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We show that, in addition to providing effective and competitive closures, when analysed
in terms of the dynamics and physically relevant diagnostics, artificial neural networks
(ANNs) can be both interpretable and provide useful insights into the on-going task of
developing and improving turbulence closures. In the context of large-eddy simulations
(LES) of a passive scalar in homogeneous isotropic turbulence, exact subfilter fluxes
obtained by filtering direct numerical simulations are used both to train deep ANN
models as a function of filtered variables, and to optimise the coefficients of a turbulent
Prandtl number LES closure. A priori analysis of the subfilter scalar variance transfer rate
demonstrates that learnt ANN models outperform optimised turbulent Prandtl number
closures and Clark-type gradient models. Next, a posteriori solutions are obtained with
each model over several integral time scales. These experiments reveal, with single- and
multi-point diagnostics, that ANN models temporally track exact resolved scalar variance
with greater accuracy compared to other subfilter flux models for a given filter length
scale. Finally, we interpret the artificial neural networks statistically with differential
sensitivity analysis to show that the ANN models feature a dynamics reminiscent of
so-called ‘mixed models’, where mixed models are understood as comprising both a
structural and functional component. Besides enabling enhanced-accuracy LES of passive
scalars henceforth, we anticipate this work to contribute to utilising neural network models
as a tool in interpretability, robustness and model discovery.

Key words: turbulence modelling, turbulence simulation

1. Introduction

The application of data-driven deep learning to physical sciences has been an emergent
area of research in recent years, encouraged by the success of data-driven methods in fields
such as computer vision, natural language processing, and other industrial and scientific
disciplines. While a large variety of data-driven applications and methodologies are
currently being explored in fluid mechanics (Kutz 2017; Brunton, Noack & Koumoutsakos
2020, for recent reviews), the application of data-driven models, particularly artificial
neural networks (ANNs), to turbulence closure has shown promise as means to perform
calibration, augmentation or replacement of existing turbulence closure models (e.g.
Sarghini, De Felice & Santini 2003; Ling, Kurzawski & Templeton 2016; Moghaddam

† Email address for correspondence: portwood@lanl.gov
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& Sadaghiyani 2018; Beck, Flad & Munz 2019; Maulik et al. 2019b; Nikolaou et al. 2019;
Portwood et al. 2019b; Salehipour & Peltier 2019).

In reduced-order frameworks such as large-eddy simulation (LES), ANNs are attractive
due to their ability to (i) discover complex relationships in data, (ii) effectively leverage
and reduce the growing volume of high-fidelity direct numerical simulation (DNS) data
and (iii) be expressed algebraically such that they are tractable for mathematical analysis.
Whereas demonstrations of the first two points are valuable in assessing capabilities of
ANN models, in the third point we assert that the data-driven models must be robustly
interpreted before being credibly certified for engineering or scientific applications. The
objective of the research presented here is to robustly interpret ANN closure models
while providing statistical insight into model optimisation and performance metrics. We
conduct this analysis by considering a data-driven algebraic residual passive scalar flux
model which outperforms common algebraic closures with respect to several a priori and
a posteriori diagnostics.

Algebraic LES closures, the de facto standard class of approaches to LES closure, relate
resolved filter-scale flow parameters to subfilter scale, or the residual, dynamics. These
models may be derived on functional grounds, whereby the effects of unresolved quantities
on the resolved quantities are modelled, thus requiring knowledge about the nature of
interactions, e.g. the net rate of kinetic energy transfer between subfilter to resolved
scales. Functional models, such as Smagorinsky-type closures (Smagorinsky 1963), are
phenomenological and limited in terms of the range of dynamics they are able to model.
For instance, most Smagorinsky-type implementations are incapable of reproducing
backscatter of kinetic energy from subfilter to filter scales. While this is a limitation in
the physical sense, these characteristics lead to such models exhibiting desirable stability
properties in a posteriori simulation. The simplicity and numerical stability of this class
of models have prompted the application of neural networks and machine learning to such
functional model frameworks, for instance, in the local determination of model constants
(Sarghini et al. 2003; Gamahara & Hattori 2017; Maulik et al. 2019a).

Alternatively, algebraic models may be developed on structural grounds, whereby
models attempt to reconstruct dynamical quantities (e.g. the residual stress, instead of
its divergence as in functional modelling), representing a broader range of residual
dynamics from a mathematically or theoretically rigorous basis (Sagaut 2006). This
approach relies on the following assumptions: the structure of residual quantities is (i)
universal, independent of the resolved scales, and (ii) can be determined from the resolved
quantities. For example, a class of gradient-type models are derived from the assumption
of asymptotically small filter scales (Clark, Ferziger & Reynolds 1979) and a class of
scale-similarity models are developed by the imposition of scale symmetries (Bardina,
Ferziger & Reynolds 1980). Model development from asymptotic or statistical symmetry
assumptions is unreliable in practice, where such assumptions are, at best, approximate.
Frequently, these imperfect assumptions often lead to issues, such as under-dissipation
of filter scale kinetic energy in gradient-type models (Leonard 1974), such that structural
models are commonly linearly combined with functional closures in so-called ‘mixed’
models (Balarac et al. 2013). A significant contribution of neural networks in the past
decade has been in optimising the balance between functional and structural components
in mixed models (e.g. Sarghini et al. 2003; Beck et al. 2019; Maulik et al. 2019a).

By virtue of the universal approximation theorem (Cybenko 1989), ANNs are expected
to be adept at estimating closures without having to rely on further assumptions such
as those of statistical symmetry or asymptotically small filter scales. However, taking
advantage of this capability of ANNs to develop closures has typically led to the
characterisation of such closures as ‘black-box’ models. We contend that appropriately
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designed and trained ANNs will learn the correct structure of the closure, and that it
remains to be revealed and interpreted through proper analysis. That is, we take the point
of view that in addition to providing effective and competitive closures, when analysed
in terms of the dynamics and physically relevant diagnostics, a learnt ANN model will
be both interpretable and provide useful insights in the on-going task of developing and
improving turbulence closures.

We explore the above point of view in the context of statistically stationary
homogeneous isotropic turbulence coupled to a passive scalar with a mean gradient (cf.
Overholt & Pope 1996). After demonstrating the capability of ANNs to learn algebraic
LES closures when trained with filtered DNS data, the performance of the learnt closures
are evaluated against that obtained with optimised canonical algebraic models in both
a priori and a posteriori settings. To the best of our knowledge, we show for the first time
that a data-driven sub-grid scale (SGS) model without an assumed form, is not only stable
in a posteriori testing, but also out-performs canonical structural and functional models,
even after the coefficients of the canonical models are optimised for the flows considered.
Finally, towards interpretability of the learnt model, we perform differential sensitivity
analysis of the modelled flux with respect to input parameters. Such an analysis permits
us to (a) demonstrate that the ANN learns a closure that is a combination of structural
and functional LES closures (cf. mixed models) and in effect (b) highlight the potential of
machine learning in accelerating model discovery and closure development.

2. Experimental configuration

2.1. Equations of motion
We consider flows governed by the incompressible Navier–Stokes equations,

∂u
∂t

+ (u · ∇)u = − 1
ρ0

∇p + ν∇ · ∇u + Au; ∇ · u = 0, (2.1a,b)

where u = (ux , uy, uz) is the velocity vector on the coordinate system (x, y, z), p is the
pressure, ρ0 is the constant reference density, ν is the kinematic fluid viscosity and A is a
dynamic coefficient modulated by a forcing scheme, here enforcing statistical stationarity
of the kinetic energy. Parametric dependence of the fluctuating quantities has been omitted
for simplicity of notation. We introduce a passive scalar with an imposed mean gradient
in z, which is decomposed as φt = Φ + φ where φt is the total scalar concentration and φ
is the turbulent, spatio-temporally fluctuating quantity with respect to the imposed mean
scalar concentration Φ = z dΦ/dz. The turbulent scalar concentration follows

∂φ

∂t
+ (u · ∇)φ = −uz

dΦ

dz
+ D∇ · ∇φ. (2.2)

We then apply the standard LES decomposition by applying a Gaussian filter,

G(r) =
(

6
πΔ2

)1/2

exp(−6r2/Δ2), (2.3)

where Δ is the isotropic filter length scale, to (2.2) such that the filtered scalar
concentration follows

∂φ̄

∂t
+ (ū · ∇)φ̄ = −ūz

dΦ

dz
+ D∇ · ∇φ̄ − ∇ · q, (2.4)
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where ·̄ is the linear filter operator (φ = φ̄ + φ′, u = ū + u′) and q is the residual scalar
flux. The residual flux is defined exactly as

qDNS ≡ φu − φ̄ū. (2.5)

2.2. Closure models
We consider two canonical local closure models, a ‘functional’, Prandtl Smagorinsky
(PRS) model, and a ‘structural’, scalar asymptotic gradient (SAG) model. In the PRS
model, the turbulent diffusivity is related to a turbulent viscosity through a turbulent
Prandtl number,

qPRS = − νt

Prt
∇φ̄ (2.6)

and νt itself is determined using the Smagorinsky model

νt = (CsΔ)2||S̄||2. (2.7)

Here Cs is the Smagorinsky constant and ||S̄||2 is the L2 norm of the resolved strain
rate tensor. While the residual flux in this model is constrained to be parallel to the
resolved gradient, stability properties resulting from further limiting the residual flux to a
down-gradient direction (forward scatter) makes this a common modelling choice.

In the second SAG model, a truncated series expansion about the mean gradient that
uses the filter scale as a small parameter (Clark et al. 1979),

qSAG = −Δ2

12
∇φ̄ · ∇ū, (2.8)

leaves the orientation of the residual flux unconstrained. However, since the SAG model
has been found to be under-dissipative at filter scales sufficiently larger than dissipation
scales (Leonard 1974), further ad hoc fixes of the SAG model, such as combining it with
an eddy diffusivity model (Clark et al. 1979; Balarac et al. 2013) or using an artificial
‘clipping’ procedure (Lu & Porté-Agel 2013) has been found to be necessary to use this
model form in LES.

As an alternative, we model the residual flux using a deep feed-forward ANN, where
such a network consists of L directed and fully connected layers with N[l] neurons in the
lth layer, leading to a bias vector b[l] ∈ R

N[l] and a weight tensor W [l] ∈ R
N[l]×N[l−1] . The

output of the nth neuron in the lth layer, a[l]
n , is given by

a[l]
n = f [l]

⎛
⎝M[l−1]∑

k

W [l]
nka[l−1]

k + b[l]
n

⎞
⎠ , (2.9)

where f is an activation function and a[0], a[L] are the input and output objects, respectively.
We optimise for a[L] = qANN with inputs selected to be consistent with the fundamental
assumptions of structural models outlined in the introduction and to ensure particular
symmetries of the subfilter flux such as those of Galilean invariance and homogeneity
(Speziale 1985). We note that rotational invariance, complicated by an anisotropic mean
scalar gradient, is not imposed explicitly by the model or model inputs.
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FIGURE 1. The time series of kinetic energy, scalar variance and their respective dissipation
rates for the training dataset.

2.3. Numerics and optimisation
Numerical solution of the relevant equations is obtained by using a standard Fourier
pseudo-spectral discretisation of the equations over a triply periodic spatial domain
in conjunction with exact pressure projection, a third-order Adams–Bashforth time
integration and a forcing scheme as described in Overholt & Pope (1998). Similar
numerics to the system defined by (2.1a,b) and (2.2) have been extensively studied in the
literature (Overholt & Pope 1998; Daniel, Livescu & Ryu 2018; Shete & de Bruyn Kops
2019) such that we do not find it necessary to discuss the numerical method in detail.

Reference data for training and testing are obtained from DNS of (2.2) and (2.1a,b)
using N = 5123 collocation points and at Taylor Reynolds number Reλ = 170 and Prandtl
number Pr ≡ ν/D = 1 over 25 large-eddy times. For a posteriori model evaluation, which
is described in § 4, the filtered scalar (2.4) is solved with the three residual flux models
and DNS resolved, explicitly filtered velocity (cf. Vollant, Balarac & Corre 2016). Initial
conditions for a posteriori simulation are determined from explicitly filtered velocity and
scalar fields obtained by the statistically stationary DNS.

For reference, time series of kinetic energy, scalar variance and their respective
dissipation rates

Ek ≡ 1
2 〈u · u〉, Eφ ≡ 1

2 〈φ2〉, ε ≡ ν〈∇u : ∇u〉, χ ≡ κ〈∇φ · ∇φ〉, (2.10a–d)

where the notation 〈·〉 denotes a spatial average, for the DNS solution are shown in figure 1.
The time scales considered ensure sufficient sampling of the temporal deviations from
mean statistics (cf. Rao & de Bruyn Kops 2011; Portwood, de Bruyn Kops & Caulfield
2019a).

We optimise the coefficients in the qPRS model and trainable parameters in the neural
network qANN model for four filter length scales. Optimisation is performed by using
training data obtained by filtering DNS solutions with (2.3), then calculating ground truth
qDNS with (2.5). We note that optimisation of deterministic LES models with instantaneous
a priori filtered quantities is not strictly consistent with the subfilter dynamics in actual
a posteriori simulation (Clark et al. 1979; Meneveau 1994; Langford & Moser 1999).
While the approach will be shown to be valid in successive sections for the resolved scalar
dynamics of the stationary homogeneous isotropic flows considered here, we are cautious
about generalising the approach to more complex flow configurations.

The selection of filter length scales is summarised in table 1, where Lf is the outer length
scale imposed by the forcing scheme; turbulent length scales are defined the standard way
with

Lk =
(

ν3

ε

)1/4

, LE = E3/2
k

ε
(2.11a,b)
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Δ∗ Δ/LK Δ/LE Δ/Lf

18 84 0.15 0.28
10 47 0.086 0.16
5.7 27 0.048 0.088
3.2 15 0.027 0.049

TABLE 1. Configuration of LES filter scales. A value of Δ∗ = 1 indicates DNS resolution.
Forcing is applied to the velocity field from largest scales in the domain until the smallest
scale Lf .

and where the filter scale is relative to the DNS grid spacing as

Δ∗≡Δ/ΔDNS. (2.12)

With spatio-temporal sampling at large-eddy scales, the reference DNS data yielded a
total of 450 000 samples, with 20 % of the data held out for out-of-sample testing. The
deep feed-forward ANN consisted of 8 nonlinear layers with ‘relu’ activation, 64 neurons
per layer and a final linear layer with 512 neurons before the output layer q to yield a total of
65 000 trainable parameters. This architecture was observed to perform well with respect
to different a priori diagnostics in a hyper-parameter study. However, we do not dwell
on other architectures since finding optimal architecture is not the objective of this study.
Indeed, non-local approaches to neural network models have been suggested in recent
literature (for instance Maulik & San 2017; Duraisamy 2020; Pawar et al. 2020). Such
non-local neural network models may benefit from exploiting multi-point correlations in
resolved flow parameters and may be analogous to non-local mathematical models, such
as deconvolutional LES models (see Stolz & Adams (1999), for instance).

We use the Adam optimiser to optimise the weights and biases of the qANN models
with respect to the mean-squared-error (MSE) loss function L = E[(q − qDNS)

2]. The
optimiser iteratively modifies the weights and biases by using gradient descent with added
momentum and dampening heuristics (Kingma & Ba 2014). Training the ANN, first over
2000 iterations with a learning rate α = 10−3 and then in a second stage over a similar
number of iterations but with the learning rate reduced by an order of magnitude, was
found to be robust. The loss function, normalised by the variance of qDNS for the finest
filter width, is shown for the training and testing sets in figure 2(a). We observe the loss
function remaining approximately flat for each case for the first 700 iterations. We show
central moments of qz, where the ith moment is defined μi, normalised by its ground-truth
values as a function of gradient-descent iteration in figure 2(b). During this initial training
period, we observe the mean value to converge within the first few iterations. However,
successively higher central moments demonstrate a strong transient during this period.
Most notably, μ4 does not converge until 1500 iterations. The convergence of these
moments coincide with a decreasing rate of change of the loss function.

Finally, we note that in the PRS model, the constant (Cs)
2/Prt was similarly optimised

using the same training data and loss function. The bulk constant is shown in figure 3(a)
as a function of filter width. We observe some slight dependence of (Cs)

2/Prt on filter
width Δ∗. Furthermore, the MSE of the two optimised models and the SAG model (which
lacks any unknown coefficients) is shown in figure 3(b). With respect to the ground-truth
qDNS variance, we observe the MSE of the PRS model to remain constant as a function
of filter width. The ANN and SAG models exhibit strong dependence on Δ∗, with the
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FIGURE 2. Training and testing loss for each filter scale as a function of gradient descent
iteration is shown in (a), where curves with decreasing losses correspond the finer filter scales.
Central moments of the output parameter qz, normalised by ground-truth data, for Δ∗ = 10 as a
function of gradient-descent iteration is shown in (b). Note that the mean of qz develops much
faster than higher-order moments.
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FIGURE 3. (a) Optimised coefficients for the PRS model as a function of filter width,
demonstrating mild anomalous scaling from Δ2. (b) Mean-squared-error of q for each model,
normalised by the variance of qDNS for each filter width.

ANN model robustly out-performing the SAG model at the coarsest filter widths and an
approximately linear dependence on Δ∗ when the filter width is small.

3. The a priori analysis

A useful a priori characterisation of an LES model is its ability to reproduce
the probability distribution function (p.d.f.) of the subfilter-scale production of scalar
variance, P̄φ as seen in the fully resolved computations, where the production is given
by

P̄φ = q · ∇φ̄. (3.1)
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FIGURE 4. A priori comparison of the p.d.f.s of modelled and ground-truth production,
normalised by ground-truth production standard deviation, log scales inset. Note that forward-
and back-scatter are more accurately captured by the ANN models. Also, note the apparent
convergence of the SAG model to the ANN model and explicitly filtered DNS results at the
finest filter width in (d).

The net downscale cascade of scalar variance in the setting considered, that is, a transfer
from resolved scales to unresolved scales, leads to its mean value being positive.

The p.d.f. of the production of scalar variance is shown for the filtered DNS data and the
three closures considered at all filter sizes in figures 4(a)–4(d), with the computation using
testing set data. In this figure, the down-gradient nature of the residual flux in the PRS
model constrains the production to be positive–definite whereas production in the DNS
is not seen to be constrained in such a fashion. Indeed, the SAG model is seen to be able
to produce counter-gradient fluxes (negative production) like in the reference DNS data.
The ANN model is seen to similarly produces both counter-gradient and down-gradient
fluxes. However, as mentioned earlier, that the SAG model tends to be under-dissipative
is seen from the fact that the integrated value E[P̄φ] has a relative error of −56 % at the
coarsest filter scale, and −22 % at the finest filter scale considered. The corresponding
numbers for the PRS and ANN models are (0.19 %, 4.2 %) and (−1.5 %,−0.12 %)
respectively. The ANN model is thus seen to exhibit advantageous characteristics by
accurately capturing both the mean dynamics of the subfilter scalar variance transfer rate,
which is unenforced in the optimisation procedure, and also the distribution of the transfer
rate.

4. The a posteriori analysis

In a standard LES setting, the dynamics of the passive scalar is affected not only by the
model for the residual scalar flux, but also by the model for the residual momentum stress.
It is easy to imagine parameter regimes where the indirect effects of the latter dominate the
direct effects of the former, as far as the dynamics of the scalar is concerned. Therefore, in
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an effort to isolate the fundamental issue of scalar closure, we simulate the filtered passive
scalar with exact advective coupling via explicit filtering of DNS solutions (2.1a,b) (cf.
Vollant et al. 2016).

The three closure models are implemented in an a posteriori simulation fashion and
run for 5 large-eddy times using an explicitly filtered DNS solution, not used in testing
or training datasets, as initial conditions. The scalar variance for each model, 〈φ̄2〉/2, is
shown in figure 5(a–d) at four filter scales, each normalised by scalar variances obtained
by explicitly filtering DNS solutions of the scalar. Visualisations of the evolution of
scalars are included in Movie 1 of the accompanying supplementary material available
at https://doi.org/10.1017/jfm.2020.861. For the coarsest filter, shown in figure 5(a), the
SAG model characteristically under-dissipates and the scalar variance diverges from the
filtered DNS solution at an early time. The optimal PRS model initially tracks the filtered
DNS solution before t/τLE ≈ 0.1. For both the PRS and SAG models, these relative errors
in resolved scalar variance soon begin to asymptote at large values. Whereas the large
time scale trends in the evolution of filtered scalar variance is follow by all models, the
SAG and PRS models over-predict scalar variance by 25 % and 16 %, respectively, after
5 large-eddy turnover times. The ANN model, however, tracks the filtered DNS solution
accurately where the scalar variance after 5 large-eddy turnover times after is within 4.7 %
of the filtered DNS solution. The same general trends are observed in figure 5(b) where
Δ∗ = 10. The accuracy of the ANN model for Δ∗ = 18 is only matched in the PRS and
SAG models for Δ∗ = 5.7, as shown in figure 5(c). When the filter length is small, all
models track the filtered DNS solution well in time, as shown in figure 5(d) as would be
expected.

In addition to temporally tracking the evolution of mean scalar variance,
spatio-temporally local metrics of the scalar concentration field are also important to
consider for evaluation of a residual flux model. The evolution of mean-squared-error
of the turbulence passive scalar concentrations, each normalised by scalar variances
obtained by explicitly filtering DNS solutions, are shown in figures 5(e)–5(h). We observe
broadly similar phenomenology compared to the evolution of scalar variances for the PRS
and ANN models across all filter widths – with the ANN model featuring an order of
magnitude smaller local error than the PRS model over time for all filter widths. As the
filter length scale decreases, we observe the SAG model to approach local errors that are
very small with respect to the mean scalar variance, as is most evident in figure 5(h).
Indeed, local errors become comparable to the ANN model at the smallest filter length
scale, consistent with the observations that the a priori subfilter scalar variance production
recovers the distributions of the ground-truth production at the finest filter scale for both
ANN and SAG models, as previously discussed in figure 4(d).

The temporal tracking of scalar concentration and variance is an interesting metric
for evaluation of the ANN model because the model is developed without temporal
correlations. The model also only depends on spatially local quantities such that
reconstruction of multi-point statistics may only be accurate if the structure of the ANN
model accurately predicts the residual flux q, i.e. it does not mimic the dynamics in a
purely functional sense. We evaluate two physically relevant multi-point diagnostics in
figure 6. The second-order structure function of the scalar in the direction of the mean
scalar gradient, normalised by the filtered DNS solution, after 5 large-eddy turnover times
is shown in figures 6(a)–6(d) for all filter scales. For all Δ∗, the SAG model notably
misses small-scale behaviour of the scalar, where the PRS and ANN models exhibit
more similarity with the filtered DNS results. Except for the finest filter width, shown
in figure 6(d), the PRS model begins to diverge at larger scales. The ANN model performs
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FIGURE 5. (a–d) Time series of relative error, with respect to filtered DNS solutions, of scalar
variance 〈φ̄2〉 at multiple filter scales. The finest filter is shown in (d), which demonstrates
good performance for all models, while the ANN model features errors consistently an order
of magnitude smaller than the PRS and SAG models. (e–h) Indicate time series of local MSE of
the scalar concentration, normalised by flux variance. Note the strong improvement of the SAG
model with decreasing filter scale.

comparably for both filter scales presented and the diverging behaviour of the SAG at
small scales is exaggerated with respect to the case with Δ∗ = 10.

Higher-order structure functions are also instructive. In passive scalar turbulence forced
with a mean gradient, the third-order vertical structure function of the scalar is a physically
relevant diagnostic which should be preserved in a physically accurate subfilter model
(Warhaft 2000). Third-order scalar structure functions are shown in figure 6(e–h) for all
filter scales, where each has been normalised by the value obtained from calculations
using the filtered DNS solutions. First, we note that, whereas the PRS model exhibits
behaviour similar to that of the ANN model in the second-order structure functions, the
same trends are not observed in figure 6(e–h), especially at larger scales. The SAG model
exhibits poorer consistency with large and small scales in figure 6(e, f ). Whereas the ANN
model has some inconsistency with the DNS data at small scales, these errors are smaller
than observed in other models, and it closely follows the DNS results at larger scales.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 L

AN
L 

Re
se

ar
ch

 L
ib

ra
ry

, o
n 

23
 N

ov
 2

02
0 

at
 1

7:
02

:1
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
86

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.861


Interpreting neural network models of residual scalar flux 907 A23-11

1

2

3

4

Δ∗ = 18

1.0

1.5

Δ∗ = 10

1.00

1.25

1.50

1.75 Δ∗ = 5.7

0.875

1.000

1.125

1

2

3

4

1.0

1.5

1.00

1.25

1.50

1.75

0.875

1.000

1.125

10−1 100 101

Δ∗ = 3.2

Δ∗ = 18

Δ∗ = 10

Δ∗ = 5.7

Δ∗ = 3.2

〈(δ
rφ̄

)2
〉, n

o
rm

al
is

ed

〈(δ
rφ̄

)3
〉, n

o
rm

al
is

ed

r/Δ
10−1 100 101

r/Δ

ANN PRS SAG

(a) (e)

(b) ( f )

(c) (g)

(d) (h)

FIGURE 6. Two-point diagnostics. (a–d) Second-order structure functions of resolved scalar in
z, normalised by filtered DNS ground-truth data for each filter length. (e–h) Third-order structure
functions in z for the same filter length scales, normalised by ground-truth calculations using
filtered DNS.

Similar behaviour is observed for Δ∗ = 18 in figure 6(e), except that errors may be more
exaggerated at smaller scales for SAG and PRS models. The ANN model for this case
exhibits some positive bias, almost uniformly for all r/Δ.

5. Interpretation of data-driven models

We propose that it is instructive to consider the sensitivity of the residual flux to
the input fields of scalar and velocity gradients as a means to get further insight into
the learnt closure. Indeed, the automatic differentiation capability of the computational
frameworks for developing ANNs, which is necessary for the optimisation of the
networks via backpropagation, can be leveraged for such a study of the sensitivity of
the residual flux to the input parameters. This type of differential sensitivity analysis
provides phenomenological interpretability of neural network mappings, but falls short
of determining causality (Gilpin et al. 2018), as would be apparent from models obtained
by symbolic approaches (for instance Brunton, Proctor & Kutz 2016).
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FIGURE 7. (a,b) Joint p.d.f.s of the derivative of the vertical residual flux with respect to the
vertical scalar gradient (D1) and with respect to the horizontal derivative of vertical velocity (D2).
Note that the distributions of the ANN and SAG models become more similar with decreasing
filter scale.

We compute such sensitivities with the test data and compare them against those for the
ANN, PRS and SAG models. In particular, we present an analysis that considers

D1 ≡ ∂qz

∂[∂φ̄/∂z]
and D2 ≡ ∂qz

∂[∂ ūz/∂x]
. (5.1a,b)

Isosurfaces of the joint p.d.f. of (5.1a,b) are shown in figure 7(a) for Δ∗ = 18. At large D1,
the ANN model exhibits more similarity to the SAG model in terms of D2. However, at
moderate negative D1, the model behaves more similar to the PRS model, particularly
in the regions near D2 ≈ 0. For the next finer filter scale with Δ∗ = 10, as shown in
figure 7(b), isosurfaces of the gradients of the ANN model appear more similar to the
SAG model. The interpretation of the ANN model being the ‘intermediate’ of the SAG
and PRS models suggests that perhaps the ANN model may be approximated by a mixed
gradient model, wherein functional gradient diffusion is added to the structural gradient
model. Furthermore, the ANN model increasingly mimics the SAG model with decreasing
Δ∗. The trend with Δ∗ is consistent with the assumption of an asymptotically small filter
scale with the SAG model, and suggests that the neural network learns to compensate with
gradient-diffusion-type dynamics as the filter scale is increased.

6. Concluding remarks

Encouraged by recent advancements of deep learning in industrial and technological
applications, data-driven deep learning models have emerged as a promising route to
calibrate, augment or replace existing models in the context of fluid turbulence. In
addition to certification of model generalisation, which was not directly considered in
this study, a major criticism of such learnt turbulence models is that they act as black
boxes, often impeding robust model certification. Responses to this criticism have ranged
from attempts to incorporate physical or theoretical constraints, to imposing statistical
symmetries, etc. either directly in the architecture of ANNs or through the loss function
(Raissi, Perdikaris & Karniadakis 2017). Surprisingly, a point of view that has not received
much attention is that appropriately designed and trained ANNs will learn the correct
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structure of the closure, and that it remains to be interpreted and understood through proper
analysis.

We have approached this point of view by the consideration of spatio-temporally
local algebraic residual flux models. By reconstructing the residual fluxes from resolved
parameters, we demonstrate the capability of neural networks to discover structural
relations within the data without typical assumptions of scale similarity or asymptotically
small filter scale. In training these ANN models, we interpret the training process from
a statistical perspective by demonstrating that higher-order moments of model outputs
require significantly more gradient-descent iterations to converge compared to the means.
We are able to show that in addition to providing effective and competitive closures, when
analysed in terms of the dynamics and physically relevant diagnostics, the learnt ANN
model can indeed be interpreted in a physically and dynamically meaningful fashion.
While not determining explicit causality, such an analysis permits us to demonstrate
that the ANN appears to learn a closure which features a dynamics reminiscent of both
structural and functional LES closures (cf. mixed models). This in effect highlights the
potential of machine learning in not only providing useful insights in the on-going task of
developing and improving closures, but accelerating the process of model discovery.

Acknowledgements

The research activities of all authors are supported by a Laboratory Directed Research
& Development (LDRD) project entitled ‘Machine Learning for Turbulence (MELT)’
(20180059DR). This document has been approved for unlimited release from Los Alamos
National Laboratory as LA-UR-20-20405.

Declaration of interests

The authors report no conflict of interest.

Supplementary movie

Supplementary movie is available at https://doi.org/10.1017/jfm.2020.861.

REFERENCES

BALARAC, G., LE SOMMER, J., MEUNIER, X. & VOLLANT, A. 2013 A dynamic regularized gradient
model of the subgrid-scale scalar flux for large eddy simulations. Phys. Fluids 25 (7), 075107.

BARDINA, J., FERZIGER, J. H. & REYNOLDS, W. C. 1980 Improved subgrid-scale models for large-eddy
simulation. In 13th Fluid and Plasmadynamics Conference, p. 1357.

BECK, A., FLAD, D. & MUNZ, C.-D. 2019 Deep neural networks for data-driven LES closure models.
J. Comput. Phys. 398, 108910.

BRUNTON, S. L., NOACK, B. R. & KOUMOUTSAKOS, P. 2020 Machine learning for fluid mechanics.
Annu. Rev. Fluid Mech. 52 (1), 477–508.

BRUNTON, S. L., PROCTOR, J. L. & KUTZ, J. N. 2016 Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113 (15),
3932–3937.

CLARK, R. A., FERZIGER, J. H. & REYNOLDS, W. C. 1979 Evaluation of subgrid-scale models using an
accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16.

CYBENKO, G. 1989 Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst.
2 (4), 303–314.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 L

AN
L 

Re
se

ar
ch

 L
ib

ra
ry

, o
n 

23
 N

ov
 2

02
0 

at
 1

7:
02

:1
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
86

1

https://doi.org/10.1017/jfm.2020.861
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.861


907 A23-14 G. D. Portwood, B. T. Nadiga, J. A. Saenz and D. Livescu

DANIEL, D., LIVESCU, D. & RYU, J. 2018 Reaction analogy based forcing for incompressible scalar
turbulence. Phys. Rev. Fluids 3, 094602.

DURAISAMY, K. 2020 Machine learning-augmented Reynolds-averaged and Large Eddy Simulation
Models of turbulence. arXiv:2009.10675.

GAMAHARA, M. & HATTORI, Y. 2017 Searching for turbulence models by artificial neural network. Phys.
Rev. Fluids 2, 054604.

GILPIN, L. H., BAU, D., YUAN, B. Z., BAJWA, A., SPECTER, M. & KAGAL, L. 2018 Explaining
explanations: an overview of interpretability of machine learning. In 2018 IEEE 5th International
Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89. IEEE.

KINGMA, D. P. & BA, J. 2014 ADAM: A method for stochastic optimization. arXiv:1412.6980.
KUTZ, J. N. 2017 Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4.
LANGFORD, J. A. & MOSER, R. D. 1999 Optimal LES formulations for isotropic turbulence. J. Fluid

Mech. 398, 321–346.
LEONARD, A. 1974 Energy cascade in LES of turbulent fluid flows. Adv. Geophys. 18A, 237–248.
LING, J., KURZAWSKI, A. & TEMPLETON, J. 2016 Reynolds averaged turbulence modelling using deep

neural networks with embedded invariance. J. Fluid Mech. 807, 155–166.
LU, H. & PORTÉ-AGEL, F. 2013 A modulated gradient model for scalar transport in large-eddy simulation

of the atmospheric boundary layer. Phys. Fluids 25 (1), 015110.
MAULIK, R. & SAN, O. 2017 A neural network approach for the blind deconvolution of turbulent flows.

J. Fluid Mech. 831, 151–181.
MAULIK, R., SAN, O., JACOB, J. D. & CRICK, C. 2019a Sub-grid scale model classification and blending

through deep learning. J. Fluid Mech. 870, 784–812.
MAULIK, R., SAN, O., RASHEED, A. & VEDULA, P. 2019b Subgrid modelling for two-dimensional

turbulence using neural networks. J. Fluid Mech. 858, 122–144.
MENEVEAU, C. 1994 Statistics of turbulence subgrid-scale stresses: necessary conditions and experimental

tests. Phys. Fluids 6 (2), 815–833.
MOGHADDAM, A. A. & SADAGHIYANI, A. 2018 A deep learning framework for turbulence modeling

using data assimilation and feature extraction. arXiv:1802.06106.
NIKOLAOU, Z. M., CHRYSOSTOMOU, C., MINAMOTO, Y. & VERVISCH, L. 2019 Neural network-based

modelling of unresolved stresses in a turbulent reacting flow with mean shear. arXiv:1904.08167.
OVERHOLT, M. R. & POPE, S. B. 1996 Direct numerical simulation of a passive scalar with imposed

mean gradient in isotropic turbulence. Phys. Fluids 8, 3128–3148.
OVERHOLT, M. R. & POPE, S. B. 1998 A deterministic forcing scheme for direct numerical simulations

of turbulence. Comput. Fluids 27, 11–28.
PAWAR, S., SAN, O., RASHEED, A. & VEDULA, P. 2020 A priori analysis on deep learning of

subgrid-scale parameterizations for kraichnan turbulence. Theor. Comput. Fluid Dyn. 34, 429–455.
PORTWOOD, G., DE BRUYN KOPS, S. & CAULFIELD, C. 2019a Asymptotic dynamics of high dynamic

range stratified turbulence. Phys. Rev. Lett. 122 (19), 194504.
PORTWOOD, G. D., MITRA, P. P., RIBEIRO, M. D., NGUYEN, T. M., NADIGA, B. T., SAENZ, J. A.,

CHERTKOV, M., GARG, A., ANANDKUMAR, A., DENGEL, A., et al. 2019b Turbulence forecasting
via neural ODE. arXiv:1911.05180.

RAISSI, M., PERDIKARIS, P. & KARNIADAKIS, G. E. 2017 Physics informed deep learning (Part I):
data-driven solutions of nonlinear partial differential equations. arXiv:1711.10561.

RAO, K. J. & DE BRUYN KOPS, S. M. 2011 A mathematical framework for forcing turbulence applied to
horizontally homogeneous stratified flow. Phys. Fluids 23, 065110.

SAGAUT, P. 2006 Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer.
SALEHIPOUR, H. & PELTIER, W. R. 2019 Deep learning of mixing by two ‘atoms’ of stratified turbulence.

J. Fluid Mech. 861, R4.
SARGHINI, F., DE FELICE, G. & SANTINI, S. 2003 Neural networks based subgrid scale modeling in

large eddy simulations. Comput. Fluids 32 (1), 97–108.
SHETE, K. P. & DE BRUYN KOPS, S. M. 2019 Area of scalar isosurfaces in homogeneous isotropic

turbulence as a function of Reynolds and Schmidt numbers. J. Fluid Mech. 883.
SMAGORINSKY, J. 1963 General circulation experiments with the primitive equations. I. The basic

experiment. Mon. Weath. Rev. 91, 99–164.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 L

AN
L 

Re
se

ar
ch

 L
ib

ra
ry

, o
n 

23
 N

ov
 2

02
0 

at
 1

7:
02

:1
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
86

1

https://arxiv.org/abs/2009.10675
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1802.06106
https://arxiv.org/abs/1904.08167
https://arxiv.org/abs/1911.05180
https://arxiv.org/abs/1711.10561
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.861


Interpreting neural network models of residual scalar flux 907 A23-15

SPEZIALE, C. G. 1985 Galilean invariance of subgrid-scale stress models in the large-eddy simulation of
turbulence. J. Fluid Mech. 156, 55–62.

STOLZ, S. & ADAMS, N. A. 1999 An approximate deconvolution procedure for large-eddy simulation.
Phys. Fluids 11 (7), 1699–1701.

VOLLANT, A., BALARAC, G. & CORRE, C. 2016 A dynamic regularized gradient model of the
subgrid-scale stress tensor for large-eddy simulation. Phys. Fluids 28, 025114.

WARHAFT, Z. 2000 Passive scalar in turbulent flows. Annu. Rev. Fluid Mech. 32, 203–240.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 L

AN
L 

Re
se

ar
ch

 L
ib

ra
ry

, o
n 

23
 N

ov
 2

02
0 

at
 1

7:
02

:1
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
86

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.861

	1 Introduction
	2 Experimental configuration
	2.1. Equations of motion
	2.2. Closure models
	2.3. Numerics and optimisation

	3 The a priori analysis
	4 The a posteriori analysis
	5 Interpretation of data-driven models
	6 Concluding remarks
	References

