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Abstract
Numerical simulations of single-mode, compressible Rayleigh–Taylor instability are
performed using the adaptive wavelet collocation method (AWCM), which utilizes wavelets
for dynamic grid adaptation. Due to the physics-based adaptivity and direct error control of the
method, AWCM is ideal for resolving the wide range of scales present in the development of
the instability. The problem is initialized consistent with the solutions from linear stability
theory. Non-reflecting boundary conditions are applied to prevent the contamination of the
instability growth by pressure waves created at the interface. AWCM is used to perform direct
numerical simulations that match the early-time linear growth, the terminal bubble velocity
and a reacceleration region.

PACS number: 47.20.Ma

1. Introduction

The use of a wavelet-based adaptive method for the simulation
of complex fluid systems allows efficient use of computational
resources, since high-resolution simulations are performed
only where small structures are present in the flow. The
wavelets allow the grid to dynamically adapt to the structures
in the flow as they evolve in time while maintaining direct
control of the error [1]. The adaptive wavelet collocation
method (AWCM) is an innovative approach for the numerical
simulation of non-equilibrium turbulent processes and has
been efficiently used for simulations of incompressible
flows [2] and compressible inert and reactive flows [3, 4].
AWCM is yet to be tested for the study of Rayleigh–Taylor
instability systems. The extension of AWCM to simulations of
Rayleigh–Taylor instability is promising due to the localized
nature of the system.

The Rayleigh–Taylor instability, which results when a
light fluid pushes on a heavier fluid [5, 6], plays a major role
in various systems of interest, including astrophysical [7, 8],
atmospherical, inertial confinement fusion [9, 10], etc. When
a single-mode, small perturbation is applied to the interface
between two fluids, a bubble of lighter fluid penetrates into
the heavier fluid. Concurrently, a spike of heavier fluid falls
into the lighter fluid. The late-time behavior of the instability
in the presence of compressibility and variable density effects
is not currently fully understood [11, 12]. However, in order
to capture the late-time behavior, the simulations need to

be performed in long vertical domains. To minimize the
computational effort, high-resolution simulations on such
domains could be performed on adaptive grids, where the
resolution of the computational grid matches the local scale
of the system. Rayleigh–Taylor instability remains a spatially
localized phenomenon near the interface well into the
turbulent stage. Most of the computational domain is therefore
quiescent. The feasibility of applying AWCM to the study of
Rayleigh–Taylor instability is tested by simulating the growth
of the two-dimensional instability. Of interest for the direct
numerical simulations are matching the early time linear
growth [13], achieving the terminal bubble velocity [14–16]
and observing a reacceleration region [17].

2. AWCM

AWCM utilizes wavelets to locally adapt the numerical
resolution during the evolution of complex flows [18–20].
Thus, localized structures are well-resolved while optimizing
computational resources. In order to simplify the computation
of nonlinear terms, a wavelet collocation method is used,
which ensures a one-to-one correspondence between grid
points and wavelets. Wavelets are functions that are localized
in both wave number and physical space, which are
used as a set of basis functions to represent the flow
in terms of wavelet coefficients. In this sense, wavelets
provide both frequency and position information about the
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Figure 1. Mass fraction, vorticity and the associated adaptive grid for the late-time instability growth.

flow. AWCM uses wavelet decomposition to determine
those wavelets that are insignificant for representing
the solution while maintaining a direct error control.
Once scaling functions, φ j

k(x), and wavelet interpolating
functions, ψµ, j

l (x), are constructed [20], a function f (x) can
be decomposed as

f (x)=

∑
k

c0
kφ

0
k(x)+

∞∑
j=0

2n
−1∑

µ=1

∑
l

dµ, j
l ψ

µ, j
l (x). (1)

A wavelet coefficient, dµ, j
l , will have a small value unless

the function varies on the scale j in the immediate vicinity
of the wavelet ψµ, j

l (x). For functions where isolated small
structures exist on a large-scale background, most of the
wavelet coefficients are small. The wavelets associated with
coefficients less than a prescribed threshold parameter, ε,
can be discarded in representing the solution, while retaining
an approximation with an error that is O(ε). Derivatives
are calculated at the corresponding local resolution using
finite differences. Second-generation wavelets are used, which
allow the order of the wavelets and thus the order of the finite
differences to be easily varied.

When solving evolution problems, such as the growth
of Rayleigh–Taylor instability, an adjacent zone is added
to the points associated with wavelets, whose coefficients
are significant. By adding the nearest neighbors of the
significant wavelet coefficients in both position and scale,
the computational grid contains points that could become
significant during a time step. The dynamic grid adaptation

allows efficient use of computational resources for resolving
a wide range of scale structures as they evolve. A typical
dynamically adapted grid is shown in figure 1 for a late-time
Rayleigh–Taylor instability simulation. The effective global
resolution is 10 241 × 1024, yet only 3.6% of the points are
used (380 166 points, 96.4% compression).

3. Model problem

In order to test the applicability of AWCM for direct
numerical simulations of the Rayleigh–Taylor instability,
a two-dimensional, single-mode system is studied. Linear
stability theory offers an early time solution to the instability
growth, which is used to test the accuracy of the code.

3.1. Governing equations

Simulations of the two-dimensional, single-mode, miscible
Rayleigh–Taylor instability are performed by solving the
compressible Navier–Stokes, energy and species mass
fraction, Yl , with l = 1, 2 , transport equations. Along with the
ideal gas equation of state, P = ρRT , in dimensional form,
the governing equations are [21]

∂ρ

∂t
+
∂ρu j

∂x j
= 0, (2)

∂ρui

∂t
+
∂ρui u j

∂x j
= −

∂p

∂xi
− ρgi +

∂τi j

∂x j
, (3)
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∂ρe
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∂ρYl

∂t
+
∂ρYlu j

∂x j
=

∂

∂x j

(
Dρ

∂Yl

∂x j

)
, (5)

where ρ is the density, P is the pressure, T is the temperature,
R is the gas constant and ui is the velocity in the xi -direction
and the specific total energy is defined as e = ui ui/2 + cpT −

P/ρ. The shear stress tensor, assuming Newtonian fluids, is
defined as τi j = µ[∂ui/∂x j + ∂u j/∂xi − (2/3)(∂uk/∂xk)δi j ].
Fluid properties, such as the dynamic viscosity, µ, heat
conduction coefficient, k, specific heats at constant pressure
and volume, cp and cv, and mass diffusion coefficient, D,
are defined as linear combinations of the individual species’
properties using the mass fractions. For example, the specific
heat at constant pressure is defined as cp = cpl Yl , where
summation over repeated indices is used.

The system is composed of a heavy fluid lying on top of a
lighter fluid in the vertical (x1) direction. The top fluid molar
mass is greater than that for the lower fluid, that is, W1 > W2.
Initially, the pressure and temperature at the interface are
Pi and Ti. The length scale used to non-dimensionalize the
equations is the perturbation wavelength, λ, for the initial
interface. The Atwood number, which is a measure of the
difference in density of the two fluids, is defined as

A =
W1 − W2

W1 + W2
. (6)

In order to investigate compressibility effects,
a distinction is made between fluid compressibility
characterized by the values of the ratios of the specific
heats, γ1 and γ2, and compressibility effects in response to the
thermodynamic state of the system, characterized by a Mach
number defining the size of a characteristic velocity relative
to the speed of sound [13]. Since the flow starts with zero
velocity, the Mach number is defined based on the gravity
wave speed, which characterizes the instability driving force,
and the isothermal speed of sound, which removes the
effects of the specific heats from the definition [13, 22]. The
definition is

M =

√
ρ̄gλ

Pi
, (7)

where ρ̄ = (W1 + W2)Pi/(2RTi), with R being the universal
constant, is the fluid density at the interface, where the
two fluids are equally mixed by volume (such that the
mole fractions are equal). For certain classes of initial
conditions, e.g. thermal equilibrium, M also determines the
vertical variations of the equilibrium density and pressure
profiles [13, 22]. In these cases, it can be regarded, in addition,
as a stratification parameter [11].

3.2. Initial conditions

The system is initialized with a hydrostatic background state,
to which linear perturbation fields for density and pressure are

added. The initial velocity field is zero, representing a system
at rest. Plugging ui = 0 into (3), the hydrostatic background
state requires that

∂pH

∂x1
= −ρH g. (8)

Assuming a background state in thermodynamic equilibrium,
the non-dimensional solution for each fluid is

pH
m = exp[−M2(1 ± A)x1], (9)

ρH
m = (1 ± A) exp[−M2(1 ± A)x1], (10)

where the subscript m = 1, 2 describes the fluid species.
A single-mode perturbation is added to the hydrostatic
background state consistent with linear stability theory [13].
The perturbation fields for the two-dimensional system are of
the form

p′

m = fm(x1) exp(ikx2 + nt), (11)

ρ ′

m = f̃m(x1) exp(ikx2 + nt). (12)

The x1-dependent functions are solved from the governing
equations (2)–(4) with the imposed solution from (11) and
(12) [13]. The initial fields for pressure and density for each
fluid are then

pm = pH
m + p′

m, (13)

ρm = ρH
m + ρ ′

m . (14)

The initial fields are smoothed at the interface using error
functions, H±(x)= [1 ± erf(x/δ)]/2, resulting in the full
initial pressure and density fields:

p = H+(x1 + η)p1 + H−(x1 + η)p2, (15)

ρ = H+(x1 + η)ρ1 + H−(x1 + η)ρ2. (16)

The perturbed initial temperature is then determined from the
equation of state.

4. Numerical implementation

Simulations of the model problem are performed using
AWCM. The domain is periodic in the horizontal (x2)
direction. The boundary conditions in the vertical (x1)
direction are designed to simulate an infinite domain such
that any pressure wave approaching the numerical boundaries
is not reflected and thus does not interact with and disturb
the growth of the instability. Pressure waves are created at
the interface at the initial time and travel in the vertical
direction. The instability is isolated by applying non-reflecting
characteristics-based boundary conditions at the top and
bottom of the domain, along with an additional buffer layer
of increased viscosity to assist in the damping of the pressure
waves.

The non-reflecting characteristics-based boundary
conditions are similar to the local one-dimensional inviscid
(LODI) conditions introduced by Poinsot and Lele [23].
However, a modification is required for accounting for the
hydrostatic background state. The analysis is performed on
the one-dimensional Euler equations:

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0, (17)
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∂u

∂t
+ u
∂u

∂x
+

1

ρ

∂p

∂x
= 0, (18)

∂p

∂t
+ ρc2 ∂u

∂x
+ u
∂p

∂x
= 0, (19)

where c is the speed of sound. The waves are approximately
planar, and viscous effects are not considered. Pressure
and density can be decomposed into the steady hydrostatic
background state and the unsteady fields as follows:

p = pH + p̃, (20)

ρ = ρH + ρ̃. (21)

The hydrostatic quantities have the relationship given in (8)
and are assumed constant with time. However, the hydrostatic
fields vary with x1 everywhere, including near the boundaries.
Therefore, the hydrostatic background state is removed
from the pressure and density evolution terms before the
characteristic equations are derived. The modified Euler
equations are

∂ρ̃

∂t
+ ρ

∂u

∂x
+ u
∂ρ̃

∂x
= −u

∂ρH

∂x
, (22)

∂u

∂t
+ u
∂u

∂x
+

1

ρ

∂ p̃

∂x
=
ρH g

ρ
, (23)

∂ p̃

∂t
+ ρc2 ∂u

∂x
+ u
∂ p̃

∂x
= ρH gu. (24)

The differential characteristic variables for this system are

dv1 = ρc du − d p̃, (25)

dv2 = c2 dρ̃− d p̃, (26)

dv3 = ρc du + d p̃, (27)

which results in the following characteristic equations:

∂v1

∂t
+ (u − c)

∂v1

∂x
= −(u − c)ρH g, (28)

∂v2

∂t
+ u
∂v2

∂x
= u(γ − 1)ρH g, (29)

∂v3

∂t
+ (u + c)

∂v3

∂x
= (u + c)ρH g. (30)

Therefore, the LODI conditions are applied only to the
unsteady fields, and the hydrostatic background state
affects the system through appropriate source terms in the
characteristic equations. Incoming characteristics are set to
zero for non-reflecting boundary conditions. To ensure a
well-posed system consistent with the LODI conditions while
considering a viscous flow, the x1 spatial derivatives of the
tangential stresses and normal heat flux are set to zero at the
boundaries.

In addition to the modified non-reflecting
characteristics-based boundary conditions, a buffer layer
is added to the domain where the viscosity is slowly
increased to partially damp pressure waves approaching
the vertical boundaries. Since an adaptive grid is utilized,
the computational cost of the buffer layer is negligible.
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Figure 2. Bubble height comparison using linear stability theory
for A = 0.1 and M = 0.2.

Therefore, the buffer layer can be extended to extreme lengths
to accommodate large damping.

5. Results

As an initial feasibility check, a simulation is performed
in the incompressible limit (M = 0.2) and for a small
molar mass ratio (A = 0.1). The simulation parameters are
Re = 5000, γ1 = γ2 = 5/3, δ = 0.02 and the interface
perturbation amplitude η0 = 0.01. Late-time plots of the mass
fraction, vorticity and grid are shown in figure 1.

The early-time growth of the instability consists of a
brief diffusive region where the interface is smoothed slightly,
followed by a linear growth regime, as observed in the bubble
height evolution presented in figure 2. The linear solution is
approximated using

n =

(
gk A

ψ
+ ν2k4

)1/2

− (ν + D)k2, (31)

where diffusive and viscous effects are considered [24]. This
formula yields similar results to those obtained numerically
in [11]. For the values considered here, diffusive and
viscous effects on the linear growth rate account for a
30% decrease from the incompressible, immiscible result,
n =

√
gk A. Compressibility has a less than 2% influence on

the linear growth rate.
As the flow departs the linear stability theory regime,

the region near the tip of the bubble can be described
using potential flow theory for some time, before significant
vortical motions are generated. During this potential flow
stage, a terminal bubble velocity has been derived for
the incompressible case [25]. The non-dimensional terminal
bubble velocity is

v∗

b =
vb

√
gλ

=

√
1

Cd

2A

(1 + A)
, (32)

where the coefficient is Cd = 6π , for a two-dimensional
system. Once the bubble reaches the terminal velocity,
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Figure 3. Bubble velocity for A = 0.1 and M = 0.2. The dotted
line in the bubble velocity plot represents the analytic terminal
bubble velocity, v∗

b .

a brief deceleration is observed, followed by a reacceleration
region [17]. The wavelet-based simulation of the small
Atwood, quasi-incompressible Rayleigh–Taylor instability
matches this behavior, as shown in figure 3.

To ensure that the simulations are converged, a resolution
study is presented in figure 4. By decreasing the wavelet
coefficient threshold parameter ε, the effective local resolution
is increased since more points are kept on the adaptive grid.
The zoomed view of the curves for the bubble height show the
results converging for smaller values of ε.

6. Conclusions

The physics-based mesh adaptivity offered by AWCM makes
it an innovative approach for studying the fundamental
aspects of non-equilibrium turbulent processes, specifically
in cases where fluid mixing and turbulent intermittency
occur in localized regions of the system. As a proof
of concept, AWCM is applied for the simulation of a
two-dimensional Rayleigh–Taylor instability. The use of
AWCM for direct numerical simulations of Rayleigh–Taylor
systems is promising, since the spatial localization of the
mixing layer leads to significant compression in the number
of points necessary, while maintaining a high effective
resolution. Wave motion in the compressible case is efficiently
captured by the AWCM, since the mesh dynamically adapts
to the solution during wave propagation. Unlike adaptive
mesh refinement techniques, AWCM offers an explicit error
control through the threshold parameter ε. The use of AWCM
allows for the addition of a long buffer layer for the damping
of waves created at the interface. Non-reflecting boundary
conditions are applied at the top and bottom of the domain
to further isolate the instability.

Numerical tests show that the method successfully
captures the linear regime, bubble and spike formations and
late-time flow characteristics for the single-mode perturbation
case. Simulations at higher Atwood and Mach numbers for
observing the variable density and compressibility effects on
the late-time development of Rayleigh–Taylor instability are
under way and these will be published elsewhere.
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wavelet coefficient threshold ε, which varies the effective resolution.
A zoomed view is shown for visualization of the various curves.
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