃ij ),j −

(
P ′u′

j

)
,j

−
(
ρI ′′ u′′

j

)
,j

− 1

2

(
ρu′′

i u′′
i u

′′
j

)
,j

− q̄d
j,j .

Species mass fraction:

∂ (ρ̄c̃n)

∂t
+ (

ρ̄ũj c̃
n
)
,j

= −
(
ρu′′

j c
′′n
)

,j
.

Turbulence Reynolds stress:

∂(ρ̄R̃ij )

∂t
+ ∂

∂xk

(ρ̄ũkR̃ij ) = ai

∂P̄

∂xj

+ aj

∂P̄

∂xi

− ρ̄R̃ik

∂ũj

∂xk

− ρ̄R̃jk

∂ũi

∂xk

− ai

∂τ̃jk

∂xk

− aj

∂τ̃ik

∂xk

− ∂

∂xk

ρu′′
i u

′′
j u

′′
k + ∂

∂xk

(
u′′

i τ
′′
jk + u′′

j τ
′′
ik

)
− ∂

∂xj

u′′
i P

′ − ∂

∂xi

u′′
jP

′

+ P ′ ∂u′′
i

∂xj

+ P ′ ∂u′′
j

∂xi

− τ ′′
jk

∂u′′
i

∂xk

− τ ′′
ik

∂u′′
j

∂xk

.

Turbulence mass flux:

∂ (ρ̄ai)

∂t
+ (ρ̄ũkai),k = b

(
P̄,i − τ̄ki,k

)− R̃ikρ̄,k + ρ̄ (akai),k − ρ̄akūi,k − ρ̄

(
ρ ′u′

iu
′
k

ρ̄

)
,k

+ ρ̄υ ′ (P ′
,i − τ ′

ki,k

)
.

Density-specific-volume covariance:

∂ (ρ̄b)

∂t
+ (ρ̄bũk),k = −2 (b + 1) akρ̄,k + 2ρ̄akb,k + ρ̄2

(
−ρ ′υ ′u′

k

ρ̄

)
,k

− 2ρ̄2εb.

Dissipation of density-specific-volume covariance:

∂

∂t
(ρ̄εb) + (

ρ̄εbũj

)
,j

= ρ̄υ ′ ∂d

∂t
+ ρ̄ūj υ ′d,j − ρ̄aj εb,j + ρ̄εbaj,j + ρ̄εbũj,j

− ρ̄ῡ,j u
′
j d − ρ̄

(
υ ′u′

j d
)
,j

+ ρ̄u′
j υ

′d,j + ρ̄ῡd2 + 2ρ̄υ ′d2.
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A.2 Modeled form of the Euler equations for variable density turbulence
Continuity:

∂ρ̄

∂t
+ (ρ̄ũj ),j = 0.

Momentum:

∂ (ρ̄ũi)

∂t
+ (ρ̄ũi ũj + P̄ δij + ρ̄R̃ij ),j = ρ̄gi .

Total energy:

∂

∂t

(
ρ̄Ẽ
)+ (ρ̄ũj Ẽ),j = −(P̄ ūj ),j − (

ũi ρ̄R̃ij

)
,j

+
(

ρ̄R̃ij

S√
K

[
CkK,j + Ce

Cv

Prt

T̃,j + Cch̄
nc̃n

,j

])
,i

.

Species mass fraction:

∂ (ρ̄c̃n)

∂t
+ (ρ̄ũj c̃

n),j =
(

Cc

S√
K

ρ̄R̃jmc̃n
,m

)
,j

.

Turbulence Reynolds stress:

∂
(
ρ̄R̃ij

)
∂t

+ (
ρ̄ũkR̃ij

)
,k

= (1 − Cr1) [aiP̄,j + aj P̄,i] + ρ̄ (Cr2 − 1)
[
R̃ikũj,k + R̃jkũi,k

]
+ Cr

(
S√
K

ρ̄R̃knR̃ij,n

)
,k

− Cr3ρ̄

√
K

S

(
R̃ij − 1

3
R̃kkδij

)

− Cr2
2

3
ρ̄R̃mkũm,kδij + Cr1

2

3
akP̄,kδij − ρ̄

2

3

K
√

K

S
δij .

Turbulence length scale:

∂ (ρ̄S)

∂t
+ (

ρ̄ũj S
)
,j

= − S

K

(
3

2
− C1

)
ρ̄R̃ij ũi,j + Cs

(
S√
K

ρ̄R̃knS,n

)
,k

−
(

3

2
− C2

)
ρ̄
√

K + S

K

(
3

2
− C3

)
aj P̄,j − C4ρ̄Sūj,j .

Turbulence mass flux:

∂ (ρ̄ai)

∂t
+ (ρ̄ũkai)k = bP̄,i − R̃ikρ̄,k − ρ̄ak (ũi − ai),k + ρ̄ (akai),k

+ ρ̄Ca

(
S√
K

R̃knai,n

)
,k

− Ca1ρ̄

√
K

S
ai.

Density-specific-volume covariance:

∂ (ρ̄b)

∂t
+ (ρ̄bũk),k = −2 (b + 1) akρ̄,k + 2ρ̄akb,k + ρ̄2Cb

(
S

ρ̄
√

K
R̃mnb,n

)
,m

− Cb1ρ̄

√
K

S
b.

The mean temperature is determined from the caloric equation of state Ĩ = CvT̃ , with Ĩ =
Ẽ − 1

2 ρ̄ũi ũi − K , and the mean pressure is given by the ideal-gas equation of state, P̄ = (1 − γ ) ρ̄Ĩ .
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