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a b s t r a c t

We present results from Direct Numerical Simulations (DNS) of Rayleigh–Taylor instability at Atwood
numbers up to 0.9. After the layer width had developed substantially, additional branched simulations
have been run under reversed and zero gravity conditions. We focus on the modifications of the mixing
layer structure and turbulence in response to the acceleration change. After the gravity reversal, the
flow undergoes a complex transient process in which the vertical mass flux changes sign multiple times
and, consequently, the buoyancy term in the turbulent kinetic energy transport equation changes its
role back and forth from production to destruction. This behavior is examined in detail using the
turbulent kinetic energy and mass flux transport equations and time instances when the vertical mass
at the centerline crosses zero and reaches local minima and maxima. While the transient process
significantly affects the flow anisotropy at all scales, other turbulence characteristics, like the alignment
between the vorticity and eigenvectors of the strain rate tensor, retain their fully developed turbulence
behavior in the interior of the layer. In addition, after the gravity reversal, the edges of the layer also
exhibit characteristics closer to those of the turbulent interior, even as the fluids become more mixed.
None of these changes affects the mean density profile, which still collapses among various cases. Such
significant changes in some turbulence quantities and not others are difficult to capture with existing
turbulence models.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Classical Rayleigh–Taylor instability (RTI) [1–3] is generated at
he interface between two different density fluids in the pres-
nce of a constant acceleration pointing from the heavy to the
ight fluid. The interface between the two fluids is unstable to
ny perturbation with a wavelength larger than the cutoff due
o surface tension (for the immiscible case) or mass diffusion
for the miscible case). Thus, small perturbations of the initial
nterface grow, interact nonlinearly, and lead to turbulence. In
ost practical cases, RTI manifests itself as an extremely complex
rocess, due to a multitude of factors, among which are large den-
ity differences, compressibility, temperature distribution, surface
ension and other interfacial phenomena for the immiscible case
r mass diffusion for the miscible case, molecular transport vari-
tions, geometrical and finite boundary effects, specific plasma
nd magnetic field properties, and so on. Flows featuring RTI-
ype growth of instabilities can be found in several important
atural phenomena and applications, for example, in supernova
xplosions and X-ray bursts in neutron stars [4,5]; the solar
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corona [6,7]; Earth’s oceans, atmosphere, and mantle [8]; quan-
tum plasma; combustion [9]; inertial, magnetic, or gravitational
confinement fusion [10–12]; sonoluminiscence [13], etc.

A useful limiting case, which isolates the basic instability from
compressibility effects, considers two miscible incompressible
fluids with different molar masses. The governing equations can
be derived from the fully compressible Navier–Stokes equations
under the assumption of an infinite speed of sound [14,15] or by
directly assuming that the two fluids maintain constant densi-
ties [16]. We refer to this limit with large molar mass or density
ratio (the non-Boussinesq case) as incompressible variable den-
sity (VD). Since the acoustic waves are filtered out for the VD
equations, DNS at larger resolutions compared to the compress-
ible case become feasible, which implies larger Reynolds and
Atwood numbers [4,17]. Here, we consider RTI in the VD limit.
VD equations have been used for DNS of RTI in Refs. [4,17–21].

The strength of the non-Boussinesq effects has traditionally
been estimated using the Atwood number, A =

ρH−ρL
ρH+ρL

, where
ρH , ρL are densities of the heavy and light fluids, respectively.
The Boussinesq approximation corresponds to A → 0 and a
value of 0.05 is usually taken to define this limit. However, in
many practical applications, A ≫ 0.05, for example A ∼ 0.9
in Inertial Confinement Fusion (ICF) [10,11] and A ∼ 0.85 for
ydrogen burning. The development of the instability and the

ixing itself are fundamentally different at high and low A. Thus,
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he RTI mixing layer becomes asymmetric, rougher, and faster
rowing on the light-fluid side (showing so-called spikes) and
moother and slower growing on the heavy-fluid side (showing
o-called bubbles) [22,23]; turbulence intensities are larger in
ight-fluid regions than heavy-fluid regions [24,25]; and mixing
s asymmetric, with pure heavy fluid reaching larger depths from
he layer edge than pure light fluid [14,15,19]. These asymmetries
ave also been explored in experimental studies [26–29].
In many practical applications, the driving acceleration

hanges in time or even reverses sign. For example, in ICF, shock
aves can bounce back and forth from the center of the target,

eading to complex acceleration histories at the material inter-
aces. RTI configurations with time varying acceleration, including
hanges in sign, have been studied both experimentally and in
umerical simulations [30–35] and references therein; however,
uch less is known about the physics of the flow compared

o the classical RTI. Time varying acceleration can also provide
mechanism for suppressing the instability [35], which is of

nterest in applications such as ICF.
However, the long time response of the flow to a change in

cceleration has not been examined. In particular, the transients
hat appear after this change may pose significant challenges to
urbulence models. In order to better understand the variable ac-
eleration effects on the instability development and turbulence
roperties, we are focusing on the flow response to reversing or
etting the acceleration to zero in the turbulent stage of the classi-
al RTI. The latter is related to the Richtmyer–Meshkov instability,
hen the two fluids are subjected to an impulsive acceleration,
.g. due to a shock wave. To also examine the non-Boussinesq
ffects, we present detailed results from high resolution Direct
umerical Simulations of Rayleigh–Taylor instability, in the in-
ompressible VD limit, at Atwood numbers of 0.5, 0.75 and 0.9.
e contrast three configurations: (a) classical RTI with forward

ravity (RTI+), (b) reversed gravity (RTI−) and (c) gravity set to
ero (RTI0). Part of the preliminary results from these simula-
ions has been presented in Refs. [17,36]. Here, we present the
orresponding finalized results.
The paper is organized as follows: Section 2 presents the

overning equations and numerical approach. Results concerning
he flow development and turbulence structure are discussed
n Section 3. Mixing layer width, growth rate, light/heavy fluid
ides asymmetry, kinetic energy, mass flux and Reynolds number
ariations are addressed first. This is followed by a discussion of
ensity PDF, lengthscales associated with buoyancy and turbu-
ence, and Reynolds stress anisotropy at large and small scales.
o explain the transient behavior of the flow after the gravity
eversal, the transport equations for the turbulent kinetic energy
nd mass flux are considered. The discussion ends with an ex-
mination of the alignment between vorticity and eigenvectors
f the strain rate tensor after the change in gravity. Finally, the
onclusions of the paper are given in Section 4.

. Governing equations, simulation cases, and numerical
ethod

The incompressible VD equations can be derived from multi-
pecies fully compressible Navier–Stokes equation as the infinite
peed of sound limit [14,15], or by assuming that the fluids main-
ain constant microscopic densities [16,37]. The former derivation
ses the energy equation consistently, while the latter simply
eglects it in the incompressible limit. For the binary case, these
quations are:

∂

∂t
ρ + (ρuj),j = 0 (1)

∂
(ρui) + (ρuiuj),j = −p,i + τij,j + ρgi (2)
∂t
2

uj,j = −D(lnρ),jj (3)

The viscous stress is Newtonian with

τij = ρν0[ui,j + uj,i −
2
3
uk,kδij] (4)

Eqs. (1)–(2) are the usual continuity and momentum transport
equations for compressible flows, with p representing only the
dynamic pressure component [38]. The limiting process removes
the pressure and temperature gradient effects, so that the dif-
fusion operator becomes Fickian in the resulting incompressible
equations. Since no other assumption is imposed, the resulting
equations are non-Boussinesq. Thus, the density appears in the
momentum equations and the divergence of velocity is not zero;
the energy equation as well as the species transport equations
leads to a formula for the velocity divergence in terms of the
derivatives of the density field.

In Eqs. (1)–(3), the independent variables are the time t and
space variables, xi, in direction i, ui is the velocity component in
irection i, ρ is the mixture density, p is the dynamic pressure
nd gi are the components of the gravitational acceleration, g⃗ =

0, 0, −g). The kinematic viscosity, ν0 = µ/ρ, and mass diffusion
coefficient, D, are assumed constant and uniform in space. Note
that, in general, the dynamic viscosity, µ, is a weaker function of
density than linear; the assumption ν0 constant ensures a uniform
Schmidt number, Sc =

ν0
D throughout the flow. A discussion

on additional choices for the transport coefficients variations are
provided in Ref. [15].

The equation of state for a binary mixture of ideal gases re-
duces in the infinite speed of sound limit to a diagnostic equation
for the mass fractions of the two fluids [14,15]:

1
ρ

=
YH

ρH
+

YL

ρL
(5)

where the heavy and light fluid mass fractions, YH and YL, satisfy
YH + YL = 1, and the microdensities ρH and ρL of the pure
heavy and light fluids are constant. For an ideal gas mixture, ρl =

p0Wl/(T0R), where p0 and T0 are the background pressure and
temperature, R is the universal gas constant, and Wl is the molar
mass of species l. In the incompressible limit, the microdensities,
ρl, become constant. Relation (5) can also be obtained by first
assuming constant micro-densities and then requiring that the
volume occupied by the mixture is the sum of the volumes of
the two fluids [16]. Relation (5) implies that the mixing rule for
the dynamic viscosity is 1/µ =

YH
µH

+
YL
µL

, where µH = ν0ρH and

µL = ν0ρL are the dynamic viscosities of the pure heavy and light
fluids, respectively.

To facilitate the comparison with previous studies, the results
are scaled by the length scale L0, velocity scale Ur =

√
AgL0,

time scale tr =
√
L0/(Ag), and ρ0 = (ρH + ρL)/2. As explained

elow, L0 is chosen as a length scale characterizing the initial
erturbation spectrum. For the simulations presented here, L0 is
lso close to the most unstable wavelength of the linear problem.
sing L0, Ur , tr , and ρ0 for non-dimensionalization changes the
overning equations such that g is replaced by 1/A, ν0 by 1/Re0 =

0/(L0
√
AgL0), and D by 1/(Re0Sc).

Eqs. (1)–(3) have been used in several previous studies, e.g.,
Refs. [4,14,18,24,25,39]. If the densities of the two fluids are com-
mensurate, then the mixture density is close to its average value,
ρ0, and Eqs. (1)–(3) lead to the Boussinesq approximation [15].

For the Rayleigh–Taylor problem, Eqs. (1)–(3) have periodic
boundary conditions in the horizontal direction and slip wall
conditions are applied in the direction of gravity.
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.1. Numerical methodology

All simulations presented here were performed with the
FDNS code [17,20], using sixth-order compact finite differences
40] in the vertical (non-periodic) direction and spectral differ-
ncing in the horizontal (periodic) directions. To account for the
ifference in accuracy between the compact finite differences
cheme and the Fourier differentiation, the grid spacing is 25%
maller in the vertical direction. For a well resolved spectral sim-
lation, ηkmax ≥ 1.5, where η is the Kolmogorov microscale and
the Nyquist wavenumber. This condition corresponds to a grid
pacing of less than 2η. Requiring the compact difference method
o produce less than 25% error in differentiating a mode with this
ame wavelength dictates that the grid spacing must be refined
elative to that of the spectral method by a factor of 0.8 [20].
ost energy in the flow corresponds to larger wavelengths, for
hich the differentiation error decreases rapidly. Nevertheless,
ince the Kolmogorov microscale is not well defined for the flow
onsidered here, extensive resolution studies were performed to
erify that the solution was converged.
In all simulations, Sc = 1, and the dynamic viscosity is chosen

uch that the mesh Grashoff number, Gr ≡ 2A/Fr2∆3
h/ν

2
0 , is below

(a value of 0.88 was used in simulations). Here, ∆h = 2π/N is
he mesh size in the horizontal direction, where N is the number
f grid points, and the mesh size in the vertical direction is ∆v =

.8∆h. The values of the acceleration are discussed below.
The time integration was performed with a variable-time step-

ing third order predictor–corrector Adams–Bashforth–Moulton
cheme coupled with a pressure projection method. The variable
ensity equations lead to a variable coefficient Poisson equation
or pressure:

·

(
∇p
ρn+1

)
= −∆ + ∇ ·

[
(ρu⃗)∗/ρn+1] (6)

where the divergence of velocity at time step n + 1, ∆, is cal-
ulated based on ρn+1 (3), which is known. (ρu⃗)∗ denotes the
omentum at the intermediate step, after the momentum equa-

ions are advanced without the pressure terms. Eq. (6) is solved
n two steps, to ensure that no errors are introduced in mass
onservation or baroclinic production of vorticity. Thus, the equa-
ion is split into an explicit equation for the gradient component
f ∇p/ρ, which is related to mass conservation, and an implicit
quation for the solenoidal (curl) component of ∇p/ρ, which is
elated to the baroclinic term in the vorticity equation [24,39].

First, the gradient component of ∇p/ρ (denoted by ∇q) is
etermined from:
2q = −∆ + ∇ ·

[
(ρu⃗)∗/ρn+1] (7)

ith

q · n⃗Γ =
[
(ρu⃗)∗/ρn+1]

· n⃗Γ (8)

Here, n⃗Γ is the normal to the non-periodic boundary, which is
in the vertical direction. After applying the Fourier transform in
the horizontal directions, Eq. (7) becomes a second order ordinary
differential equation, with Neumann boundary conditions. The
equation is discretized using the compact finite differences for-
mula corresponding to Neumann boundary conditions. This leads
to a penta-diagonal linear system for the Fourier coefficients of
q. At the boundaries, lower order schemes (by 2 compared to the
central regions), were used. The linear system is solved using a
fast direct solver. For Neumann boundary conditions, q can only
be determined up to an arbitrary constant. Thus, q is set to zero
at one of the boundaries and the corresponding equation in the

linear system is removed.

3

An equation for the curl component of ∇p/ρ (denoted by Q⃗ )
can be constructed from the formula:

∇p = ρn+1(∇q + Q⃗ ) (9)

by taking the curl twice to yield:

∇
2Q⃗ = ∇ ×

[
∇lnρn+1

×

(
∇q + Q⃗

)]
, (10)

with

Q⃗ |Γ = 0. (11)

Eq. (10) is solved iteratively, using the direct Poisson equation
solver described above, with hybrid Fourier transforms/6th or-
der compact finite differences used to evaluate the right hand
side. Unlike the triply periodic case addressed in Refs. [24,39], a
separate equation for the average of ∇p/ρ is not necessary. This
average is included in the gradient component.

The solution algorithm is parallelized using a 3-D domain
decomposition. We have derived a fully distributed algorithm
for the corresponding fast direct solver [41]. As an alternative,
one can use a serial penta-diagonal direct solver coupled with
matrix transposes to arrange the data on an entire line to be on-
processor. Such transposes require communications only in the
direction of the transform (or derivative) on single lines of pro-
cessors. The same matrix transposes are also used for the Fourier
transforms. With this decomposition, the code ran efficiently on
131,072 compute cores on the IBM BG/Q Sequoia supercomputer
at Lawrence Livermore National Laboratory.

2.2. Simulation cases

To explore the response in the turbulence and mixing char-
acteristics to the change in acceleration in VD RTI and provide
data for model development and testing, we have performed fully
resolved simulations of Rayleigh–Taylor instability on grid sizes
10242

× NZ and Atwood numbers 0.5, 0.75, and 0.9. To improve
computational efficiency, NZ is increased as the layer develops.
After the layer width had developed substantially, additional
branched simulations have been run under reversed and zero
gravity conditions. The branched simulations start at t/tr ≈ 16,
14.4, and 12.2, for A = 0.5, 0.75, and 0.9, respectively. The
simulations are stopped before the results become affected by
the domain size in the vertical direction. Preliminary results from
these simulations were first reported in Refs [17,36]. Here, we
present more detailed, further analysis of the simulations.

For all simulations, the density is initialized to follow an error
function profile in the vertical direction, which is consistent to
the solution to the pure diffusion equation:

ρ = 0.5 (1 + Erf [Yvz + ζ (x, y)]) (ρH − ρL) + ρL, (12)

with the slope coefficient Yv chosen such that at least 8 grid
points lie across the initial mixing layer. The initial perturbation
ζ (x, y) has a top hat spectrum with energy between wavenum-
bers 30 and 34, with the middle wavenumber (κ = 32) close
to the most unstable mode of the linearized problem calculated
using the diffusive growth rate based on Ref. [42]. Thus, the initial
perturbation length scale used for normalization of the results is
L0 = 2π/32 ≈ 0.196.

To be able to compare simulations with different Atwood
numbers, the acceleration g is varied such that the reference time
scale, tr , is ≈ 0.16 for all Atwood numbers (Ag ≈ 7.62 for all
Atwood numbers). The resulting velocity scale is Ur ≈ 1.22. The
simulations are summarized in Table 1.
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able 1
ummary of the simulation cases discussed in the paper. RTI+, RTI−, and RTI0
enote the forward (g > 0), reversed (g < 0), and zero (g = 0) gravity cases,
espectively.
A Type Start time, t0 , in tr units Final size

0.5 RTI+ 0 10242
× 2304

0.5 RTI− 16 10242
× 2304

0.5 RTI0 16 10242
× 2304

0.75 RTI+ 0 10242
× 4608

0.75 RTI− 14.4 10242
× 2304

0.75 RTI0 14.4 10242
× 2304

0.9 RTI+ 0 10242
× 2304

0.9 RTI− 12.2 10242
× 2304

0.9 RTI0 12.2 10242
× 2304

2.3. Nomenclature

In defining the turbulence quantities, capital Roman letters,
verbars, and angle brackets are used to denote Reynolds aver-
ges, which are taken over the periodic directions (assumed ho-
ogeneous). Angle brackets are preferred for longer expressions
hile overbars are used for quantities named with Greek letters.
rimes are used to denote fluctuations. The density weighted
Favre) averages are denoted with ˜, and the corresponding fluc-
uations with double primes. Thus, the instantaneous velocity,
ensity, pressure, and specific volume are decomposed as ui =

i + u′

i = Ũi + u′′

i , ρ = ρ + ρ ′, p = P + p′, and v = V + v′,
respectively. Note that Ũi − Ui = u′

i − u′′

i = ai. The definitions
for the normalized mass flux, ai, Favre Reynolds stresses, Rij, and
turbulent kinetic energy, k̃ or TKE, total kinetic energy, EK , and
density specific volume covariance, b, are given below:

ai =
⟨uiρ⟩

ρ̄
= −⟨u′′

i ⟩ (13)

Rij = ⟨ρ∗u′′

i u
′′

j ⟩ = ρ̄⟨uiuj⟩ − ρ̄aiaj + ⟨ρuiuj⟩, (14)

k̃ = Rkk/(2ρ̄) = (⟨uiui⟩ − aiai + ⟨ρuiui⟩/ρ̄)/2 (15)

K = ⟨ρ∗u∗

i u
∗

i ⟩/2 = (ρ̄ŨiŨi + ⟨ρ∗u′′

i u
′′

i ⟩)/2

= ρ̄(K̃ + k̃) (16)
b = −⟨ρv⟩. (17)

hese quantities are encountered in moment closures (see Refs.
25,43,44]) and are useful for the turbulence discussion below.

.4. Turbulence moments equations

A moment closure approach at the second order level for
ariable density turbulence requires modeled transport equations
or the Favre turbulent kinetic energy, k̃, normalized mass flux,
i, and density specific volume correlation, b, or, alternatively,
ean specific volume, V [43]. The corresponding transport equa-

ions [25] are shown here for completeness and to facilitate the
iscussion below:
∂

∂t
ρ̄k̃ + (ρ̄Ũjk̃),j = ai(P,i − τ̄ij,j) − RijŨi,j −

1
2
Riij,j

− ⟨ui(pδij − τij)⟩,j + ⟨pd⟩ − ⟨τijui,j⟩

(18)

∂

∂t
(ρ̄ai) + (ρ̄Ũkai),k = bPi + ρ̄⟨vpi⟩

− ρ̄aj(ũi − ai),j +
ρ̄,j

ρ̄
(⟨ρuiuj⟩ − Rij)

+ ρ̄(aiaj),j − (⟨ρuiuj⟩, j + ρ̄⟨uid⟩)

(19)

∂

∂t
b + Ũjb,j = 2ajb,j − 2aj(1 + b)

ρ̄,j

ρ̄

+ ρ̄

(
⟨ujρv⟩

)
+ 2ρ̄⟨vd⟩

(20)
ρ̄ ,j o

4

∂

∂t
V + ŨjV,j = 2ajV,j + VŨj,j +

(
⟨ujρv⟩

ρ̄

)
,j

+ 2⟨vd⟩ (21)

The equations above are general and describe the moments evo-
lutions in a fully compressible flow, regardless of the equation of
state. Only after the application of (3), they become specific to the
VD case.

3. Results

In this section, flow characteristics related to layer growth
and its asymmetry, as well as turbulent kinetic energy and mass
flux, are compared among the forward, reversed, and zero gravity
cases, for the three Atwood numbers considered here, i.e. A = 0.5,
0.75, and 0.9. In addition, kinetic energy equation budgets, length
scales, anisotropy, and vorticity alignments are discussed in more
detail for the A = 0.75 simulation. With some notable exceptions,
it is shown that turbulence in the inner region of the mixing layer
of all three Atwood numbers has similar properties with other
turbulent flows like homogeneous turbulence – isotropic, shear,
etc. – mixing layers, wakes, jets, boundary layers, while the highly
intermittent edge regions do not. After the gravity changes, the
flow undergoes a transient process with large scale oscillations on
a slowly decreasing time scale. Turbulence kinetic energy alter-
nates periods of growths and decay, corresponding to oscillations
in the sign of the mass flux, which determines the sign of the
buoyancy term in the turbulent kinetic energy transport equation.
While the overall Reynolds number decreases significantly, tur-
bulence in the inner region maintains its structure and the edge
regions start to exhibit similar characteristics.

3.1. Overview of flow evolution

The global behavior of the layer after the gravity change can
be inferred from Fig. 1, which shows the evolution of the layer
width based on several measures. For the miscible case, there is
no unique definition of the layer width, and Fig. 1 compares some
commonly used measures. Thus, hCC =

∫
∞

−∞
Xp(ρ̄)dz is based on

the maximum product, Xp(ρ̄), in a fast reaction analogy [4,18,25].
Refs. [45–49] use the definition hb = βW = β

∫
∞

−∞
F1F2dz for the

layer thickness on the bubble side, where F1 and F2 are the aver-
ages (over horizontal planes) of the volume fractions occupied by
the two fluids. For the incompressible variable density case, F1 =
ρH−ρ̄

ρH−ρL
and F2 =

ρ̄−ρL
ρH−ρL

using formula (5). The factor β accounts

for the diffuse variation of the volume fraction near the bubble
edge of the layer (a value of 3 corresponds to linear variation)
and changes with A. For A values of 0.5, 0.75, and 0.9 considered
here, β is ≈ 3.3, 3.1, and 3.0, respectively. A variation of this
definition based on the mass fractions (or mass concentrations)
has been used in Refs. [50,51] as h = 6

∫
∞

−∞
Y1Y2dz. Fig. 1 shows

the half-width, hc , corresponding to this definition. The two other
measures shown in Fig. 1 are the bubble and spike heights, h95b
and h95s , defined as the distance between the original centerline
nd the locations where the mean density falls within 5% of the
ure fluid values, i.e. ρ̄ = ρH − 0.05(ρH − ρL) on the bubble side
nd ρ̄ = ρL + 0.05(ρH − ρL) on the spike side.
After the gravity changes sign, the layer width continues to

row for a short time due to inertia. During this time, as shown
elow, the layer undergoes dramatic rearrangements of the fluid
arcels. Then, the layer width decreases, followed by a small
ounce back, before settling to a quasi-constant value. Such be-
avior has also been observed in previous coarse mesh simu-
ations [33,34]. The transitory increase in the layer width, as
xplained in more detail below, is associated with transitory
hanges in the sign of the mass flux, which determines the sign

f the production term in the turbulent kinetic energy equation
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Fig. 1. The evolution of the layer width defined using a fast reaction analogy, hCC , bubble side height defined based on volume fractions of the fluids, hb , half-layer
idth defined based on the mass fractions of the fluids, hc , and the bubble and spike heights, h95b and h95s for (a) A = 0.5, (b) A = 0.75, and (c) A = 0.9. See

definitions in the main text. The main simulations (forward gravity or RTI+), shown with continuous lines, are branched into additional simulations with zero gravity
(RTI0), shown with dotted lines, and reversed gravity (RTI−), shown with dashed lines.
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(18), as described below. The process is further complicated by
the local density inversions associated with the complex structure
of the layer, which lead to secondary RT instabilities until the
local stratification becomes stable. On the other hand, the zero
gravity layer width continues to grow indefinitely, as expected.

While the overall differences among hCC , hb, and hc are not
very large, it is instructive to examine the variation across the
layer of the corresponding integrand, XP (ρ̄), βW , and 3WV . Using
ormula (5), it can be shown that

=
ρLρH

(ρH − ρL)2

(
1 −

ρ̄

ρH

)(
ρ̄

ρL
− 1

)
(22)

nd

V =
ρLρH

(ρH − ρL)2
(1 − VρL) (VρL − 1) . (23)

Fig. 2 shows that XP (ρ̄) and βW collapse relatively well for
different Atwood numbers on the bubble side, while WV shifts
the entire profile to the spike side, as the mass fraction biases
regions with small amounts of heavy fluid for larger Atwood
numbers. Since hb has been widely used in previous studies to
scale the vertical variation, we use this width as well for the
results presented in this paper.

Although certain classes of initial conditions (e.g. if long wave-
lengths are present in the initial perturbation [17,52]) may have
a long lasting influence on the growth rate, it is generally agreed
that at long times, if the turbulence growth is unrestricted, the
turbulent mixing layer grows quadratically in time [4,25,53,54]:

h = αAgt2 + s
√

αAgh0t + h0. (24)

he quadratic growth has been known for a long time as a di-
ensionally consistent result confirmed by experimental data [3,
5

Fig. 2. The vertical variation of Xp(ρ̄), βW , and 3Wv , which enter the definitions
f hCC , hb , and hc , respectively, for the RTI+ cases with A = 0.5, 0.75, and 0.9
t t/tr ≈ 16.

5,55]. In terms of the scales defined in Section 2, the leading
rder term becomes h/L0 ∼ α(t/tr )2. Although, asymptotically,
he leading order term in Eq. (24) should dominate, the onset
f self-similarity of the mixing layer width growth occurs much
arlier and the lower order terms in Eq. (24) need to be prop-
rly accounted for. Ref. [4] used a formula consistent with the
nderlying self-similar differential equation for h [54],

=
ḣ2

. (25)

4Agh
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Fig. 3. The evolution of the growth rate for the RTI+ runs with A = 0.5, 0.75,
and 0.9. For comparison, the growth rate results for the A = 0.04 case presented
in Ref. [19] are also shown. The growth rate is calculated using formula (25),
and hb as the layer width, so it corresponds to the bubble side.

Fig. 3 compares the evolution of the growth coefficient, αb, for
the bubble side for the cases considered here and the low Atwood
number case (A = 0.04) from Ref. [19]. The growth coefficient is
calculated using formula (25), with h replaced by hb. The results
are very close, with αb ≈ 0.025, oscillating slightly between 0.022
and 0.027. The A = 0.9 results are slightly larger, but seem to also
become close to the rest of the cases at the end of the simulation.
The results are in general agreement with Ref. [49], corresponding
to initial conditions with high wavenumber content. Thus, the
values are lower than in earlier experimental results, but closer
to newer experiments with better controlled initial perturbation
spectrum [56,57].

After gravity is set to zero, the flow becomes anisotropic
variable density decaying turbulence and has similarities with the
Richtmyer–Meshkov instability (RMI). For RMI, the growth of the
layer width, h, is well approximated by a power law of the type
h − h0 = (t − t0)n [58], with the subscript ‘‘0’’ indicating the
virtual origin. When a reshock is present, h0 and t0 are taken to
correspond to the layer width and time at reshock [59]. Exponent
values between 0.25 and 0.3 have been reported [60], with an
intermediate stage where n is around 0.4 [59,61]. Using L0 and
tr as length and timescales, hb as the layer width, and the branch
time and layer width as t0 and h0, the growth exponents obtained
using a similar power law for the simulations presented here are
n ≈ 0.67, 0.62, and 0.55, corresponding to A = 0.5, 0.75, and
0.9, respectively. These exponents become established close to
the branch time and seem to remain the same for the duration
of the simulation. Thus, unlike the forward gravity case, there is
a non-negligible Atwood number dependency on the growth rate
after gravity is set to zero. In addition, these growth exponents
are larger than those seen in RMI. While it is possible that the
exponents may start decreasing for even larger simulations, they
may also indicate a structural dissimilarity between the layer
generated by impulsive and sustained accelerations, or they cor-
respond to a certain region of the parameter space (e.g. Mach
number, time to re-shock, initial perturbation spectrum), not yet
explored in RMI.

Even as the growth on the bubble side seems to be little
affected by the Atwood number for the runs presented here, the
layer becomes increasingly asymmetric, and the spike side grows
faster with A. To facilitate comparisons with previous studies,
Fig. 4 shows the evolution of h95s/h95b for the Atwood numbers
considered in this study and the A = 0.04 case from Ref. [19].
The ratio seems to approach a constant at late times (t/tr > 10),
whose value increases with A. The values shown in Fig. 4 are,
again, in general agreement with Ref. [49], but lower than earlier
6

Fig. 4. The evolution of the spike to bubble height ratio for the RTI+ runs with
A = 0.5, 0.75, 0.9, and A = 0.04 from Ref. [19].

Fig. 5. The evolution of the turbulent Reynolds number at the location where
TKE reaches its maximum value, for RTI+, RTI−, and RTI0 cases with different
Atwood numbers.

experimental values, e.g. Ref. [23]. After the gravity change, the
spike and bubble heights remain asymmetric (Fig. 1), with the
ratio h95s/h95b approximately constant for the RTI0 cases, and
presenting some oscillations correlated with the h oscillations
from Fig. 1 for the RTI− cases (not shown).

The oscillations in the layer width following the gravity re-
versal can also be seen in the time evolution of the turbulent
Reynolds number, shown in Fig. 5. The turbulent Reynolds num-
ber follows the expected decay for the RTI0 cases, but seems to
oscillate without significant overall decay for the RTI−cases. This
indicates that turbulence itself undergoes significant transitory
changes, after the gravity reversal.

Thus, Fig. 6 shows that RTI0-cases start with a fast decrease
of TKE, followed by a slight increase and then another decay.
The increase in TKE can be partly associated with local density
inversions present in the complex structure of the layer, which
lead to secondary RT instabilities until the local stratification
becomes stable. This is explored below using notions from stably
stratified flow analysis. However, there is also a bounce of the
whole turbulent layer, which can be seen using the turbulence
moments equations presented in Section 2.4.

Eq. (18) shows that the term aiP,i does not have a definite sign.
When turbulence is established, this term is positive and repre-
sents the buoyancy production of turbulent kinetic energy [25,
43]. However, the sudden change in the sign of gravity is reflected
instantaneously only in the sign change of the mean pressure
gradient. The mass flux continues to be negative for some time
after the gravity reversal (Fig. 7), so that aiP,i changes its role and
becomes a destruction term. On the other hand, the buoyancy
term in the mass flux transport equation (19) has a sign given
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Fig. 6. The evolution of the maximum scaled turbulent kinetic energy (TKE)
across the layer, RTI+, RTI−, and RTI0 cases with different Atwood numbers.

Fig. 7. The evolution of the mass flux at the centerline for RTI+, RTI−, and RTI0
ases with different Atwood numbers.

nly by the mean pressure gradient, since the density specific
olume correlation has definite sign. After the gravity reversal,
his term also changes its role and becomes a destruction term.
owever, unlike the turbulent kinetic energy, the mass flux does
ot have a definite sign, and since turbulence does not decay on
he time scale of the new buoyancy destruction term, mass flux
tself overshoots and changes sign, as shown in Fig. 7. Never-
heless, aiP,i, which is now a buoyancy production term, is still
large term in the mass flux transport equation and the mass

lux overshoots and reverses sign again. Fig. 7, which captures
wo additional zero crossings of the mass flux for A = 0.5 and
= 0.75 cases, shows that the interval between the subsequent
ero crossings becomes smaller.
The normalized time instants corresponding to the zero cross-

ngs and local maxima/minima of the centerline mass flux are
hown in Table 2, i.e. t1 when the mass flux becomes zero for
he first time, t2, when the mass flux reaches its first positive
eak, t3, when the mass flux crosses zero the second time, t4,
hen the mass flux reaches it first negative peak, and t5, when
he mass flux crosses zero the third time. In tr time units, the
nterval between the zero crossings decreases from ≈ 5.15 to
≈ 4.7 for A = 0.5 and from ≈ 4.9 to ≈ 4.5 for A = 0.75.
or comparison, the first zero crossing interval of the mass flux
scillations at A = 0.9 is ≈ 4.55, while the time interval between

the gravity reversal and when the mass flux first becomes zero is
≈ 2.35, ≈ 2.2, and ≈ 2 for A = 0.5, 0.75, and 0.9, respectively.

The results presented in the rest of the paper focus on the
A = 0.75 case for brevity. However, some of the A = 0.5 and
A = 0.9 results are also shown, to emphasize the large A behavior.
To facilitate the discussion of the flow physics, the variations
across the layer are plotted at the time instants shown in Table 2.
7

Fig. 8. Mean density profiles corresponding to RTI+, RTI−, and RTI0 cases with
different Atwood numbers, at several time instants (see Table 2).

Table 2
Summary of the mass flux characteristic time instants for different Atwood
numbers.
A Time instant t/tr a3|z=0 behavior

0.5 t0 16 Gravity reversal
0.5 t1 18.35 First zero crossing
0.5 t2 20.0 First positive peak
0.5 t3 23.5 Second zero crossing
0.5 t4 25.5 First negative peak
0.5 t5 28.2 Third zero crossing

0.75 t0 14.4 Gravity reversal
0.75 t1 16.6 First zero crossing
0.75 t2 18.8 First positive peak
0.75 t3 21.5 Second zero crossing
0.75 t4 23.4 First negative peak
0.75 t5 26 Third zero crossing

0.9 t0 12.2 Gravity reversal
0.9 t1 14.2 First zero crossing
0.9 t2 15.8 First positive peak
0.9 t3 18.75 Second zero crossing
0.9 t4 20.85 First negative peak

Fig. 9. Density field from the A = 0.75 simulation at t0 . Here, black represents
fully mixed fluid, blue, light fluid, and yellow, heavy fluid.

3.2. Density field

To examine the modifications in the layer structure after the
gravity change, in this section we focus on the density field. Fig. 8
shows that the mean density profiles collapse among the RTI+,
RTI−, and RTI0 cases at the reference times defined above, giving
little indication of the dramatic modifications in the underlying
density field structure as the gravity changes. Moreover, the mean
density variation remains linear in the inner region of the layer,
retaining a fixed point at z = 0, similar to the classical RTI [25],
and the edge regions remain asymmetric, with the profiles more
elongated on the spike side. As shown in Ref. [25], this leads



D. Livescu, T. Wei and P.T. Brady Physica D 417 (2021) 132832

t
T
s
H
n
k

F
g
f
g
d
t
f
o
t
s
t

i
t
t
s
M
m
R
f
t
n

f
T
r
b
t
p
i
t
w
i
t

(
s
t
o
f
f
t
d
h
i

3

a

o a host of asymmetries in many of the turbulence quantities.
he collapse of the density profiles is consistent with the self-
imilarity of the layer growth discussed in the previous section.
owever, for the RTI− cases, the mixing layer evolution is clearly
ot self-similar, as reflected by the variations of the turbulent
inetic energy and mass flux.
Nevertheless, the variation of the density field shown in

igs. 9–12 clearly indicates that the mixing layer structure under-
oes significant modifications after the gravity change. While the
orward case, RTI+, exhibits more small scale activity as the layer
rows from t0 to t3, the small scale structures are significantly
amped for the RTI− case at t3. The layer continues to grow for
he RTI0 case with the small scale structures remaining similar
or the three time instances shown. Interestingly, the asymmetry
f the layer, with more elongated spike side, is maintained after
he gravity change. The results for all three Atwood numbers are
imilar, and only the A = 0.75 results are shown here at several
imes and the A = 0.9 results at a late time, for brevity.

The changes in the density field can be highlighted be compar-
ng its PDF across the layer. For the forward gravity case (Fig. 13a)
he density PDF varies widely across the layer: at the bottom of
he layer (z < 0) the PDF is spiked at the light fluid, at the top is
piked at the heavy fluid, while the transition is non-monotonic.
ost of the RTI mix metrics are constructed from lower order
oments of the density PDF and cannot capture this variation.
ef. [24] provides some rigorous bounds on the pure and mixed
luids based on the values of various mix metrics. In many cases,
he bounds are far apart, clearly showing that such metrics are

ot useful in estimating the amounts of pure or mixed fluids. c

8

In the forward gravity case, the interpenetration of the two
luids is highly irregular, giving rise to local density inversions.
hese inversions are quickly removed as the buoyancy force
everses sign (Fig. 13b) so that, at late times, the stratification
ecomes relatively uniform across the layer. This is shown by
he much more narrow density PDF profiles, with a well defined
eak. At each vertical position, the fluid becomes better mixed,
ndicative of a loss of internal structure of the layer. In addition,
he width of the density PDF becomes narrower on the spike side,
here the forward case exhibits more structure and roughness,

ndicating a more violent mixing process on this side following
he gravity reversal.

Similar to the forward gravity case, in the zero gravity case
Fig. 13c), the density PDF at the centerline is not symmetrical,
howing that some amount of pure heavy fluid reaches the cen-
erline, but not the pure light fluid. Thus, the penetration distance
f the pure heavy fluid is larger than that of the pure light
luid, a consequence of the mixing asymmetry in non-Boussinesq
lows [17,24]. As the layer continues to grow due to the inertia of
he individual fluid parcels, the mixing layer still develops and the
ensity PDF demonstrates a rich internal structure. This behavior
as similarities to the post re-shock evolution of the mixing layer
n the Richtmyer–Meshkov instability [59].

.3. Turbulence and buoyancy scales after gravity reversal

Following the gravity reversal, the mean stratification be-

omes stable, while the flows undergoes significant transients. To
Fig. 10. Density field from the A = 0.75 simulations (a) RTI+, (b) RTI−, and (c) RTI0 at t2 (see Table 2). Here, black represents fully mixed fluid, blue, light fluid,
nd yellow, heavy fluid.
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Fig. 11. Density field from the A = 0.75 simulations (a) RTI+, (b) RTI−, and (c) RTI0 at t3 (see Table 2). Here, black represents fully mixed fluid, blue, light fluid,
nd yellow, heavy fluid.
w
d
i
t
t
s
v
A
A
t
g
t
L
a
t

i
N
i
m
a
s

nderstand the interplay between the buoyancy and turbulence,
ere we compare different scales across the layer for the RTI−
ases at several time instances.
Fig. 14 shows that the turbulence integral scale (Lt = k̃3/2/ϵ)

s comparable to half of the bubble height defined by hb at the
ime of gravity reversal, t0, for A = 0.75. However, the variation
cross the layer is asymmetric, with Lt values slightly larger on
he spike side than on the bubble side. In the middle of the layer,
he value of the turbulence integral scale corresponds roughly to
avenumber κ = 8. After the change in gravity, when the mass

lux crosses zero the first time, Lt is significantly smaller (Lt ≈

.15hb) and exhibits less variation across the layer. Thus, at t1, the
ravity reversal appears as an efficient mixing mechanism for the
arge turbulence scales. Later, Lt , increases up to t4, then decreases
gain at t5, with larger values near the edges at the latest times,
nderlying the transients in the turbulence production mecha-
ism. Fig. 14 also shows the variation across the layer at late
imes for A = 0.5 and 0.9 RTI− cases. The layer extent underlined
y the Lt variation is similar on the bubble side for different
twood numbers at corresponding times, while the extent clearly
ncreases with A on the spike side. This is consistent with the
ther results presented above. Interestingly, in the middle of the
ayer, Lt values are relatively close for different Atwood numbers
t corresponding times.
9

For stably stratified flows, the Ozmidov scale, LO =
(
ϵ/N3

BV

)1/2,
here N2

BV = −|g|/ρ̄dρ̄/dz is the Brünt–Väisällä frequency,
efines the scale above which turbulence is inhibited by strat-
fication. Due to the large variation of the mean density across
he layer, here we use ρ̄ in the definition of N2

BV , instead of
he usual definition with a constant background density. Fig. 15
hows that LO is relatively constant across the layer, with larger
alues near the spike edge of the layer after the gravity reversal.
t t0, LO is about 0.22hb in the central region of the layer for
= 0.75, corresponding to wavenumber κ = 16. LO continues

o decrease after the gravity reversal, even during the transitory
rowth of the turbulent kinetic energy. While the layer extent on
he spike side underlined by LO variation clearly increases with A,
O values in the interior of the layer are close for different A cases
t corresponding times. At t5, LO reaches values around 0.045 in
he interior of the layer, corresponding to wavenumber κ = 75.

The dominance of buoyancy over turbulence can also be seen
n the variation of the dimensionless stratification parameter,
BV τ , where τ = k̃/ϵ, is the turbulence time scale. Thus, NBV τ

s relatively constant across most of the layer and larger than 1
ost of the time Fig. 16. Unlike LO, NBV τ is not monotonic in time,
nd it first decreases after the gravity reversal. At t1, NBV τ is only
lightly larger than one, a consequence of the violent response
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Fig. 12. Density field from the A = 0.9 RTI− simulation at (a) t0 , (b) t1 , and (c) t2 (see Table 2). Here, black represents fully mixed fluid, blue, light fluid, and yellow,
heavy fluid.

Fig. 13. Density PDF across the layer for the A = 0.75 simulations (a) RTI+, (b) RTI−, and (c) RTI0 at t3 (see Table 2).

10
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Fig. 14. Vertical variation of the turbulence integral scale, Lt = k̃3/2/ϵ for RTI−
cases at several times (see Table 2).

Fig. 15. Vertical variation of the Ozmidov scale, LO , for RTI− cases at several
times (see Table 2).

of the flow to the sudden change in gravity. It then continues to
increase and seems to reach an asymptotic value between 3 and 4
at the latest times, with relatively little variation with the Atwood
number.

The Elisson scale, LE = ⟨ρ ′2
⟩
1/2/|dρ̄/dz| is usually used as a

surrogate to represent the Thorpe and eventually Ozmidov scale
and, thus, estimate the turbulence dissipation from observations
where this is not available. There is a lot of work in the literature
on estimating the Elisson scale, including efforts to remove the
contribution to the density fluctuations from the internal gravity
waves. This decomposition is beyond the scope of the current
paper, since the processes following the gravity inversion are
highly transient and the density fluctuations may also be affected
by additional physics. We merely note that LE is also relatively
constant throughout the interior of the mixing layer at all time
instances shown in Fig. 17 and seems to reach an asymptotic
value around 0.1 for all A cases studied here at late times. Thus,
LE > LO by a factor of around 2.

3.4. Large and small scale anisotropies

In the forward gravity case, it is known that the flow is
anisotropic at large scales (e.g. [19,25,54,62]), which is a direct
consequence of the anisotropic buoyancy production. The usual
measure for this anisotropy is calculated based on the normal
stresses. The Favre Reynolds stress anisotropy tensor is defined
by:

bij =
Rij

−
1
δij (26)
Rkk 3
11
Fig. 16. Vertical variation of the dimensionless stratification parameter, NBV τ ,
for RTI− cases at several times (see Table 2).

Fig. 17. Vertical variation of the Elisson scale, LE , for RTI− cases at several times
(see Table 2).

and b33 is the relevant large scale anisotropy measure for this
flow. b33 is bounded by −

1
3 ≤ b33 ≤

2
3 .

Fig. 18 shows that b33 variation at the centerline for the for-
ward gravity cases convergences in the turbulent stage to ≈ 0.3,
similar to the behavior at A = 0.04 (e.g. [25]). For this value,
approximately 2/3 of the turbulent kinetic energy is concentrated
in the vertical direction, so that R33 ≈ 4R11. After the gravity
is set to zero, b33 decreases rapidly, but it seems to asymptote
to a constant value of ≈ 0.15 for all A cases considered here.
For this value, the vertical and horizontal kinetic energies are
approximately the same, so that R33 ≈ 2R11. However, gravity
reversal sets in an oscillatory behavior, with the troughs around
zero (corresponding to isotropic energy distribution) and the
peaks between 0.25 and 0.27. The first trough coincides with the
first zero crossing of the mass flux for all three Atwood number
cases. However, the subsequent oscillations no longer seem cor-
related with the mass flux behavior. Thus, the first peak of the
b33 oscillations occurs earlier than t3, while the second trough
seems to occur later than t5. While definitely the mass flux sign
reversals and subsequent oscillation of the role of a3P3 term in the
R11 transport equation between production and destruction are
responsible for the time oscillations of centerline b33, there are
many more degrees of freedom in the flow, and these quantities
are not fully correlated. Thus, as shown below, there is a large
scale oscillation of the flow across the layer, as well as energy
exchange among the normal stresses that varies with the scale.

Unlike the behavior observed at A = 0.04, Fig. 19 shows that
b is no longer constant across the layer. This is not surprising,
33
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Fig. 18. Time evolution of b33 at the centerline for RTI+, RTI−, and RTI0 cases
ith different Atwood numbers.

ince at higher A values it is expected that the asymmetries in
he layer become significantly more pronounced. In fact, experi-
ental evidence (e.g. [23]) suggests that the high A effects should
ecome evident only for A > 0.5. Here, the results indicate larger
evels of the normal stresses anisotropy on the spike side, that
lso seem to increase with A. After the gravity is set to zero,
he large scale anisotropy decreases considerably across most of
he layer, in the absence of the sustained reinforcement of the
uoyancy force (Fig. 19a). Interestingly, b33 values in the inner
egion of the layer closer to the bubble side are approximately
he same for all Atwood numbers considered here, for both RTI+
nd RTI0 cases. However, the edges of the layer remain more
nisotropic than the turbulent interior, as the turbulence is more
fficient in mixing the flow than the highly intermittent, non-
urbulent edge regions. This effect is clearly seen for the reversed
ravity case at different time instances (Fig. 19b). While the
enterline value of b33 reaches values close to zero repeatedly,
he edge regions maintain relatively large levels of anisotropy.

In general, in high Reynolds number flows, the small scales
ecome isotropic and decoupled from the large scales, since pro-
uction mechanisms tend to be confined to large scales. However,
ur previous results [19,24,25] show that buoyancy production,
ven though it becomes much smaller than the nonlinear transfer
n the spectral kinetic energy equation at high wavenumbers, has
significant effect on the smallest scales of the flow, in both

lassical RTI (up to A = 0.5) and an idealized, triply periodic, ho-
ogeneous Rayleigh–Taylor flow, provided that the flow is highly
on-equilibrium, i.e. TKE production far exceeds TKE dissipation.
f the Reynolds number is large enough, so that the viscous scales
re well separated from the large scales, an inertial range can
till develop, since buoyancy production decreases faster with the
avenumber than the nonlinear transfer. However, in the viscous
ange, there is a cancellation between the two largest terms in
he spectral kinetic energy equation so that the buoyancy produc-
ion, even though much smaller than these two terms, becomes,
gain, important. Thus, the largest and smallest scales remain
nisotropic. This finding was also confirmed in a stationary, triply
eriodic buoyancy driven flow [39].
Obviously, such considerations are merely qualitative, even if

upported by DNS data in multiple flows, and may change at
uch larger Reynolds number values. Nevertheless, given the size
f the simulations analyzed here and those mentioned above,
t is highly unlikely that such questions will be settled in the
ear future using direct simulations. Some answers might arrive
ooner by means of spectral analysis (see for example Ref. [63,
4]), especially in the Boussinesq limit, though the analysis is also
omplicated by the non-equilibrium nature of the flow regime
 (

12
here this effect has been seen. Here, we present the numerical
esults, which are consistent with previous observations, and
peculate about their generality.
For variable-density flows, there is no unique way to define a

inetic energy spectrum. Both quadratic and non-quadratic forms
ave been used in previous studies, However, in order for the
inetic energy spectrum to develop an inertial range, the viscous
ffects need to be restricted to the small scales. Ref. [65] showed
hat for variable density turbulence, it is possible that certain
uantities exhibit viscous effects at all scales, while others do
ot. In particular, using a coarse-grained filtering, they showed
hat filtered Favre turbulent kinetic energy has the property that
iscous effects vanish at large scale for large enough Reynolds
umbers for constant viscosity. There is no general formulation
or arbitrary viscosity variations. Nevertheless, Ref. [66] extended
he arguments to spectral representations and showed that a
pectral kinetic energy definition based on the square of the mo-
entum, ⟨|ρ∗u"/

√
ρ̄|

2
⟩ also has vanishing viscous contribution at

sufficiently large Reynolds numbers, for constant viscosity. Here,
we follow Ref. [66] and define the anisotropy as a function of scale
as

b33(κ) =
E33(κ)
Eii(κ)

− 1/3 (27)

here the kinetic energy spectrum in direction j is calculated as

jj(κ) = ⟨ ˆ(ρ∗uj") ˆ(ρ∗uj")
†
⟩/ρ̄ (no summation over j here), withˆ

enoting the Fourier transform, † the complex conjugate, and the
verage is taken over spherical shells centered at wavenumber κ .
While there are some small differences compared to defini-

ions based on spectral forms of the Favre Reynolds stresses (not
hown), the results are consistent with previous results for the
orward gravity case. Thus, Fig. 20 shows that in some inter-
ediate range, which would correspond to an emerging inertial

ange, the anisotropy is smaller than at large and small scales.
or the A = 0.75 zero gravity case (Fig. 20b), immediately
fter the gravity is set to zero, all scales feel the sudden change
n the forcing. Thus, at t1, there is a decrease in anisotropy at
arge scales and an increase at the very small scales. Later, as
he flow evolves to t2 and t3, the large scale anisotropy remains
elatively unchanged, while the small scale anisotropy decreases;
his is expected for a decaying flow, when the Reynolds number
ontinuously decreases.
However, b33(κ) behavior exhibits additional time oscillations

or the RTI− case. After the gravity change, the qualitative re-
arks based on the cancellation between the viscous and non-

inear terms in the spectral kinetic energy evolution no longer
old, as all scales are affected by the transitory effects. Fig. 20c
hows that the intermediate scale values do not change much,
ut the large scale anisotropy decreases immediately following
he gravity reversal, then increases as turbulent kinetic energy is
gain generated by buoyancy production, and, finally, decreases
o around zero as the mass flux reaches zero for the third time
t5). The small scale behavior also changes in time, but in a
ifferent way than at large scales. The anisotropy at the smallest
cales remains relatively large and seems to follow the sign of
he mass flux. Thus, at t2, b33(κ) has lower values at the far
ight of the spectrum, while at t4, when buoyancy acts again
s a production term, the small scale anisotropy becomes large.
lthough reversing gravity might represent an efficient mixing
echanism for the large scales, it seems the transient behavior

ollowing the change in gravity leads to a persistent small scale
nisotropy. The results for the A = 0.9 RTI− case are similar

20d).
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(

Fig. 19. Vertical variation of b33 at the centerline for (a) RTI+ and RTI0 cases, A = 0.5, 0.75, and 0.9, at t0 and t2 , and (b) A = 0.75 RTI− case at different times
see Table 2).
Fig. 20. Scale dependence of normal stresses anisotropy at the centerline for (a) RTI+, A = 0.75, (b) RTI0, A = 0.75, (c) RTI−, A = 0.75, and (d) RTI−, A = 0.9 at
different times (see Table 2).
3.5. Turbulent kinetic energy and mass flux transport equations
budgets

The transient behavior of the flow evolution for the RTI− case
was associated above with the production terms in the turbulent
kinetic energy and mass flux transport equations. In this section,
the terms in these equations are examined at time instants t2-
t4 for A = 0.75. For completeness, we first show the variation
across the layer of the turbulent kinetic energy and mass flux
in Figs. 21(a) and (b), respectively. For all time instants, both k̃
and a3 peak on the spike side, consistent with previous studies
(e.g. [19,25]). After the gravity reversal, the peaks move towards
the centerline, but the spike side still exhibits more turbulence
activity. While the results display the repeated change in the mass
13
flux sign at the centerline, the mass flux remains positive at the
mixing layer edges regions after the initial large transient. This is
further discussed below.

Figs. 22 and 23 show the vertical variation of the non-
negligible terms in the turbulent kinetic energy equation (18).
The definitions of these terms for the current configuration, with
periodic horizontal (‘‘1’’ and ‘‘2’’) and non-periodic (‘‘3’’) direction,
are shown in the figure caption. At t0 (Fig. 22a), the variation of
the terms is similar to the results presented in Ref. [25], except
for the buoyancy term II , which is negative for RTI−. This sudden
change in the role of the buoyancy term from production to
destruction of turbulent kinetic energy leads to rapid decrease in
the turbulent kinetic energy immediately following the gravity
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Fig. 21. Vertical variation of scaled (a) turbulent kinetic energy and (b) turbulent mass flux for the A = 0.75 RTI+, RTI−, and RTI0 cases at different times (see
able 2).
Fig. 22. Vertical variation of the non-negligible terms in the turbulent kinetic energy transport equation (18) for RTI− case with A = 0.75 at (a) t0 and (b) t2 . The
eference times are presented in Table 2. The definitions of the terms for the current configuration are I = −(ρ̄Ũ3k̃),3 , II = a3P,3 , III = −R33Ũ3,3 , V = −1/2Rii3,3 ,
I = −⟨u3p⟩,3 , IX = −⟨τijui,j⟩. All terms are scaled by U2

r /tr . The transport terms are shown in black, buoyancy term with red, and dissipation term with blue lines,
espectively.
Fig. 23. Vertical variation of the non-negligible terms in the turbulent kinetic energy transport equation (18) for RTI− case with A = 0.75 at (a) t3 and (b) t4 . The
eference times are presented in Table 2. The definitions of the terms for the current configuration are shown in Fig. 22.
c
e
c
l

t
t
s
a
H
a

eversal. However, the other terms in the equation do not sud-
enly change, so that the layer still grows for a short time, as
he pressure velocity correlation continues to transport energy
rom the interior to the edges of the layer. By t2, (Fig. 22b),
ll transport terms become small, and the budget is dominated
y the buoyancy and dissipation terms. At this time, since the
urbulent mass flux has changed sign but the mean pressure
radient maintains the sign of the acceleration, the buoyancy
erm is positive and represents a production mechanism for the
urbulent kinetic energy. Later, at t3, Fig. 21b shows that the mass
lux is small at the centerline, but still positive near the edges of
he layer. Consequently, Fig. 23(a) shows that buoyancy continues
o produce turbulent kinetic energy near the edges of the layer.
 m

14
At t4, (Fig. 23b), the buoyancy term is again negative around the
enterline, so it accelerates the decay of the turbulent kinetic
nergy in the central region of the layer. Nevertheless, buoyancy
ontinues to generate kinetic energy at the very edges of the
ayer.

We now turn to the behavior of the terms in the vertical
urbulent mass flux transport equation (19). Unlike the buoyancy
erm in Eq. (18), the buoyancy term in (19) maintains positive
ign at all times following the gravity reversal (Figs. 24 and 25),
s both b and mean pressure gradient maintain constant sign.
owever, since the mass flux itself changes sign, this term acts as
production or destruction mechanism. Term III is a destruction
echanism for the mass flux in the forward case, however, for
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Fig. 24. Vertical variation of the non-negligible terms in the turbulent mass flux transport equation (19) for RTI− case with A = 0.75 at (a) t0 and (b) t2 . The
eference times are presented in Table 2. The definitions of the terms for the current configuration are I = −(ρ̄Ũ3a3),3 , II = bP,3 , III = ρ̄⟨vp,3⟩, V = ρ̄,3/ρ̄(⟨ρu2

3⟩−R33),
I = ρ̄(a23),3 , VII = −⟨ρu362⟩,3 , and VIII = −ρ̄⟨urui,i⟩. All terms are scaled by Ur . The transport terms are shown in black, buoyancy term with red, destruction term
II with blue, and term V with yellow lines, respectively.
Fig. 25. Vertical variation of the non-negligible terms in the turbulent mass flux transport equation (19) for RTI− case with A = 0.75 at (a) t3 and (b) t4 . The
eference times are presented in Table 2. The definitions of the terms for the current configuration are shown in Fig. 24.
l
TI− it can also act as a production term in different regions of
he layer. Term V maintains constant negative sign, opposite to
he buoyancy term, throughout the RTI− evolution. Even though
he density PDF indicates a significant loss of structure for the
ensity field, there are still pockets of less mixed fluid across
he layer, so that b and, consequently, the buoyancy term are
arge enough to produce an overshoot and change in sign of the
ass flux. Interestingly, the non-negligible constant sign term V

s essential for the subsequent change in the sign of the mass flux,
s the sum of V and III exceeds the buoyancy production at t2 and
3.

The discussion above underlies the difficulty of modeling the
oments equations for the RTI− case. It has been long rec-
gnized in the literature the difficulty of modeling turbulence
ransients (e.g. [67]). For the current flow, a gradient diffusion
ypothesis, popular for this kind of turbulence modeling, clearly
annot represent the mass flux sign change either in time or
cross the layer. A consistent closure at the second level would
nclude transport equations for both the turbulent mass flux and
ensity specific volume correlation. However, as shown above,
he unclosed terms in these equations are also subjected to the
ransients in the flow behavior, and likely not captured correctly
y the current models.

.6. Vorticity alignment

In the simple turbulent flows extensively studied in the lit-
rature (e.g. homogeneous isotropic incompressible and com-

ressible turbulence, simple jets, wakes, and shear driven mixing

15
ayers), it is known that vorticity tends to align with the β-
strain (intermediate) eigenvector of the strain rate tensor [68]. In
the interior of the Rayleigh–Taylor mixing layer, all three (RTI+,
RTI−, and RTI0) cases are vorticity dominated (as opposed to
strain dominance) and vorticity aligns with the β-strain eigen-
vector (Fig. 26). Thus, the PDF of the cosine of the angle with the
intermediate eigenvector of the strain rate tensor peaks at 1, indi-
cating a most probable distribution towards a zero degree angle.
Interestingly, after the gravity reversal, the secondary instabilities
still generate enough vorticity to ensure vorticity dominance and
maintain the alignment with the strain rate eigenvectors. The PDF
of the cosine of the angle with the α-strain eigenvector is almost
flat, indicating no preference in the alignment.

In the absence of baroclinic generation of vorticity and the
rotation of the principal axes of the strain rate tensor, vorticity
tends to align, exponentially fast, with the α-strain eigenvec-
tor [68]. The rotation of the principal axes is the only mechanism
preventing this alignment in the presence of turbulence. Similar
to other turbulent flows, the presence of turbulence leads to
a lack of preferential alignment with the α-strain eigenvector.
As a consequence, the average of the cosine of the ξ1 angle is
constant across the inner region of the layer, where the rotation
of the principal axes of the strain rate tensor remains important.
However, over the highly intermittent edge regions, turbulence
is not strong enough, the alignment changes, and ⟨cosξ1⟩ is no
longer constant. Thus, the region over which ⟨cosξ1⟩ is constant
can be used as a proxy for the extent of the inner turbulent region
of the layer. Figs. 27(a) and (b) show that this region has about

the same extent for the RTI+ and RTI0 cases at corresponding
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Fig. 26. PDFs of the cosines of the angles, ξ1 , ξ2 , and ξ3 , between the vorticity
ector and the eigenvectors of the strain rate tensor for A = 0.75 RTI− case

at t3 (see Table 2). The eigenvectors correspond to the eigenvalues α, β , and γ

denoted with the usual convention that α > β > γ .

times, even though the layer width based on global consider-
ations changes. However, for the RTI− cases (Fig. 27c), ⟨cosξ1⟩
increases significantly near the edges, and the regions where the
vorticity alignment follows the turbulent behavior is larger.

4. Conclusions

Results from Direct Numerical Simulations of Rayleigh–Taylor
instability are used to investigate the evolution of the flow after
the gravity is set to zero or reversed. The simulations cover the
range of Atwood numbers A = 0.5, 0.75, and 0.9. The A = 0.04
results from [19] are also used for comparisons. The branch-
ing of the forward simulations is done after the layer growth
becomes self-similar. When the gravity is set to zero, the prob-
lem becomes anisotropic variable density decaying turbulence
and has similarities with the Richmyer–Meshkov instability after
re-shock.

As the gravity is reversed, the buoyancy term in the turbulent
kinetic energy transport equation, which is given by the product
between the mass flux and the mean pressure gradient, changes
sign and becomes a destruction term, leading to a rapid decay
of the kinetic energy. This is due to a sudden change in sign
of the mean pressure gradient contribution, while the mass flux
itself maintains the same sign for some time after the gravity
reversal. However, the balance of the terms in the mass flux
transport equation itself is more complicated and different in
the central and edge regions of the mixing layer. In the inner
regions, the right hand side of this equation becomes strongly
unbalanced and the mass flux reverses sign, so that, certain time
after gravity reversal, buoyancy starts producing turbulent kinetic
energy again. This process continues with additional mass flux
sign changes, leading to transients in the flow evolution both in
time and across the layer.

To examine the changes in the turbulence structure after
the gravity change, we consider the time instances where the
centerline vertical mass flux (a3) crosses zero or reaches minima
and maxima for the corresponding RTI− cases. The results show
that a3 oscillates on a slowly decreasing time scale that becomes
shorter with increasing the Atwood number. These oscillations
are seen in many of the turbulence moments presented.

For the RTI− cases, by using a definition of the Brünt-
Väisällä frequency based on the local mean density, the results
show that dimensionaless stratification parameter (NBV τ ) is rel-
atively constant across the layer and larger than 1, indicating
16
buoyancy dominance. However, immediately following the grav-
ity reversal, NBV τ is close to one, a consequence of the violent
response of the flow to the sudden change in gravity. Later,
it seems to asymptote to a value between 3 and 4. Similar to
the stratification parameter, the Ozmidov scale (LO), is relatively
constant in the interior of the layer. For the A = 0.75 RTI−
imulation, LO decreases from ≈ 0.22hb at t0 (corresponding to
avenumber κ = 15) to ≈ 0.045hb at t5 (corresponding to
avenumber κ = 75), so that turbulence becomes restricted
o the smallest scales. Within the edge regions of the layer,
uoyancy turbulence production still continues throughout the
TI− simulations. However, due to the shape of the mean density
rofile, which is more elongated on the spike side, so the mean
ensity gradient is smaller, the resulting Ozmidov scale is larger
ear the spike edge, indicating stronger stratification, relative to
urbulence, in this region. Generally, the Elisson scale follows a
imilar behavior, with values around two times larger than the
zmidov scale, though there are also differences in the behavior
ear the edges of the layer.
At the time of the gravity change, the flow is anisotropic both

t large and small scales, with an intermediate range of scales
here the flow is close to isotropic. After the gravity reversal, the

arge and small scale anisotropies undergo their own transients,
dding another dimension (i.e. the wavenumber in horizontal
lanes) to the transient processes. The results show that the large
cale anisotropy at the centerline oscillates in time but on a
onger time scale than the mass flux, while the small scales also
xhibit variability, but seem to retain more persistent anisotropy
evels. This seems to indicate that gravity reversal mixes more
fficiently the larger scales of motion.
On the other hand, density PDFs across the layer show signif-

cantly less structure after the gravity reversal, indicating a more
fficient mechanism for mixing small scale density fluctuations.
gain, this process is asymmetric between the bubble and spike
ides, with narrower density PDFs near the spike edge of the mix-
ng layer. Even though the flow undergoes such dramatic changes
fter the gravity inversion, some turbulence characteristics within
he inner region of the layer, for example the alignment be-
ween vorticity and strain rate eigenvectors, do not change. This
lignment seems to extend even more towards the edges of the
ayer after the gravity reversal, while the edges remain strongly
ntermittent and exhibit very different alignment type for the
orward and zero gravity cases.

Moreover, while the unclosed terms in the turbulent kinetic
nergy and mass flux transport equation exhibit complex tran-
ients as highlighted above, the mean density profiles still col-
apse after the change in gravity. Such significant variations in
ome quantities and not others are difficult to capture with
xisting turbulence models.
In applications such as ICF, there is a considerable interest

n suppressing the evolution of the Rayleigh–Taylor instability.
ecent results indicate that time periodic gravity reversals ac-
elerate the suppression of the instability [35]. The transitory
ehavior for the RTI− case discussed in detail here might indicate
hat there is an optimal time for a second reversal to maximize
he suppression of the instability. Thus, we speculate that the
uppression might be faster if the second reversal occurs around
r after the time when the mass flux becomes zero. A reversal
efore this time transforms the buoyancy term from a destruction
nto a production term for the turbulent kinetic energy transport
quation. Subsequent reversals might become more efficient if
hey are correlated with the sign of the mass flux, instead of at
ixed constant intervals.
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Fig. 27. Vertical variation of the average of cosξ1 for (a) RTI+, (b) RTI0, and (c) RTI− cases with A = 0.75 at different time instants (see Table 2).
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