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ABSTRACT

We investigate relationships between statistics obtained from filtering and from ensemble or Reynolds-averaging turbulence flow fields as a
function of length scale. Generalized central moments in the filtering approach are expressed as inner products of generalized fluctuating
quantities, q0ðn; xÞ ¼ qðnÞ � �qðxÞ, representing fluctuations of a field qðnÞ, at any point n, with respect to its filtered value at x. For positive-
definite filter kernels, these expressions provide a scale-resolving framework, with statistics and realizability conditions at any length scale. In
the small-scale limit, scale-resolving statistics become zero. In the large-scale limit, scale-resolving statistics and realizability conditions are
the same as in the Reynolds-averaged description. Using direct numerical simulations (DNS) of homogeneous variable density turbulence,
we diagnose Reynolds stresses, Tij, resolved kinetic energy, kr, turbulent mass-flux velocity, ai, and density-specific volume covariance, b,
defined in the scale-resolving framework. These variables, and terms in their governing equations, vary smoothly between zero and their
Reynolds-averaged definitions at the small and large scale limits, respectively. At intermediate scales, the governing equations exhibit interac-
tions between terms that are not active in the Reynolds-averaged limit. For example, in the Reynolds-averaged limit, b follows a decaying
process driven by a destruction term; at intermediate length scales, it is a balance between production, redistribution, destruction, and trans-
port, where b grows as the density spectrum develops and then decays when mixing becomes strong enough. This work supports the notion
of a generalized, length-scale adaptive model that converges to DNS at high resolutions and to Reynolds-averaged statistics at coarse
resolutions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040337

I. INTRODUCTION

Turbulent flows are often characterized using statistics obtained
from averaging or from filtering fields of interest. Averaging is used to
obtain a statistical description of the flow, whereby a notional ensem-
ble of realizations is averaged at a given point in space-time ðx; y; z; tÞ.
By averaging the Navier–Stokes equations, in the statistical description
one obtains a set of governing equations for primitive variables. These
Reynolds-averaged Navier–Stokes (RANS) equations have additional
terms that lead to a closure problem, and unclosed terms are modeled
with varying levels of complexity. When using the filtering approach,
on the other hand, the Navier–Stokes equations are filtered, leading
also to a closure problem, where models are used to represent the
effects of small, unresolved scales on the resolved fields. When the
filter size is such that the resolved fields represent the largest eddies of
the flow, this approach to modeling turbulence is referred to as large
eddy simulations (LES), in contrast to RANS modeling where all scales
of the flow are modeled. For more details on RANS and LES modeling,

refer to Ref. 1. Furthermore, a broad range of modeling approaches
exists in which varying levels of resolution of scales, between LES and
RANS, are addressed.2 These approaches are sometimes referred to as
scale resolving simulations (e.g., see the review in Ref. 3 and references
therein), and, for complex, realistic flows, provide a more accurate rep-
resentation than RANS models do, while being less computationally
expensive than LES. Some scale resolving simulation strategies,
referred to as hybrid models, use a weighted combination of LES
subclosures and RANS models. For more information on hybrid mod-
els, refer to the recent reviews in Refs. 4 and 5.

Most often, each choice of LES,1,6 hybrid,4,5,7,8 or RANS1 model
is closely associated with a level of resolution of the length scales that
are relevant to the flow. However, the idea that different characteriza-
tions (namely, either filtering and LES, or averaging and RANS), and
different models are appropriate for discrete, distinct levels of resolu-
tion of the flow can seem somewhat arbitrary. Indeed, in practice it is
often times difficult to draw a clear line that delimits where different
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models are valid and others are not. For a given flow, and perhaps for
a given type of flows, it is reasonable to expect that it would be possible
to have a characterization that is valid at any scale relevant to the flow,
and a model of the flow dynamics that can be applied at an arbitrary
level of resolution. An example of this can be found in Refs. 9 and 10,
where a self-adapting model was presented and used to simulate
decaying homogeneous isotropic turbulence; the model was able to
calculate total kinetic energy with the same fidelity regardless of
whether the resolution corresponded to DNS, RANS, or something in
between.

In this work, we investigate the formal relationships between fil-
tering and averaging, and present a generalized, scale-resolving (SR)
statistical description for homogeneous turbulent flows that is valid at
an arbitrary length scale, filter width, or resolution, i.e., any resolution
from the smallest to the largest length scales of the flow. Traditionally,
variables are defined using central moments in the RANS statistical
approach and generalized central moments11 when considering filter-
ing quantities, which are constructed by expressing the central
moments as residuals. We express both (RANS and filtered quantities)
as central moments of generalized fluctuating quantities, thus express-
ing both approaches in the same general form. Generalized central
moments in the filtering approach are expressed as inner products of
generalized fluctuating quantities, q0ðn; xÞ ¼ qðnÞ � �qðxÞ, which rep-
resent fluctuations of a field variable q at points n with respect to its fil-
tered value at a point x. The SR statistical description of the flow is
consistent with the Navier–Stokes (NS) equations. We derive realiz-
ability conditions for SR statistics, and we show that, for filter kernels
that are positive definite, these realizability conditions are equivalent
to the realizability conditions of their RANS counterparts and that the
latter constitute a special case of the former in the limit of large filter
widths or length scales.

The SR statistical description of flows will be useful to inform our
understanding of turbulence flow processes, by quantifying how pro-
cesses depend on scale and on scale interactions. This framework can
be applied to in-homogeneous turbulent flows with directions of
homogeneity by filtering along these directions, using a positive filter-
ing kernel chosen such that it varies only along directions of homoge-
neity. Furthermore, this framework will also be useful for justifying the
choice of scale resolving simulation strategies such as hybrid models
and to inform the development of scale resolving simulation strategies
for complex, realistic flows.

We illustrate these concepts by deriving SR statistics equivalent to
those often used for RANS characterization and modeling of variable
density (VD) turbulence using Favre averaging,12 namely, the density-
specific volume covariance, b, the turbulence mass flux velocity, ai, the
Favre averaged Reynolds stress tensor, Tij, and the large scale kinetic
energy, kr, along with governing equations for each of these variables,
and investigate variable density effects using this formulation. We diag-
nose these variables and the terms in the governing equations for
b; a1; kr using data from recent DNS of homogeneous variable density
turbulence (HVDT).13 We discuss how some terms in the governing
equations are related to length scales. For example: for length scales
that are larger than the vertical integral length scale, the variables in the
SR statistics, as well as their governing equations, are fully represented
by the RANS description; the rate of transfer of energy between
resolved and unresolved kinetic energy, in a volume integrated sense,
peaks at length scales of the order of the horizontal Taylor micro-scale.

This work is consistent with some aspects and concepts of hybrid
modeling and can be used to further the development of models for
scale resolving simulations. The results strongly suggest that the
dynamics and processes relevant to the turbulence physics in HVDT
transition smoothly, as a function of length scale, from the NS limit to
the RANS limit. The dynamical processes represented by the terms in
the balance equations of the SR variables that we diagnose for HVDT,
b; a1; kr , are all trivially zero in the NS limit, correspond to the RANS
balance for this flow in the RANS limit, where some are active and
some are not, and are all active at intermediate length scales. For
example, in HVDT, only destruction is active in the RANS governing
equation for b at scales approximately equal to or larger than the inte-
gral length scale, while at intermediate length scales and scales below
the integral length scale for this flow, there is a balance between
production, redistribution, destruction, and transport. From the per-
spective of modeling, this work supports the notion of a generalized,
length-scale adaptive model in terms of the SR variables, that con-
verges to DNS at high resolutions, and to classical RANS statistics at
coarse resolutions. A model that relies on computing SR variables in
terms of RANS statistics alone, for example by scaling the RANS
statistics,7 would not be able to capture the full SR dynamics.

We begin by recalling the equations used for filtering and averag-
ing in Sec. II, followed by a derivation of the realizability conditions
for the filtered variables in Sec. IIA. The flow that we use for diagnos-
tics is described in Sec. III, where we present the governing equations
for HVDT, and we derive the equations for the SR variables. Then, in
Sec. IV, we present these diagnostics. Finally, in Sec. V, we provide a
summary and discussion on the merits of this work for investigating
physics underlying turbulence at different scales and for model
development.

II. FILTERING AND STATISTICAL AVERAGING

The Reynolds-averaged Navier–Stokes (RANS) method, also
commonly referred to as the statistical approach, is used to compute
flow statistics for diagnostic analysis of DNS and experiments of tur-
bulent flows and for turbulence modeling. In this approach, ensemble
averages are used to calculate central moments in terms of fluctuating
quantities, where the latter are defined as departures from means,
e.g., q ¼ hqi þ q0, or using Favre, or density (q) weighted averages,
q ¼ hqqi=hqi þ q00, for some variable q. Invoking ergodicity, such
averages can be calculated along space-time directions of homogeneity
in the flow. Here, we consider spatial homogeneity only and indicate
the volume average of a spatially and temporally varying quantity
qðx; y; z; tÞ by angle brackets, such that

hqi ¼ 1
V

ð
V
q dV (1)

with hqi retaining time dependency. When it is necessary to make the
distinction between RANS quantities and filtered quantities, we use
non-italicized roman subscript “e” to denote RANS statistical quanti-
ties defined using central moments of fluctuating quantities. Using the
statistical approach for variable density turbulence (VDT) flows, sev-
eral statistical quantities (referred to as the BHR statistics12) have been
identified for playing an important role in the dynamics of the mean
flow, and subsequently used for RANS modeling of VDT flows.14–16

We will now introduce these quantities, and we will discuss them
throughout this paper.
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The Reynolds stress tensor

Rij ¼
hqu00i u00j i
hqi ¼ hquiujihqi �

hquii
hqi
hquji
hqi ; (2)

where q is density and ui is velocity in direction xi, plays an important
role in modulating the exchange of momentum and kinetic energy
between the mean and fluctuating portions of the flow.17 The turbu-
lent mass flux velocity

aei ¼
hq0u0ii
hqi (3)

has the effect of moderating the production of Reynolds stresses Rij

and turbulent kinetic energy.17 The density-specific volume covariance

be ¼ �hq0v0i ¼ hqihvi � 1; (4)

where v is the specific volume, is a measure of mixing in VDT, and
affects the production of aei.

17

In the filtering approach to modeling turbulence, variables are fil-
tered in space using

�qðxÞ ¼
ð
Gðn; x; rÞqðnÞdn; (5)

where Gðn; x; rÞ is a prescribed filtering kernel with parametric
dependence on a filter width w ¼ r. In general, the filtering kernel can
be a function of space-time, but here we restrict it to spatial filters.
Favre filtered quantities, commonly used in variable density turbu-
lence, are defined as

eq ¼ qq
�q
: (6)

Dynamical variables obtained through filtering are often times
defined by analogy to the residual form of the RANS quantities,11 e.g.,
as in (2). This way, in the context of scale resolving filtered flows, we
define the density-specific volume covariance, the turbulent mass-flux
velocity, and the turbulent stress tensor as

b ¼ �q �v � 1; (7)

ai ¼ eui � �ui; (8)

and

Tij ¼guiuj � euieuj; (9)

respectively.
Generalized central moments uðui; ujÞ ¼ uiuj � �ui �uj of the flow

field ui can be used to obtain transport equations for filtered quantities.
This way, the equations that result from filtering the Navier–Stokes
(NS) equations are mathematically identical to their RANS counter-
parts—a property referred to as the averaging invariance of the filtered
NS equations11—with the variables in the equations having different
interpretations. These developments have since been extensively used
in developing methods used in large eddy simulations (LES).

When employing RANS statistics, the flow is decomposed into a
mean component and a fluctuating component, while, as remarked in
Ref. 11, when using filtering and generalized central moments, repre-
sentations of the flow field at different levels of filtering are compared.
In this paper, we will write the above definitions for b, ai, and Tij in

Eqs. (7)–(9) in terms of generalized moments of fluctuating quantities
with respect to filtered fields.

A. Inner products and realizability

The two approaches of employing RANS statistics and using fil-
tering, and the associated generalized central moments to represent tur-
bulent flows are closely related. This becomes clear when the moments
from both approaches are expressed in terms of inner products.

In Ref. 18, RANS statistical moments are expressed in terms of
inner products to derive realizability conditions for turbulent stresses
in incompressible flows. Similarly, in the filtering approach, general-
ized central moments can be expressed in terms of inner products of
generalized fluctuating quantities, which in turn represent moments of
generalized fluctuating quantities, and which, under special conditions,
at large filtering length scales become the RANS central moments.
Thus, it is important to note the connections between generalized cen-
tral moments and inner products, between filtering and averaging, and
the notion of generalized fluctuations. This will be the subject of this
section, and in Sec. IV, we will illustrate these concepts by diagnosing
some quantities of interest and their budgets, from DNS of HVDT
flow. This flow is described in Sec. III.

To obtain the realizability conditions for the turbulent stress ten-
sor, we express Tij as an inner product. Starting from (9) and using
(5) and (6), with the notation ðe� ÞðxÞ, e.g., as in guiujðxÞ and euiðxÞ, to
indicate functions of space x ¼ ðx1; x2; x3Þ, we write

Tij ¼guiujðxÞ � euiðxÞeujðxÞ
¼guiujðxÞ � euiðxÞeujðxÞ � euiðxÞeujðxÞ þ euiðxÞeujðxÞ

¼ 1
�q

ð
Gðn; xÞqðnÞuiðnÞujðnÞdn� euiðxÞ

ð
Gðn; xÞqðnÞujðnÞdn

�
�eujðxÞ

ð
Gðn; xÞqðnÞuiðnÞdnþ euiðxÞeujðxÞ

ð
Gðn; xÞqðnÞdn

�
¼ 1

�q

ð
Gðn; xÞqðnÞ uiðnÞ � euiðxÞ½ � ujðnÞ � eujðxÞ

� �
dn;

Tij ¼ ��u iðn; xÞ; ��u jðn; xÞ
� �q

x
; (10)

where

f ; gð Þqx ¼
1
�q

ð
qðnÞGðn; xÞf ðn; xÞgðn; xÞdn: (11)

For positive q and G, it can be shown that (11) is an inner product,18

or more specifically a density-weighted inner product, which is posi-
tive semi-definite. It can also be interpreted as a density weighted con-
volution. We have used the definition of a generalized fluctuating
quantity, namely,

��u iðn; xÞ � uiðnÞ � euiðxÞ; (12)

which represents fluctuations of a field variable uiðnÞ at points n, with
respect to its filtered value euiðxÞ at a point x. Note that the generalized
fluctuating quantity ��u iðn; xÞ depends on a separation distance from x,
namely, f ¼ n� x. In terms of f,

��u iðf; xÞ ¼ uiðx þ fÞ � euiðxÞ; (13)

which is an alternative expression for the generalized fluctuations.
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Similar to the discussion in Ref. 18, ��u iðn; xÞ 6¼ u00i ðxÞ, since
��u iðn; xÞ ¼ uiðnÞ � euiðxÞ in general is a two-point quantity that
depends on n and x, while u00i ðxÞ ¼ uiðxÞ � hqðxÞuiðxÞi=hqðxÞi is a
single point quantity that depends only on x. However, as the filtering
length scale becomes large and approaches or exceeds some dynami-
cally relevant integral length scale L, the x dependency can be
dropped so that the generalized fluctuating quantity becomes the fluc-
tuating quantity defined in the statistical approach,

��u i ! u00i ; (14)

and, in this limit, it becomes a single-point quantity. This is true in gen-
eral, for homogeneous as well as for in-homogeneous flows, if the filter-
ing is performed along directions of homogeneity, i.e., the positive
filtering kernel Gðn; xÞ is chosen such that it varies only along direc-
tions of homogeneity. This is in analogy to the calculation of RANS sta-
tistics by averaging along directions of homogeneity in space and time.

Similar to ��u iðn; xÞ, we define generalized fluctuations based on
non-density weighted filtered quantities,

�qðn; xÞ � qðnÞ � �qðxÞ (15)

and

�uiðn; xÞ � uðnÞ � �uiðxÞ: (16)

Applying the integral Schwarz inequality to the product of the fil-
tered density and filtered specific volume, using the definition of the fil-
ter, we can obtain a realizability condition for b ¼ �q �v � 1, as follows:ð

fgdV �
ð
f 2dV

� 	1=2 ð
g2dV

� 	1=2

;

f 2 ¼ Gq;

g2 ¼ G
1
q
;ð

Gqð Þ1=2 G
1
q

� 	1=2

dV �
ð
GqdV

� 	1=2 ð
G
1
q
dV

� 	1=2

;

1 � ð�qÞ1=2 ð�vÞ1=2;
1 � �q �v;

�q �v � 1 � 0:

(17)

A similar derivation can be used in the RANS limit to show that
be � 0.19 Using a similar approach as for the stress tensor, it can be
shown that

b ¼ 1
q�q

�q; �q
� 	

x

: (18)

Now, we note that ai ¼ eui � �ui can also be written as an inner
product

�qðxÞaiðxÞ¼ �qðxÞ euiðxÞ��uiðxÞ½ � ¼ �qeui��ui�q� �q�uiþ �q�ui

¼
ð
Gðn;xÞqðnÞuiðnÞdn��uðxÞ

ð
Gðn;xÞqðnÞdn

� �qðxÞ
ð
Gðn;xÞuiðnÞdnþ �qðxÞ�uiðxÞ

ð
Gðn;xÞdn

¼
ð
G qðnÞ� �qðxÞð Þ uiðnÞ��uiðxÞð Þdn¼ð�q;�uiÞx

ai¼
�q;�uið Þx

�q
: (19)

Alternatively,

�qðxÞaiðxÞ¼ �qðxÞðeuiðxÞ��uiðxÞÞ
¼ �qeui�eui�qþ�qeui��q�ui

¼
ð
Gðn;xÞqðnÞuiðnÞdn�euiðxÞ

ð
Gðn;xÞqðnÞdn

þ�qðxÞeuiðxÞ
ð
Gðn;xÞdn��qðxÞ

ð
Gðn;xÞuiðnÞdn

¼
ð
Gðn;xÞ qðnÞ��qðxÞ½ � uiðnÞ�euiðxÞ½ �dn

¼ð�q;��u iÞx;

ai¼
ð�q;��u iÞx

�q
: (20)

As before, when the filtering length scale is large, similar to a dominat-
ing length scale, w �L, the generalized density fluctuation becomes
the RANS density fluctuation �q ! q� hqi ¼ q0, and ai becomes the
RANS quantity used in the statistical approach,12 ai ! aei ¼ hq0u0ii=q
¼ hq0u00i i=q.

With this, we can write a realizability condition for aa in terms of
b and Taa (where double Greek letter indices imply no summation),
using the Schwartz integral inequality as follows:

�qaa ¼ �q; ��u a


 �
x ¼

�q
q1=2

; ��u aq
1=2

� 	
x

� 1
q

�q; �q
� 	1=2

x

��u a; ��u aq

 �1=2

x

¼ �qb1=2T1=2
aa ; (21)

which leads to

a2a � bTaa: (22)

Again, as the filter length scale increases and becomes comparable to a
relevant integral length scale, w �L, the filtering operation converges
to a volume average; in this limit, the relationship above becomes
a2ea � beRij, the realizability condition in the statistical approach.12

The above realizability conditions are true only for positive ker-
nels, such as the Gaussian filter kernel or the box filter kernel.
Negative kernels, while mathematically adequate, and while sometimes
desirable for validation of LES (e.g., Ref. 20), will yield different realiz-
ability conditions and do not preserve scalar bounds. For example, the
sharp spectral filter is non-local, and its kernel oscillates around zero
in physical space. As a result, a sharp spectral filter can lead to �q � q1
in VDT flows in which two pure fluids with different densities q1
� q2 mix, leading to values of b that violate realizability conditions.
Furthermore, in flows with moderate to large Atwood numbers, this
can lead to �q � 0, and to numerical issues and artifacts in the defini-
tion of Favre filtered quantities using (6) when �q is small. The realiz-
ability conditions that we present above are most attractive here due to
(i) their physical interpretations, e.g., positive kinetic energy Tii=2,
positive densities �q and positive b, and (ii) because they converge to
the realizability conditions for their counterparts in the RANS statisti-
cal description of the flow. For these reasons, we limit ourselves to
filtering with positive kernels, and we use a Gaussian filter, with filter
kernels in physical and spectral spaces given by
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Gðn; xÞ ¼ 1

r
ffiffiffiffiffi
2p
p exp � 1

2
x � n

r

� 	2
" #

(23)

and

Ĝðx;wÞ ¼ exp �r2

2
k2

� �
; (24)

respectively. Note that the variance of the Gaussian filter commonly
used in LES (r2

L) is 24	 the variance of the Gaussian filter we use
here, r2

L ¼ 24r2. For this filter, the filtered density remains bounded,
i.e., 0 � q1 � �q � q2.

B. Additional properties and summary

Inner products have several defining properties for real, two-
point quantities f and g (e.g., Ref. 21). They are commutative in f, g,

f ; gð Þx ¼ g; fð Þx (25)

distributive, or linear in the first argument

af ; gð Þx ¼ a g; fð Þx; (26)

hþ f ; gð Þx ¼ h; gð Þx þ f ; gð Þx; (27)

and positive definite

f ; fð Þx � 0: (28)

This way, the SR variables in (17), (19), (20), and (10), can be
expressed as

b ¼ 1
q�q

�q; �q
� 	

x

; (29)

ai ¼
�q; �uið Þx

�q
¼ ð�q;

��u iÞx
�q

; (30)

Tij ¼ ��u i; ��u j

� �q

x
(31)

in terms of the generalized fluctuations defined in (12), (15), and (16).
Realizability conditions are given by the properties of the inner

product,21 namely,

Taa � 0; TaaTbb � ðTabÞ2 � 0; detTij � 0; (32)

b � 0; (33)

a2a � bTaa: (34)

In the limit as the filter width becomes small, w! 0, the filter
approaches a delta function, and filtered quantities become close to
the pointwise values of the underlying quantities so that the instanta-
neous, or Navier–Stokes flow fields are recovered, e.g.,

�q ! q; eui ! ui: (35)

Since integration limits much larger than the filter width do not
change the integral, the effective parts (i.e., the parts that contribute to
inner products) of the generalized fluctuations, ��u iðn; xÞ; �uiðn; xÞ;
�qðn; xÞ and the generalized filtered quantities Tij, ai, and b all
approach zero. Thus, we will refer to this limit as the Navier–Stokes
limit (NS limit) or the Navier–Stokes description of the flow. We will

refer to the statistical description corresponding to intermediate length
scales or filter widths, where the generalized filtering statistical descrip-
tion Tij, ai, and b is nontrivial, as the scale-resolving (SR) description
of the flow.

By filtering along directions of homogeneity, using a positive fil-
tering kernel Gðn; xÞ chosen such that it varies only along directions
of homogeneity, the SR framework can be used to obtain a statistical
description of homogeneous as well as in-homogeneous turbulent
flows. We can expect the behavior of the SR description of the flow to
vary smoothly between the NS and RANS descriptions. At the largest
scales,Tij, ai, and b become equal to the RANS statistical description,
and they are non-zero, while in the NS limit they are zero. At the
smallest dissipative and diffusive scales, the flow field is smooth and
Tij, ai, and b in the SR description can therefore be expected to transi-
tion smoothly from zero to their RANS values as the length-scales
increase. Similarly, the processes affecting the balances of Tij, ai, and
b, e.g., production, dissipation, destruction, and transport of the
quantities in the SR description of the flow, can be expected to vary
smoothly between the two limits.

In what follows, we will systematically investigate the SR descrip-
tion, and the transitions between the NS and RANS descriptions of the
flow, by diagnosing variables in the SR statistical description, Tij, ai,
and b, using DNS of homogeneous variable density turbulence.

III. FLOW DESCRIPTION

Buoyancy driven homogeneous variable density turbulence
(HVDT) was first introduced in Refs. 22 and 23, and further developed
and discussed in Refs. 13, 19, 24, and 25. HVDT is a canonical flow
configuration in which two incompressible, compositionally different
fluids with densities q1 and q2, with q2 > q1, are randomly distributed
within an accelerated, triply periodic cube with side dimension
L ¼ 2p. Here, we consider flows in which the initial probability
density function (PDF) of density is initially symmetrical, with
hqi ¼ ðq1 þ q2Þ=2, resembling a double-delta distribution with two
peaks at densities q ¼ q1 and q ¼ q2. The highly non-linear evolution
of the flow can be divided into four distinct regimes13,26 based on the
sign of the time derivatives of the turbulent kinetic energy, where A
and Fr are the Atwood and Froude numbers (defined below), as
depicted in Fig. 1. The flow is initially quiescent, and at time t¼ 0, due
to instability to buoyancy forces, the flow starts moving as available
potential energy is converted to kinetic energy, which, at first, rapidly
increases with time.13,19 This first regime is dubbed the explosive
growth regime. As time advances and the flow develops, it transitions
to a turbulent state and, as a result, turbulent kinetic energy and the
rates of mixing and dissipation increase. Following this stage, as a
result of increasing turbulence and mixing, the density PDF is popu-
lated at intermediate densities (q1 � q � q2). The lighter fluid has
less inertia, so it is stirred more and mixes faster than the heavy
fluid,13,19,24,25 and the density PDF quickly becomes asymmetrical as
the lighter fluid densities (q � hqi) are populated more than the
heavier fluid densities (q � hqi)—these effects become more pro-
nounced as A increases. As a result, buoyancy forces decrease and the
rate of conversion from potential energy to kinetic energy peaks, as
dissipation increases. The peak of kinetic energy production by buoy-
ancy forces marks the beginning of the saturated growth regime,
during which kinetic energy continues to grow at an increasingly
slower rate, as turbulence develops, leading to more mixing and
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dissipation, and consequently less production. Eventually, the rate of
dissipation overcomes the rate of production of kinetic energy, and the
kinetic energy peaks. After this point, kinetic energy starts decaying
rapidly during the fast decay regime and then more slowly during the
gradual decay regime.

References 13 and 26 discuss how the identification of these
regimes makes it possible to draw parallels between HVDT and more
complex VDT flows, such as Rayleigh–Taylor instability (RTI),27,28

RTI under variable-acceleration,29–33 Richtmyer—Meshkov instability
(RMI),34,35 including reshock,36–38 variable density mixing layers,39

and variable density jets,40 among others. Recent reviews of some of
these flows and the relevant variable density (VD) processes involved
may be found in Refs. 32, 36, and 37. For this reason, and since
HVDT reaches much larger Reynolds numbers and is relatively simple
to post-process and analyze thanks to spatial homogeneity, we will use
it here to diagnose and investigate scale dependence of the dynamical
processes in VD flows.

A. Governing equations

The flow is governed by the equations for conservation of mass
and momentum

@q
@t
þ @

@xj
ðqujÞ ¼ 0; (36)

@qui
@t
þ @

@xj
ðquiujÞ ¼ �

@p
@xi
þ @sij
@xj
þ 1
Fr2

qgi; (37)

where q is density, ui and gi are velocity and the acceleration of gravity
in the direction xi, respectively, p is pressure, and the viscous stress
tensor for the Newtonian fluids and strain rate tensor are given by

sij ¼
q
Re0

@ui
@xj
þ @uj
@xi
� 2
3
@uk
@xk

dij

 !
; (38)

with dij representing the Kronecker delta function. The divergence of
the velocity field is not zero because of the effect that mixing of VD
fluids has on the specific volume,32

@uj
@xj
¼ � 1

Re0Sc
@2

@xj@xj
ðln qÞ: (39)

There is a degree of freedom in the mean pressure gradient due to the
triply periodic boundary conditions, which is constrained by requiring
that the mean pressure gradient maximizes the production of the total
kinetic energy from conversion of the available potential energy.13,19

As a result, the mean pressure gradient is given in terms of fluctuating
quantities q0 ¼ q� hqi for a variable q, by

@hpi
@xi
¼ 1

V
1
Fr2

gi � hv0p0;ii þ hu0iu0j;ji þ hv0s0ij;ji
� 	

: (40)

Note that due to homogeneity, the mean pressure gradient is constant
in space, varying only in time. The definition of the mean pressure gra-
dient also leads to huii ¼ 0 at all times during the flow evolution.

The total turbulent kinetic energy is defined as

Ek ¼
Rii

2
; (41)

and the total (available) potential energy13,19 is given by

Ep ¼ �
gi

VFr2

ð
V
ðq� hqiÞ xi dV (42)

(no summation implied).
Relevant non-dimensional numbers are Atwood number A,

Froude number Fr, computational Reynolds number Re0, and Schmidt
number Sc, defined as

A ¼ q2 � q1

q2 þ q1
; (43)

Fr2 ¼ U2
0

gL0
; (44)

Re0 ¼
q0L0U0

l0
; (45)

Sc ¼ l0

q0D0
; (46)

where l0 is the reference dynamic viscosity, q0 ¼ ðq2 þ q1Þ=2 is the
reference density, and L0, U0, l0, and D0 are the reference length,

FIG. 1. Normalized turbulent kinetic energy (41) (solid curve) and normalized rate of conversion of potential energy (42) to turbulent kinetic energy (dashed curve) as a function
of time, normalized by a reference timescale tr ¼

ffiffiffiffiffiffiffiffiffiffiffi
Fr2=A

p
, [A and Fr are given by (43) and (44)] for A¼ 0.05 (left) and A¼ 0.75 (right). The flows considered here have

Fr¼ 1. Times at which diagnostics are calculated for each flow, listed in Table I, are indicated by the vertical dashed lines, of which the first three also depict the separation of
the four flow regimes discussed in the text.
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velocity, viscosity, and diffusion coefficient scales, respectively. All
cases considered here have unity Fr and Sc numbers. The simulations
analyzed here represent a subset of the cases presented in Ref. 13: the
computational Reynolds numbers are Re0 ¼ 104 and Re0 ¼ 1563 for
the low and high Atwood number cases, A¼ 0.05 and A¼ 0.75,
respectively. Following Refs. 13 and 19, the results are further normal-
ized using the velocity and times scales, Ur ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
A=Fr2

p
and tr

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Fr2=A

p
, so that the kinetic energy scale is kr ¼ k
 ¼ U2

r ¼ A=Fr2.

B. Governing equations for scale-resolving variables

We obtain the governing, or transport, equations for the general-
ized statistics in the scale resolving description of the flow in the same
way as for the RANS statistical description of the flow. Applying the
filtering operations defined in (5) and (6) on the NS equations (36)
and (37) results in

@�q
@t
þ @

@xj
ð�qeujÞ ¼ 0; (47)

@�qeui

@t
þ @

@xj
ð�qeuieujÞ ¼ �

@�p
@xi
þ
@�s ij
@xj
þ 1
Fr2

�qgi �
@

@xj
�qTij

 �

: (48)

Transport equations for the filtered density-specific volume
covariance b, turbulent mass-flux velocity ai and turbulent stressesTij

can be obtained following the same procedure used to derive the trans-
port equations for the RANS BHR statistics12 described in Sec. II, by
applying the filtering operations (5) and (6) on the NS equations (36)
and (37), and using the definitions (7)–(9). Alternatively, replacing
central moments with their corresponding generalized central
moments,11 the transport equations for the unclosed RANS varia-
bles12,14,15 can be converted to equations for the filtered quantities,
using the following rules. The generalized central moments of rele-
vance here are

uðf ; gÞ ¼ fg � �f �g ! f 0g 0 ; (49)

uðf ; g; hÞ ¼ fgh � �f uðg; hÞ � �guðf ; hÞ � �huðf ; gÞ � �f �g�h ! f 0g 0h0 ;

(50)euðf ; gÞ ¼ efg �ef eg ! qf 00g00=�q; (51)

euðf ; g; hÞ ¼ ffgh � euðfgÞeh � euðfhÞeg � euðghÞef �ef egeh
! qf 00g 00h00=�q; (52)

where the arrows indicate the corresponding central moments in the
RANS statistical formulation. Either way, the resulting transport equa-
tions are

@�qb
@t
þ �qeukbð Þ;k ¼ �2ðbþ 1Þak�q ;k þ 2�qakb;k

þ �q2 uðq; v; ukÞ
�q

� 	
;k
þ 2�q2uðv; uk;kÞ; (53)

@�qai
@t
þ ð�qeukaiÞ;k ¼ bð�p;i � �ski;kÞ �Tik�q ;k � �qakðeui � aiÞ;k

þ �qðaiakÞ;k � �q
uðq; ui; ukÞ

�q

� 	
;k
þ �q uðv; p;iÞ

� �q uðv; ski;kÞÞ � �quðui; uk;kÞ; (54)

and

@�qTij

@t
þ �qeukTij

 �

;k
¼ ai�P ;j þ aj�P ;i � �qTikeuj;k � �qTjkeui;k

� aieu jk;k � ajeuik;k � �q euðui; uj; ukÞ� �
;k

þ ûðui; sjkÞ þ ûðuj; sikÞ
� �

;k
� ûðui; pÞ½ �;j

� ûðuj; pÞ
� �

;i
þ ûðui;j; pÞ þ ûðuj;i; pÞ

� ûðsjk; ui;kÞ � ûðsik; uj;kÞ: (55)

The sub-scale kinetic energy is related to the turbulence stress
tensor by

ks ¼
1
2
Tkk: (56)

Here, we use the term sub-scale kinetic energy for ks, but in the context
of filtering it can be referred to as sub-filter kinetic energy, and in the
context of LES it can also be referred to as unresolved kinetic energy.
Complementing the sub-scale kinetic energy is the scale-resolved, or
resolved, kinetic energy,

kr ¼
1
2
euieui; (57)

such that the sum of the two is the total kinetic energy

k ¼ ks þ kr : (58)

It is useful to investigate the sub-scale kinetic energy equation, for its
physical significance, its ties to the stress tensor, and also for its role in
modeling. The transport equation for the sub-scale kinetic energy is
given by, following the form used in Ref. 14,

@�qks
@t
þ �qeukksð Þ;k ¼ akð�p;k � �s ik;kÞ � �qTikeui;k �

1
2

�q euðui; ui; ukÞ½ �;k
� ûðuk; pÞ½ �;k þ ûðuk;k; pÞ � ûðski; ui;kÞ
þ ûðui; skiÞ½ �;k: (59)

For completeness, the Favre averaged scale-resolved kinetic energy is

@�qkr
@t
þ @

@xj
ð�qeujkrÞ¼

@

@xj
eui�sij��qeuiTij�eujp0
� �

þ 1
Fr2
eui�qgi

þp0
@eui

@xi
�eui

@hpi
@xi
�es�e: (60)

We decompose the pressure gradient using the RANS definition, as it
is used in the DNS, as described above. As a result, here we use

@�p
@xi
¼ @hpi

@xi
þ @p

0

@xi
: (61)

The average molecular viscous stress tensor is given by

�sij ¼ l
@ui
@xj
þ @uj
@xi

�2
3
@uk
@xk

dij

 !
(62)

and the molecular dissipation is

e ¼ �sijeSij; (63)

where the resolved strain is given by
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eSij ¼ 1
2

@eui

@xj
þ @
euj

@xi

 !
(64)

and l is the dynamic viscosity. We define the kinetic energy transfer
between resolved and sub-filter scale kinetic energies as

es ¼ ��q TijeSij: (65)

From Eq. (56), the sub-scale kinetic energy ks transitions to 0 in
the NS limit, and to the finite RANS quantity in the RANS limit, as
Tij does. In the NS limit, the Favre averaged velocity eui converges to
the instantaneous velocity eui ! ui, and guiuj ! uiuj, so the scale-
resolved kinetic energy kr transitions to the total kinetic energy in the
NS limit, kr ! uiuj=2. In the RANS limit, kr converges to the RANS
mean kinetic energy.

As in Sec. IIB, for smooth flows, we can expect the governing
equations for the scale resolved statistics b, ai, Tij, and ks in Eqs.
(53)–(55) and (59) to have similar transitions to NS and RANS limits
as the variables themselves. As a result, we expect the governing equa-
tions for the SR variables to transition to zero in the NS limit and to
the governing equations for their RANS counterparts in the RANS
limit. The governing equation for the scale-resolved kinetic energy kr
transitions to the governing equation for the total kinetic energy in the
NS limit and to the governing equation for the RANS mean kinetic
energy in the RANS limit.

IV. DIAGNOSTICS FOR HOMOGENEOUS VARIABLE
DENSITY TURBULENCE

We now investigate the scale-resolving generalized statistics using
direct numerical simulations (DNS) of homogeneous variable density
turbulence from Ref. 13. The HVDT DNS at the times indicated in
Table I is filtered using a Gaussian kernel as defined in Eq. (23). The
filter width w is given by

w ¼ f0
f1
f0

� 	 i�1
Nw�1ð Þ

Dx; (66)

where f0 ¼ 1=p and f1 ¼ 512 are parameters used to control the lower
and upper bounds of w. We perform diagnostics at Nw¼ 15 filter
widths normalized by the box size L ¼ 2p, varying between a fraction
of the grid size, where i¼ 1 and w=L ¼ ðDx=pÞ=L ¼ 3:1	 10�4, and
half the box size, where i ¼ Nw ¼ 15 and w¼ 1/2, such that
ðDx=pÞ=L � w=L � 1=2, as listed in Table II, as this range is observed
to be large enough to contain the transition of the SR quantities
between the NS and the RANS limits.

The DNS for this flow have many degrees of freedom, as the spa-
tial resolution isN3 ¼ 10243, and there are several dynamical variables
of interest. To simplify the analysis, a number of diagnostics are
used to investigate scale dependence of the VDT statistics presented in
Sec. II and of the budgets in the governing equations for some of these
statistics. Since the flow is homogeneous, RANS statistics and, in gen-
eral, volume averages have no spatial variability. For this reason, we
will first investigate volume-averaged SR statistics. However, scale
resolving statistics do vary in space, and this will be investigated too by
looking at probability density function distributions as a function of
filter width.

The evolution of the kinetic energyRii=2 and kinetic energy pro-
duction are shown in Fig. 1. Throughout this section, we will be look-
ing at diagnostics from HVDTDNS with A¼ 0.05 and A¼ 0.75 at the

four times t=tr (with tr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Fr2=A

p
) listed in Table I, corresponding to

the four regimes in HVDT, plotted in Fig. 1. The simulations consid-
ered here have Fr¼ 1. These four times correspond to (i) when the
kinetic energy production peaks, at the end of the explosive growth
regime, (ii) when the kinetic energy peaks, at the end of the saturated
growth regime, (iii) the end of the fast decay regime when the net rate
of decay of kinetic energy starts decreasing, and (iv) at a time during
the gradual decay regime.

A. Scale-resolving variables

Volume integrated SR variables are plotted, normalized by their
RANS statistics counterparts, in Fig. 2. For the small Atwood number
A¼ 0.05 snapshot at the end of the explosive growth period, the first
time shown, the statistics collapse reasonably well to a single curve.
However, at later times this is no longer the case for either A¼ 0.05 or
A¼ 0.75 cases, and the spread between the curves increases until the
rapid decay regime, after which the spread seems to either stabilize or
slightly decrease. The horizontal components of the turbulent stress
tensorT22 andT33 have the same scaling. However, the vertical com-
ponent T11 and the horizontal components T22;T33 of the stress
tensor, the vertical component a1, and b, each have different length
scalings, and these scalings vary in time.

We compare the scaling of the SR variables to smallest Taylor
micro-scale, which for this flow corresponds to the horizontal Taylor
micro-scale,

TABLE I. Normalized times t=tr (with tr ¼
ffiffiffiffiffiffiffiffiffiffiffi
Fr2=A

p
) at which diagnostics are com-

puted at each Atwood number.

Time instance
t=tr for

A¼ 0.05 case
t=tr for

A¼ 0.75 case

End of explosive growth 1.3 1.4
End of saturated growth 2.3 2.4
End of fast decay 4.3 5.9
Within gradual decay 7.0 9.4

TABLE II. List of filter number i and their corresponding normalized filter widths w/L,
obtained from (66).

i w/L i w/L

1 ðDx=pÞ=L ¼ 3:1	 10�4 9 2:1	 10�2

2 5:3	 10�4 10 3:6	 10�2

3 8:9	 10�4 11 6:1	 10�2

4 1:5	 10�3 12 1:0	 10�1

5 2:6	 10�3 13 1:7	 10�1

6 4:3	 10�3 14 3:0	 10�1

7 7:4	 10�3 15 1=2 ¼ 5:0	 10�1

8 1:2	 10�2
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FIG. 2. Volume averaged filtered quantities, normalized by their corresponding RANS counterparts, as a function of filter width normalized by the box size, w/L. The left and
right columns correspond to A¼ 0.05 and A¼ 0.75, respectively. Dashed vertical lines indicate the horizontal Taylor micro-scale kh and the integral length scale calculated
based on the vertical velocityLv, with kh <Lv .
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kh ¼
1
2

X3
b¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu02b i

@u0b
@xb

 !2* +
vuuuuut (67)

and to the largest integral length scale, namely, based on the vertical
velocity,

Lv ¼
2p
ð1
0
k�1Eu1ðkÞdkð1

0
Eu1ðkÞdk

; (68)

which are shown as vertical lines in Fig. 2. The volume integrated SR
variables converge to their RANS values when the filter width is com-
parable to the vertical integral length scale, w �Lv , which is about an
order of magnitude smaller than the box size for these DNS. The NS
values are reached at length scales that are at least one order of magni-
tude smaller than kh. In the low Atwood number simulation, the NS
limit is reached at larger length scales at early times, and at smaller
length scales at later times, reflecting the population of smaller length
scales as the turbulence develops in time. However, in the large
Atwood number simulation, the NS limit is reached at more or less
the same length scale for the first three times, and at slightly larger
length scales for the last snapshot. Note that the volume integrated
density h�qi is not shown in Fig. 2, as h�qi ¼ hqi ¼ ðq1 þ q2Þ=2 is con-
stant throughout the flow.

At any given time, at intermediate filter widths, the SR statistical
quantities have large variability in space. To quantify this, we compute

the probability density function of b, a1,T11, andT12, normalized by
their RANS counterparts, shown in Fig. 3 for A¼ 0.75 at the time
when Rii peaks. The realizability conditions (33) and (32) for b and
Tij, respectively, are satisfied by the Gaussian filter we use here. The
yellow line corresponding to i¼ 1 shows that at the NS limit, where
the filter size is a fraction of a grid cell, w=L ¼ ðDx=pÞ=L
¼ 3:1	 10�4, all quantities are zero everywhere in the domain, and
the PDFs correspond to a delta function centered at 0. As the filter
width increases, the range of values in the PDFs broadens until the fil-
ter width at which the widest PDF is observed is reached, namely,
i¼ 9, w=L ¼ 2:1	 10�2, for b, where the filter width is just around
the horizontal Taylor micro-scale kh (Fig. 2), i¼ 6, w=L ¼ 4:3	 10�3

for a1 andT11, and i¼ 5, w=L ¼ 2:6	 10�3 forT12. At the broadest
shape of the PDFs, the variability is such that values of about 3, 4, and
6 times the RANS values are observed in b, a1, and T11=R11, respec-
tively, while forT12=R12, this variability is much larger, and values of
up to 100 times the RANS values are observed. The off diagonal stress
R12 is two orders of magnitude smaller than R11 (not shown); how-
ever, the magnitude of the largest fluctuations in T12 and in T11 is
about the same order of magnitude, resulting in the large normalized
T12 values seen in Fig. 3. SinceR12 is associated with shear stress pro-
duction, this indicates that, while locally the shear stress can be the
same order as the normal stress, overall there is no bias toward a cer-
tain direction, and negative and positive T12 values cancel out in the
volume average. This is expected for a buoyancy driven flow, with no
mean shear that the volume average of T12 is a small number that
results from the sum of large numbers. Subsequently, as w/L continues
to increase, the PDFs become narrower until eventually they again

FIG. 3. Probability density functions for b,
a1, T11, and T12, normalized by their
RANS counterparts, at t=tr ¼ 2:4 when
Rii peaks, for A¼ 0.75. The colorbar indi-
cates the filter width used, according to
(66), Table II, where i¼ 1 corresponds to
the smallest filter width w=L ¼ ðDx=pÞ=
L ¼ 3:1	 10�4 and i¼ 15 corresponds
to the largest filter width w=L ¼ 1=2.
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become a delta function at the RANS limit, w=L ¼ 1=2. In the RANS
limit, illustrated by the dark blue lines at i¼ 15 corresponding to
w=L ¼ 1=2, the SR quantities have no spatial variability as they reach
their RANS values, where b=be ¼ 1; a1=ae1 ¼ 1; T11=R11 ¼ 1 and
T12=R12 ¼ 1. Similar behavior is observed at other times as well as
for A¼ 0.05.

B. Volume integrated budgets

We now investigate the governing equation for b. Volume-
integrating equation (53) results in

@�qb
@t

 �
¼ �h2ðbþ 1Þak�q;ki þ h2�qakb;ki

þ �q2 uðq; v; ukÞ
�q

� 	
;k

* +
þ h2�q2uðv; uk;kÞi; (69)

where the terms on the right hand side correspond to net, volume inte-
grated production, redistribution, turbulent transport, and destruction,
respectively, and where the volume integrated advection term becomes
zero due to spatial homogeneity of the flow. These terms are plotted in
Fig. 4 as they appear in Eq. (69), and the residual is shown as the black
line, indicating that the budget is closed to an excellent level of accu-
racy. From the realizability condition for b in Eq. (33), and since
�q � q1 > 0 as discussed at the end of Sec. IIA, �qb is always positive.
Consequently, budget terms that cause �qb to increase and decrease
appear as positive and negative terms in Fig. 4, respectively, and nega-
tive @�qb=@t indicates a decrease in �qb with time. As with b, and in
general all the SR quantities (Fig. 2), the terms governing the rate of
change of b in time transition smoothly between zero at the NS limit
and their RANS values in the RANS limit. In the latter, we recover the
RANS budget for HVDT, in which b is set by the configurational value
given by the initial blob distribution, and then decays monotonically
in time (see, e.g., Ref. 19). This way, the only term in the budget of the
RANS description that is active is the destruction term, consistent
with Fig. 4. The volume integrated destruction term varies monotoni-
cally between 0 in the NS limit and its RANS value in the RANS limit.
However, during the time of peak conversion of potential energy to
turbulent kinetic energy, or at the end of the explosive growth regime,
the volume integrated rate of change of �qb does not change monotoni-
cally between the NS and RANS limits. This is because the net, volume
integrated production of �qb is non-zero and can be larger than the
rate of destruction at intermediate filter widths. During the explosive
growth regime, stirring occurs first at large scales, which is followed in
time by the formation of structures at progressively smaller scales.13

Consequently, the generalized variance in Eq. (29) is at first larger at
larger scales, and at small scales it increases with time. At later times
after the end of the explosive growth regime, as turbulence becomes
more developed, this strong variance is destroyed by mixing of the two
fluids. As a result, the destruction of �qb at first is equal, and than
greater than, the production as the filter width increases from the
mesh size in the NS limit. This leads to a monotonically increasing (in
magnitude) net decay of h�qbi as the filter width increases. For the
high Atwood number case, during the first two regimes leading up to
the time of peak kinetic energy, the volume integrated transport of �qb
is positive, but small.

The volume integrated budget for the dominating SR turbulent
mass flux a1, following Eq. (54), is

@�qa1
@t

 �
¼ hbð�p;1 � �sk1;kÞi � hT1k�q ;ki � h�qakðeu1 � a1Þ;ki

þ h�qða1akÞ;ki þ �q
uðq; u1; ukÞ

�q

� 	
;k

* +
þ h�q uðv; p;1Þi � h�q uðv; sk1;kÞi; (70)

where the terms on the right hand side represent production by a pres-
sure gradient, viscous stresses, turbulent stresses, redistribution, self-
advection, turbulent transport, and two destruction terms, respectively.
These are plotted in Fig. 5, where the residual is represented by the
solid black line, again indicating the excellent closure of the budget.
With the coordinate frame used for this flow, gravity g and the RANS
turbulent mass flux velocity point in the �x1 direction, so that
ae1 < 0. As a result, production and destruction are represented as
negative and positive values in Fig. 5, respectively, and positive
@ð�qa1Þ@t > 0 corresponds to �qa1 decaying in magnitude. Similar to
the �qb budget, all budget terms are zero at the NS limit, and, at the
RANS limit, the budget corresponds to the budget governing the
RANS variable ae1, where the time rate of change is dominated by four
terms: the �quðv; p;1Þ destruction term, the production due to the pres-
sure gradient b�p;1 (itself dominated by the volume-mean pressure
gradient), and, to a lesser though non-negligible extent, the destruction
term due to viscous stresses �quðv; sk1;1Þ and the commonly ignored
dilatation term �quðu1; un;nÞ. The terms that are active, in the volume
integrated sense, at the RANS limit all decay monotonically to zero as
the filter width is decreased to the grid size in the NS limit. The redis-
tribution term �qak�u1;k and the production term T1k�q;k are zero at
the NS and RANS limits, but non-zero at intermediate scales as they
peak at filter widths comparable to the horizontal Taylor micro-scale
kh. These peak values are small but non-zero at the end of the explo-
sive growth regime, but they play an increasingly important role as
time advances and turbulence develops.

We now investigate the resolved kinetic energy budget (60) aver-
aged over the volume

@�qkr
@t

 �
¼ 1

Fr2
eui�qgi

 �
þ p0

@eui

@xi

 �
� eui

@hpi
@xi

 �
� hesi � hei;

(71)

where the terms on the right hand side represent production by conver-
sion of potential energy to kinetic energy, work by the pressure fluctua-
tion on the dilatation of the flow, work by the mean pressure gradient
on Favre velocity, conversion to small scale kinetic energy by the residual
stresses, and dissipation by molecular viscosity, respectively. The terms
in Eq. (71) are plotted in Fig. 6. The volume average of the advection
and transport terms in (60) is zero since the domain is periodic. The
pressure projection method in the time advancement scheme used for
the DNS gives the average pressure over a given time step, not the
instantaneous pressure needed in (71) to close the budget. For this rea-
son, we calculate the work by fluctuating pressure on dilatation as a
residual using the other terms in (71), which we calculate from the DNS.
As a result, we do not plot a residual to the balance in (71) in Fig. 6.

Conversion of potential energy to kinetic energy is constant,
independent of length scale or filter width, at all times for both
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Atwood numbers. This is consistent with the discussions in Refs. 19
and 41, where it is shown that this conversion takes place at the scale
of the domain. Work by the mean pressure gradient on the Favre
velocity heuiihpii is small at scales similar to or smaller than the

horizontal Taylor micro-scale, where it has a net effect of transferring
energy from the resolved scales to the small scales. The transfer of
kinetic energy hesi is from resolved scales to small scales, in the volume
integrated sense, it is zero at the NS and RANS limits, and it peaks at

FIG. 4. Volume averaged budget terms for b transport equation (69), as a function of filter width normalized by the box size, w/L. Note the difference in scales. Left and right
columns correspond to A ¼ 0:05; 0:75 cases, respectively. Taylor micro-scale kh and integral length scale Lv , with kh <Lv , are shown with vertical dashed lines. Black
line indicates the residual.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 025115 (2021); doi: 10.1063/5.0040337 33, 025115-12

Published under license by AIP Publishing

https://scitation.org/journal/phf


FIG. 5. Volume averaged budget terms in (70) for a1, as a function of filter width normalized by the box size, w/L. Note the difference in scales. Left and right columns correspond
to A ¼ 0:05; 0:75 cases, respectively. Taylor micro-scale kh and integral length scaleLv , with kh <Lv , are shown as vertical dashed lines. Black line indicates the residual.
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FIG. 6. Volume averaged budget terms for the resolved kinetic energy in (71), as a function of filter width normalized by the box size, w/L. Note the difference in scales. Left
and right columns correspond to A ¼ 0:05; 0:75 cases, respectively. Taylor micro-scale kh and integral length scale Lv , with kh <Lv , are shown as vertical dashed lines.
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scales similar to the horizontal Taylor micro-scale. We will see later
that hesi locally can transfer energy upward or downward between the
resolved and subscale kinetic energies. Viscous dissipation of kinetic
energy hei is important at scales smaller than the horizontal Taylor
micro-scale. Work from fluctuating pressure on the dilatation of the
flow hp0eui;ii is non-zero, though small, only during the explosive and
gradual growth regimes of the A¼ 0.75 flow. After the end of the
explosive growth regime, large scale production, work by the mean
pressure gradient, kinetic energy transfer between scales, and viscous
dissipation coexist at scales smaller than kh, the first three are present
at scales between kh and the vertical integral length scaleLv , and only
the first two are present at scales larger than Lv and in the RANS
limit.

To recapitulate, we observe two salient features regarding the
terms in the volume integrated budget equations for �qb and �qa1: (1)
they are zero in the NS limit, are dominated by the RANS budgets in
the RANS limit, but (2) at intermediate scales, these budgets have
important contributions from other terms that are not active in the
RANS limit.

To illustrate the spatial variability of budget terms, we look at the
terms governing the evolution of b by plotting their PDF in Fig. 7. For
homogeneous variable density flows, one can use (39) and integration
by parts to show that the destruction of b is negative. Similar to the
PDFs of SR variables shown in Fig. 3, there is a smooth transition
between the NS limit, where the budget terms are zero, and the RANS
limit, where the budget equation for b tends to the budget equation for
be.

12 Also in Fig. 3, there is a large spread of values, indicating the

existence of rare events that can have values that are two or more
orders of magnitude larger than the RANS quantity corresponding to
i¼ 15, w=L ¼ 1=2. The transport term has a spread that is particularly
large for filter widths i ¼ 2� 5; w=L ¼ 5:3	 10�4 � 2:6	 10�3

and decreases for larger filter widths. This term also has a reasonably
symmetric PDF, indicating that the zero volume integrated net pro-
duction is the result of the summation of large positive and negative
terms. This indicates that in the flow, at these intermediate scales, there
is a lot of spatial variability in the transport of �qb. The production
term, which is zero in the RANS limit but nonzero at intermediate
scales, also has large variability in the PDF, with positive and negative
values, indicating that it creates and destroys variability in
ð�q=ðq�qÞ; �qÞx , see Eq. (29), due to variability in the alignment between
the turbulence mass flux velocity ak and the density gradient �q;k. In
the RANS limit, the destruction term plays a dominant role, and it has
large variability at intermediate scales as well. Redistribution has a zero
volume integral across scales that results from positive and negative
values due to the variability in the alignment between the mass flux,
ak, and gradient of b, b; k.

The transfer of kinetic energy between the resolved scales and the
sub-filter scales es is important for understanding the physical nature
of turbulent flows, as well as for the development of subgrid scale
models for large eddy simulations and for scale resolving simulations.
In Fig. 8, we plot probability density functions es for the different filter
widths used, for the four regimes we consider here. Recall from the
discussion of Fig. 6 that the net volume integrated transfer hesi is zero
in the NS and RANS limits, and hesi > 0 at intermediate scales, which

FIG. 7. Probability density function of the
production �2ðbþ 1Þak�q ;k , redistribution
2�qakb;k , destruction 2�q2uðv; uk;kÞ and
transport �q2ðuðq; v; ukÞ=�qÞ;k terms, as
they appear in Eq. (69), at t=tr ¼ 2:4
when Rii peaks, for A¼ 0.75. The color-
bar indicates the filter width i used,
according to (66), Table II, where i¼ 1
corresponds to the smallest filter width
w=L ¼ ðDx=pÞ=L ¼ 3:1	 10�4, and
i¼ 15 corresponds to the largest filter
width w=L ¼ 1=2.
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is consistent with Fig. 8. In the NS and RANS limits, es ¼ 0 every-
where in the flow, while at intermediate scales it can be positive where
kinetic energy is transferred to small scales and negative where there is
backscatter, i.e., transfer of kinetic energy from small scales to the

resolved scales.42 In LES approaches, backscatter acts as a source term
in the kinetic energy equation and poses significant difficulties in
maintaining stable computations. Many of the simple subgrid scale
models do not account for backscatter, and properly describing this

FIG. 8. Probability density function of the
transfer from resolved to small scale
kinetic energy es ¼ ��q Tij

eSij in (60)
and (71), as a function of filter width nor-
malized by the box size, w/L at different
times. Left and right columns correspond
to A ¼ 0:05; 0:75, respectively. The color-
bar indicates the filter width i used,
according to (66), Table II, where i¼ 1
corresponds to the smallest filter width
w=L ¼ ðDx=pÞ=L and i¼ 15 corre-
sponds to the largest filter width
w=L ¼ 1=2.
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phenomenon is an active area of research.43 We have observed (not
shown here) that, for both Atwood numbers, the fraction of the
domain volume where backscatter occurs is roughly between 30% and
40% at early times, during the turbulence growth regimes, and that
this fraction is smaller, between 20% and 30%, at later times during
the decay regimes. The range of values of es increases with time until
the kinetic energy peaks at the end of the saturated growth regime,
after which it decreases. At the end of the explosive growth regime, the
largest values of es occur at filter widths i ¼ 6� 7; w=L ¼ 4:3
	10�3 � 7:4	 10�3 for A¼ 0.05 and i ¼ 4� 6; w=L ¼ 1:5	 10�3

�4:3	 10�3 for A¼ 0.75. These filter widths decrease somewhat at
the end of the saturated growth and the fast decay regimes, and
then increase during the gradual decay regime. Rates of transfer
of kinetic energy between resolved and sub-filter scales are
orders of magnitude larger for the A¼ 0.75 case than for the
A¼ 0.05 case.

The rate of transfer of kinetic energy between scales is largely
affected by variable density effects, as illustrated in Fig. 9, where we

plot the joint probability density function for ðes;�rhoÞ at the end of
the saturated growth regime period for three filter widths w=L
¼ 0:002 6; 0:021; 0:17 corresponding to i¼ 5, 9, 13, respectively, in
Fig. 8. For the flow with A¼ 0.05, the joint PDF is mostly symmetrical
with respect to the mean density hqi ¼ 1:05, while for A¼ 0.75, the
joint PDF is skewed toward densities smaller than the mean density
hqi ¼ 4. This happens because, due to inertial effects, turbulence is
more energetic in the lighter fluid than in the heavier fluid.13,19,24 As
the filter width increases between these three filter widths, the range of
variability in es decreases by several orders of magnitudes.

V. DISCUSSION AND CONCLUSIONS

We have formulated a set of generalized, scale resolving (SR) var-
iables for variable density turbulence, namely, density-specific volume
covariance b, turbulent mass flux velocity ai, and the turbulent stress
tensor Tij, in Eqs. (29)–(31), which are presented and discussed in
Sec. II. These variables are written as inner products of the fluctuations
of a quantity q of the form

FIG. 9. Joint probability density function
for es; �q, at t=tr ¼ 2:3 and t=tr ¼ 2:4,
when Rii peaks, for A¼ 0.05 (left) and
A¼ 0.75 (right), at three different filter
widths w=L ¼ 0:003; 0:02; 0:2, as
indicated.
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��q iðxÞ � qiðnÞ � euiðxÞ; (72)

�qiðxÞ � qiðnÞ � q̂iðxÞ (73)

for velocity, ��uðn; xÞ in (12) and �uðn; xÞ in (16), and density, �qðn; xÞ in
(15). The generalized fluctuating quantities represent fluctuations of a
field variable qiðnÞ at points n, with respect to its filtered value eqiðxÞ or
�qiðxÞ at a point x. The realizability conditions for the SR variables are
a generalization of the realizability conditions for their RANS counter-
parts, and in the limit of large length scales, the latter are a special case
of the former. Evolution equations for b; ai;Tij are presented in
(53)–(55) in Sec. III B. We showed how the volume integrated SR vari-
ables b; a1, and scale-resolved kinetic energy kr, and their budget terms
vary smoothly between zero in the NS limit and their RANS counter-
parts in the RANS limit, as a function of length scale, or filter width,
for homogeneous variable density turbulence. These properties hold
for filter kernels that have a positive stencil in space, which also
ensures the preservation of scalar bounds, thus ensuring the consis-
tency between the SR statistical description and the RANS statistical
description of the flow. For these reasons, we use the Gaussian filter.
However, the analysis can be performed with other positive definite fil-
ters. This framework can be applied to turbulent flows with directions
of homogeneity by filtering along these directions, using a positive fil-
tering kernel Gðn; xÞ chosen such that it varies only along directions
of homogeneity.

To illustrate these ideas, we perform diagnostics of the SR-
equivalent of RANS variables that are used to investigate13,19,24,25,39

and model12,14–16 variable density turbulence, namely, the density-
specific volume covariance b, the turbulent mass-flux velocity ai, the
Reynolds stressTij, and the resolved kinetic energy kr, defined in Eqs.
(29)–(31) and (57), respectively, using theory and diagnostics from
DNS of homogeneous variable density turbulence at times that are
representative of different dynamical regimes in this flow.

In particular, in the RANS limit where the resolved scales similar
to or larger than the dominating integral length scale, (i) the SR varia-
bles converge to the RANS variables; (ii) the governing equations of
the SR variables converge to the governing equations of the RANS var-
iables; (iii) inner products of random generalized fluctuations, equiva-
lent to the expected value of their product, become the expected value
of fluctuating quantities, or the statistical moments, in the RANS
framework. The terms dominating the balance equations for the SR
variables include dynamical processes that are not active in the RANS
balance equations. For example, in the RANS limit, the only active
term in the balance equation for be is the destruction term, and thus be
is described by a purely decaying process. The SR balance equation for
b, on the other hand, is dominated by production, redistribution,
transport, and destruction terms, and b can grow or decay, depending
on the scale being considered and the stage of the flow. At early stages
of the flow, volume integrated production of �qb is non-zero and can
be larger than the rate of destruction at intermediate filter widths. The
flow is initialized with length scales l between 1=5 � l=L � 1=3, which
are slightly larger than the integral length scale for the flow. For this
reason, at the onset of the flow, b¼ 0 for filter widths w=L < 1=5.
Stirring occurs first at large scales, which is followed in time by the for-
mation of structures and generation of density-specific volume covari-
ance (b) at progressively smaller scales.13 Consequently, the
generalized variance in Eq. (29) is at first larger at larger scales, and at
small scales, it increases with time. At later times after the end of the

explosive growth regime, as turbulence becomes more developed, this
strong variance is destroyed by mixing of the two fluids. As a result,
the destruction of �qb at first is equal to and then greater than the pro-
duction as the filter width increases from the mesh size in the NS limit.
This leads to a monotonically increasing (in magnitude) net decay of
h�qbi as the filter width increases.

In summary, the dynamics at intermediate length scales are
richer than the dynamics in the RANS description of the flow. This
has important implications for modeling, as it means that the dynam-
ics at resolutions between LES and RANS resolutions is not just a
modulated version of the dynamics represented by the RANS equa-
tions, an assumption used in some hybrid RANS/LES strategies.

This work supports the notion of a generalized, length-scale
adaptive model in terms of the SR variables that converges to DNS at
high resolutions and to classical RANS statistics at coarse resolutions
(e.g., Refs. 9 and 10). We believe that our work is a step toward formal-
izing the concept of such self-adaptive models, putting this concept on
firmer footing.
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