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Abstract A two-length scale, second moment turbulence model (Reynolds averaged
Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning
from incompressible flows with single fluids and mixtures of different density fluids (vari-
able density flows) to flows over shock waves. The two-length scale model was developed
to address an inconsistency present in the single-length scale models, e.g. the inability to
match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor
induced turbulence, as well as the inability to match both homogeneous shear and free shear
flows. The two-length scale model focuses on separating the decay and transport length
scales, as the two physical processes are generally different in inhomogeneous turbulence.
This allows reasonable comparisons with statistics and spreading rates over such a wide
range of turbulent flows using a common set of model coefficients. The specific canon-
ical flows considered for calibrating the model include homogeneous shear, single-phase
incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor tur-
bulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second
moment model shows to compare reasonably well with direct numerical simulations (DNS),
experiments, and theory in most cases. The model was then applied to variable density shear
layer and shock tube data and shows to be in reasonable agreement with DNS and experi-
ments. The importance of using DNS to calibrate and assess RANS type turbulence models
is also highlighted.
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1 Introduction

The concept of variable density (buoyancy driven) mixing between miscible fluids is well
known and is often encountered in practical applications such as ICF, astrophysics, mete-
orology, and combustion. In these cases, the density variations arise primarily due to
compositional changes during mixing of fluids with very different molar masses and from
temperature differences. Due to the rapid time scales and small geometries, directly mea-
suring mixing rates within some combustion chambers or the mix that occurs within an ICF
capsule poses significant challenges. In general, the flows in such applications are turbulent
and may contain multi-physics with sub-continuum phenomena (such as kinetic effects)
sometimes bridging with continuum phenomena (e.g. in ICF). The complexity of such prob-
lems poses challenges during the development of engineering models; however, aspects of
multi-physics flows that occur within these types of applications can be broken into funda-
mental problems and studied, creating building blocks for engineering models. This allows
large-scale, fully resolved simulations of flows in simplified configurations to be used to
test, develop, and validate engineering turbulence closures.

Although large-eddy simulation (LES) is increasingly used for modeling turbulent flows,
Reynolds (or Favre) averaged Navier-Stokes models still remain useful in simulating mixing
effects within complex geometry, multi-physics and multi-scale problems where computa-
tional resources prohibit the resolution required for 3D LES. RANS modeling can help a
researcher understand the extent of mixing within the practical examples listed above (e.g.
ICF) through a 2D axisymmetric simulation, which is much less costly than a full 3D simu-
lation. Even if such 3D simulations were possible, routine simulations for scoping out large
portions of a parameter space still require more practical engineering models. Since the tar-
get of the RANS model developed here is complex flows of the type encountered in ICF, the
model is calibrated to a comprehensive fundamental set of experiments and then applied to
a set of experiments that it was not calibrated to.

In recent years, several advancements in engineering models for turbulent mixing in fully
compressible and variable density flows have been made. Cebeci and Smith [1] and Besnard
et al. [2] introduced Favre average models for turbulence statistics in compressible flows.
Besnard et al. [2] introduced the covariance of the specific-volume and density fluctuations,
not seen in previous work. Grègoire et al. [3] compared a second moment turbulence model
to shock tube data, i.e. the experimental results of Poggi et al. [4] and Andronov et al.
[5]. The matching of the turbulence statistics to the data of Poggi et al. was impressive;
however, the only comparison to the data of Andronov was the mix width produced by the
shocked and re-shocked interface of different density fluids. Grègoire et al. did not assess
their model beyond shock driven turbulence. Banerjee et al. [6] discuss a restriction to the
work of Besnard et al. [2] for the incompressible case and a simple algebraic expression for
the density-specific-volume covariance (denoted hereafter as b) strictly valid for immiscible
materials. They applied their models to various mixing problems containing an evolution of
a turbulent mixing layer, such as shear and buoyancy driven (or variable density) turbulence,
that eventually lead to self-similar growth of a mixing zone. These simple models did show
to compare well with the self-similar regimes attained in several experiments and direct
numerical simulation (DNS) covering the flows considered, but they had to change the
model coefficients from flow to flow to achieve a good match. Stalsberg-Zarling and Gore
[7] included a transport equation for b, but they also had to change coefficients for the
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flows considered. Schwarzkopf et al. [8] showed that the single-point turbulence equations
developed by Besnard et al. [2] could be applied to a range of self-similar turbulent mixing
flows generated from different instabilities such as Rayleigh-Taylor, Kelvin-Helmholtz, and
Richtmyer-Meshkov without changing the model coefficients. The main reasons for this
improvement, compared to Banerjee et al. [6] and Stalsberg-Zarling and Gore [7], were
both the introduction of a transport equation for b, instead of ad-hoc algebraic models based
on immiscible materials, and full Reynolds stress transport equations. The latter allowed
the description of anisotropy, which is important in all unit instability problems considered.
However, although the comparisons of turbulence quantities were reasonable, the ability to
dial in the growth rates and the magnitudes of the turbulence quantities was difficult. This
slight mismatch was related to diffusion and decay models that are slaved to a single term
(namely S = K3/2/ε) related to turbulence dissipation, which has a strong influence on
both the growth rate of the mixing region and the self-similar turbulence statistics for the
different instabilities. In addition, all the above models perform relatively poorly in some
basic situations, e.g. a homogeneous version of Rayleigh-Taylor instability. In this case, as
explained in Section 5.2, the velocity fluctuations increase initially and then decay in the
later stages of the flow, while the density-specific-volume covariance decreases at all times.

Simultaneously matching both the growth rate of the mixing region and the magnitudes,
asymmetries, and trends of the turbulence statistics for a variety of turbulence driven insta-
bilities is difficult using conventional averaging techniques. Our proposed effort is to show
that a two-length scale model aids in matching both. This type of extension of single-length
scale models addresses recent results showing that the transport and dissipation scaling can
be very different well after the onset of self-similarity in Rayleigh-Taylor turbulence [9].
The intent of this work is to show that a two-length scale model is capable of capturing both
the magnitudes of turbulence statistics and growth rates of the turbulent mixing regions that
are generated from various instabilities. Although the focus of the model is directed toward
variable density free (unbounded) flows, we have also performed limited comparisons with
a wall-bounded flow.

This work differs from shell models (e.g. [10, 11]) where the turbulent energy spectrum is
divided into sections that allow a separation of scales (i.e. energy containing and dissipative
portions). There have been several studies involving shell models and the application of such
models has resulted in good matches to experimental data. Although these models match
the experimental data well, they have not been applied to different types of flows that stretch
aspects of the model. Multiple time scale approaches, which are a hybrid between a spectral
(two-point) model and a single-point model, have been shown to produce better spreading
rates than single time scale models for wakes and jets [11].

We hypothesize that the length scale characterizing the turbulent transport should look
different than the decay length scale. In current RANS models, such as the k-ε model, the
transport term is slaved to the decay length scale (i.e. by coefficients Cμ and σk) and as such
it cannot capture both homogeneous shear and free shear. The reason can be seen in the pro-
files across a free shear layer. For example, consider the turbulent kinetic energy transport
equation, where the dissipation has a Gaussian shape, peaking at the center of the layer. If
the turbulent transport term is slaved to the dissipation using the gradient diffusion hypoth-
esis, then this term becomes a scaled version of the dissipation (i.e. it is also a Gaussian
profile). This implies that the transport term will steal away from the production term at the
center of the layer and deposit that energy into the edges, helping the growth of the mixing
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layer. However, a Gaussian shape for the transport term requires that it steals a lot from the
center of the layer and deposits little at the edges, whereas an ideal case would be stealing a
little from the center and depositing a lot at the edges. If a separate transport model is used
in addition to the dissipation model, then the trends can be separated, which allows more
control on the energy deposited at the edges and that transported from the centerline (such as
a top-hat profile for the turbulent transport term and Gaussian profile for dissipation). This
is the main idea behind the two-length scale approach and why it is different from cascade
or spectral models.

The purpose of this paper is fourfold. First, we are interested in highlighting the impor-
tance of using DNS to simulate fundamental physics and shed light on strengths and
weaknesses of second moment models. Second, we show that a single-length scale model
cannot capture the homogeneous and inhomogeneous variants of variable density buoyancy-
driven turbulence or shear flow, but the proposed two-length scale model gives better
agreement with both. Third, we will show that a simple, single-point, two-length scale
model can be extended to a variety of turbulent flows and calibrated to reasonably capture
the magnitudes and trends of second moment statistics and the growth rate of a turbu-
lent mixing region along with bridging the gap between homogeneous and free mixing
layer flows. The model is calibrated using seven different flows: homogeneous isotropic
decaying turbulence, homogeneous buoyancy-driven turbulence (also called homogeneous
Rayleigh-Taylor turbulence), homogeneous shear, wall bounded flow, classical Rayleigh-
Taylor instability driven turbulence, single-fluid (uniform density) shear driven turbulence,
and shocked isotropic turbulence. Finally, we will apply the model to flows that were not
used in the calibration and compare to DNS and experimental measurements. While previ-
ous models in the class addressed here could, in principle, be calibrated to capture each of
these flows separately, this is the first time when such a model shows results that are in rea-
sonable agreement with the DNS and experimental data across a wide variety of buoyancy,
shear and shock driven turbulent flows. In addition, this is the first type of RANS model
that can begin bridging the homogenous/inhomogeneous gap.

1.1 Motivation

A single-length scale model assumes that the transport length scale is proportional to the
cascade (or decay) length scale. If this assumption is valid, then the calibrated second
moment Reynolds averaged Navier-Stokes (RANS) equations should capture the differ-
ences in turbulent kinetic energy between homogenous and inhomogeneous flows and the
growth rate in the latter. However, previous attempts to match both homogeneous shear and
mixing layers [8] or homogeneous and classical Rayleigh-Taylor [7] with the same coef-
ficients have been unsuccessful. This suggests that there must be additional physics that
distinguish between homogenous and inhomogeneous flows. Studying DNS results showed
that not only did the transport and cascade (or decay) length scale need to be separated,
but that the production of turbulence mass flux in homogeneous variable density turbulence
was over predicted. This introduced the concept of a rapid decay model for the turbulence
mass flux equation (originally proposed in [2]), which was not included in [6–8]. In addi-
tion, Livescu et al. [9] noted that if the transport length scale was closer to the width of the
mixing zone in Rayleigh-Taylor induced turbulence; the growth rate could be better approx-
imated. The idea that transport is associated with a Lagrangian length (or time) scale and
the cascade is associated with an Eulerian length (or time) scale is not new. Here we present
a simple model that distinguishes the two length scales enough to capture both sets of flows
with a single set of coefficients.
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2 Recognizing Two Length and Time Scales in Single-point Closures

Historically, turbulent transport has been modeled as a diffusive flux with a diffusion
coefficient proportional to a Lagrangian length scale and a Reynolds stress comprised
of the Lagrangian covariance, which in homogenous turbulence is approximated by the
Reynolds stress covariance of the Eulerian field. The dissipation, on the other hand, has been
historically studied using the two point spatial correlation of the Eulerian velocity field.

A short review of the origin of the diffusive model [12, 13] for turbulent transport is
useful. For a material conserved scalar, a material property is conserved for a Lagrangian
particle. Thus following a Lagrangian particle along its stochastic path from its origin (o) to
its final (f ) location one conserves the instantaneous quantity c resulting in co = cf , where
c is a materially conserved quantity. Applying the Reynolds decomposition and expanding
the gradient in a Taylor series and retaining only the first terms, one obtains c̄o + c′

o =
c̄f + c′

f = c̄o + ξj c̄,jo + c′
f , where ξj is the stochastic location of the Lagrangian fluid

particle. If one then takes the moment of the above conservation law with the centered
Lagrangian velocity fluctuation at the end of the trajectory vk(tf ) = vk f , at the origin of
the Lagrangian trajectory one has

〈
vkc

′
o

〉 = 〈
vkξj

〉
c̄,j +

〈
vkc

′
f

〉
, (1)

where 〈 〉 represents the ensemble average. If the end of the particle trajectory is far enough
away to be de-correlated with the initial position, e.g. the diffusion limit where

〈
vkc

′
o

〉 = 0,
one has the gradient transport model

〈
vkc

′
f

〉
= − 〈

vkξj

〉
c̄,j = −

tf∫

0

〈
vk(tf )vj (t1)

〉
dt1c̄,j , (2)

where we have written the final particle position as the temporal integral of the velocity over
Lagrangian particle trajectory. The integral in Eq. 2 is written as

〈
vkc

′〉 = −
〈
u′

ku
′
j

〉
TLc̄,j , (3)

where TL is the time scale defined by the integral of the Lagrangian two-point correlation
between k and j th velocity components and ensemble averaged over the Lagrangian parti-
cles. The Lagrangian subscript f is dropped as f is taken to correspond to the local Eulerian
position. A simple isotropic model would then result in

〈
vkc

′〉 = −
〈
u′

ku
′
j

〉
TLc̄,j = −Cμ

σ
k1/2ST c̄,k, (4)

where a transport model for the length scale ST , as a proxy for the Lagrangian length scale
L, e.g. ST ≈ 2

3
σ
Cμ

L, is needed. We have used the fact that the Lagrangian velocity at the
end of the trajectory, defined by tf , is the same as the Eulerian velocity at the same spatial
location.

There is another length scale and (by suitable normalization) time scale identified and
studied in turbulence described as the eddy turnover time and is associated with the inviscid
cascade process,

ε = C�

k3/2

�
, (5)

which removes energy from the large energy containing scale, at a rate proportional to k/�

[14–16]. Mathematically, a length scale based on the two-point correlation of the Eulerian
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velocity was identified in early studies of homogenous turbulence, [17, 18] and has been an
important direction in turbulence studies [14, 19]. For isotropic turbulence,

� = 1

2/3k

∞∫

0

〈
u′(x)u′(x + r)

〉
dr. (6)

This length scale can also be defined as an integral of the energy spectrum and as such bears
a relation to the spectrum in a way the Lagrangian time scale and its length scale equivalent,
L, does not.

Traditional turbulence models identify the length scale � through the role it plays in the
decay of the energy containing scales and then implicitly assume that the flow is self-similar
and all length scales are proportional to the eddy turnover length scale �. Our findings show
that the inability to capture a number of different flows suggests that a distinction between
Lagrangian scales associated with turbulence transport and Eulerian scales associated with
the cascade rate may be the key to capture the statistical behavior along with the growth
rate of the mixing layer for the variety of flows considered with a single model and set of
coefficients. By analogy with Eq. 5, we carry an equation for the length scale defined by
the cascade

ε = k3/2

SD

, (7)

where SD is our proxy for the two-point Eulerian integral length scale, similar to ST being
our proxy for the Lagrangian length scaleL. We call SD a decay length scale and distinguish
it from ST the (Lagrangian) transport length scale. The relationship between the length and
time scales is then

τT = ST√
k
, and τD = SD√

k
, (8)

where ST and SD are turbulent length scales associated with turbulence transport and decay,
respectively.

3 Governing Equations

3.1 Instantaneous Equations

The governing equations describing the flow of miscible mixtures of compressible materials
are shown below [20, 21]

Continuity:

∂ρ

∂t
+ (

ρuj

)
,j

= 0 , (9)

Momentum:

∂ (ρui)

∂t
+ (

ρuiuj + Pδij

)
,j

= τij,j + ρgi, (10)

Energy:

∂

∂t
(ρE) + (

ρujE + Puj

)
,j

=
(
τij ui − qc

j − qd
j

)

,j
, (11)
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Species Mass Fraction:
∂ (ρcn)

∂t
+ (

ρuic
n
)
, i

= J n
i, i , (12)

where ρ is the material density, u is the fluid velocity, P is the pressure, τ is the viscous
stress tensor, g is gravity, E is the total energy, qc is the conductive heat flux, qd is the
interdiffusional enthalpy flux, cn is the mass fraction of species n, and J n

i is the diffusive
mass flux. The above equations should be supplemented with equations of state (pressure
and caloric) and expressions for the molecular transport terms: viscous stresses, conduction,
enthalpy diffusion, and mass diffusion.

The above equations (9-12) when solved without additional modeling are referred to
as DNS. DNS is a high fidelity simulation technique that involves very fine resolutions,
using high order non-dissipative methods, to capture turbulence scales down to the vis-
cous/diffusive cut-off scales. In the following section, the above variables are decomposed
into an average and a fluctuation and closure models are presented. Unlike DNS, these par-
tial differential equations can be used for engineering problems, where the geometry scales
may be large compared to the turbulence scales.

3.2 Favre Averaged Equations

Assuming a statistical description of turbulence, the governing equations are averaged over
ensembles of independent realizations. The instantaneous variables in equations (9-12) are
decomposed into mean and deviation terms, such as ui = ūi + u′

i . Favre averages are then

formed from the resultant terms, ũi = ρui/ρ̄ = ūi + ρ′u′
i/ρ̄, u′′

i = u′
i − ρ′u′

i/ρ̄, and
ρu′′

i = 0. Neglecting the molecular transport terms and applying gradient diffusion for the
turbulence mass and energy flux, the averaged equations in the modeled form are:

Momentum:

∂ (ρũi)

∂t
+

(
ρ̄ũi ũj + P̄ δij + ρ̃R̃ij

)

ij
= ρ̄gi , (13)

Energy:

∂

∂t

(
ρ̄Ẽ

)
+

(
ρ̄ũj Ẽ

)

,j
= − (

P̄ ūj

)
,j

−
(
ρ̄ũi R̃ij

)

,j

+Cμ

[
ρ̄ST

√
K

(
1

σk

K,j + Cv

Prt
T̄,j + 1

σc

h̄nc̃n
,j

)]

,j

, (14)

Species Mass Fraction:1

∂ (ρ̄c̃n)

∂t
+ (

ρ̄ũj c̃
n
)
,j

= Cμ

σc

(
ρ̄ST

√
Kc̃n

,j

)

,j
, (15)

where ũ is the Favre averaged velocity, ρ̄ is the mean density, P̄ is the mean pressure,

R̃ij is the Favre averaged Reynolds stress,
(
R̃ij = ρu′′

i u
′′
j

/
ρ̄
)

, Ẽ is the Favre averaged

total energy, ST is the turbulent transport length scale, K is the turbulent kinetic energy(
K ≡ R̃ii/2

)
, hn is the species (n) enthalpy, c̃n is the species (n) mass fraction and the

turbulent Prandtl number is defined as Prt = Cvvt

/
keff , where Cv is the constant specific

1The conservation of mass is identified when the species equation (15) is summed over all species. A
requirement for any turbulence model is that the RHS of Eq. 15 go to zero when this summation takes place.
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heat (ideal gas is assumed), vt is the turbulent viscosity
(
= CμST

√
K

)
, and keff is the

effective thermal conductivity. The average specific internal energy is Ĩ = Ẽ − 1
2 ũi ũi − K;

the average temperature is determined from the caloric equation of state Ĩ = CvT̄ , and
the average pressure of the gaseous mixture is modeled by the ideal-gas equation of state
P̄ = (γ − 1) ρ̄Ĩ , where γ is the ratio of specific heats.

Similar to Reynolds averaging, the Favre average technique introduces additional
unclosed terms, e.g. the Reynolds stresses. A set of closure models is needed to complete
the system of equations.

3.3 Closure Models

In this section, models are proposed to close the additional turbulence quantities shown in
Eqs. 13-15. The exact equations and reasons for the choice of models are described in [2,
8]. The Reynolds stress model is based on the work of Besnard et al. [2] and Schwarzkopf
et al. [8] and shown as

∂
(
ρ̄R̃ij

)

∂t
+

(
ρ̄ũkR̃ij

)

,k
=

Production
︷ ︸︸ ︷
[
aiP̄,j + aj P̄,i

] − ρ̄
[
R̃ikũj,k + R̃jkũi,k

]
(16)

+ Cμ

σk

(
ρ̄ST

√
KR̃ij,k

)

,k︸ ︷︷ ︸
Transport

−Cr3ρ̄

√
K

SD

(
R̃ij − 1

3
R̃kkδij

)

︸ ︷︷ ︸
Return to Isotropy

Rapid Distortion
︷ ︸︸ ︷
−Cr1

[
aiP̄,j + aj P̄,i

] + Cr2ρ̄
[
R̃ikũj,k + R̃jkũi,k

]

− Cr2
2

3
ρ̄R̃mkũm,kδij + Cr1

2

3
akP̄,kδij

︸ ︷︷ ︸
Rapid Distortion

− ρ̄
2

3

K3/2

SD

δij

︸ ︷︷ ︸
Dissipation

where SD is the turbulent decay length scale, ST is the turbulent transport length scale

and ai is the mean of the mass-weighted velocity fluctuation
(
ai ≡ −u′′

i = ρ′u′
i

/
ρ̄
)
. We

have chosen the isotropization of production (IP) model because it has been used for nearly
four decades and applied to a variety of engineering flows showing reasonable results and
numerical stability with minimal computational expense. Although more advanced models
for pressure strain terms exist, application of these models to a wide variety of distortions,
such as shocked flows, is limited. Recently, several advanced models for the pressure strain
terms were compared to experimental data of simple contracting and expanding flows [22].
The results show that a good pressure strain model remains to be found, and the IP model
(with the correct coefficients) was not misaligned with the more advanced models. In vari-
able density turbulence, the pressure strain is highly coupled to the fluctuating density field
and barring the existence of advanced models developed for these flows, we have chosen the
simple and importantly robust IP model. Grègoire et al. [3] used the IP model in compar-
ison with shock tube data and showed comparable results. As shown later, the anisotropic
stress compares reasonably well with experimental data. The Reynolds stress model in
Eq. 16 differs from [2, 6–8] by the separation of the decay and transport length scales.

The turbulent mass flux (ρ̄ai) represents the coupling of density and velocity fluctua-
tions. It only appears in compressible or variable density turbulence and is the dominant
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form of advection in buoyancy driven turbulence. An evolution equation for the turbulent
mass flux (developed by Besnard et al. [2]) is shown in Eq. 17

∂ (ρ̄ai)

∂t
+ (ρ̄ũkai),k = bP̃,i − R̃ikρ̄,k − ρ̄akūi,k︸ ︷︷ ︸

Net Production

+ ρ̄ (akai),k︸ ︷︷ ︸
Redistribution

(17)

+ ρ̄
Cμ

σa

(
ST

√
Kai,k

)

,k
︸ ︷︷ ︸

Transport

−CapbP̄,i + Cauρ̄akūi,k︸ ︷︷ ︸
Rapid Destruction

− Ca1ρ̄

√
K

SD

ai

︸ ︷︷ ︸
Final Destruction

where b(= −ρ′v′) is the density-specific-volume covariance. The turbulence mass flux
model differs from [2, 6–8] by the separation of the decay and transport length scales. A
significant difference between this model and prior variants [6–8] is the addition of rapid
decay terms, originally hypothesized by [2]. The net production of turbulence mass flux by
the pressure gradient is important in variable density turbulence while the mean dilatation
term is important in shocked turbulence.

The density-specific-volume covariance (b = −ρ̄′v′) is a measure of how well multiple
fluids mix. For a perfect mixture, b = 0, whereas the upper limit for b is based on the
immiscible flow case, which for binary fluids is b = α1α2 (ρ1 − ρ2)

2 /ρ2ρ1, where α1 and
α2 are the volume fractions. The role of b is to moderate the turbulent mass flux (ρ̄ai)

production due to a pressure gradient [9]. The evolution of b (see Besnard et al. [2] and
further details shown in [8, 9]) with the two-length scale consideration is given as

∂ (ρ̄b)

∂t
+ (ρ̄bũk),k = − 2 (b + 1) akρ̄,k︸ ︷︷ ︸

Production

+ 2ρ̄akb,k︸ ︷︷ ︸
Redistribution

+ ρ̄2 Cμ

σb

(
1

ρ̄
ST

√
Kb,k

)

,k︸ ︷︷ ︸
Transport

− Cb1ρ̄

√
K

SD

b

︸ ︷︷ ︸
Dissipation

(18)

The remaining unclosed terms are the transport and decay length scales ST and SD ,
respectively.

In order to capture these different length scales, ST and SD , we hypothesize that the two
length scales are different enough to require separate transport equations, yet the physical
mechanisms are similar enough such that both scales are driven by the same production and
destruction mechanisms. We also assume that the scaling process involves different local
inverse turbulence acceleration scales (S/K) and altered coefficients, as shown in Eqs. 19
and 20.

∂ (ρ̄ST )

∂t
+ (

ρ̄ũj ST

)
,j

= − ST

K

(
3

2
− C1

)
ρ̄R̃ij ũi,j + ST

K

(
3

2
− C4

)
aj P̄,j −

(
3

2
− C2

)
ρ̄
√

K

︸ ︷︷ ︸
Net Production

+ Cμ

σs

(
ρ̄ST

√
KST,j

)

,j
︸ ︷︷ ︸

Transport

(19)
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∂ (ρ̄SD)

∂t
+ (

ρ̄ũj SD

)
,j

= − SD

K

(
3

2
− C1v

)
ρ̄R̃ij ũi,j + SD

K

(
3

2
− C4v

)
aj P̄,j −

(
3

2
− C2v

)
ρ̄
√

K

︸ ︷︷ ︸
Net Production

+ Cμ

σ2s

(
ρ̄ST

√
KSD,j

)

,j
︸ ︷︷ ︸

Transport

(20)

The evolution for the turbulence length scale equations (shown above) can be derived from
the definition of S, the turbulence dissipation and kinetic energy equations (the reader is
referred to [8] for more details on the derivation).

In summary, the two-length scale model (TLSM) consists of the Favre averaged momen-
tum, energy and mass fraction (13-15), supplemented with models for turbulence quantities,
such as the Reynolds stress, turbulence mass flux, and density-specific-volume correlation
(16-18) and the two-length scale model (19-20). The coefficients for (13-20) have been cal-
ibrated based on the several fundamental flows and are given in Table 1; the values are
explained in subsequent sections.

4 Numerical Method

The above model was implemented into a compressible 3D Eulerian hydro-code [23]. The
code uses a Godunov scheme to solve the mass, momentum and energy equations while

Table 1 Coefficients for single-phase, single and multi-component flows

Coefficient Value Description Calibrated using

Ca1 2.8 Slow decay of mass flux HRT / RT

Cap 0.1 Rapid decay of turb. mass flux HRT

Cau 0.4 Rapid decay of turb. mass flux SIT

Cb1 1.8 Decay of density-sp. vol HRT / RT

Cr1 0.3 Rapid return to isotropy HRT / RT

Cr2 0.6 Rapid return to isotropy RDT

Cr3 1.8 Slow return to isotropy Shear

C1 1.6 Growth rate for SPT* Shear

C4 1.1 Growth rate for VDT** RT

C1v 1.3 Rapid growth / decay for SPT Shear

C2v = C2 1.77 Slow growth HIDT

C4v 1.24 Rapid growth / decay for VDT HRT / RT

σs 0.1 Diffusion of turbulence length scale RT / Shear

σ2s 0.6 Diffusion of turbulence length scale Wall Coords.

Cμ 0.28 = νt /
(
ST

√
K

)
RT

Note: Although the coefficients σa, σb, σc, and σk are included in the modeled equations for completeness,
the values were set to 1.0 and were therefore omitted from this table.

* SPT = single-phase turbulence (uniform density)

** VDT= variable density turbulence (single-phase)
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equations for the turbulence and mix quantities are solved using traditional finite volume
methods. Adaptive mesh refinement (AMR) is also used near the interfaces of materials
or shocks, where density, pressure and velocity gradients are the basic criteria for mesh
refinement (additional information on AMR can be found in [23] and [24]). The boundary
conditions are reflective or symmetric and the domain was sized such that the flow did not
reach the boundaries.

The implications of self-similarity are different between shear driven and buoyancy
driven turbulence. Thus, for the purpose of model comparisons, self-similarity is consid-
ered reached when 1) d(R11/(U)2)/dt ∼ 0 for shear driven (SD) flows or 2) db/dt ∼ 0 for
Rayleigh-Taylor (RT) or buoyancy driven mixing and, in addition, the growth or spread-
ing rate parameter reaches a constant value. Besides its importance for model comparisons,
reaching self-similarity was also used as a grid convergence criterion.

5 Model Calibration

The turbulence models, shown above, contain several coefficients that need calibration. To
calibrate these coefficients, simple flow configurations were used such that most of the
terms in the equations could be neglected and the remaining non-zero terms are different for
each of the configurations considered. The following configurations were used to calibrate
the model:

1) Homogeneous isotropic decaying turbulence,
2) Homogeneous buoyancy-driven / decaying turbulence,
3) Homogeneous shear,
4) Wall bounded flow,
5) Rayleigh-Taylor driven turbulence,
6) Shear driven turbulence,
7) Shocked isotropic turbulence,
8) Rapid distortion theory.

5.1 Homogeneous Isotropic Decaying Turbulence

This is a classic turbulent flow where fluid is passed through a grid structure which generates
turbulence which then decays downstream of the mesh. During the decay region of the
flow, the turbulence is approximately homogenous and isotropic, resulting in a simplified
equation set, shown in Eqs. 21 and 16 which are analogous to dK/dt = −ε and dε/dt =
−Cε2ε

2/K , where K is the turbulence energy and ε is the turbulence dissipation rate.

Reynolds Stress:

dR̃ij

dt
= − Cr3

√
K

SD

(
R̃ij − 1

3
R̃kkδij

)

︸ ︷︷ ︸
Return to Isotropy

− 2

3

K3/2

SD

δij

︸ ︷︷ ︸
Dissipation

or
∂K

∂t
= − K3/2

SD︸ ︷︷ ︸
Dissipation

, (21)

Turbulence length scale:

∂SD

∂t
= −

(
3

2
− C2v

) √
K

︸ ︷︷ ︸
Production

. (22)
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Fig. 1 Initial configuration for
the homogeneous Rayleigh-
Taylor problem [33–35]. The
heavy (blue) and light (red)
fluids are initially segregated and
turbulence is generated as the
fluids start moving in opposite
direction due to buoyancy

2

1

Hanjalic and Launder [25] used the data of Batchelor and Townsend [26] to determine
the model coefficient for the decay of turbulence dissipation. From the data, they deduced
that Cε2 (C2v in this manuscript) must be 2.0. However, Launder, et al. [27] considered an
extensive scrutiny of the data which showed that the decay exponent (n, where K(t) =
−K0(t/t0)

−n, [19]) should be at least 1.1, which yields a coefficient value 1.9; this value
(1.9 or 1.92) is still used in most engineering models [3, 19, 28–30]. However, in 1990,
Mohammad and LaRue [31] published additional data on the decay exponent. From their
analysis of experimental data over a wide range of mesh Reynolds numbers, the average
exponent (n) in the decay model is ∼ 1.3, which corresponds to a decay model coefficient
of C2v = 1.77 [19]. Although reported values for C2v range from 1.4 [32] to upwards of
2.0, we chose to use the value of 1.77, similar to the studies mentioned above. This value
was also found to better capture the range of flows discussed here.

5.2 Homogeneous Buoyancy-driven Turbulence

Homogeneous buoyancy-driven turbulence (also referred to as homogenous Rayleigh-
Taylor (HRT) turbulence) was first introduced by Sandoval [33] and further studied by
Livescu and Ristorcelli [34, 35]. This type of flow initially consists of blobs of miscible flu-
ids having different densities as shown in Fig. 1. At early times, the density-specific-volume
covariance is the largest and can be approximated by the two-fluid solution for segregated
materials, i.e. b = α1α2 (ρ1 − ρ2)

2 /ρ2ρ1 [8], where α1 and α2 are the volume fractions
associated with the different fluid components in a binary system. A uni-directional body
force is then applied and the fluid blobs begin to move and mix. As mixing occurs, the
density-specific-volume covariance (b) begins to decay. The presence of the body force cre-
ates a mean pressure gradient, which, when coupled to b, produces turbulent mass flux. The
coupling between the pressure gradient and the turbulent mass flux generates turbulence
energy. As b decreases to zero, the turbulence energy transitions and begins to decay. For the
comparisons presented here, we are using a new set of DNS2, on 10243 mesh sizes, covering
Atwood numbers, At = 0.05, 0.5 and 0.9, defined as At = (

ρhigh − ρlow

)
/
(
ρhigh + ρlow

)
.

The turbulence equations (16-18, 20) reduce to ODEs, shown as:

2A 10243 simulation of this flow at low At has been added to the Johns Hopkins Turbulence databases [36].
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Reynolds Stress:

dR̃11

dt
=

(
2 − 4

3
Cr1

)
a1

P̄,1

ρ̄
︸ ︷︷ ︸

Net Production

−Cr3

√
K

SD

(
R̃11 − 2

3
K

)

︸ ︷︷ ︸
Return to Isotropy

− 2

3

K3/2

SD︸ ︷︷ ︸
Dissipation

(23)

dR̃22

dt
= 2

3
Cr1a1

P̄,1

ρ̄
︸ ︷︷ ︸
Rapid Distortion

−Cr3

√
K

SD

(
R̃22 − 2

3
K

)

︸ ︷︷ ︸
Return to Isotropy

− 2

3

K3/2

SD︸ ︷︷ ︸
Dissipation

(24)

Turbulence mass flux:

da1

dt
= (

1 − Cap

) b

ρ̄
P̄,1

︸ ︷︷ ︸
Net Production

−Ca1

√
K

SD

a1

︸ ︷︷ ︸
Destruction

(25)

Density-specific-volume covariance:

db

dt
= − Cb1

√
K

SD

b

︸ ︷︷ ︸
Dissipation

(26)

Turbulence length scale:

dSD

dt
= SD

ρ̄K

(
3

2
− C4v

)
a1P̄,1 −

(
3

2
− C2v

)√
K

︸ ︷︷ ︸
Net Production

(27)

where the index “1” for tensor quantities denotes the vertical direction, while “2” refers to
one of the horizontal directions3 (Fig. 1).

Contrary to Rayleigh-Taylor instability (RTI) where the turbulence growth becomes self-
similar, in this flow it does not. This flow type also exhibits a change in behavior from
growth to decay, as the fluids mix, while the density-specific-volume correlation decreases
continuously. This turnover in the turbulence energy is very difficult to capture using single-
point type models calibrated based on the RTI flow.

It is noted that, while the model reduces to similar b and S equations as the k −S −a −b

model of Stalsberg-Zarling and Gore [7] and overall to the same form as the extended model
of Schwarzkopf et al. [8], the two-length scale model allows the explicit calibration using the
HRT data, unlike the previous models. A comparison of the results of the model described
by Stalsberg-Zarling and Gore [7], using a down selection of coefficients, is shown in Fig.
2 along with results using the model and coefficients given by Schwarzkopf et al. [8]. Both
calibrations miss the DNS results for At = 0.25, although the coefficients suggested by
Schwarzkopf et al. [8] show reasonable comparisons for ai and b.4 For both models [7,
8], the turbulent kinetic energy is off primarily due to a) using the wrong length scale for
turbulence dissipation, and b) over predicting the production of the mean mass-weighted
velocity fluctuation (ai).

3The average equations corresponding to direction “3” are the same as in the “2” direction.
4Note: the coefficients in both models can be changed to exactly match the data set, as Stalsberg-Zarling and
Gore [7] showed.
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Fig. 2 A comparison of single time scale turbulence models with DNS for HRT, At = 0.25 and τ =√
Fr2/At . TKE=purple, b=red, a=cyan; solid lines - DNS, dashed lines - model of Stalsberg-Zarling and

Gore [7], dash-dot lines - model of Schwarzkopf et al. [8]

The above ODEs were solved and compared to the DNS results. The variables were
initialized with the DNS values at a time that showed the formation of a cascade of turbu-
lence energy from the large scales toward the dissipative scales (based on the Taylor scale
Reynolds number, Reλ ∼ 50). From the above equations, six coefficients need to be cali-
brated and although the coefficients can be adjusted to directly match the DNS results, the
same coefficients affect Rayleigh-Taylor (RT) driven turbulence and HIDT. The initial value
for each coefficient is taken from [8]. The coefficients Cr1, Cap and C4v are determined by
iterating and comparing results for HRT and RTI, while Ca1 and Cb1 were deviated only
slightly from the original values given by [8] and Cr3 remained at 1.8 because a) it affects
uniform density shear, and b) Banerjee et al. [22] showed that it compared well with rapid
contraction and expansion. The resultant values for the coefficients in Eq. 23-27 are given
in Table 1. Comparisons between the model and DNS are shown in Figs. 3, 4 and 5 for At =
0.05, 0.5 and 0.9. A comparison of the turbulence statistics shows trends of growth of tur-
bulent kinetic energy which transitions to decay, unlike previous single length scale models,
highlighted in Fig. 2. The rapid decay coefficient (Cap) corrects the rising slope of ai, which
also corrects the rising slope of turbulent kinetic energy. Although arguments for the mag-
nitude of the coefficient for homogenous decay (C2v) were made in Section 5.1, this value
also affects the decay after the rollover of turbulent kinetic energy (a value of ∼1.6 instead
of 1.77 would better match the HRT data but obviously does not match homogenous decay).

The magnitudes of the turbulence statistics between the model and DNS are compared
over a wide range of At (shown in Figs. 3, 4 and 5). In seeking a better match between the
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Fig. 3 Comparison of two-length scale model with DNS for At = 0.05. Solid lines – DNS, Dashed lines –
TLSM

model and simulations, we found discrepancies between the simulation and models for the
destruction terms. These discrepancies could be related to the assumption of high Reynolds
number turbulence, where destruction terms can be approximated as simple decay models
and the dissipation (ε) equation is a scaled version of the kinetic energy (an assumption
that is valid when P/ε is quasi-constant). However, for this simple case, the turbulence
growth and decay are associated with a strong variation of the turbulence production over
dissipation ratio, shown in Fig. 6.

Since the transport length scale does not appear in this flow, Fig. 7 compares the modeled
form of the dissipation of turbulence energy, ε = K3/2/SD , with the exact term ε = τ ′

ij u
′
i,j ,

obtained from DNS. Again, the early time behavior is affected by the large production over
dissipation ratio; however, the model reasonably compares with the exact term at higher At .

5.3 Homogeneous Shear

Homogeneous shear is a simple shear flow, where the mean streamwise velocity varies lin-
early in the cross-stream direction. Studies of homogeneous shear include both experiments
[37] and DNS [38]. These two studies show that the flow reaches constant production over
dissipation ratio, P/ε,with values of 1.8 and 1.4, respectively. The coefficient C1v can be
set using homogeneous shear results. For this flow, the transport terms are zero, and since
there are no fluctuations in density, Eqs. 16 and 20 reduce to

dK

dt
= P − K3/2

SD

(28)

dSD

dt
= SD

K

(
3

2
− C1v

)
P −

(
3

2
− C2v

) √
K (29)
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Fig. 4 Comparison of two-length scale model with DNS for At = 0.5. Solid lines – DNS, Dashed lines –
TLSM

where R̃ij was contracted to K and P represents the production term.Assuming that the
turbulence time scale (K/ε) is constant, then (28) and (29) can be manipulated to give

C1v = 1.0 + K3/2

SDP
(C2v − 1.0). Using homogeneous turbulence shear to set C1v introduces

errors when extending the equation set to free shear flows where transport is important.5

Having a coefficient that is dependent solely on ε/P may not be beneficial because if P/ε

is the same for both homogeneous and free shear then the computed magnitudes of the
Reynolds stress and the growth rate will be less than the measured values. As discussed
earlier, the problem stems from the fact that the diffusion model pulls from the center of
the mixing layer and distributes at the edges of the region. Matching the Reynolds stress
profile of the free shear layer and the growth rate requires C1v ≈ 1.2 [8], but this value
suggests that P/ε ∼3.9 when applied to homogeneous shear. Schwarzkopf et al. [8] also
showed a comparison of the Reynolds stresses using C1v ≈ 1.44 (satisfying P/ε ∼ 1.8)
which was ∼ 40 % lower than the measured values in free shear and the growth rate was ∼
30 % lower. A reasonable interim solution was found from an iterative approach to obtain
C1v ≈ 1.3, which matches DNS free shear (shown later) and is closer to homogeneous shear
(P/ε ∼ 2.5).

5.4 Wall Bounded Flow

Uniform density, single-phase, wall bounded flows are dominated by P/ε balance and
driven by shear. While flows of interest in this manuscript do have regions where this is

5Including transport in Eq. 28 and the ε-form of Eq. 29 shows that

C1v = 1.0 + ε
P

(C2v − 1.0) + TK− K
ε

Tε

P
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Fig. 5 Comparison of two-length scale model with DNS for At = 0.9. Solid lines – DNS, Dashed lines –
TLSM

important, there are also regions were the transport to dissipation balance is important. For
consistency with literature, we reduce the model to the equation that has been applied to
wall flows by removing the equation for ST and substituting ST = SD in the diffusion term
of Eq. 20. Assuming that P = ε and substituting −u′

1u
′
2 = τw/ρ = U2

τ , K = U2
τ /

√
Cμ

and S = κy/C0.75
μ into Eq. 20, a relationship between the coefficient values and the von-

Kármán constant (κ) can be found, such as κ2 = σ2s
√

Cμ (C2v − C1v), which is identical
to the expression found from the ε-equation [39]. Banerjee et al. [6] point out that the value
for Cμ should be closer to 0.28 for RT, and Chen and Jaw [40] show data that suggest it
should be 0.23 for shear driven mixing layers. With the coefficients C2v and C1v set and
choosing Cμ = 0.28 an iterative procedure was used between RT, free shear and wall coor-
dinate flows to determine σ2s. Using the suggested coefficient values and σ2s = 0.6 gives
κ ∼ 0.39; which matches well with the range of values of 0.38 to 0.42 obtained in a broad
survey of experiments [41].

5.5 Rayleigh-taylor Induced Turbulence

The Rayleigh-Taylor instability forms when a heavy fluid is set above a lighter fluid in
the presence of gravity, shown in Fig. 8. The heavy fluid penetrates (spikes) and lighter
fluid rises (bubbles) creating a mixing zone. As the spikes and bubbles evolve, turbulence
is formed within the mixing zone. Within the turbulent region, the flow is homogeneous in
the horizontal directions (i.e. orthogonal to the acceleration), so that the governing equa-
tions can be plane averaged and the turbulence quantities become one-dimensional. In this
case, index “3” refers to the vertical direction, while “2” is one of the periodic horizontal
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Fig. 6 DNS production / dissipation ratio in HRT at different At , showing large values attained during the
growth stage

directions (Fig. 8). The turbulence equations (16-20) and the species mass fraction (15) are
reduced for this condition to:

Reynolds Stress:

∂
(
ρ̄R̃22

)

∂t
+

(
ρ̄a3R̃22

)

,3
=

Transport
︷ ︸︸ ︷
Cμ

σk

(
ρ̄ST

√
KR̃22,3

)

,3
−

Return to Isotropy
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√
K
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(
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3
K
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2

3
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2

3

K3/2

SD︸ ︷︷ ︸
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(30)

∂
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)

∂t
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(
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)

,3
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Net Production
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︷ ︸︸ ︷
Cμ
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(
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√
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)

,3
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2
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ρ̄R̃33a3,3+Cr1
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(
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Dissipation

(31)

Turbulence mass flux:

∂ (ρ̄a3)

∂t
= (

1 − Cap

)
bP̄,3 −

(
R̃33 + a3a3

)
ρ̄,3

︸ ︷︷ ︸
Net Production

+ ρ̄
Cμ

σa

(
ST

√
Ka3,3

)

,3︸ ︷︷ ︸
Transport

− Ca1ρ̄

√
K

SD

a3

︸ ︷︷ ︸
Destruction

(32)
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Fig. 7 Comparison of the dissipation of turbulence energy for At = 0.05 a) and 0.9 b)

Density-specific-volume covariance:

∂ (ρ̄b)

∂t
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20 Flow Turbulence Combust (2016) 96:1–43

Light Fluid

Heavy Fluid

Ac
ce

le
ra

�o
n

Spikes

Bubbles

M
ix

in
g 

Zo
ne3

2

Fig. 8 Early time DNS of the Rayleigh-Taylor instability showing the mixing zone, bubbles and spikes

Turbulence length scale:
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Species Concentration:
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A comparison of equations (30-36) to the HRT equations (23-27) shows that the main
differences are in the advection, diffusion and redistribution terms. Therefore, a turbulence
model calibrated to buoyancy driven turbulence must be able to capture both HRT and RT
driven turbulence. Schwarzkopf et al. [8] did not use HRT in their calibration, and although
not discussed, they found that both the growth rate and the dimensionless magnitudes could
not be matched simultaneously for RT. One approach to resolving this inconsistency is by
using different turbulent length scales for decay and transport.

The Rayleigh-Taylor (DNS) results of Cabot and Cook [42] analyzed by Livescu et al.
[9] at moderate At were used to evaluate the model coefficients for turbulence diffusion.
In order to compare the model with DNS, the non-dimensionalization procedure outlined
in [8] was used. The length scales were non-dimensionalized by the mixing layer width,
h(t) = 6

∫ ∞
−∞ fv (1 − fv) dz, where fv is the volume fraction, and the velocity scales by

λ = √
h (t) At |g|, where g is gravitational acceleration. Using these scales, the turbulent

kinetic energy and turbulent mass flux can be collapsed and the value and trends have been
shown to be independent of temporal and spatial growth (see [8] for further discussion).

For buoyancy induced turbulence (RT), the turbulent kinetic energy and turbulence length
scales were initialized with small but non-zero values that were constant across the domain.
The turbulent kinetic energy was isotropically distributed across the diagonal components
of the Reynolds stress tensor while the off-diagonal components were initialized to zero.
The turbulent mass flux was initialized as zero across the domain and the density-specific-
volume covariance was initialized as the two-fluid value in the cells adjacent to the interface
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of the fluids and zero everywhere else. Since the code is compressible, the temperature was
increased to suppress shock formations.

Several coefficients associated with the buoyancy driven variable density turbulence are
set within the self-similar growth of a turbulent RT mixing layer. The turbulent Schmidt
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Fig. 9 Direct comparison of the TLSM and DNS for a) density and b) the density-specific volume covariance
for At = 0.5
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Fig. 10 Comparison of TLSM with DNS [2] for a) the turbulent kinetic energy and b) the mean mass-
weighted velocity fluctuation, both for At = 0.5

numbers σa, σb, σk and σc were set to 1.0. However, the turbulent Schmidt numbers σs and
σ2s also affect the shear mixing layer and wall bounded flows and therefore were determined
by iterating on the results. The coefficient C4 was set to match the dimensionless growth
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rate, α,6 and C4v was set to match HRT and α based on the assumption that C2 = C2v .

6The dimensionless growth rate parameter is given as

α = [(
h(t)1/2 − h(t0)

1/2
) / (

(Atg)1/2 (t − t0)
)]2

, [8].
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A direct comparison of the density profile and density-specific-volume covariance is
shown in Fig. 9. Comparisons of the turbulent kinetic energy and density-turbulent-velocity
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region of buoyancy driven turbulence
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Fig. 13 DNS of the self-similar regime for a temporally developed shear layer showing the mixing zone

covariance between DNS and the model are shown in Fig. 10. A reasonable agreement
is also shown for the Reynolds stress components in Fig. 11a. The anisotropic parameter
bij

(= Rij /Rkk − δij /3
)
shows to compare reasonably with DNS (Fig. 11b). The growth

rate parameter α is 0.036 for the model, compared to the DNS value of 0.0416.
In order to directly assess the pertinence of having two separate length scales, Fig. 12a

compares the modeled form of the dimensionless dissipation of turbulence energy (ε =
hK3/2/λ3SD) with the exact term (ε = τ ′

ij u
′
i,j h/λ3) obtained from DNS and Fig. 12b

compares the dimensionless modeled and the exact transport (DNS) terms in the kinetic

energy equation, Cμ

σk

h

ρ̄λ3

(
ρ̄ ST

√
K K,3

)

,3
and − h

2ρ̄λ3

(
ρu′′

i u
′′
i u

′′
3

)

,3
, respectively. Overall,

the modeled dissipation term over predicts the DNS value. The modeled transport term
is close in magnitude near the edges of the mixing layer. However, the model misses the
magnitude of the turbulent kinetic energy transfer from the center of the mixing layer and
distributes it in a narrower region near the edges of the mixing layer. The DNS results show
much longer tails near the edges than the model can capture for the variable density case.
Overall, the comparison to RTI appears reasonable.

5.6 Incompressible Single Component Shear Driven Turbulence

Shear driven turbulence is generated when two fluid streams of different velocities (uni-
form density for this case) meet at and flow parallel to an interface, as depicted in Fig. 13.
If the Reynolds number is high enough, the instability that forms along the interface transi-
tions to turbulence creating a turbulent mixing layer between the two streams. This mixing
layer continues to grow and entrain more pure fluid on either side of the interface, all the
while becoming increasingly more effective at small scale mixing. For subsonic single-
phase, single-component streams, the turbulent mass flux and the density-specific-volume
covariance are zero. For this case, the modeled equations (16, 19-20) reduce to,
Reynolds Stress:

dR̃11

dt
= Cμ

σk

(
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)
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dR̃12

dt
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Turbulence length scale:
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where index “2” refers to the streamwise direction, while “1” refers to the cross-stream
direction.

The coefficients that are calibrated based on shear driven turbulence are C1 and C1v . The
turbulent Schmidt numbers σs and σ2s also affect the Rayleigh-Taylor and the von-Kármán
constant in wall flows and were determined as discussed above. The turbulent Schmidt
number σs was set to 0.1 to give a flat profile for ST, which also affects RTI. The pressure
strain terms are modeled by Rotta’s [43] return to isotropy model and Naot et al.’s [44] IP
model, which assumes that an energy cascade exists. As mentioned earlier, Banerjee et al.
[22] studied several different pressure strain models and showed that the IP model, with
Cr2 = 0.6, reasonably matched contraction and expansion data when compared to modern
pressure strain models, and this value also agrees with the value that comes from rapid
distortion theory [19]. The coefficient associated with the slow return to isotropy, Cr3 =
1.8, was given by Launder [45] and was also used by Banerjee et al. [22].

The experimental data of Bell and Mehta [46], who studied a spatially growing layer,
and a new DNS run of a temporally growing layer, similar to the simulation of Riley, Met-
calfe and Orszag [47], are mainly used for this calibration. For the spatially evolving case,
the derivatives of the mean quantities in the spanwise direction are zero, while the temporal
case assumes periodic boundaries in both the spanwise and streamwise directions, result-
ing in derivatives of the mean quantities being zero in these directions. The new DNS run
was performed in order to provide data for the two-length scale model, which could not be
extracted from previous experiments or simulations. The set-up for the simulation is based
on Riley et al. [47], although the present domain is much larger and the initial energy spec-
trum is different. The simulation is initialized with a hyperbolic tangent velocity profile to
represent the shear layer and an initial perturbation consisting of isotropic turbulence that is
tapered such that the intensity decays away from the interface in the base velocity profile.
Following Riley et al. [47], the root mean square (RMS) intensity is tapered by a Gaussian
function selected to match laboratory data as exp[-x1/(0.653 h0)]2, where h0 is the initial
thickness between the x1 positions at which the mean velocity profile corresponds to 10 %
and 90 % of the difference between the free mean velocities [19]. The isotropic turbulence
is specified such that its energy spectrum behaves as (k/k0)

4exp[-2(k/k0)
2], where the peak

wavenumber k0 is chosen to be 3.92/h0. The corresponding peak wavelength is one-fourth
the wavelength of the least stable mode for an inviscid hyperbolic tangent mixing layer, so
the energy distribution includes significant energy in the scales of motion finer than those
with the fastest linear growth rate. The streamwise domain length (described below) was
chosen to accommodate 64 least stable modes, and thus the domain can accommodate 256
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peak wavelengths (based on k0). The RMS intensity at the peak of the profile is selected
to be nominally 0.1(Uf ast − Uslow) in each component, but the intensity slightly deviates
from isotropy due to requiring that the tapered disturbance field be divergence-free. The
viscosity was chosen such that the initial Reynolds number would be 80 based on the initial
momentum thickness and characteristic velocity difference Us = Uf ast − Uslow . For the
initial hyperbolic tangent velocity profile, the momentum thickness is 0.228 h.

The simulation was performed with the CFDNS code [48] that was also used for
Rayleigh-Taylor instability simulations [49–51]. Fourier spectral representations were used
in the periodic (spanwise and streamwise) directions, while 6th order compact finite dif-
ferences were used in the inhomogeneous (transverse) direction. Slip walls are used to
represent the upper and lower boundaries of the shearing fluid layers. A third order vari-
able time step Adams-Bashforth-Moulton scheme [52], coupled with a pressure projection
method, was used for time advancement. The domain size is 410.3h0, 78.5h0, and 102.6h0
in the streamwise, transverse, and spanwise directions, respectively, and the correspond-
ing numbers of grid points are 3072, 720, and 768. The DNS reaches a self-similar growth
regime. The mean and RMS statistics are consistent with other shear-driven mixing layer
DNS studies, such as Rogers and Moser [53] and Pantano and Sarkar [54]. In separate sim-
ulations [55], the CFDNS code was demonstrated to very closely reproduce the results of
Rogers and Moser [56]. For the two data sets used for calibration, the momentum thickness
Reynolds numbers range up to 6000 for the Bell & Mehta experiment [46] (according to
[53]) and up to 1350 in the present DNS. Based on thickness h, the Reynolds number Reh
for the present DNS ranges up to 6250.

In this study, the model was set up as a temporally growing layer. For shear induced
turbulence the turbulent kinetic energy was initialized as K0 = ζU2

s where ζ is the turbu-
lence intensity (<<1 %). The turbulent kinetic energy was isotropically distributed across
the diagonal components of the Reynolds stress tensor, while the off-diagonal components
were initialized to zero. The turbulent length scale was initialized to a very small value and
ai and b were initialized as zero. The model was ran well into a self-similar regime where
dK/dt ∼ 0 at the centerline of the flow.

The Reynolds stress components are non-dimensionalized by the square of the velocity
difference (U2

s ) and compared in Fig. 14a. Overall, the second moment closure is in rea-
sonable agreement with the two datasets. The mean velocity profile, shown in Fig. 14b,
compares well with the error function theory (described in [19, 48]), the experimental data
and DNS in the self-similar regime. The self-similar spreading rate (β) of a temporal shear
driven mixing layer is given by β ≈ dδ

/
(Usdt) where δ is the mixing layer width [19]. A

reasonable agreement between a) the magnitudes and profile of the Reynolds stress compo-
nents, b) the growth rate of the shear layer and c) homogeneous shear was found by setting
C1v to 1.3 and C1 to 1.6. The growth rate parameter from the model is β = 0.056, compared
to 0.064 for the DNS and 0.076 [46] for the experiment. When calculated based on momen-
tum thickness, the growth rate βm for the model is 0.012, which is in good agreement with
the value of 0.013 calculated from the DNS (and 0.014 obtained in DNS by Rogers and
Moser [53]). The finalized coefficients are shown in Table 1.

An assessment of the two-length scale model is shown in Fig. 15, where Fig. 15a com-
pares the modeled dimensionless dissipation of turbulence energy, ε = K3/2h/(SDU3

s ),
with the exact dissipation term ε = τ ′

ij u
′
i,j h/ρ̄U3

s obtained from DNS, and Fig. 15b com-
pares the dimensionless modeled and exact transport (DNS) terms in the kinetic energy

equation, Cμ

σk

h

U3
s

(
ST

√
K K,1

)

,1
and − h

2U3
s

(
u′

iu
′
iu

′
1

)

,1
, respectively. Overall, a reasonable

match is obtained for both quantities. Similar to RTI, the uniform density shear case shows
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a)

b)

Fig. 14 Comparison of the TLSM with DNS results and experimental data (Bell and Mehta [36]) for a)
Reynolds stress components, and b) dimensionless velocity profile. Us = Ufast – Uslow, η = (x1-xcl)/δ, where
xcl is the x1 value at the centerline of the mixing layer

that the model is missing the transfer of turbulence kinetic energy from the interior of the
layer to the edges of the shear layer. When comparing the trends of the transport term
(Fig. 15b) with the RT transport term (Fig. 12b), one notices a symmetric form associated
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a)

b)

Fig. 15 A comparison of dimensionless a) turbulence dissipation and b) transport term across the mixing
region of a shear layer

with the uniform density shear transport and an asymmetric form associated with the vari-
able density RT transport. This asymmetry is primarily driven by the coupling between
density-specific-volume covariance (b) and turbulence mass flux (ρ̄ai) to skew ST and K ,
and one might expect these parameters to influence the transport terms for the variable
density case without affecting the uniform density case.
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Fig. 16 Single fluid shocked isotropic turbulence (produced by DNS used in studies [60, 61]). The fluid is
supersonic with Mshock = 1.2 and Mturb = 0.24 prior to the shock and transitions to subsonic after the shock

5.7 Single-phase, Single Component Shocked Isotropic Turbulence

The standard problem of a shock passing over single fluid homogeneous isotropic turbu-
lence (shown in Fig. 16) is an important test case for any model of variable density turbulent
flows. In particular, the ability to demonstrate that the model is physically justified for this
flow is a precursor for the more complicated Richtmyer-Meshkov (RM) flows. For this type
of flow, the mean fields are 1D, so that the modeled equations (16-20) are simplified to

Reynolds Stress:
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Turbulence mass flux:
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where index “1” denotes the streamwise direction, while “2” one of the periodic directions
in the plane of the shock (Fig. 16).

While this flow is an important test case, the available data are not as well understood.
For example, the experiments of Agui, et al. [57] and Barre et al. [58] versus the DNS of
Lee et al. [59] show large discrepancies in the turbulence enhancement effects of the shock.
However, recent results have clarified the turbulence jump through the shock in the limit
of a large-scale separation between turbulence and shock width, for low incoming turbulent
Mach number [60, 61]. Thus, in this limit, the results become close to the Linear Interaction
Approximation (LIA) predictions [62, 63]. Since in many practical applications the shock
width is much smaller than the turbulence length scales, while the turbulent Mach number
of the incoming turbulence is small, we choose to use LIA as a comparing factor.

The principal result is shown in Fig. 17 where the jump in R11 and R22 is given for the
model and the LIA for various Mach numbers. The results shown in Fig. 17 for the TLSM
were produced by setting Cau to 0.4; setting Cau = 0.0 caused a decrease in R11 while a
value of 1.0 caused the jump in R11 to be greater than 3.
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Fig. 17 Comparison of the TLSM to LIA theory showing the “roll over” effect of R11 near Mach 2. The
transition of R22 (orthogonal to the direction of the shock) also agrees with LIA showing that more turbulent
energy is transferred to the transverse components (R22) relative to the pre-shock values (R22,0)

The reason for the significance ofCau is because of the balance of terms across the shock.
The model (as does LIA) has production dominating over dissipation and transport when
integrated over the shock width. The production/dissipation ratio is roughly 1.0e6 for the
cases explored in the model and is essentially infinite in the LIA. As such, the length scale
does not play a role in the turbulent enhancement. The net production in the R11 equation
has a Mach number effect; at low M the a1dP /dx1 term has less of an effect than at high M;
for example at M = 1.2, a1dP /dx1 is 40 % and opposite sign of the ρR11dU /dx1 production
term, at higher M (greater than 1.8) the a1dP /dx1term is still opposite sign but is ∼ 90 % of
the ρR11dU /dx1 term. This shows the importance of getting the turbulent mass flux correct
at higher M and is the reason for setting Cau.

Initialization and resolution play an important role in modeling shocked flows; however
initialization did not affect the results significantly for the present case. The initial turbulent
kinetic energy was varied between 0.1 and 1.0e5 cm2/s2 (in all cases the turbulent Mach
number was kept below 0.01), and the initial length scales were varied from 0.1 to 40 cm,
all of which showed no effect on the turbulent enhancement. The values of a1 and b were
initialized to zero in front of the shock.

Grid resolution plays a key role in shocked flows. This holds true regardless of whether
the simulation being explored is DNS, Large Eddy Simulation (LES) or Reynolds (or Favre)
Averaged Navier-Stokes (RANS). The work of Singh et al. [64] showed how a simple alge-
braic form for the Reynolds stress couldn’t maintain convergence on resolution. The present
model (Rij transport equations) converges upon mesh refinement for the turbulent enhance-
ment relative to the pre-shock value (i.e. R11 / R11,0). The enhancement is given for M =
1.4, 2.2 and 5.0 as a function of resolution and shown in Fig. 18, where the abscissa, ϑ =
(STK1/2)/(xVs) is dimensionless with finer resolutions to the right. A transition is noticed
between ϑ = 0.1 − 3, where values larger than ϑ = 3 show a convergence on the shock
width. At the lower resolution, ϑ <0.1, the shock width is determined by numerical dif-
fusion (in this case around 4 cells thick). Upon refining the resolution, the shock width is
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Fig. 18 Resolving the turbulence energy across the shock requires very fine resolution. For M = 1.4 – 5
(shown in legend), a transition in the post shock R11 is seen between ϑ = 0.1 and 3. ST is the pre-shocked
turbulent length scale, K is the pre-shocked turbulent kinetic energy, Vs is the shock speed and x is the
zone size

essentially set based on a turbulent viscosity and no longer changes with cell size (ST and SD

>>x). The turbulence enhancement, relative to the pre-shock values, can be very different
amongst the diagonal components in the Reynolds stress at high M , and if under-resolved,
the roll over for R11 / R11,0 at M ∼ 2 (shown in Fig. 17) may not be present.

6 Model Coefficients

Based on the above fundamental studies, the model coefficients were found from DNS,
experimental data and theory, for shear, buoyancy and shock driven turbulence. A list of
coefficients is shown in Table 1. Overall, it was found that C4 is the major contributor to the
RT mixing layer growth whileC4v is a major contributor to the magnitudes of the turbulence
statistics in both RT and HRT. Likewise,C1 is a major contributor to the shear driven mixing
layer growth and C1v is a major contributor to magnitude of the turbulence statistics. For
shocked isotropic turbulence, the rapid decay model for the turbulence mass flux showed
a reasonable match to LIA prediction with Cau = 0.4 and a closer match to experimental
data for isotropic turbulence decay was made with C2 = C2v = 1.77 (or Cε2 for the k-ε
model [19]).

If a reasonable match cannot be obtained with a common set of models and coefficients,
then confidence dwindles when trying to simulate turbulence in more complicated flow
regimes such as shock driven turbulence where density, pressure and velocity gradients may
simultaneously exist. Modeling transport and dissipation terms obtained by Reynolds or
Favre averaging requires making approximations and assumptions, and there is a great deal
of latitude in the forms used for modeling these terms and the methodology for calibrating
the coefficients. However, we have demonstrated that using DNS to understand the physics
and carefully calibrate coefficients for a fundamental set of turbulence flows can provide
reasonable agreement between RANS type models, DNS and measurable physics.
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7 Application to Flows Not used for Calibration

To assess the ability of the TLSM to predict flows beyond the range of flows that were
used to calibrate it, we seek to apply it to cases that introduce additional complexity to
the flows previously considered, yet were not involved in the calibration. The model can
be applied to two interesting flows that contain similar physics, namely 1) variable density
shear driven turbulence and 2) shock driven variable density mixing, also referred to as
Richtmyer-Meshkov instability driven turbulence.

7.1 Variable Density Shear Driven Turbulence

In order to assess the capability of the newly calibrated RANS model to capture the physics
of a mixing layer in which non-buoyant variable density effects are introduced, a new data
set is required. To fulfill this, a DNS simulation of the temporally developing variable
density mixing layer with a zero body force was performed with CFDNS using the same
approach and similar parameters to the single-fluid mixing layer simulation (described in
Section 5.6). The flow/setup is shown in Fig. 13, except the two streams contain differ-
ent density fluids. The hyperbolic tangent mean velocity profile is retained with the same
thickness, again resulting in an initial momentum thickness of 80. The density difference
between the streams of fluids is introduced by prescribing a mean density variation with a
hyperbolic tangent profile aligned with and of the same width at the velocity profile. The
densities are chosen to produce At = 0.75, which corresponds to a density ratio of 7, simi-
lar to a mixing layer between nitrogen and helium. For the DNS, the kinematic viscosities
of each fluid and mass diffusivity are chosen to have constant values, such that the Schmidt
number is uniform with a value of unity everywhere within the fluid.

Compared to the single-fluid case in Section 5.6, the domain length and width are each
reduced to half. This results in streamwise and spanwise dimensions of 205.5h0 and 51.4h0,
with 2048 and 512 grid points resolving each direction. Relative to the single-fluid mixing
layer DNS, however, the cross-stream direction is enlarged to 104.9h0 and resolved with
1280 grid points, to ensure that the growth of the mixing layer toward both the light and
heavy fluid sides is unaffected by the presence of the slip walls bounding the sides of the
domain. Relative to the single-fluid mixing layer, the resolution (in terms of grid points per
length) is increased proportionally in each direction due to the more stringent resolution
requirements when significant density gradients are also present.

As with the single-fluid mixing layer, initial velocity fluctuations are introduced to trig-
ger the instability leading to turbulence. However, no additional perturbations are added to
the density field. The initial profile of the velocity disturbance is the same as that used for
the single fluid case, and the spectrum of this disturbance has the same form, amplitude,
and peak wavenumber.

The simulation proceeds until the mixing layer reaches a self-similar growth regime and
a Reynolds number Reh of 7440, which corresponds to a momentum thickness Reynolds
number of 910. Though the former Reynolds number slightly exceeds that of the single-fluid
mixing layer DNS, the momentum thickness Reynolds number is somewhat lower because
the mean velocity profile center shifts to the light fluid side and, by definition, momentum
thickness is weighted by the fluid density.

The corresponding RANS simulations follow a similar temporal set-up. The centerline of
the mixing layer was initially aligned between the RANS simulation and the DNS to set the
zero point of the mixing layer. The density difference between streams was introduced by
specifying two ideal gases characterized the same γ values but different Cv values. These
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mean fluid properties are chosen to approximate those of nitrogen, but the Cv values are
changed from this mean to obtain the desired Atwood number of 0.75. The fluid is initially
in equilibrium with 1 atm constant pressure and a high constant temperature, which is cho-
sen such that the nominal Mach number is less than 0.1; this ensures good adherence to
the incompressible flow simulated by the DNS. As with the uniform density mixing layer,
there is initially a step discontinuity in velocity at the interface. The densities of the streams
are prescribed by also introducing a step discontinuity in density at this interface by speci-
fying different fluids on each side. The turbulent length scale, ai, and b were initialized in
accord with the uniform density flow, and the initial turbulent kinetic energy was prescribed
as described for that case, with K0 chosen to be approximately 1 % of U2

s .
Statistics were obtained after the flow reached self-similarity. Self-similarity was verified

by observing that the thickness growth rates were linear with respect to time, verifying
that the peak values of flow statistics (e.g., Rij and b) were constant with respect to time,
and checking that statistical profiles (e.g., U and ρ) did not vary with time when x was
scaled by thickness, while ensuring that the profiles remained at the free-stream values at the
boundaries of the transverse domain. Additionally, a resolution study was performed, which
indicated that the self-similar quantities agreed within several percent when the grid spacing
was refined by a factor of four. The grids remained fixed for both the uniform density and
variable density mixing layers as AMR was not used for these cases.

The β growth rate (described in Section 5.6) is 0.05 in DNS and 0.053 with the model;
the βm =(dδm/dt)/Us momentum thickness growth rate is 0.0054 in the DNS and 0.0059 in
the model. Thus, the model correctly captures the trends observed in the variable density
mixing layer DNS. Relative to the single-fluid case, the βm growth rate is reduced much
more significantly because this measurement is sensitive to the mean velocity profile center
shift, as noted above.

A comparison of the dimensionless velocity is shown in Fig. 19. The model appears to
capture the shift in the mean velocity from the initial point. A comparison of the density
and density-specific-volume covariance (b) is shown in Figs. 20a and 20b, respectively,

Fig. 19 Comparison of the dimensionless velocity across the variable density shear layer,At = 0.75 (solid
lines – DNS, dashed lines– TLSM). For the temporal developing layer, Uc = 0, the shift in the velocity
profile towards the heavy fluid is consistent (initially at η = 0, U = 0)
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a)

b)

Fig. 20 Comparison of a) the dimensionless density profile and b) the density-specific-volume covariance
across the variable density shear layer,At = 0.75 (solid lines – DNS, dashed lines – TLSM)

where ρm = (ρhigh + ρlow)/2. The comparison is also reasonable, showing the sharp rise in
density on the heavy side fluid and the peak of b just slightly shifted towards the lighter fluid
side. Additional comparisons of the Reynolds stress and the mean mass-weighted velocity
fluctuation are shown in Figs. 21a and 21b, respectively. Though the magnitude of a1 is
under predicted (by approximately 40 %), the shape of the curve is correct. The magnitude
of a2 matches the DNS more closely, with a slight misalignment of the peak. Despite the
differences in ai and b, the results show that the predictions of the two-length scale RANS
model, as calibrated by the preceding flows, reasonably captures the behavior of this new
flow. The dimensionless dissipation and transport terms are compared in Fig. 22. Overall,
these quantities also appear to be in reasonable agreement.
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a)

b)

Fig. 21 Comparison of a) the dimensionless mean mass-weighted velocity fluctuation and b) the Favre
averaged Reynolds stress across the variable density shear layer,At = 0.75 (solid lines – DNS, dashed lines
– TLSM)

7.2 Shock Driven Variable Density Mixing

Richtmyer-Meshkov instability (RMI) describes the features that develop after a shock
passes over a perturbed interface between two different density fluids [65, 66]. Depending
on the strength of the shock, the viscosity of the fluids, and the amplitude and wavelength
of the initial perturbation, the instability can rapidly (or slowly) transition to turbulence,
or possibly never reach a fully developed turbulent state. However, a re-shocked inter-
face (which occurs when the shock reflects off the end of the shock tube and travels back
towards the mixing zone, depicted in Fig. 23) can also generate turbulence. Unlike the pre-
vious flows considered, RMI induced turbulence does not reach a self-similar form and,
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a)

b)

Fig. 22 Comparison of a) the turbulence dissipation and b) the transport terms across the variable density
shear layer,At = 0.75 (solid lines – DNS, dashed lines – TLSM)

as a consequence, may challenge the turbulence models that were developed using this
assumption.

One of the problems with shock tube data of RMI generated turbulence is the shock-
wave/boundary-layer interaction, which can become important in modest sized shock tubes.
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a)

b)

Fig. 23 Schematic of the horizontal shock tube, a) at t = 0, and b) just before re-shock

Vetter and Sturtevant [67] proposed to minimize this effect by taking data in a larger (27
cm square) test section. Their experimental apparatus consisted of a horizontal shock tube
with the ability to use various length test sections (0.61 to 1.22 m). A nitro-cellulose mem-
brane (0.5 μm thick) was used to separate the high- and low-pressure fluids, creating the
“interface”. They experimented with the placement and size of the wire mesh, which was
partially used to set the perturbations.

Although the shock tube problem is inherently 3D, due to the boundary layer develop-
ment along the walls of the shock tube and the initialization of instabilities due to the wire
mesh, we attempt a simple 1D comparison. The reason for this simplification is that the
RAGE hydrocode was not developed for wall flows (e.g. capturing the velocity gradient
of the fluid within the turbulent boundary layer). For the 1D case, the governing equations
(13-20) can be simplified. The initial conditions used were K0 = ζU2, where U is the
jump velocity of the interface and ζ is the turbulence intensity (<<1 %), and SD0 = ST0 =
1.0 cm, based on the wavelength of the mesh, a1(t = 0) was set to zero and b0 was set to
the immiscible value near the interface.

Fig. 24 Comparison of the of
the mixing layer width for shock
driven turbulence, both before
and after re-shock (∼ 3.5 ms),
M = 1.5,At = 0.75 (solid line –
TLSM, symbols – experimental
data). The different symbols
represent the various initial
conditions associated with
wire-mesh-membrane
arrangement between air and
SF6, see [67] for more details
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Vetter and Sturtevant [67] used schlieren images to capture the growth of the mixing
zone. However, the method used to measure the mix width was not discussed; therefore
the uncertainty is unknown and as a result comparisons of the growth rate of the layer
are typically made [68]. In the simulation, we determined the width of the mixing layer
based on ∼ 5 % concentration level. This was plotted and compared with the experimen-
tal data, shown in Fig. 24. The model compares reasonably well with the experimental
data after re-shock, however it over predicts the width of the mixing layer after first
shock. The over prediction after first shock is not unusual; [68] and [69] show similar
trends using large eddy simulations. Based on the schlieren images shown in [67], the mix
width after re-shock appears to have less uncertainty than the mix width values prior to
re-shock.

8 Summary and Conclusions

A second moment model for variable density and compressible flows of miscible flu-
ids was improved by separating the transport length scale from the decay length scale.
The two-length scale model demonstrates considerable improvements relative to prior
single-length scale models, as shown by the significantly better matches to DNS and
experimental data for a diverse array of flows. With the two-length scale model, we
have demonstrated reasonable matches for statistical quantities and growth rates for
homogeneous Rayleigh-Taylor turbulence, variable density Rayleigh-Taylor turbulence,
homogenous shear, free shear turbulence, homogeneous isotropic turbulence decay and
shocked isotropic turbulence, for which the model was calibrated. Although previous mod-
els have also shown to match variable density and shear induced turbulence, they either
a) had to change coefficients for a good match, or b) could not simultaneously match
growth rates and the magnitudes of the statistics. The two-length scale model signifi-
cantly overcomes these shortcomings, and when compared to previous studies, shows an
improvement over the single-length scale models for the range of turbulent flows considered
here.

To better understand the predictive nature of the two-length scale model, we compared
the model to variable density shear flow (recently obtained from DNS) and experimen-
tal shock tube data. The turbulence statistics and mean velocity shift from the model
show to compare reasonably well with DNS for variable density shear flow. In addi-
tion, the comparison to shock tube data using a 1D model is also reasonable after
re-shock.

Although the comparisons with homogeneous and free flows are not exact, the two-
length scale model shows to be an improvement over single length scale models. Unlike
previous single-length scale models, the two-length scale model is a first step towards bridg-
ing the gap between homogenous and inhomogeneous flows within the context of RANS
modeling.
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