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Linear forcing has been proposed as a useful method for forced isotropic turbulence simulations
because it is a physically realistic forcing method with a straightforward implementation in
physical-space numerical codes �T. S. Lundgren, “Linearly forced isotropic turbulence,” Annual
Research Briefs �Center for Turbulence Research, Stanford, CA, 2003�, p. 461; C. Rosales and C.
Meneveau, “Linear forcing in numerical simulations of isotropic turbulence: Physical space
implementations and convergence properties,” Phys. Fluids 17, 095106 �2005��. Here, extensions to
the compressible case are discussed. It is shown that, unlike the incompressible case, separate
solenoidal and dilatational parts for the forcing term are necessary for controlling the stationary state
of the compressible case. In addition, the forcing coefficients can be cast in a form that allows the
control of the stationary state values of the total dissipation �and thus the Kolmogorov microscale�
and the ratio of dilatational to solenoidal dissipation. Linear full spectrum forcing is also compared
to its low wavenumber restriction. Low wavenumber forcing achieves much larger Taylor Reynolds
number at the same resolution. Thus, high Reynolds number asymptotics can be more readily
probed with low wavenumber forced simulations. Since, in both cases, a solenoidal/dilatational
decomposition of the velocity field is required, the simplicity of the full spectrum linear forcing
implementation in physical-space numerical codes is lost. Nevertheless, low wavenumber forcing
can be implemented without using a full Fourier transform, and so is computationally less
demanding. © 2010 American Institute of Physics. �doi:10.1063/1.3488793�

I. INTRODUCTION

Numerical simulations to investigate the behavior of iso-
tropic turbulence still play an important role in turbulence
research, especially since the advances in supercomputing
power now allow simulations at Reynolds numbers compa-
rable or even larger than those obtained in laboratory
experiments.1 If a forcing term is added to the equations,
then the flow could reach a statistically stationary state,
where the injection rate �usually at large scales� is equal to
the rate of energy dissipated at small scales. Forcing has
several advantages. The Reynolds number of the simulation
can be increased considerably; statistics can be averaged
over time, which decreases the statistical variability due to
transient effects; and natural systems are usually forced.

Forcing in nature is due to large-scale effects, for ex-
ample, solar induced, buoyancy-driven convection in the at-
mosphere. The characteristics of turbulence at much smaller
scales are thought to be independent of the nature of the
forcing, which is why turbulence is often studied in an ide-
alized, triply periodic domain. There are several ways in
which the forcing can be applied. To minimize the long range
correlations by providing an explicit randomization mecha-
nism, the forcing coefficients can be calculated from a ran-
dom process.2,3 However, in this case, the external random-
ness may affect the intrinsic randomness associated with the
turbulence dynamics.1,4 To avoid this concern, the forcing in
this work is chosen to be deterministic. There are several

ways deterministic forcing can be implemented in an actual
simulation. Linear forcing, which is discussed by Lundgren5

for the incompressible case, assumes a forcing term in the
momentum equations that is proportional to the velocity. In
this case, the forcing term becomes similar to the natural
production mechanism in the turbulent kinetic energy equa-
tion �u� ·�ū ·u��, where u� are the velocity fluctuations and
the mean velocity gradient �ū is assumed to be constant.

Typically, isotropic turbulence simulations are forced at
low wavenumbers. The reasoning is that the dynamics of the
inertial range at higher wavenumbers should evolve natu-
rally, and not be influenced by the details of the forcing.1,6

There are numerous studies of forced isotropic incompress-
ible turbulence. Most of such investigations use spectral nu-
merical methods and periodic domains, so restricting the lin-
ear forcing to low wavenumbers is convenient and efficient.
In this case, the linear forcing term in the momentum equa-

tions becomes f̂�k�=cû�k� with c=0 when k= �k��kf, where
u is the velocity and kf =2.5 is a common value. The coeffi-
cient may be chosen so that a constant kinetic energy K is
maintained at the low wavenumbers,7–9 or so that the energy
injection rate is constant, c=� /2K.1,10–12 The later has the
advantage of being able to specify the dissipation �, so that
the Kolmogorov scale �= ��3 /��1/4 may be chosen at the on-
set for a well-resolved simulation.10

Low wavenumber �low-k� forcing is difficult to imple-
ment in domains with nonperiodic boundaries and is less
convenient with nonspectral numerical methods. Lundgren5

and Rosales and Meneveau13 advocate linear forcing using
the full spectrum velocity f=cu, which is simple to imple-
ment and efficient for physically based codes and can be
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applied in any domain. For homogeneous isotropic incom-
pressible turbulence, the full spectrum and low-k forcing pro-
duce substantial differences in high-order statistics at similar
numerical resolutions. When compared with decaying grid
turbulence experiments, full spectrum forced simulations ex-
hibit a closer rate of approach to the 4/5-law than low-k
forcing at similar Reynolds numbers.14 Nevertheless, it
should be noted that forced turbulence simulations are not
intended to reproduce decaying turbulence experiments, but
to probe high Reynolds number asymptotics with the resolu-
tions possible on today’s computers.

Unlike the extensive literature in incompressible turbu-
lence, there are only a handful of studies of forced isotropic
compressible turbulence. The theory of compressible isotro-
pic turbulence significantly lags that of the incompressible
case. For example, there is no generally accepted behavior of
the inertial range and no analytical result regarding structure
functions, analogous to the 4/5-law. In addition, even at sub-
sonic turbulent Mach numbers, the turbulence develops
shocklets—localized, short lived shock waves—which may
change the dissipation properties, and thus the intermittency
and the overall dynamics.15,16 Compressibility effects are
usually studied in high speed flows, but they may also arise
in low speed flows when there is a mechanism for enhancing
the dilatational �curl free� motions. This happens, for ex-
ample, in turbulent combustion, where the heat release pro-
duces localized expansions and contractions.17 In certain
cases, the Mach waves associated to these dilatational mo-
tions can coalesce and lead to detonation. A similar result is
obtained if the heat release is large enough so that the flow is
locally accelerated to supersonic velocities. In such flows,
the dilatational motions can carry a significant amount of
energy compared to the incompressible �solenoidal or diver-
gence free� motions.

Several studies of forced compressible turbulence follow
the stochastic methods of Eswaran and Pope2,18–21 or Kida
and Orszag.22–24 Those using deterministic forcing have only
used fixed fields: e.g., three orthogonal shear waves at k=1
�Ref. 25� or simply the initial velocity field.26 In this case,
the imprint of initial conditions or that of the �fixed� forcing
fields may have a long lasting influence and one needs to
perform many different realizations to reduce the statistical
variability.

Due to the advantages of the linear forcing �both full
spectrum and the low-k restriction� and, arguably, general
acceptance for the incompressible case, the purpose of this
paper is to discuss the extension of such forcing to the com-
pressible case. It is shown that, unlike the incompressible
case, two independent coefficients are required for compress-
ible turbulence simulations, which set the solenoidal and di-
latational parts of the forcing separately. In addition, since a
solenoidal-dilatational decomposition of the velocity field is
required for the forcing, the simplicity of the full spectrum
linear forcing implementation in physical-space numerical
codes is lost.

The linear forcing studied here is a particular instance of
the generalized formula: f i=Aijuj. Other types of forcing en-
compassed by this formula include anisotropic forcing, such
as homogeneous shear flow,27,28 plane strain,27 or axisym-

metric contraction,27,29 as well as isotropic strain,27,29 which
can be compression or expansion. Isotropic compression
forcing has a similar expression to that used here, the main
difference being that the coefficients Aij satisfy the mean
momentum equation, which constrains the maximum dura-
tion of the simulation. The resulting flows have been studied
extensively for the compressible case, but only during
the growth stage, before statistical stationarity has been
reached. In all flows studied under linear forcing in the gen-
eralized sense, the main compressibility effect during the
evolving stage is to reduce the growth of the turbulence fluc-
tuations. Although compressibility reduces the turbulence
production,30 it appears that direct changes to the pressure
field are mainly responsible for the reduction of the turbu-
lence growth. Thus, for the homogeneous shear flow, the
turbulent kinetic energy decreases with the Mach number in
the rapid distortion theory limit even though the energy pro-
duction approaches a constant independent of the Mach
number.31 The analytical solutions derived by Livescu and
Madnia28 clearly indicate the linear mechanism through
which compressibility affects the growth of anisotropic lin-
early forced turbulence. In addition, nonstationary linearly
forced turbulence generally has larger levels of explicit dila-
tational effects �e.g., the magnitude of the pressure-dilatation
correlation and the dilatation to solenoidal dissipation ratio�
than some basic nonreacting inhomogeneous compressible
flows, such as high speed boundary or mixing layers,32–34

where the forcing is not linear due to the spatial variation of
the mean velocity gradient. Although the origin of this dif-
ference is still an open problem, we note that the rapid dis-
tortion theory can be used to highlight the connection be-
tween the forcing and the explicit dilatational effects.28 Here,
we show that in the stationary state, the amplification of the
dilatational effects becomes even more dramatic, with the
probable asymptotic state corresponding to the kinetic en-
ergy residing entirely in the dilatational component. Conse-
quently, in order to be able to control the late time state, two
separate forcing terms are required. The ability to explicitly
control the magnitude of the dilatational effects may also
allow studies relevant to both types of compressible flow
situation mentioned above.

Previous studies of forced compressible turbulence used
forcing terms based on the velocity. In principle, one can add
a forcing term that depends on the thermodynamic state, cor-
responding to entropy mode fluctuations. For example, the
linear forcing implied by the advection term in the internal
energy equation is ce, where c is a constant depending on the
mean velocity gradient. Then, to conserve the total energy, a
term −ce needs to be added to the kinetic energy equation.
However, such a form is not appropriate for the momentum
equations, as it requires a division by velocity. In addition,
the forcing term used in the paper, while it depends only on
the velocity field, clearly also excites the entropy mode,
since it is present in the internal energy equation as −f iui �see
below�.

The paper is organized as follows. Section II describes
the governing equations and numerical methodology, Sec. III
discusses the extension of the linear forcing to the compress-
ible case, and Sec. IV compares the full spectrum to low-k
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forcing. In order to assert the need for multiple realizations,
Sec. V compares the computational requirements for per-
forming single versus ensemble realizations. Finally, a sum-
mary and conclusions are presented in Sec. VI and a brief
overview of the resolution requirements for the physical-
space compact finite differences method used here, which is
compared to the usual spectral differencing, is given in the
Appendix.

II. GOVERNING EQUATIONS AND NUMERICAL
METHOD

A compressible, ideal fluid flow is governed by continu-
ity, momentum, and energy transport equations. In nondi-
mensional form, these equations are17

��

�t
+ ��uj�,j = 0, �1�

��ui

�t
+ ��uiuj�,j = − p,i + �ij,j + f i, �2�

��E

�t
+ ��Euj�,j = − �ujp�,j + �ui�ij�,j − qj,j + f juj + fe, �3�

where f i and fe are forcing terms on the momentum and
internal energy equations. The primary dependent variables
are the density �, the velocity components in directions i
=1,2 ,3 ,ui, and the specific total energy E=h+uiui /2− p /�,
where h is the specific enthalpy and p is the pressure. Equa-
tions �1�–�3� are nondimensionalized using reference values
for density �0, velocity u0, length, L0, time t0=L0 /u0, tem-
perature T0, and molecular transport properties as defined
below.

The stress tensor is Newtonian, �ij =� /Re0��ui,j +uj,i�
−2 /3um,m	ij�, where � is the dynamic viscosity and Stokes’
hypothesis is assumed valid, 	ij is the Kronecker delta, and
Re0=�0u0L0 /�0 is the computational Reynolds number, with
�0 the reference value for viscosity. The dynamic viscosity is
temperature dependent, �=T0.76. The temperature T is non-
dimensionalized by T0, the pressure by �0u0

2, and the specific
energy and enthalpy by u0

2. Thus, the pressure and caloric
equations of state become

p =
�T

M0
2 , �4�

h =

T

�
 − 1�M0
2 , �5�

where M0 is the reference Mach number �see below� and 
 is
the ratio of specific heats. The heat flux obeys Fourier’s law
qj =−
�c / �
−1�M0

2 Pr Re0T,j with the conduction coefficient
taken to have the same variation with the temperature as the
viscosity, �c=T0.76. The reference velocity is chosen such
that the initial turbulent kinetic energy is 0.5, �0=1, and L0 is
the size of the computational box for all simulations.

In general, the influences of the ratio of specific heats
and the Mach number based on the isothermal sound speed
are different.35–37 To highlight this difference, the computa-

tional Mach number M0 is defined in the formulas above
based on the reference isothermal sound speed, c0=	RT0,
where R is the gas constant.

The forcing terms f i and fe are described in Sec. III.
Extensions to inhomogeneous flows are possible, but here we
restrict the discussion to periodic domains and homogeneous
flows. Thus, the averages are calculated as volume and time
averages after the stationary state is reached. Below, the vol-
ume average of the variable f is denoted by �f� and the
volume and time average is denoted by �f�equil.

The terms solenoidal and dilatational are frequently used
in this paper and are defined as follows. Given a three-
dimensional vector field u, there exists a decomposition
�usually called Helmholtz or Weyl decomposition� u=us
+ud where ��ud=0 and � ·us=0.22,38 For periodic do-
mains, the Helmholtz-Weyl decomposition is unique up to a
constant. If u is the velocity field, the constant can be taken
equal to zero without loss of generality, as the equations are
invariant to a constant translational velocity. The two contri-
butions us and ud are usually called the solenoidal and dila-
tational components, but are sometimes referred to as the
rotational and compressible components.

Equations �1�–�3� are solved in real space with the
CFDNS code,39 using sixth-order compact finite differences
for spatial derivatives,40 and the variable time step fourth-
order Runge–Kutta–Fehlsberg method for time integration.
The simulations were conducted on up to 10243 meshes for a
range of values of Re0, M0, 
, �d /�s, and Pr. The bulk of
these results will be discussed in a separate paper. Here, we
restrict the discussion to the properties of the forcing terms
and all results presented were obtained with Pr=1 and 

=1.4. The simulations achieve Taylor Reynolds numbers
Re�=Re0 urms� /� of up to 300, and cover the range of tur-
bulent Mach numbers Mt=0.02–0.3 and �d /�s=0.0–1.0.
Table I lists the parameter values of simulations shown in the
plots. Here, urms=	�uiui� /3, �=urms /	�ui,i

2 � /3, �= ��� / ���,
and the turbulent Mach number is defined as Mt

=M0�uiui�1/2 / �
�T��1/2, where �
�T��1/2 is the volume-
averaged speed of sound for the nondimensionalization
considered.

The variables are initialized with zero dilatational veloc-
ity and density fluctuations. The solenoidal velocity is initial-
ized as a random Gaussian field with an approximate
Kolmogorov spectrum and turbulent kinetic energy of 0.5.
The initial pressure fluctuations are determined from the
Poisson equation p,kk=−�uiuj�,ij, and the mean pressure is

TABLE I. Parameter values of simulations, where series 1 was used for
long-time simulations on a 1283 mesh �Figs. 1–6� and series 2 was used for
high-resolution simulations on a 10243 mesh �Figs. 5–10�. All simulations
use Pr=1 and 
=1.4. For the split forcing described below, the initial values
of Mt and target �d /�s are close to their values in the stationary state.

Name

Series 1 Series 2

1a 1b 1c 1d 2a 2b 2c 2d

Mt 0.02 0.1 0.3 0.3 0.1 0.1 0.3 0.3

�d /�s 0.1 0.1 0.3 1.0 0.033 0.3 0.1 0.3
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adjusted to obtain the desired initial turbulent Mach number.
The temperature and specific energy are then calculated from
the equations of state. In order to test the influence of initial
conditions, the dilatational field was also initialized follow-
ing Ristorcelli and Blaisdell.41 Although the initial conditions
have a long lasting influence on the development of decaying
turbulence,42 we found no difference in the adjustment time
or equilibrium statistics of the simulation for the forced case.
All simulations were well resolved in the stationary regime.
The criterion used is based on a Fourier analysis of the error
for the sixth order compact scheme �see below� correspond-
ing to �kmax=1.5 in a spectral simulation and was verified
through resolution studies. The simulations were also moni-
tored to ensure that the shocklets, which increase in number
and strength as Mt and �d /�s increase, remain well resolved.
To reduce the computational effort for the adjustment time,
the runs were started with half the resolution and then inter-
polated to the final resolution once the statistics approached
stationarity. The procedure was verified to yield identical re-
sults compared to a complete run at full resolution.

III. LINEAR FORCING FOR STATIONARY
COMPRESSIBLE ISOTROPIC SIMULATION

The volume average of Eq. �3�, d /dt��E�= �f juj�+ �fe�,
shows that setting fe=−f juj ensures that the total energy is
conserved. Note that fe is the forcing term in the transport
equation for the internal energy, �e=�h− p. This choice of fe

ensures that the internal energy �and the temperature� can
reach a stationary state.

The volume-averaged kinetic energy equation is

dK

dt
= − �uip,i� − � + �uif i� , �6�

where K= ��ui
2� /2 and the dissipation �=−�ui�ij,j�. The forc-

ing investigated here is a simple linear forcing5,13

f i = c�ui, �7�

where c is constant throughout the domain �the low-k case
with c=c�k� is similar�, but may change in time.

Then, at the equilibrium

�2cK − � + PD�equil = 0. �8�

where PD=−�uip,i�= �ui,ip� is the pressure-dilatation correla-
tion �the last equality is a consequence of homogeneity�. In
Eq. �8�, one can specify either the coefficient c or use the
instantaneous values for either � or PD, or both, in which
case c is time dependent. We found that Eq. �7� is not suffi-
cient for compressible flows since there is no mechanism to
control the ratio of dilatational to solenoidal kinetic energies.
For a single forcing term, the probable long time state cor-
responds to the kinetic energy residing entirely in the dilata-
tional component. To clarify this point, we consider sepa-
rately the solenoidal and dilatational kinetic energy transport
equations,

1

2

d�wi
2 �

dt
= 
− �wiuj�,jwi

+
1

2
wiuj,jwi� −
p,i

wi

	�
�

+
�ij,j

wi

	�
� +
 f i

wi

	�
� . �9�

These equations are obtained by dotting the transport equa-
tion for 	�ui, which is derived from Eqs. �1� and �2�, with
wi

and averaging over the domain.17,22 Here wi
��	�ui�

and  may designate the solenoidal �s�, dilatational �d�, or
average �o� components. Since there is no directionality in
this flow and the mean velocity is assumed zero, flux quan-
tities such as �	�ui� are zero.17,43 Assuming that the contri-
butions from the advective terms and the pressure dilatation
contribution to the solenoidal kinetic energy equation are
small, it yields

dKs

dt
= − �s +
 f i

wis

	�
� , �10�

dKd

dt
= PD − �d +
 f i

wid

	�
� . �11�

Setting the time derivative to zero, f i=c�ui with c constant,
and noting that �wiwi

�= �wi
wi

�=2K in the stationary re-
gime one obtains

�sequil
= 2cKsequil

, �12�

�dequil
= PDequil + 2cKdequil

. �13�

Since c and the dissipation parts are positive at equilib-
rium, the pressure dilatation needs to be bounded by
−�sequil

Kdequil
/Ksequil

�PDequil��dequil
. It is known that PD os-

cillates significantly in time even when the average is
small,17,32,43 which is a direct consequence of the dynamics
of the sound waves generated by and interacting with the
turbulence. The magnitude of the oscillations increases with
the pressure, so they become larger at small turbulent Mach
numbers. When PD takes positive values larger than the cur-
rent time average, the dilatational kinetic energy increases,
further amplifying PD. The dilatational dissipation also in-
creases, and if this change is smaller or comparable to that of
PD, a new equilibrium is reached at higher levels of dilata-
tional kinetic energy. However, when PD takes negative val-
ues smaller than the current time average, Kd decreases,
which tends to reduce the magnitude of the negative PD
value. Thus, the dynamical equations �10� and �11� tend to
bias PD toward large positive values and the tendency should
be more pronounced at smaller turbulent Mach numbers. In
addition, a bias toward large PD values also leads to a de-
crease in the solenoidal kinetic energy. If the instantaneous
PD is used in Eq. �8�, this directly affects the equilibrium
state in the Eq. �10�. If a constant value is used for PD in Eq.
�8�, note that only one of the PD and � values can be speci-
fied or the difference, but not both, and the problem becomes
similar. Therefore, larger equilibrium values for PD lead to
larger dilatational to solenoidal dissipation and kinetic en-
ergy ratios and the only stable equilibrium seems to corre-
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spond to �d /�s and Kd /Ks approaching infinity, when almost
all kinetic energy is dilatational. Our numerical tests verify
this conjecture �see Figs. 1 and 2�. The evolution of Kd /Ks

exhibits short intervals at quasiequilibrium then jumps to
higher values as large instantaneous PD values, which are
allowed by its variability, move the equilibrium to higher
Kd /Ks. At higher turbulent Mach numbers, PD variability
decreases and the equilibrium becomes more stable; how-
ever, long time readjustments cannot be ruled out. The in-
crease in �d /�s and Kd /Ks with time for a single forcing term
also translates in an increase in the total dissipation and tur-
bulent kinetic energy, mainly due to the dilatational contri-
bution �see Figs. 3 and 4�, as well as an increase in the
turbulent Mach number. Nevertheless, the variation of Mt

does not follow a linear relation with respect to the ratio
�d /�s. In fact, the single forcing term prevents the flow from
reaching acoustic equilibrium as in decaying isotropic com-
pressible turbulence.44

These difficulties can be avoided by forcing the solenoi-
dal and dilatational velocities separately,

f i = cs
	�wis

+ cd
	�wid

. �14�

Substituting into Eqs. �10� and �11�, and noting that
�wis

wid
�=0, the two coefficients take the following forms:

cs =
�s target

2Ks
, �15�

cd =
�d target − PD

2Kd
. �16�

Equivalently, one may specify the dissipation ratio �d /�s and
the total dissipation � �Figs. 1 and 3�. The ability to specify �
allows the control of the Kolmogorov scale, �= ��3 /��1/4, so
that the simulation may be well-resolved. Note that if the
forcing coefficients are chosen to control �d /�s, the ratio of
dilatational to solenoidal kinetic energies Kd /Ks may, in gen-
eral, be different than �d /�s, depending on the turbulent
Mach number �Fig. 2�.

For split forcing, the values of Mt and �d /�s can be fixed
at the onset. Thus, the flow does reach equilibria among vari-
ous kinetic and integral energy components, and the propor-
tionality constants can be adjusted to any value. Therefore,
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FIG. 1. �Color online� Evolution of �d /�s, which is the dilatational to sole-
noidal dissipation ratio, for unsplit and split forcing. When a single forcing
term is used �Eq. �7�� there is no control over �d /�s, and it often continues to
grow throughout the simulation. With a split solenoidal/dilatational forcing
�Eq. �17�� �d /�s quickly adjusts to the imposed value �solid horizontal lines�.
For clarity, single forcing term data are averaged over a 5 s window. The
light gray is unaveraged data, and shows high variability in the single term
forcing results.
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FIG. 2. �Color online� The ratio of dilatational to solenoidal kinetic energy
Kd /Ks reaches the equilibrium value about the same time as �d /�s; however,
the specific value is different than �d /�s and depends on the turbulent Mach
number.
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FIG. 3. �Color online� Evolution of the total dissipation for unsplit and split
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fication of the dissipation �solid horizontal lines� and, thus, the Kolmogorov
microscale. The split forcing method adheres closely to the imposed dissi-
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FIG. 4. �Color online� Time variation of the turbulent kinetic energy for
unsplit and split forcing. The increase in Kd /Ks for unsplit forcing causes the
turbulent kinetic energy to increase as well.
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by appropriately choosing the forcing properties, the equilib-
rium state can be “designed” to be similar to various practi-
cal flows, which allow the study of compressible turbulence
in diverse regimes.

IV. FULL SPECTRUM VERSUS LOW WAVENUMBER
FORCING

For the incompressible case, Lundgren5 argues that the
full spectrum linear forcing is preferable to its restriction to
low wavenumbers since the approach to the 4/5 law is closer
to that obtained in decaying grid turbulence experiments at
similar Reynolds numbers. In addition, it obviates the ex-
pense of Fourier transforms in simulations using real-space
numerical codes.13 Nevertheless, low wavenumber forcing
�or filtered forcing� allows higher Reynolds numbers to be
reached and adds little or no energy to higher wavenumbers,
while full spectrum forcing achieves lower Reynolds num-
bers and adds energy throughout the spectrum.5 For com-
pressible turbulence simulations, separate solenoidal and di-
latational forcing components are needed to run stably and
the decomposition of the velocity field requires Fourier
transforms or Poisson solvers. Thus the advantage of full
spectrum linear forcing in real-space numerical codes is lost.
It is shown below that restricting the linear forcing to low
wavenumbers is actually more computationally efficient for
compressible turbulence calculations using real-space codes.

We now proceed to a comparison of full spectrum linear
forcing versus low-k forcing for the compressible case. The
later may be written in the split dilatational/solenoidal for-
mulation as

f i = cs
	�w̃is

+ cd
	�w̃id

, �17�

cs =
�s target

�w̃is
wi�

, �18�

cd =
�d target + �uip,i�

�w̃id
wi�

, �19�

where the spectrally filtered modified velocity w̃i�
��=s for

solenoidal or d for dilatational� is found by computing the
Fourier coefficients ŵi�k� for �k��k0 �e.g., k0=1.5 corre-
sponds to 18 modes in three-dimensional�. Dilatational and
solenoidal components of the velocity field must be com-
puted in Fourier space as38

ŵid
�k� = ki�k · ŵ�/�k�2, �20�

ŵis
�k� = ŵi�k� − ŵid

�k� . �21�

For the case of low wavenumber forcing, the full Fourier
transform may be avoided by reassembling the coefficients
with a small inverse transform,

w̃i
�x� = 

k
ŵi

�k�e−2�ik·x, �k� � 1.5. �22�

The forcing term in the momentum equations has mean zero
�ŵi

�0�=0�, which is a requirement for stable forcing. Note
that �w̃i

wi�= �w̃i
wi

�, and the choice of �w̃i
wi� in the de-

nominators of Eqs. �18� and �19� avoids the need to compute
wi

.
A major advantage of low-k forcing is that the Taylor

Reynolds number is much larger than that obtained with full
spectrum forcing. For example, for the simulations presented
here, Re� is nearly double for low-k forcing �Table II�. At a
fixed resolution, the Taylor microscale � is 30% larger, and
the kinetic energy is 70% larger for low-k forcing even
though the average dissipation is the same for both methods.
The larger kinetic energy is due to the high energy content at
small wavenumbers.

In low-k forcing, the injection scale and dissipation scale
are separated, so that an inertial range, which is unaffected
by the large scale forcing and dissipation, can develop. This
can be seen in the energy flux ��k�, a variation with the
wavenumber. Thus, ��k�+PD is equal to the full dissipation
�and forcing� for a range of wavenumbers just above the
forcing range �Fig. 5, see Ref. 3 for definitions and similar
plots�. In contrast, the full spectrum linear forcing, which has
a spectrum proportional to that of the kinetic energy itself,
affects higher wavenumbers and requires much larger Rey-
nolds numbers so that the forcing magnitude decreases
enough for an inertial range to develop. For the compressible
case, the pressure dilatation, which transfers energy between
kinetic and internal energies, may also play a role in the
overall energy balance, especially when the dilatational en-
ergy is large. The question of how this affects the inertial
range dynamics will be addressed in a future paper. We
now note that its contribution was added together to the
transfer function in order to recover the dissipation and forc-
ing values.

An inertial range can develop in full spectrum linearly
forced simulations at scales where the production and dissi-

TABLE II. Low-k forcing achieves nearly double the Taylor Reynolds num-
ber as that of full spectrum forcing at the same resolution with the same
�kmax criterion for all runs.

Resolution 1283 2563 10243

R�, full forcing 35 55

R�, low-k forcing 60 100 300
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FIG. 5. �Color online� The energy flux is equal to the dissipation for a range
of wavenumbers for low-k forcing but not for full spectrum linear forcing,
which requires larger resolutions to develop an inertial range. The results
correspond to the parameters from run 1c except as noted.
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pation terms in the spectral kinetic energy balance are small.
However, for the full spectrum linear forcing, the forcing
term has a lingering effect at high wavenumbers and simple
scaling arguments can be made to show that the dissipation
and the scales affected by forcing overlap at 10243 resolu-
tions. In addition, the energy content at low wavenumbers is
lower for full spectrum compared to low-k forcing �Fig. 6�,
resulting in an overall lower Reynolds number �Table II�. On
the other hand, if the low-k restriction of the linear forcing is
used, an inertial range develops in 10243 simulations �Fig.
7�. Figures 7�b� and 7�c� also show that the spectral charac-
teristics are different for the solenoidal and dilatational parts
of the kinetic energy. Thus, the solenoidal kinetic energy
spectrum decays close to the incompressible value of �5/3,
while the dilatational kinetic energy spectrum is steeper.

One of the few exact results concerning incompressible
turbulence is the 4/5 law, which states that the peak normal-
ized value of the third-order longitudinal structure function
should approach 0.8 in the limit of high Reynolds number.
The rate of approach to the asymptotic value is faster in
low-k forcing,45 while full spectrum linear forcing yields a
rate of approach closer to that obtained in decaying grid tur-
bulence experiments.5,14 The split forcing method described
here produces these same trends for the compressible case
�Fig. 8�.

Although the structure function laws are derived under
the assumption of incompressibility, we check how the so-
called 4/15, 4/5, and 4/3 laws are satisfied near the incom-
pressible limit, simulation 2a with low Mt and �d /�s, which
reaches a Taylor Reynolds number of 300. The split low-k
forcing produces structure functions that peak close to the
incompressible values �Fig. 9�. For example, −DLLL / ��̄r�
peaks at 0.774, which is consistent with the incompressible
results at the same Reynolds number presented by Kaneda
et al.45 The third-order isotropy relation is also consistent
with incompressible simulations3,46 �Fig. 10�. Here

DLLL = ��	uL�3�equil, �23�

DLTT = �	uL�	uT�2�equil, �24�

	uL�r,x� = �u�x + r� − u�x�� · r̂ , �25�

r̂=r /r and 	uT is a velocity increment along a vector trans-
verse to the separation vector r. To compute structure func-
tions we use the method of Taylor et al.,46 which angle-
averages over 73 directions in order to obtain a large number
of samples from a reduced set of instantaneous data fields.

V. SINGLE VERSUS ENSEMBLE REALIZATIONS

In collecting long-time averages of statistics, one would
like to know if it is more efficient to run a single simulation
for a long time, or an ensemble of simulations each for a
shorter time. Since this forcing method sets a target value for
� and �d /�s, we may measure the error from a single simu-
lation as
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FIG. 6. �Color online� The energy content at low wavenumbers is lower
when full spectrum linear forcing is used, compared to low-k forcing, which
results in a lower overall Reynolds number. The results correspond to the
parameters from run 1c.

FIG. 7. �Color online� Compensated kinetic energy spectra obtained from
10243 low-k split forced simulations at different Mt and �d /�s values: �a�
total kinetic energy, �b� solenoidal, and �c� dilatational parts of the kinetic
energy.
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e�T� =
x̄�T� − xequil

xequil
�26�

and from the ensemble as

E�T� =
i=1

n x̄i�T�/n − xequil

xequil
, �27�

where xequil is the average �target value� of quantity x and
x̄�T�=1 /T�t0

t0+T�x��t�dt is the average of x using a finite time
T. The subscript represents each of n realizations and t0 is the
initial adjustment time.

To compare single realization versus ensemble averag-
ing, we considered three realizations of a 2563 simulation
that differed only in the random number seed for the initial
condition. Time averages were computed from t0=10 s on-
ward, so that the initial large adjustment does not affect the
average.

Figure 11 plots the error for each realization and the
ensemble, as a function of model time �which includes the

initial adjustment time� required to obtain that average. For
the ensemble of three runs, 30 s of model time are required
to get past the initial adjustment and begin computing aver-
ages. This amount of time weighs significantly on the final
computational price. For any investment of computing time,
the ensemble average error is always greater than the error
from a single realization. In other words, it is better to com-
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FIG. 8. �Color online� Third-order structure function −DLLL / ��̄r� from low-
wavenumber split linear forcing �thick lines, black on-line� and full spec-
trum split linear forcing �thin lines, red on-line� for series 1c. At a particular
resolution, low-k forcing produces a higher peak than full spectrum forcing.

FIG. 9. �Color online� Structure function curves for the high resolution,
nearly incompressible simulation 2a, with 10243 grid cells and R�=300,
using low-k split forcing. All three curves peak near the theoretically ex-
pected values �horizontal lines�. Bottom: 4/15 law, −DLTT / ��̄r�; middle: 4/5
law, −DLLL / ��̄r�; and top: 4/3 law, −�DLLL+2DLTT� / ��̄r�.

FIG. 10. �Color online� Isotropy relation at third order for simulation 2a,
with 10243 grid cells and R�=300 using low-k split forcing. Solid line �red
on-line�: DLTT /r, dashed line �blue on-line�: �d /dr��rDLLL� / �6r�.
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one simulation, rather than taking the average of an ensemble of
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pute averages based on one simulation than an ensemble.
The opposite would be true if the initial adjustment time was
much shorter or if any single realization exhibited long range
time correlations. Nevertheless, in this case, the forcing leads
to rich variability of the large scales, which make multiple
realizations unnecessary.

VI. CONCLUSIONS

Isotropic turbulence simulations provide an idealized
configuration to study turbulence properties in detail without
complications due to boundaries or inhomogeneities. This is
also an ideal configuration to study high Reynolds number
asymptotics. In order to reach the largest Reynolds numbers
allowed by a given grid size, the turbulence needs to be
sustained by an external stirring force. The linear forcing
scheme studied by Lundgren5 and Rosales and Meneveau13

for incompressible turbulence is similar to the natural
Reynolds shear stress production mechanism in the turbulent
kinetic energy equation and also has a straightforward imple-
mentation in physical-space numerical codes. In order to in-
crease the Reynolds number of the simulation and, thus, be
able to probe inertial range dynamics and higher order tur-
bulence statistics with today’s computers, linear forcing can
be restricted to low wavenumbers.1

Compared to the incompressible case, the theory of com-
pressible turbulence lags significantly behind. Thus, it is not
clear what the properties of the inertial range should be, nor
there are analogous results, e.g., to the 4/5 law. Even less is
known about higher order turbulence statistics. Compress-
ibility effects in turbulence can appear in high speed or
shocked flows and may be important for modeling super-
sonic aerodynamics. They can also appear in low speed flows
in which there is a mechanism for enhancing the nondiver-
gence free motions, e.g., exothermic reactions. Ramjets and
cosmic explosions are examples where both situations occur.
In turbulent combustion, the localized expansions due to the
heat release can increase the local velocity to supersonic val-
ues and generate shocklets. In certain situations, these shock-
lets can coalesce and lead to detonation. Compressibility ef-
fects are thus characterized by the Mach number of the
turbulent fluctuations, but also by the distribution of kinetic
energy between the divergence free and curl free components
of the velocity.

Since the linear forcing and its restriction to low wave-
numbers have been successfully used for studying the char-
acteristics of incompressible turbulence at high Reynolds
numbers, this paper discusses extensions to the compressible
case. It is shown that, unlike the incompressible case, a
single linear forcing term leads to unstable simulations, in
which the ratio of dilatational to solenoidal kinetic energies
increases without bound. This is due to the large time vari-
ability of the pressure dilatation correlation, an effect that is
stronger closer to the incompressible limit. The solution is to
introduce two forcing terms that would separately force the
solenoidal and dilatational components of the kinetic energy.
In addition, the two independent forcing coefficients can be
cast in a form that allows the control of the equilibrium

values of the total dissipation and the dilatational to solenoi-
dal dissipation ratio. Thus, the equilibrium Kolmogorov mi-
croscale can be controlled from the onset.

Previous studies of homogeneous compressible turbu-
lence with generalized linear forcing in nonstationary re-
gimes �e.g., homogeneous shear or isotropic strain�, found
explicit dilatational effects larger than those present in some
basic nonreacting inhomogeneous flows, such as compress-
ible boundary or mixing layers, where the forcing is not lin-
ear. While the origin of this difference is not completely
understood, we note that explicitly controlling the magnitude
of the dilatational effects, made possible by the forcing ex-
amined here, may allow studies of compressibility effects
relevant to both situations.

Since compressible turbulence simulations are much
more expensive than incompressible simulations due to time
step restrictions, the question of how to obtain the largest
Reynolds number for a given grid size is even more pressing.
To address this, full spectrum forcing was compared to its
low-k restriction. In general, the conclusions are similar to
those obtained in the incompressible case.1 Thus, at a given
resolution, low-k forcing produces much larger Reynolds
numbers �almost double in the simulations presented here�,
so that one can more readily probe high Reynolds number
asymptotics. In addition, for the compressible case, full spec-
trum linear forcing still requires Fourier transforms or Pois-
son solvers to split the velocity into solenoidal and dilata-
tional components, so that its computational advantage is lost
for real-space numerical codes. Nevertheless, low-k forcing
components can be calculated without using a full Fourier
transform, making it computationally more efficient.

The forcing presented here has been tested over a wide
range of turbulent Mach numbers �Mt=0.02–0.6�, dissipa-
tion ratios ��d /�s=0.005–10�, and Reynolds numbers
�R�=60–300� with similar results. The method is stable,
quickly adjusts to stationarity, and produces physical statis-
tics that compare well with previous studies for the nearly
incompressible cases. The effects of compressibility on the
spectral dynamics and high order turbulence statistics will be
discussed in a future paper.
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APPENDIX: FOURIER ANALYSIS OF ERRORS

The choice of resolution used for the simulations pre-
sented is based on a Fourier analysis of errors for compact
finite difference schemes relative to spectral methods.40,47 A
one-dimensional periodic domain on �0,L� is discretized by
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N grid cells of length h=L /N. For the sixth-order compact
scheme used in this work, the derivative is computed using
the approximation

f l−1� + f l� + f l+1� =
a

2h
�f l+1 − f l−1� +

b

4h
�f l+2 − f l−2� ,

�A1�

with =1 /3, a=14 /9, and b=1 /9,40 where primes are de-
rivatives and subscripts are grid indices.

Fourier coefficients f̂ k are defined such that

f�x� = 
k=−N/2

N/2

f̂ k exp�2�ikx

L
� . �A2�

It is convenient to scale the wavenumber as w=2�kh /L
=2�k /N and the coordinate as s=x /h, so that w� �−� ,��,
and Fourier modes are exp�iws�. The exact first derivative,

with respect to s, has Fourier coefficients f̂ k�= iwf̂k. The ap-
proximate derivative given by a finite difference scheme can

be put in the form � f̂ k�� fd= iw� f̂ k, where w� is a modified
wavenumber that is a function of w and varies with the order
of the scheme. For the sixth-order scheme

w��w� =
a sin�w� + �b/2�sin�2w�

1 + 2 cos�w�
, �A3�

while for spectral methods,

w��w� = w, k � �− �,�� . �A4�

The ratio w� /w is a measure of the error; spectral meth-
ods compute the exact derivative up to the Nyquist frequency
�w=��, while the accuracy of finite difference schemes,

when computed on the same grid, falls off at high wavenum-
bers �Fig. 12�a��. To improve the accuracy of a finite differ-
ence scheme relative to the spectral method, one may in-
crease the resolution: discretize the domain of length �0,L�
by a finer grid, with grid cells of width hfg=h� using
Nfg=N /� cells, where the contraction factor ��1. Then the
new wavenumbers wfg=w /�, and modified wavenumbers
wfg� =w� /� have a domain of �−� /� ,� /��.

wfg� �wfg;�� =
a sin�wfg�� + �b/2�sin�2wfg��

��1 + 2 cos�wfg���
. �A5�

The grid resolution is chosen such that the error wfg� /wfg

is within acceptable limits. In practice, a grid size is chosen
first, based on computational constraints, and then the
Kolmogorov scale � is chosen such that the dissipation
scale is well-resolved. The resolution of the spectral methods
is usually given in terms of �kmax. For example, �kmax

=1.0, 1.5 corresponds to � /h=0.32, 0.48, respectively.
The simulations presented here used � /hfg=0.8. When com-
pared to a spectral method using �kmax=1.0 ��Fig. 12�b�� this
produces an error at the Nyquist frequency of less that 0.2%
�wfg� /wfg=0.998 at wfg=� when �=0.4�. Compared to a
spectral method with �kmax=1.5, the Nyquist frequency error
is less that 3.5% �wfg� /wfg=0.966 at wfg=� when �=0.6�.
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