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ABSTRACT

The effect of compressibility on the single-mode Rayleigh–Taylor instability is examined using two (2D) and three-dimensional (3D) direct
numerical simulations. To isolate compressibility from background stratification effects, this work employs a constant density profile on each
side of the interface. The numerical simulations are performed at various Reynolds numbers using the gas kinetic method for static Mach
numbers up to M¼ 0.4. The most important finding is that compressibility acting in isolation enhances the instability and perturbations
grows faster with increasing Mach number, unlike previous results with background isothermal state, which show suppression of the instabil-
ity at higher static Mach numbers. In addition, compressibility is also shown to increase the bubble-spike asymmetry. While the instability
grows faster for the 3D case, the findings are qualitatively similar in 2D and 3D. The dynamical reasons underlying the effect of compressibil-
ity are elucidated by examining the evolution of vorticity and turbulent kinetic energy transport equations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0163886

I. INTRODUCTION

The Rayleigh Taylor instability (RTI) develops at the interface
between a heavier fluid lying on top of a lighter fluid.1,2 This phenome-
non involves many complex flow features as the heavy fluid accelerates
toward the lighter one. The light fluid ascends in the shape of rounded
structures called bubbles, and the heavy fluid descends through elon-
gated structures called spikes. These bubble and spikes interact non-
linearly and eventually transition to turbulence.3,4 Such instabilities are
of much interest in engineering applications (inertial and magnetic
confinement fusion5–7) and natural phenomena (Type Ia supernovae
and x-ray burst8–11 and convective flows in the atmosphere and
oceans12,13).

While most studies to date focus on the incompressible or nearly
incompressible limit,3 in many cases, RTI occurs in regimes where the
fluids exhibit compressibility effects. There are a growing number of
studies addressing the influence of compressibility on RTI. These
include single-mode14–17 and multi-mode numerical simulation.18

Multi-mode experimental studies19,20 have also been performed to
understand the mixing efficiency of RTI for linear density stratifica-
tions. Owing to their simplicity, we focus on single-mode RTI in this
study. Unlike the incompressible limit, there are significantly more
parameters influencing compressible RTI flow physics.21 In particular,
the type and strength of background stratification can play significant
roles and obscure the intrinsic compressibility effects associated with
acoustic or entropic modes and their coupling back to vorticity.4,22 In
addition, compressible RTI can occur for both two-fluid configura-
tions, where the fluids have different molar masses (e.g., at early iner-
tial confinement fusion (ICF) stages between the shell and the interior
gas), as well as single-fluid configurations, where density variations are
connected to temperature changes through the equation of state (e.g.,
at late ICF stages between the hot spot and colder surrounding hydro-
gen plasma). Two-fluid configurations allow for more complexity in
the RTI development, as material properties (e.g., ratio of specific
heats21 or viscosities23) can be different. Most studies to date of the
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two-fluid case start from thermal equilibrium, which, coupled with
hydrostatic equilibrium, leads to an initial exponential variation of the
background density in each of the two fluid regions. Weiland et al.14

performed a comprehensive analysis of the background isothermal
stratification strength effects on single mode RTI. The stratification

strength was characterized by a static Mach number, M ¼
ffiffiffiffi
gk

p
a0

,

defined as the ratio of the free fall velocity (over the distance k) to the
speed of sound. Here, g is the gravitational acceleration, k is the wave-
length of the initial perturbation, and a0 is the isothermal speed of
sound. For the isothermal case, M defines the exponent of the back-
ground density variation.21 Weiland et al.14 showed that increasing M
can result in full instability suppression. Using the vorticity transport
equation, they were able to correlate the suppression of the instability
to a decrease in incompressible baroclinic torque with increasing strat-
ification. Nevertheless, out-of-thermal-equilibrium initial background
stratifications, e.g., isochoric or isentropic background thermodynamic
variations, do not necessarily lead to instability suppression and may
have different effects at early and late times.22 In particular, isochoric
initial stratification may also offer a better way of separating intrinsic
compressibility effects from those due to stratification.

To distinguish the effects of different stratification types,
Weiland et al.14 focused on secondary instabilities on the sides of
the bubbles and spikes and considered the behavior of a self-
propagating vortex pair due to the induced vortical velocity in differ-
ent density fields. The motion of the vortex pair can predict the
suppression or acceleration of the instability with M for different
types of density backgrounds. These simulations were performed
mainly at low Atwood number, where A ¼ ðqh � qlÞ=ðqh þ qlÞ,
with ql and qh the densities of the light and heavy fluids, respectively,
when the instability is mostly symmetrical between the bubble and
spike sides. Nevertheless, the instability becomes more asymmetric
at higher M values for the isothermal background case.14 Several
questions are still left unanswered regarding the intrinsic compress-
ibility effects that can best be evaluated using isochoric initial stratifi-
cation, e.g., with respect to the acceleration or suppression of the
instability, asymmetry between the two sides, and differences
between the two- and three-dimensional (3D) cases.

Another line of research with respect to the single mode RTI case
has been the long time behavior and its dependence on Reynolds
and Atwood numbers.15,24–27 While the potential flow theory and
buoyancy-drag models indicate that the instability may reach a con-
stant (terminal) velocity at late times, it is well known that the spike
side does not follow this behavior at high enough Atwood numbers
and even the bubble side can undergo a re-acceleration at high enough
Reynolds numbers.24,28 Wei and Livescu24 showed, as a counterexam-
ple to the terminal velocity assumption, that two-dimensional (2D),
low Atwood number incompressible single-mode RTI reaches mean
quadratic growth at late time, if the perturbation Reynolds number,
Rep is larger than about 10 000. In this case, the vortex pairs generated
on the sides of the bubbles and spikes self-propagate toward the edges
of the layer and add bursts of acceleration leading to a fluctuating
growth behavior with a quadratic mean, similar to the multi-mode
case. Such growth mechanism is different than simple “bubble merg-
ers” or “competition,” thought to describe RTI growth29 and relies on
the induced vortical velocity pointing in the vertical direction. At low
Reynolds numbers, the vortices dissipate before reaching the edges of

the layer; however, under these conditions, a terminal velocity is not
maintained at long times.

Extensions to the compressible case were investigated by
Reckinger et al.30 and Bian et al.15 for the two-fluid and single-fluid
cases, respectively. At high Atwood numbers, the faster growth of the
spike side tends to inhibit the vortices from reaching the edge of the
layer on the bubble side by pulling them to the opposite side and, thus,
a constant velocity growth on the bubble side appears more likely.
This argument is consistent with the spike velocity reaching free fall
descent as Atwood number tends to unity. The vortices have to travel
longer distance before entering the bubble tip region. Hence, the
region of largest vorticity production occurs near the spike tip, away
from the bubble tip.15 However, as Rep approaches 20 000, sustained
quadratic growth on the bubble side was achieved at moderate
Atwood numbers and significant re-acceleration effects were seen even
at Atwood number of 0.8. Thus, the results do not preclude the possi-
bility of quadratic growth on the bubble side at high enough Rep. That
is, the viscous dissipation does not overcome vortex acceleration due
to induced vortical velocity, at any given Atwood number. In addition,
Bian et al.15 also showed that 3D cases grow faster than 2D cases and
likely reach quadratic growth on the bubble side at lower Reynolds
numbers, which is consistent with the faster self-propagation of vortex
rings (for the 3D case) compared to vortex pairs (for the 2D case).
Thus, sustained quadratic growth was seen at Atwood number of 0.8
for Rep ¼ 8000 in the 3D case. The single-fluid simulations of Bian
et al.15 considered an initial isochoric background state; however, the
effect of the Mach number on the results was not explored.

The focus of the present study is to understand the intrinsic com-
pressibility effects on the single-fluid RTI development by considering
the growth of single-mode RTI with an initial uniform density on each
side of the interface. We investigate the effect of Mach number on the
growth of RTI by performing direct numerical simulations (DNS)
using gas kinetic method (GKM). Both two-dimensional and three-
dimensional simulations are performed to establish the fundamental
and 3D effects. The simulations are further analyzed using compress-
ible vorticity, and turbulent kinetic energy transport equations and the
effect of various flow processes pertaining to growth of vorticity and
turbulent kinetic energy are identified.

The paper is organized as follows. Section II discusses the govern-
ing equations and the initial background state, investigated in this
study. Section III describes the kinetic (as opposed to continuum)
based computational approach used to solve the governing equations
and the important flow processes describing the instability. Section IV
describes the results of the simulations and goes into details about the
effects of compressibility on vortex dynamics and kinetic energy inter-
changes during the evolution of the perturbation. Section V concludes
the paper with a summary of the results.

II. FLUID GOVERNING EQUATIONS

We examine RTI that develops within the region separating high
and low density zones in a single fluid. To isolate the intrinsic com-
pressibility effects from those due to background stratification, the
background density is uniform in each of the two zones, with the back-
ground conditions in hydrostatic equilibrium. In the continuum limit,
the equations governing the flow are the compressible Navier–Stokes
equations, in an ideal compressible fluid,
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@q�

@t�
þ
@qu�j
@x�j

¼ 0; (1a)

@qu�i
@t�

þ
@qu�i u

�
j

@x�j
¼ � @p�

@x�i
þ q�g�i þ

@s�ij
@x�j

; (1b)

@qe�

@t�
þ
@q�e�u�j
@x�j

¼ � @p�u�i
@x�i

þ qu�i g
�
i þ

@s�iju
�
i

@x�j
�
@q�j
@x�j

; (1c)

p� ¼ q�R�T�; (1d)

e� ¼ 1
2
u�i u

�
i þ c�vT

�: (1e)

Here, the superscript � is used to denote the dimensional variables.
The density of the fluid is denoted by q�, velocity in direction i by u�i ,
temperature by T�, and pressure by p�. g�i ¼ ð�g; 0; 0Þ is the gravita-
tional acceleration, and e� is the total (kinetic þ internal) energy.
Furthermore, R� is the specific gas constant and c�v is the specific heat
capacity at constant volume. The viscous stress tensor (s�ij) and the
heat flux vector (q�i ) are given by

s�ij ¼ 2l�S�ij �
2
3
l�

@u�k
@x�k

dij; S�ij ¼
1
2

@u�i
@x�j

þ
@u�j
@x�i

 !
; (2)

q�j ¼ �j�
@T�

@x�j
: (3)

Here, l� and j� are the dynamic viscosity and the coefficient of ther-
mal conductivity of the fluid, respectively, and dij is the Kronecker
delta function.

A. Background state

Rayleigh–Taylor instability (RTI) evolution is strongly influenced
by the background state of the thermodynamic variables.22 As men-
tioned in Introduction, extensive studies have been conducted of RTI
with initial background state being in thermal equilibrium.14,18,21,30 In
this work, to isolate compressibility effects, we consider single-fluid
RTI with an initial isochoric background state, similar to Bian et al.15

The two-fluid version of this flow, which combines compressibility
and variable density effects, has been considered in Ref. 22. The initial
setup of the flow is shown in Fig. 1. The background density (q�0) is
constant on either side of the interface and follows an error function
profile across the interface,15,24

q�0 ¼ 0:5 1þ erf Yv
x�1
Lx�1

 !" #
ðq�h � q�l Þ þ q�l ; (4)

where q�h and q�l are the dimensional densities on the top and bottom
sides of the interface, respectively. Yv is the parameter controlling the
steepness of the error function profile and is set to 34.15 The back-
ground pressure p�0 can be obtained from the hydrostatic condition as
follows:

p�0 ¼ pI � q�g�x�1 ; (5)

where pI is the pressure at the interface. Finally, the background tem-
perature (T�

0 ) is computed from the ideal gas equation of state (1d).
The dimensional variables q�; p�, and T� are normalized by their
respective interface (x�1 ¼ 0) values: qI ¼ ðq�l þ q�hÞ=2, pI, and

TI ¼ pI=ðqIR�Þ. Coordinates x�i are normalized with the wavelength
of the initial perturbation of the interface, k. The velocity u�i is normal-

ized by
ffiffiffiffiffiffiffiffi
Agk

p
, and time is non-dimensionalized by

ffiffiffiffi
k
Ag

q
(s ¼ t�

ffiffiffiffi
Ag
k

q
). This time normalization is consistent with the linear

analysis21 and has been shown to collapse the evolution of various
quantities in variable-density buoyancy driven turbulence.31–33 The
non-dimensional form of the governing equation (1)–(3) can then be
written as

@q
@t

þ
@quj
@xj

¼ 0; (6a)

@qui
@t

þ @quiuj
@xj

¼ � 1
AM2

@p
@xi

þ 1
Fr2

qgi þ
1
Re

@sij
@xj

; (6b)

@qe
@t

þ
@qeuj
@xj

¼ � 1
AM2

@pui
@xi

þ 1
Fr2

quigi þ
1
Re

@sijui
@xj

� c
ðc� 1ÞARePrM2

@

@xj
j
@T
@xj

 !
; (6c)

p ¼ qT; (6d)

e ¼ 1
2
uiui þ

1
ðc� 1ÞAM2

cvT: (6e)

The viscous stress tensor is defined by

sij ¼ 2lSij �
2
3
l
@uk
@xk

dij; Sij ¼
1
2

@ui
@xj

þ
@uj
@xi

 !
: (7)

Here, j ¼ j�=jr is the heat conduction coefficient, l ¼ l�=lr is the
dynamic viscosity, cv ¼ c�vðc� 1Þ=R� is the specific heat at constant
volume, and c is the ratio of specific heats. The Reynolds, Froude, and
Prandtl numbers are defined as

Re ¼
qIk

ffiffiffiffiffiffiffiffi
Agk

p
lr

; Fr2 ¼ Agk
gk

¼ A; Pr ¼ lrcR
�

krðc� 1Þ : (8)

The non-dimensional form of the background profiles is
then given by

FIG. 1. Schematic of the initial RTI setup. q�h and q�l are the densities on the top
and bottom sides of the interface, respectively. Lx1 ; Lx2 , and Lx3 are the domain
sizes in directions x1, x2, and x3, respectively.
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q0 ¼ A 1þ erfðYvx1Þ½ � þ ð1� AÞ: (9a)

p ¼ 1�M2q0x1: (9b)

Here, A is the Atwood number and M is the interface Mach number
based on the free fall velocity over the distance k and the isothermal
speed of sound. The non-dimensional parameters A andM are defined
as

A ¼ qh � ql
qh þ ql

; M ¼
ffiffiffiffiffiffiffiffiffi
qIgk
pI

s
: (10)

The definition of Mach number stems from the analysis of
Livescu,21 wherein the linearized Navier–Stokes equations are exam-
ined for the case of compressible ideal fluid. The growth rate exponent
is found to depend on the Mach number as defined here. The corre-
sponding incompressible limit is achieved in the limit of speed of
sound tending to infinity. For the Rayleigh–Taylor instability, the lim-
its of infinitesimal A andM are not equivalent. Instability still exists at
M¼ 0, but it does not at A¼ 0. The static Mach number is different
from the acoustic Mach number (which is zero initially for RTI). The
isothermal sound speed is used in the definition of M instead of the
isentropic sound speed (a factor of c difference), as the ratio of specific
heats has a different role in the evolution of the instability. Additional
discussion on the role of different non-dimensional parameters for the
compressible RTI can be found in Ref. 23. A perturbation Reynolds
number (Rep) can be defined based on the potential terminal velocity
(Up),

Rep ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A

1þ A

r
Re; Up ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Agk
1þ A

r
: (11)

For an isochoric background state, the static Mach numberM quanti-
fies compressibility effects. This is in contrast to the thermal equilib-
rium case, whereinM characterizes effects of both compressibility and
the background stratification level. For the thermal equilibrium case,
increasing Mach number results in increasing density stratification,
sinceM also appears in the exponent of the background density varia-
tion. Changing the Mach number results in a change in pressure at the
interface, which corresponds to pure compressibility effect, and also to
a variation in stratification.14 The background density and pressure
profiles for A¼ 0.04 at differentM values are shown in Fig. 2. It is evi-
dent from the figure that the background density on either side of the
interface is constant and independent of the Mach number. The back-
ground pressure profile is linear away from the interface, and the pres-
sure gradient (dpo=dx1) increases quadratically with M. It is worth
noting that, in contrast to the isochoric background state, both density
and pressure exhibit exponential variation away from the interface in
the isothermal case.14 Moreover, unlike the current case, the density
stratification level increases with increasingM for the isothermal back-
ground case.

III. COMPUTATIONAL APPROACH

In ICF applications and astrophysical flows, RTI occurs over a
wide range of Mach, Knudsen and Reynolds numbers. The long-term
objective of the present work is to examine kinetic effects on RTI that
are beyond the scope of the Navier–Stokes equations. Toward this
end, we perform direct numerical simulations (DNS) of single mode
Rayleigh–Taylor instability using the gas kinetic method (GKM).34–37

The GKM approach has a fundamental advantage over traditional NS
based methods, as the fluxes are calculated directly from the particle
distribution function allowing for description of certain features those
are not easily captured by traditional continuum approaches. In future
works, we will employ the non-equilibrium version of GKM to exam-
ine RTI under more complex kinetic effects.

The Boltzmann equation describes the transport of a single-
particle distribution function f ð~x;~c; tÞ,

@f
@t

þ~c:rf þ~E :rcf ¼
@f
@t

� �
collisions

; (12)

where~x is position,~c is velocity, and t is time. Here, ~E is the particle
acceleration due to external forces. The function f lies in a six-
dimensional phase space consisting of the three spatial coordinates
and three velocity coordinates. The term on the RHS [ð@f

@tÞcollisions] is
modeled using the Bhatnagar–Gross–Krook model,38

@f
@t

� �
collisions

¼ g � f
s

; (13)

where g is the Maxwellian distribution. The Boltzmann–BGK model is
solved in the current method to obtain the numerical fluxes. The
details of GKM can be found in the following references.34–36 Here, we
provide the main features.

FIG. 2. Background (a) density and (b) pressure profiles for A¼ 0.04 at different
Mach numbers. (a) q0 and (b) p0.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 094113 (2023); doi: 10.1063/5.0163886 35, 094113-4

Published under an exclusive license by AIP Publishing

 13 Septem
ber 2023 21:19:05

pubs.aip.org/aip/phf


The governing equation in GKM can be cast as follows:

@

@t

ð
X
U dx þ

þ
A

~F :d~A ¼ 0; (14)

where the vector U contains the conservation variables ½q; qui;qe� and
F is the flux of the variables U. These macroscopic quantities are stored
at the cell center; however, for calculation of fluxes we need them at
cell interface. Thus, a reconstruction step is required to interpolate cell
center values at the cell interface. A fifth order WENO scheme is used
for the purpose of this reconstruction.39 The fluxes at the cell interface
are then evaluated from

Fi ¼ Fq; Fqui ; FE½ �T ¼
ð1
�1

ciwf ðci; t; nÞ dN; (15)

where the fluxes of the three conserved quantities—mass, momentum,
and energy—are given by Fq; Fqui ; FE , respectively. Fi ¼ ½F;G;H� are
the fluxes in the three coordinated directions, respectively. n is an
internal energy variable, and dN ¼ dcidn is a volume element in phase
space. These fluxes are calculated as moments of the particle distribu-
tion function f. The integration here is done over velocity coordinates
in the phase space and over all other internal degrees of freedom, w
being the vector of the moments corresponding to fluxes of each con-
served quantity,

w ¼
�
1; ci;

1
2

�
c21 þ c22 þ c23 þ n2

��
: (16)

The B–BGK equation is solved using the method of characteris-
tics to obtain f at the cell interface. After solving for f, we update the
macroscopic values at the cell center based on the fluxes as follows:

Unþ1
i ¼ Un

i � 1
Dx

ðtþrt

t
ðFiþ1=2ðtÞ � Fi�1=2ðtÞÞ dt

� 1
Dy

ðtþrt

t
ðGiþ1=2ðtÞ � Gi�1=2ðtÞÞ dt

� 1
Dz

ðtþrt

t
ðHiþ1=2ðtÞ �Hi�1=2ðtÞÞ dt: (17)

Using the gas kinetic method, both two-dimensional and three-
dimensional RTI cases are simulated. A density perturbation is super-
posed on the background field. For the 2D case, this has the form,

q0 ¼ Bcos
2px2
k

� �
; (18)

while for the 3D case, it is

q0 ¼ Bcos
2px2
k

þ 2px3
k

� �
: (19)

The perturbation amplitude B is assigned the value of 0:25k, so that an
initial linear growth of the instability can be expected.24 Periodic bound-
ary conditions are applied in the streamwise direction. The top and bot-
tom walls are treated as isothermal no-slip boundaries. Sixth order
compact filtering is used to perform the simulations.15,40 The simulation
parameters, domain sizes, and grid resolution are listed in Table I.

A rigorous comparison study is performed to ensure the accuracy
of the GKM code for RTI investigation. The present simulations are

compared against the results of Bian et al.15 The spike front
(hs ¼ h�s =k) is located at the position of maximum density gradient
along the line x2 ¼ Lx2=2 (note that for these simulations Lx2 ¼ k).
Similarly, the bubble front (hb ¼ h�b=k) is the corresponding location
along x2 ¼ 0. The bubble-spike speeds defined as in Bian et al.,15

Frb=s ¼ u�b=s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð1þ AÞgk

p
: (20)

These values are obtained from the vertical velocity of the front loca-
tions. Figure 3 shows the comparisons for the evolutions of bubble/
spike heights and speeds against those in Ref. 15 for case Re1M1. The
results highlight convergence with increasing the mesh resolution and
are very close to those reported in Bian et al.15 In addition, Fig. 4
shows that the results are also mesh converged at the highest Reynolds
andMach numbers considered here (case Re3M4).

IV. RAYLEIGH–TAYLOR INSTABILITY-DRIVEN
COMPRESSIBLE MIXING

In order to address several open questions in the literature
regarding the compressible RTI, the effects of Reynolds and Mach
numbers on the evolution of the instability are considered. First, the
variations of bubble-spike heights and velocities are shown with vary-
ing Mach number for the two-dimensional case. Three-dimensional
effects are discussed next, followed by analyses of the vorticity and
kinetic energy transport equations in order to develop a physics-based
explanation of the findings. In particular, the vorticity transport equa-
tion budget is examined both during early (linear) and later stages.

A. Effect of Mach number on the instability growth
for the two-dimensional case

Figures 5(a) and 5(b) present the evolution of bubble and spike
heights (hb=s ¼ h�b=s=k). Unlike the isothermal background case,14,30 it
is seen that increasing Mach number results in faster instability
growth. This is evident in the evolution of both bubble and spike
heights, where at a given time, both the bubble and spike fronts have

TABLE I. List of simulations and parameters.

Cases Rep M A Grid points Lx1 Lx2 Lx3

Two-dimensional simulation
Re1M1 1000 0.0855 0.04 256 � 3072 � 4 8k k 1
Re1M2 1000 0.2 0.04 256 � 3072 � 4 8k k 1
Re1M3 1000 0.3 0.04 256 � 3072 � 4 8k k 1
Re2M1 5000 0.0855 0.04 512 � 4096 � 4 8k k 1
Re2M2 5000 0.2 0.04 512 � 4096 � 4 8k k 1
Re2M3 5000 0.3 0.04 512 � 4096 � 4 8k k 1
Re2M4 5000 0.4 0.04 512 � 4096 � 4 8k k 1
Re3M1 8000 0.0855 0.04 512 � 4096 � 4 8k k 1
Re3M2 8000 0.2 0.04 512 � 4096 � 4 8k k 1
Re3M3 8000 0.3 0.04 512 � 4096 � 4 8k k 1
Re3M4 8000 0.4 0.04 512 � 4096 � 4 8k k 1
Three-dimensional simulation
Re1M1-3D 1000 0.0855 0.04 128 � 128 � 1024 8k k k
Re1M3-3D 1000 0.3 0.04 128 � 128 � 1024 8k k k
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displaced more from the initial interface with increasing Mach num-
ber. The destabilization effect of compressibility for the uniform den-
sity background seen here is in direct contrast to the stabilizing action
witnessed for an initially isothermally stratified RTI. With an isother-
mal stratification, growth of RTI is inhibited as the magnitude of the
stratification parameter is increased, with complete growth suppres-
sion at strong enough stratification.

Turning our attention to evolution of bubble and spike velocities
shown in Figs. 5(c) and 5(d), we observe that at early times, in the lin-
ear regime, the speeds are similar for all Mach numbers. Near the
incompressible limit (M¼ 0.0855), the bubble speed then reaches val-
ues consistent with the potential flow theory, before a re-acceleration,
as established by previous studies.24,28 However, as the Mach number
increases, the bubble side grows faster, by-passing a quasi-constant
velocity stage around the potential flow result altogether and transi-
tions directly to the reacceleration stage. At high enough Reynolds
number and for low to moderate Atwood numbers, the bubble side
experiences late-time quadratic growth, contrary to the potential flow
theory.15,24 The Reynolds number here is not large enough for the
effect to manifest near the incompressible limit. However, the results
suggest that quadratic growth might be achievable on the bubble side
at lower Reynolds numbers, at large enough Mach numbers. For
instance, at M¼ 0.4, both bubble and spike sides exhibit quasi-linear
growth of the tip velocities, which indicate overall quadratic growth.
Interestingly, unlike the high Reynolds number incompressible case,24

here, the quadratic growth is not accompanied by strong oscillations
in the bubble velocity, suggesting in the high Mach number case a
growth mechanism other than through discrete vortex pairs being
transported to the bubble tip and adding bursts of acceleration. At
larger Atwood numbers, for the incompressible case, there is an
increase in asymmetry between the bubble and spike sides. The spike
side does not reach a plateau around the potential flow theory result.
For the compressible case, the destabilization is seen on both the bub-
ble and spike sides.

Figure 6 shows density contours at three different times for dif-
ferent Mach numbers. At s¼ 2, we see that bubble and spike heights
are comparable, but with progression in time, the spike front is dis-
placed more with increasing Mach number. Increasing Mach number
also affects the shape of the mixing layer. It can be observed that the

FIG. 3. Comparison of (a) bubble height, (b) spike height, (c) bubble speed, and
(d) spike speed for Rep¼ 1000 with Bian et al.15

FIG. 4. Grid convergence of: (a) bubble height, (b) spike height, (c) bubble speed,
and (d) spike speed, for case with Rep¼ 8000, M¼ 0.4.

FIG. 5. Effect of Mach number on evolution of (a) bubble height, (b) spike height,
(c) bubble velocity, and (d) spike velocity, at Rep¼ 8000, two-dimensional case.
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spike front is thinner at higher Mach numbers, with larger density gra-
dients developing at the spike tip. In addition, low density spots form
near the bubble front and high density spots form near the spike front.

Another feature that comes to light from the evolution plots in
Fig. 5 is that at a given time, the spike height is larger than the bubble
height. This is what is referred to as bubble-spike asymmetry. The
asymmetry is exhibited in Fig. 8(a), where the difference of bubble and
spike heights are plotted at different Mach numbers. The height differ-
ence remains around zero for s < 3, with the asymmetry developing
at later times and becoming stronger at higher M values. For the low-
est Mach number of M¼ 0.0855, hs � hb remains near zero at all
times, consistent with the low Atwood incompressible limit.

We next look at evolution of vorticity field (~x ¼ r�~u) near
the bubble and spike sides, in the anticipation of the in-depth vorticity
analysis in Sec. IVC. To quantify the vorticity accumulating near the
spike and bubble fronts, we define circulation in a region around the
fronts as

Cs ¼
ðLx1=2
�Lx1=2

ðk=4
0

j ~xj dx2 dx1; (21)

Cb ¼
ðLx1=2
�Lx1=2

ðk=2
k=4

j ~xj dx2 dx1: (22)

The regions of integration around the bubble and spike fronts are
shown in Fig. 7. The region from 0 < x2 < k=4 denotes the bubble
side and from k=4 < x2 < k=2 denotes the spike side of the insta-
bility. For the 2D case, only the x3 component is non-zero so that
j~xj ¼ ju1;2 � u2;1j. Figure 8(b) shows the evolution of the ratio
Cs=Cb. At low Mach number, this ratio remains close to unity, but
it increases with increasing Mach numbers. Evidently, more vor-
ticity is produced near the spike side than the bubble side, result-
ing in an increase the vortical asymmetry, similar to asymmetry
seen in Fig. 8(a).

FIG. 7. Domain of integration for taking averages around bubble and spike fronts.

FIG. 6. Density contours are shown for cases with Rep¼ 8000 and M¼ 0.0855 in
(a)–(c), M¼ 0.2 in (d)–(f), and M¼ 0.3 in (g)–(i). (a) s¼ 2, (b) s¼ 3, (c) s¼ 4, (d)
s¼ 2, (e) s¼ 3, (f) s¼ 4, (g) s¼ 2, (h) s¼ 3, and (i) s¼ 4.
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B. Three-dimensional effects

This section examines the three-dimensional effects on the flow.
The three-dimensional simulations are performed at Re¼ 1000 for
two Mach numbers, M¼ 0.085 and M¼ 0.3. Figure 9 shows the evo-
lution of bubble and spike characteristics at the two Mach numbers.
The bubble-spike velocities reach the potential theory velocity for 3D
near the incompressible limit and exhibit a temporary plateau around
this velocity. The bubble-spike fronts re-accelerate from this velocity,
owing to the vorticity propagation near the fronts.15 However, at
higherM values, the destabilization effect of compressibility causes the
bubble and spike velocities to quickly pass through the potential flow
theory value, without reaching a temporary plateau.

Figure 10 compares the bubble-spike heights and velocities evolu-
tion in two and three dimensions. It is seen that the destabilization
effect with Mach number is more prominent in three dimensions.
Three-dimensional effects also result in earlier departure from the
potential flow velocity. The density iso-surface for the case with
M¼ 0.3 is shown in Fig. 11 at s¼ 4, as the non-linear effects become
strong. Intricate structures in three-dimensional case can be seen com-
pared to two-dimensional simulations, consistent with the results in
Ref. 15. This finding supports the inference that the flow would transi-
tion to chaotic growth mean behavior at lower Reynolds numbers in
the three-dimensional case.

C. Vorticity evolution

Vorticity has been a key parameter of study for RTI, as the mis-
alignment between pressure and density gradients is responsible for
the main instability growth mechanism, via the baroclinic production
of vorticity.31 For the single mode case, the production of vorticity on

FIG. 9. Effect of Mach number on the evolution of (a) bubble height, (b) spike
height, (c) bubble speed, and (d) spike speed for 3D RTI.

FIG. 10. Comparison of the evolution of (a) bubble height, (b) spike height, (c) bub-
ble speed, and (d) spike speed between two- and three-dimensional cases. The
Reynolds number for both the cases is 1000.

FIG. 8. Effect of Mach number on asymmetrical growth between bubble and spike
based on (a) spike bubble/height difference and (b) vortical content ratio. All cases
are two-dimensional, with Rep¼ 8000.
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the sides of the RTI bubbles and spikes through the Kelvin–Helmholtz
instability and subsequent self-propagation of vortex pairs (2D) and
rings (3D) toward the layer edges are directly connected to the layer
growth re-acceleration15,24,28 and transition to mean quadratic growth
at late times.15,24 Baroclinic production of vorticity appears in many
compressible flows and has been intensely studied, e.g., in shock-
turbulence interaction,41–43 Richtmyer–Meshkov instability,44–46 and
flows involving chemical reaction.47,48 These flows also highlight an
additional mechanism of vorticity production in compressible flows,
involving vorticity-dilatation interaction. The role of vorticity on com-
pressible RTI growth has been studied by Gauthier,18 who highlighted
the importance of baroclinic production and the interaction with hel-
icity. The effect of isothermal background stratification on the growth
of vorticity is explained in Ref. 14, focusing on the baroclinic produc-
tion due to the initial background stratification. Wieland et al.22 were
the first to discuss the role of different types of background stratifica-
tion for the two-fluid case. Bian et al.15 addressed the single-fluid case
and focused on the transport of vorticity toward the bubble tip, as the
growth mechanism related to re-acceleration and late time quadratic
growth for the single-mode case. Here, we extend these studies by
explaining the increased instability growth and asymmetry with Mach
number for the single-fluid case with constant initial background den-
sity. As explained above, this setup also isolates the intrinsic compress-
ibility effects from those due to stratification.

In Fig. 12, we compare vorticity contours at different Mach num-
bers. The contours look similar at s¼ 2, when the evolution is still
close to the linear regime, for the three different Mach numbers con-
sidered here. There is not much difference in vortical content at this
time. At s¼ 3, the secondary vortices begin to develop, indicating the
onset of Kelvin–Helmholtz instability at the deforming interface.28

The effect of Mach number manifests at this time. The vortex cores
have descended more for higher Mach numbers, stretching the
deforming interface. The pair of vortices generated near the centerline
split into two pairs those are quickly transported toward the spike and
bubble tips. These individual pairs can be seen close to the two fronts
at s¼ 4. The evolution plot in Fig. 13 shows the overall increase in
vorticity (~x ¼ ~x� ffiffiffiffiffiffiffiffiffiffiffi

Ag=k
p

) as the instability grows, with additional

FIG. 11. Density iso-surfaces for 3D case: Rep¼ 1000 and M¼ 0.3 at s¼ 4.

FIG. 12. Vorticity contours are shown for cases with Rep¼ 8000 and M¼ 0.0855
in (a)–(c), M¼ 0.2 in (d)–(f), and M¼ 0.3 in (g)–(i). (a) s¼ 2, (b) s¼ 3, (c) s¼ 4,
(d) s¼ 2, (e) s¼ 3, (f) s¼ 4, (g) s¼ 2, (h) s¼ 3, and (i) s¼ 4.
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vorticity being generated as secondary Kelvin–Helmholtz instability
develops at the deforming interface. With increasing Mach number,
there is an increase in total vortical content consistent with more rapid
destabilization of the flow.

The vorticity (~x ¼ r�~u) transport equation in a compressible
flow can be derived by taking the curl of the momentum equation
(1b). The governing equation for vorticity magnitude (X ¼ j~xj) can
be expressed in the following form:14

DX
Dt

¼ x̂ixjSij|fflfflffl{zfflfflffl}
T 1

� XSkk|ffl{zffl}
T 2

þ x̂i�ijk
1

AM2q2
@q
@xj

@p
@xk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T 3

þ x̂i=Re
@2xi

@xj@xj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
T 4

� 2x̂i

Re
�ijk

@

@xj
Skl

@lnð1=qÞ
@xl

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T 5

: (23)

Here, x̂i ¼ xi=X is the vorticity unit vector. Vortex stretching (T 1) is
the primary vorticity production mechanism in constant density incom-
pressible flows. The vortex stretching term vanishes in two-dimensional
flows. Vorticity-dilatation (T 2) quantifies the dilatational effect on vor-
ticity growth and is absent in constant density incompressible flows.
The baroclinic torque (T 3) generated due to misaligned pressure and
density gradients is the dominant mechanism of vorticity production in
incompressible RTI flows. Terms T 4 and T 5 represent the viscous dif-
fusion and variable density effects on vorticity transport.

Profiles of the individual budget terms are considered and com-
parisons are made for different Mach numbers, at different times.
Figure 14 presents the relative magnitude of the different terms in the
vorticity transport equation budget for the 2D cases. The notation h�i
denotes the averaging operator in the homogeneous directions (x2 in
2D and x2 and x3 in 3D), shown below for an arbitrary quantity T ,

hT iðx1; tÞ ¼
1

Lx2Lx3

ðLx3=2
�Lx3=2

ðLx2=2
�Lx2=2

T ðx1; x2; x3; tÞ dx2 dx3: (24)

Baroclinic torque is seen to be the major source of vorticity pro-
duction. We see different trends of the torque profiles for different
Mach numbers. For M¼ 0.0855, we see that the peak values occur
near the interface, slightly tilting toward the spike side. However, for
the higher Mach number cases, the peak starts shifting more toward the

spike side, resulting in more vorticity production on this side. Dilatation
effects are negligible at earlier times. As the instability evolves, sharper
gradients develop, resulting in prominent dilatational effects near the
spike and bubble front. The contribution from viscous dissipation also
grows with time. Since baroclinic torque is the primary contributor to
vortex growth, we will examine this term in greater detail.

To explore the effect of baroclinic torque on vorticity dynamics,
we decompose the total pressure and density fields into mean and fluc-
tuation contributions

p ¼ hpi þ p0; q ¼ hqi þ q0: (25)

Note that the spatial derivatives of the mean quantities in these
directions vanish. Then, the baroclinic torque can be decomposed as

T 3 ¼ x̂i�ijk
1

AM2q2
@q0

@xj

@p0

@xk|fflfflffl{zfflfflffl}
b1

þ @hpi
@xj

@q0

@xk|fflfflfflffl{zfflfflfflffl}
b2

þ @p0

@xj

@hqi
@xk|fflfflfflffl{zfflfflfflffl}

b3

0
B@

1
CA: (26)

Here, b1 represents the baroclinic torque generated due to non-linear
interactions between the fluctuating density and pressure gradient. b2
and b3 are the contributions to baroclinic torque resulting from the
mean field interacting with the fluctuating field. During the initial
stages of RTI evolution, when non-linear effects are not important, the
contribution of b1 toward the baroclinic torque is negligible. For an
isochoric background state, the b3 component is also negligible during
this stage away from the interface. Consequently, the initial vorticity
dynamics near the spike and bubble tips is primarily affected by the
mean pressure gradient term.

1. Linear analysis for the early time behavior

For a two dimensional flow, the three contributions arising from
the baroclinic torque are

b1 ¼
x̂3

AM2q2
@q0

@x2

@p0

@x1
� @q0

@x1

@p0

@x2

� �
;

b2 ¼
x̂3

AM2q2
@q0

@x2

@hpi
@x1

� �
;

b3 ¼ � x̂3

AM2q2
@p0

@x2

@hqi
@x1

� �
:

(27)

Here, b1 is quadratic in perturbation; b2 depends on the mean pres-
sure gradient; and b3 depends on the background density gradient.

In the linear limit, the mean pressure and density can be taken at
the initial background state, which away from the interface is given by

hpi ¼ p0ðx1Þ ¼ 1�M2q0x1; hqi ¼ q0: (28)

Under the linear approximation, the baroclinic term contributions can
be simplified away from the interface as

T 3 �
x̂3

AM2q20

@p0
@x1

@q0

@x2

¼

x̂3

AM2q20
ð1�M2qhÞ

@q0

@x2
bubble side;

x̂3

AM2q20
ð1�M2qlÞ

@q0

@x2
spike side:

8>>><
>>>: (29)

FIG. 13. Effect of Mach number on growth of total vorticity content,

�x ¼ 1
Lx1 Lx2

Ð Lx1=2
�Lx1=2

Ð Lx2=2
�Lx2=2

j~xj dx1 dx2.
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The notation�: is used for averaging in the three spatial directions
(x1; x2; x3), shown below for an arbitrary quantity T ,

�T ðtÞ ¼ 1
Lx1Lx2Lx3

ðLx1=2
�Lx1=2

ðLx2=2
�Lx2=2

ðLx3=2
�Lx3=2

T ðx1; x2; x3; tÞ dx3 dx2 dx1:

(30)

We first compare the evolution of b2 with that of T 3 . Figure 15(a)
shows that non-linear effects start to affect the evolution of hT 3i at
around s ¼ 1:4. Thus, at early stages, the linear approximation (29)
holds, which shows that the baroclinic term is likely larger on the
spike side, due to the difference between qh and ql. To verify this
using the numerical data, we focus on b2, which gives the non-zero
contribution to T 3 during the early times evolution. We define aver-
ages around the bubble and spike tip regions as follows (as depicted
in Fig. 7):

b2spike ¼
4

kLx1

ðk=2
k=4

ðLx1 =2
�Lx1 =2

b2 dx1 dx2; (31)

b2bubble ¼
4

kLx1

ðk=4
0

ðLx1 =2
�Lx1 =2

b2 dx1 dx2: (32)

Figure 15(b) shows the evolutions of b2spike and b2bubble. It is seen
that for s < 0:8, the results are very close for the bubble and spike sides.
At slightly later times, differences start to appear, corresponding to the
asymmetric vortical growth for the bubble and spike sides. The onset of
asymmetry occurs earlier with increasing Mach number, which is consis-
tent with theM2 weighing of the density in formula (29). Hence, at early
times, the baroclinic torque due to the background pressure gradient gen-
erates vorticity in an asymmetrical manner between the bubble and spike
sides, which is associated with the inherent background pressure varia-
tion on the heavy and light fluid sides of the interface.

FIG. 14. Vorticity budget contributions for cases with Rep¼ 8000 and M¼ 0.0855 in (a)–(c), M¼ 0.2 in (d)–(f), and M¼ 0.3 in (g)–(i).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 094113 (2023); doi: 10.1063/5.0163886 35, 094113-11

Published under an exclusive license by AIP Publishing

 13 Septem
ber 2023 21:19:05

pubs.aip.org/aip/phf


2. Non-linear analysis

We next investigate late time behavior using the non-linear
decomposition presented in Sec. IV C. Figure 16 shows the profiles
of the individual portions of the baroclinic torque. b2 is found to
be the dominant term of the three contributions. b2 has a bubble-
spike asymmetry that is also indicative of the differential growth at
early times. The non-linear term, b1, shows a bubble-spike asym-
metry but has an overall positive effect on the growth of vorticity.
b3 also shows a bubble-spike asymmetry and aids in vorticity pro-
duction near the spike side but destroys vorticity near the bubble
side. Hence, it contributes to the overall enhancement of the
asymmetry.

Figure 17 shows the growth of the three terms with time. At
early times, b2 is the dominant production mechanism for vortic-
ity, with the other two contributions becoming relevant at later
times. Upon increasing Mach number, the enhancement in total
baroclinic torque is seen in all three terms. This is different than
the isothermal stratification case, where the baroclinic torque due
to perturbation gradients was found to be the dominant contribu-
tor14 at weak background stratifications. On the other hand, terms
based on background pressure gradient are found to become
prominent at higher values of stratification and to inhibit the
growth of vorticity.

D. Kinetic energy evolution

The instability dynamics is considered in greater detail by exam-
ining the mean and turbulent kinetic energies. The velocity field is
decomposed into a Favre average and fluctuation:49

ui ¼ ~ui þ u00i : (33)

The total kinetic energy K ¼ 1
2 uiui can then be partitioned into the

mean, Km, and turbulent kinetic, k, energies,

Km ¼ 1
2
�q ~ui ~ui ; k ¼ 1

2
hqu00i u00i i: (34)

Figure 18(a) shows the evolution of turbulent kinetic energy, �k, at dif-
ferent Mach numbers,

�k ¼ 1
Lx1

ðLx1=2
�Lx1=2

k dx1: (35)

The kinetic energy level clearly increases with Mach number, as the
instability grows faster. For the lowest Mach number, k asymptotes to a
limiting value, at late times. This is consistent with the results for the
growth of the layer width for the relatively low Re values considered here
and has been discussed in Sec. IVA. Increasing Mach number results in
increased growth rate in the linear regime and kinetic energy growth at
later times, indicative of a faster than linear growth of the layer width.
Figure 18(b) shows the profiles of kinetic energy. There is a stark differ-
ence in the profiles with increasing Mach number. The increase in global
kinetic energy can be seen in the profiles as well. However, the increase
in kinetic energy is more prominent near the spike front than the bubble
front, once again highlighting the bubble-spike asymmetry.

The normalized evolution equation for the mean kinetic energy
is given as follows:31,49

@Km

@t
þ @Km ~uj

@xj
þ @

@xj
hqu00i u00j ~uii þ

1
AM2

�p ~uj �
1
Re

hsiji~ui
� 	

¼ Rij
@ ~uj
@xj

þ 1
AM2

�p
@ ~uk
@xk

� 1
Re

hsiji
@ ~ui
@xj

� ai
1

AM2

@�p
@xi

þ 1
Re

ak
@hskji
@xj

þ 1
Fr2

�q ~uigd1i:

In RTI, the kinetic energy in the mean flow is generated due to
the gravity work term (hqukgd1ki).32 The normalized governing equa-
tion for fluctuating kinetic energy can be expressed in the following
form:31

@k
@t

þ @ðk~ujÞ
@xj

þ @

@xj

1
2
hqu00i u00i u00j i þ



u0i

1
AM2

p0dij �
1
Re

s0ij

� ��" #

¼ �Rij
@ ~uj
@xj|fflfflfflffl{zfflfflfflffl}

K1

þ 1
AM2

hp0di|fflfflfflfflfflffl{zfflfflfflfflfflffl}
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þ 1
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@�p
@xi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
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� 1
Re



s0ik
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@xk

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
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� 1
Re

ai
@hskji
@xj|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

K5

: (36)

Here, ai ¼ �hu00i i ¼ hq0u0ii=hqi is the normalized mass-flux,31

Rij ¼ hqu00i u00j i is the Favre averaged Reynolds stresses and d ¼ @u0i
@xi

is

FIG. 15. Contrast between the evolutions of (a) hb2i and hT 3i and (b) b2spike and
b2bubble.
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the fluctuating dilatation. The mass flux–pressure gradient term (K3)
is the primary source of kinetic energy production for RTI flows. K3
represents the indirect effect of the gravitational potential and transfers
energy from the mean velocity field to the fluctuating field. In contrast
to shear flows, the production due to mean velocity gradient (K1) is
negligible for RTI. The pressure-dilatation term (K2) facilitates a
reversible exchange between the fluctuating kinetic and internal fields.
The energy transfer from the kinetic to the internal field via dissipation
(K4) is irreversible. Finally, the viscous action (K5) can also lead to a
two-way exchange between the mean and fluctuating field.

Next we examine the various terms in the budget of turbulent
kinetic energy transport equation (36) in Fig. 19. Individual terms in
the budget are plotted for three different Mach numbers at s¼ 4. It is
seen that mass flux–pressure gradient acts as the dominant source in
transferring energy from the mean flow. For higher Mach numbers,
this term develops a bubble-spike asymmetry; hence, there is more

transfer of energy at the spike front. Figure 20 shows the turbulent
kinetic energy budget for the three-dimensional cases. Again, it can be
seen that the mass flux–pressure gradient (K3) term acts as the major
contributor for evolution of kinetic energy. The profiles of K3 also
exhibit bubble-spike asymmetry.

Figures 21 and 22 show the profiles of mass flux in vertical
direction (a1) and those of the mean pressure gradient. Both mass
flux and pressure gradient are negative at all points, hence implying
a transfer of energy from mean flow to the fluctuations. With an
increase in Mach number, stronger negative pressure gradient devel-
ops near the spike front, indicating stronger extraction of kinetic
energy from the mean flow, resulting in asymmetrical growth of tur-
bulent kinetic energy. Figures 23 and 24 show the correspondent
profiles for the three-dimensional case. Similar to the 2D case, the
asymmetry in K3 term arises primarily from the asymmetry in
mean pressure gradient.

FIG. 16. Spatial variation of hb1i in (a)–(c), hb2i in (d)–(f) and hb3i in (g)–(i) at different times.
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V. CONCLUSIONS

The effect of compressibility on the Rayleigh Taylor Instability
(RTI) is examined using direct numerical simulations (DNS) per-
formed with the gas-kinetic method (GKM). Previous studies of

compressibility effects on RTI employ isothermal base profiles, and
the resulting flow combines the effects of compressibility and stratifi-
cation.14,30 Subject to these joint effects, it was found that the RTI was
stabilized at higher static Mach numbers. These studies do not clearly
establish the individual actions of compressibility and stratification on
the suppression of the instability. Toward that end, this work isolates
the effect of compressibility by employing an initial isochoric (as
opposed to isothermal) background profile. Two- and three-
dimensional simulations are performed over a range of Reynolds
numbers (1000, 8000) at several static Mach numbers (0.085, 0.3, 0.4).
Contrary to the conclusions of the previous isothermal background
studies, it is found that compressibility, in isolation, has a destabilizing
effect. Furthermore, compressibility enhances the asymmetry between
bubble and spike growths. The destabilization and asymmetry effects
are more pronounced in three-dimensional simulations. Thus, faster

FIG. 17. Evolution of (a) b1 , (b) b2 , and (c) b3 (the three contributions of the baro-
clinic torque) for three different Mach numbers for the 2D cases: Rep¼ 8000.

FIG. 18. Behavior of turbulent kinetic energy at different Mach numbers: (a) and
(c) time evolution of �k ; (b) and (d) k variation across the layer at s¼ 4, for 2D and
3D, respectively. (a) �k evolution, (b) k profile, (c) �k evolution, and (d) k profile.

FIG. 19. Turbulent kinetic energy budget across the layer for 2D cases, with Mach
numbers: (a) M¼ 0.0855, (b) M¼ 0.2, and (c) M¼ 0.3, and Rep¼ 8000 at s¼ 4.

FIG. 20. Turbulent kinetic energy budget across the layer for 3D cases, with Mach
numbers: (a) M¼ 0.0855 and (b) M¼ 0.3, and Rep¼ 1000 at s¼ 4.
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destabilization is seen for the three-dimensional cases. Turbulent
kinetic energy is also seen to grow faster, consistent with the destabiliz-
ing nature of compressibility.

To develop further insight into the two-pronged effect of compress-
ibility, the vorticity dynamics is examined using DNS data at various

Mach and Reynolds numbers. Baroclinic torque is found to be the pri-
mary source of vorticity production, with dilatational effect becoming
important at later times. Three distinct contributions of baroclinic torque
are identified—non-linear effects (b1), mean pressure-gradient effect (b2),
and mean density-gradient effect (b3). It is found that the contribution of
b2 component is most significant toward vorticity growth, especially at
early times. At early times, the b2 contribution can be directly expressed
using the background pressure variation and exhibits different magni-
tudes on the spike and bubble sides, proportional to qh and ql, respec-
tively. This difference inherently initiates the bubble-spike asymmetry
seen at later stages. Furthermore, since b2 depends on the Mach number,
the asymmetry tendency is stronger at higher compressibility levels. Once
the bubble-spike asymmetry is initiated, the rest of the vorticity budget
terms responds and further amplifies this asymmetry.

The turbulent kinetic energy budget is also examined. The mass
flux–pressure gradient term (K3) is the primary process through
which energy is transferred from the mean flow to the fluctuating field.
Both b2 and K3 depend on the mean pressure gradient, which
becomes more negative near the spike and more positive near the bub-
ble side with increasing Mach number. Thus, the effects of compress-
ibility observed in this study can be attributed to the characteristics of
the evolution of the mean pressure gradient.
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