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Abstract

This paper presents several issues related to mixing and turbulence structure in
buoyancy-driven turbulence at low to moderate Atwood numbers, A, found from direct
numerical simulations in two configurations: classical Rayleigh—Taylor instability and an
idealized triply periodic Rayleigh—Taylor flow. Simulations at A up to 0.5 are used to examine
the turbulence characteristics and contrast them with those obtained close to the Boussinesq
approximation. The data sets used represent the largest simulations to date in each
configuration. One of the more remarkable issues explored, first reported in (Livescu and
Ristorcelli 2008 J. Fluid Mech. 605 145-80), is the marked difference in mixing between
different density fluids as opposed to the mixing that occurs between fluids of commensurate
densities, corresponding to the Boussinesq approximation. Thus, in the triply periodic
configuration and the non-Boussinesq case, an initially symmetric density probability density
function becomes skewed, showing that the mixing is asymmetric, with pure heavy fluid
mixing more slowly than pure light fluid. A mechanism producing the mixing asymmetry is
proposed and the consequences for the classical Rayleigh—Taylor configuration are discussed.
In addition, it is shown that anomalous small-scale anisotropy found in the homogeneous
configuration (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80) and Rayleigh—Taylor
turbulence at A = 0.5 (Livescu et al 2008 J. Turbul. 10 1-32) also occurs near the Boussinesq
limit. Results pertaining to the moment closure modelling of Rayleigh—Taylor turbulence are
also presented. Although the Rayleigh—Taylor mixing layer width reaches self-similar growth
relatively fast, the lower-order terms in the self-similar expressions for turbulence moments
have long-lasting effects and derived quantities, such as the turbulent Reynolds number, are
slow to follow the self-similar predictions. Since eddy diffusivity in the popular gradient
transport hypothesis is proportional to the turbulent Reynolds number, the dissipation rate and
turbulent transport have different length scales long after the onset of the self-similar growth
for the layer growth. To highlight the importance of turbulent transport, variable density
energy budgets for the kinetic energy, mass flux and density-specific volume covariance
equations, necessary for a moment closure of the flow, are provided.

PACS numbers: 47.20.-k, 42.20.E-, 47.55.P-, 47.27.wj

1. Introduction

Variable density (VD) flows generally denote flows involving
mixing between fluids with different densities, in contrast to
the Boussinesq approximation in which the fluids’ densities
are closed. In such flows, even if the fluids participating in the
mixing are incompressible, the density and specific volume
change with the mixture composition and the velocity field
is not divergence free. Moreover, due to the tight coupling
between the density and velocity fields, in addition to the
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quadratic nonlinearities of the incompressible Navier—Stokes
equations, new cubic nonlinearities arise. VD mixing occurs
in atmospheric and oceanic flows, astrophysical flows,
combustion and many flows relating to chemical engineering.
Many of these flows are driven by acceleration (e.g. gravity
in geophysical and astrophysical flows) which, because the
density is not uniform, leads to large differential fluid
accelerations. If the acceleration is constant and the fluid
configuration is unstable (i.e. density gradient points in the
opposite direction to the body force), a fluid instability
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is generated in which small perturbations of the initial
interface between the two fluids grow, interact nonlinearly
and lead to turbulence. This instability is known as the
Rayleigh-Taylor (RT) instability and is of fundamental
importance in a multitude of applications, from fluidized
beds, oceans and atmosphere, to inertial confinement fusion
(ICF) and supernovae (see [1-12] for useful reviews and open
problems).

Here, we study the homogenization of a heterogeneous
mixture of two pure fluids with constant, but different,
microscopic densities by molecular diffusion and stirring
induced by buoyancy-generated motions. The specific volume
and density of the mixture are related to the microscopic
densities, p;, and mass fractions, Y*, [ =1, 2, of the two pure
fluids by

o LW 1
p*pt P2

, )]
where Y|+ Y = 1. The index ‘2’ refers to the heavier fluid.
The mixture density, p*, and the specific volume, v*, change
in both space and time as the mass fractions evolve and
the relation above simply states that the total mass inside a
control volume is the sum of the masses of the two fluids.
Such a configuration describes active mixing, at any density
ratio, between incompressible materials (e.g. water and brine)
or compressible materials in low-speed, low-acceleration
flows when the fluids participating in the mixing maintain
quasi-constant microscopic densities.

The primary non-dimensional parameter characterizing
differential acceleration effects is the Atwood number:

_1+A @)
o 1—A

A

P2+ 1

P2 — P1 :&

The Atwood number ranges from O to 1. For air inter-
penetrating helium, for which the density ratio is p»/p; ~ 7,
the Atwood number is A & 0.75. For air and hydrogen, A =
0.85. Similar Atwood numbers occur for mixing between
liquid hydrocarbons and air. In contrast, the Boussinesq
approximation corresponds to A — 0 and a value of 0.05 is
usually taken to define this limit.

The goal of the paper is to provide an overview of the
VD effects in buoyancy-driven turbulence at low to moderate
Atwood numbers, including unexpected new phenomena
related to mixing and turbulence structure. These effects
are considered in two unit configurations: (i) classical RT
instability and (ii) an idealized triply periodic RT flow, named
homogeneous RT (HRT). The data sets used represent the
largest simulations to date for each configuration. For the RT
case, a 30723 data set [2, 4] at A =0.5 is contrasted with a
new 10242 x 4032 fully resolved simulation at A = 0.04 near
the Boussinesq approximation. The HRT flow starts from rest,
with the two fluids in a non-premixed state corresponding
to a double-delta density probability density function (PDF).
Turbulence is generated as the two fluids move in opposite
directions due to the body force and eventually dies as the
fluids become molecularly mixed. The cases considered, on
up to 10243 meshes [1, 3], cover the range A = 0.05-0.5,
in order to examine small departures from the Boussinesq
approximation as well as moderate A effects. Although some

of the results pertaining to the 3072° run have already been
presented in [2], they are reviewed here and compared to
the new simulation near the Boussinesq limit. There are
two reasons for this. Firstly, direct comparison provides a
uniform view of the differences and similarities between VD
and Boussinesq flows. Secondly, direct numerical simulations
(DNS) of the RT instability are scarce and the vast majority of
RT simulations actually solve the Euler equations and rely on
numerical diffusion to regularize the problem. Thus, new DNS
results obtained with a different code can confirm previous
results.

The paper is organized as follows. The governing
equations, initial conditions, simulation parameters
and numerical methodology are described in section 2.
Section 3 addresses the self-similarity of the flow, turbulence
asymmetry due to non-Boussinesq effects, large- and
small-scale anisotropies, second moment budget equations,
measures for the mixing state, and mixing asymmetry in
VD turbulence. A summary and conclusions are given in
section 4.

2. Governing equations, simulation cases and
numerical method

The flows in the two configurations considered are governed
by the same set of equations: continuity, momentum transport
and the velocity divergence relation related to the density
field. In non-dimensional form, these are [2—4, 13-15]:

0 * * %
P4 +(p"u3),; =0, 3)
0 * ok k% ok * * 1 *
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; L np") )
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I RegSc )i

where * denotes total (instantaneous) variables. The viscous
stress is Newtonian with

* 10* * * 2 *
Tij = R_eo ui,j +u_j,i — guk,kaij (6)

and the mass diffusion Fickian, with constant diffusion
coefficient, D. Note that equations (3) and (4) are the
usual continuity and momentum transport equations for
compressible flows. Equation (5) is derived from the
usual mass fraction transport equations, assuming that the
microscopic densities of the two fluids remain constant,
which relates the mass fractions to the density (see
equation (1)) [3, 13, 15]. Equations (3)—-(5) describe the
mixing, at any density ratio, between incompressible materials
(e.g. water and brine) or compressible materials in low-speed,
low-acceleration flows, when the fluids participating in the
mixing maintain quasi-constant microscopic densities. If the
densities of the two fluids are commensurate, then the mixture
density is close to its average value and equations (3)—(5) lead
to the Boussinesq approximation (see [3] for the derivation).
In equations (3)—(5), u is the velocity in direction i,
p* is mixture density and p* is pressure. The non-dimensional
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parameters in equations (3)—(5) are the computational
Reynolds number, Rep, the Schmidt number, Sc, and the
Froude number, Fr:

Rey = LoUg/vo, Sc=wD, Frr=U;/(gLo), (1)
with g being the magnitude of gravitational acceleration,
taken to be constant. Here g; are the components of the
unit vector in the direction of gravity, g; = (0,0, —1). The
independent variables are time 7 and space variables x;.
The kinematic viscosity, vo = u/p*, and mass diffusion
coefficient, D, are assumed to be constant. Note that, in
general, dynamic viscosity, i, is a weaker function of density;
the assumption of vy as constant ensures a uniform Sc
throughout the flow. The reference density, pg, is chosen such
that the density of the light fluid is 1.0 and the reference length
and velocity are specified below.

Equations (3)-(5) have triply periodic boundary
conditions in HRT, whereas in RT slip wall conditions are
applied in the vertical direction.

2.1. Simulation cases and numerical method

In order to examine the VD effects on the turbulence and
mixing characteristics in buoyancy-driven flows, simulations
from [1, 3], with A=0.05, 0.25 and 0.5 and Sc=1,
are considered for HRT. For RT, the 3072% simulation of
Cabot and Cook [2, 4], at A =0.5, is complemented with a
new simulation, at A = 0.04, on a 10242 x 4032 mesh. For
simplicity, the two runs are labeled RT1 (A = 0.5) and RT2
(A =0.04). In order to compare the two RT runs, the reference
length and time scales are defined as the characteristic
wavelength of the initial perturbation spectrum, L, and 7 =
~/Lo/(Ag). The resulting values are Lo =32 and 7 =8 for
RT1 [4] and Ly = 0.196 and t = 0.16 for RT2. The reference
velocity is then Uy = Lg/7.

The new RT simulation was performed with the CFDNS
code [16]. The numerical method and initialization are
similar to those used in [4, 13] with several differences as
pointed out below. Thus, spatial differentiation is performed
with a sixth-order compact finite difference scheme [17] in
the vertical direction (compared to the tenth-order compact
finite difference scheme used in [4, 13]) and in Fourier space
in the horizontal (periodic) directions. To account for the
difference in accuracy between the compact finite difference
scheme and the Fourier differentiation, the grid spacing is
25% smaller in the vertical direction. For this grid size,
the error at the Kolmogorov microscale is about 1% for
the compact method, if nkn.x is maintained above 1.5 [18].
Nevertheless, since the Kolmogorov microscale is not well
defined for inhomogeneous flows, resolution studies were
performed to verify that the solution converged. In addition,
the velocity and density power spectra were monitored
during the simulation to ensure that all scales were well
resolved.

The time integration was performed with a third-order
predictor—corrector ~ Adams—Bashforth—-Moulton  scheme
coupled with a pressure projection method, similar to [4, 13].
The main difference lies in how the pressure equation was
handled. The VD equations lead to a variable coefficient

(non-linear) Poisson equation for pressure, as shown in [3].
This equation was split into an explicit equation for the
dilatational component of V P*/p*, which is related to mass
conservation, and an implicit equation for the solenoidal
(curl) component of VP*/p*, which is related to the
baroclinic term in the vorticity equation [3, 15]. Instead of
interpolating the velocity from the previous time step to solve
the pressure equation, as was done in [4, 13], the pressure
equation was solved without additional approximations.
This avoided the introduction of errors of the same order
as the interpolation method in both mass conservation and
baroclinic production of vorticity. The specific solution
method extends the algorithms used in [3, 15] for HRT to the
RT configuration and will be described in detail elsewhere.

2.2. Nomenclature

In defining the turbulence quantities, capital Roman letters,
overbars and angle brackets are used to denote Reynolds
averages. Angle brackets are preferred for longer expressions,
while overbars are used for quantities named with Greek
letters. Lower case letters (Roman or Greek) or primes are
used to denote fluctuations. One exception is the mix measure
6 for which the usual definition has been adopted. As the
density is not spatially uniform, some of the results are
presented using density weighted (Favre) averages, denoted
with ”, and the corresponding fluctuations with double primes.
Thus, the instantaneous velocity, density, pressure and specific
volume are decomposed as u} = U; +u; = U; +ul, p*=p+
p, p* =P+ p, and v* = V +v, respectively. Note that U; —
U; = u; — u] = a;. Definitions for the normalized mass flux,
a;, Favre Reynolds stresses, R;;, turbulent kinetic energy,
k, total kinetic energy, Ex, and density specific volume
covariance, b, are given below:

(u;p) _

—(uj), @
o

i =

L/

Rij = (p u;u;) = pluiu;) — paa; +(puju;), )

k= Riu/(2p) = ((uiu;) — aa; + (puiu;)/p)/2, 10)

Ex = (p*ufu})/2 = (pluiu;) + (pu;u;)) /2 = p(k + K),
(11)

b=—{pv). (12)

3. Results

3.1. RT self-similarity

The temporal evolution of the RT layer width is an important
question in applications and can be regarded as a metric
to gauge the efficacy of various models and numerical
simulations. Although certain classes of initial conditions (e.g.
if long wavelengths are present in the initial perturbation)
may have a long-lasting influence on the growth rate [10, 19],
it is generally agreed that for (i) domains long horizontally
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Figure 1. (a) Time variation of oy, for RT1 (thick lines) and RT?2 (thin lines) using (14), with #,/T = 6 and 7.5, respectively, for the bubble
height calculated from the 1% density level (continuous lines) and SW (dashed lines). (b) Evolution of the peak turbulent Reynolds number
times (hy/Lo)~'". Self-similarity of Re, requires that it grows as (hy/Lo)'.

compared to any characteristic wavelength of the perturbation
and (ii) much longer in the vertical direction than the width of
the layer, and for (iii) an initial perturbation spectrum peaked
near the most unstable linear mode, the turbulent-mixing
layer grows quadratically in time. This quadratic growth has
been known for a long time as a dimensionally consistent
result confirmed by experimental data [20-22]. Ristorcelli
and Clark [9] provided the first analytical derivation of the
self-similar formula for the layer width, using the moments
equations:

h=aAgt® +2(aAghy) 't +hy. (13)

Although asymptotically the leading order term in
equation (13) should dominate, the onset of self-similarity
of the mixing layer width growth occurs much earlier.
Nevertheless, in order to calculate the value of the coefficient
a before the flow reaches asymptotic self-similarity, the
lower-order terms in equation (13) need to be properly
accounted for. Cabot and Cook [4] used a formula consistent
with the underlying self-similar differential equation for A,
acc = h?/4Agh. However, the time derivative of 4 may lead
to excessive noise in the value of «, especially if the data
are sparse. Another formula for «, which avoids the time
derivative but is still derived from equation (13), is

(14)

h(1)'/? —h(l‘o)l/2>2
(A2t —10) )

where f is an arbitrary time within the self-similar range. For
the miscible case, there is no unique definition of 4. Thus,
Cabot and Cook [4] use h = f_oooo Xp(p)dz, where Xp(p) is
the maximum product in a fast reaction analogy [, 13].
Youngs ([12, 23] and references therein) uses the definition
W = [* FiF,dz, where Fi = (p — p1)/(p2 — p1) and F, =
(p2 — p)/(p2 — p1) are the averages (over horizontal planes)
of the volume fractions occupied by the two fluids. Other
definitions include the widths based on the 1% and 5% density
levels, Hy o, and Hpgs [2]. Figure 1(a) shows the variation
of a;, for the bubble height based on the 1% density level,
and h, = BW, where the coefficient § = 3.3 at A =0.5 and

B=3.7 at A=0.04, accounts for the diffuse variation of
the volume fraction near the edges of the layer (a value
of 3 corresponds to linear variation). The values obtained
for «y, are within the range obtained in previous numerical
simulations [10, 12] corresponding to short-wavelength initial
perturbations such that the mode coupling and the growth at
the infrared end of the energy spectrum are unrestricted.

However, even though the layer width becomes
self-similar relatively fast, the lower-order contributions to
the self-similar relations have a long-lasting influence. Thus,
certain derived quantities, such as the turbulent Reynolds
number, RetzReol;Z/e, did not reach self-similarity in
RT1 [2]. The reason for this is mismatch between the
lower-order terms in the self-similar formulae for the
kinetic energy and dissipation. The behavior can also
be associated with a lag in the self-similar evolution of
the small-scales, compared to the large-scales. The RT2
results shown in figure 1(b) confirm this behavior near the
Boussinesq limit. Towards the end of the RT2 simulation,
Re; becomes self-similar, indicating that the flow is close
to asymptotic self-similarity. Nevertheless, the approach to
full self-similarity occurs much later than the time the layer
width starts growing self-similarly. Since Re, is proportional
to eddy diffusivity in the popular gradient diffusion hypothesis
for turbulent transport, the lack of temporal self-similarity
of the turbulent Reynolds number renders such a modelling
approach inappropriate before full self-similarity is reached
(see [2] for a detailed discussion). In addition, the onset of
self-similar growth for the layer width is a poor indicator
of asymptotic self-similarity. In order to use the gradient
transport hypothesis for turbulent transport before asymptotic
self-similarity is reached, the lengthscales associated with
the dissipation and turbulent transport terms in the moments
equations cannot be proportional. The results presented here
suggest that low and moderate Atwood number RT turbulence
are similar in this regard.

3.2. Turbulence structure

In this section, the results pertaining to the turbulence
asymmetry due to non-Boussinesq effects, large- and
small-scale anisotropies, including the anomalous small-scale
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Figure 2. (a) Favre mean velocity and (b) Favre turbulent kinetic energy variation across the layer for RT1 (thick lines) and RT?2 (thin lines)
at the latest times in the simulations. For clarity the RT2 results are multiplied by a factor of 20 for U /U, and a factor of 2 for k/ UZ.
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Figure 3. (a) Vertical variation of b33 and (b) scale dependence of the normal stresses anisotropy at the centerline for RT1, at the latest time

and RT2, at the latest time and also some intermediate time.

anisotropy found in [1, 2], and the second moment equations
budgets studied in [2] are reviewed and compared to those
obtained near the Boussinesq limit.

3.2.1. Turbulence asymmetry. At low Atwood numbers,
the mixing layer remains symmetrical around the centerline
and the mean pressure is equal to the hydrostatic pressure
head. As the Atwood number is increased and the flow
becomes non-Boussinesq, the bubble and spike sides start to
differentiate, with the spikes falling faster than the ascending
velocity of the bubbles [7]. Nevertheless, at moderate A, the
mean density profile remains linear and symmetrical with
respect to the centerline in the interior of the layer. From here,
it was shown in [2] that self-similarity requires that the mean
density keeps a constant value in time at the centerline, after
the initial transients. Then, from the mean continuity equation,
pU peaks at the centerline, so that U has the largest absolute
value on the light fluid side. This asymmetry, together with
mean pressure asymmetric departure from the hydrostatic
pressure head, leads to a host of other asymmetries of many
turbulence quantities. Since the leading causes of turbulence
asymmetry are the asymmetry of the mean density profile
itself and the non-Boussinesq behavior of the mean pressure,
turbulence asymmetry should increase with A and vanish near
the Boussinesq limit. Indeed, figure 2 shows that both U and

k are fairly symmetric across the layer at A = 0.04, but both
peak on the light fluid side at A = 0.5.

3.2.2. Large- and small-scale anisotropy.  Since buoyancy
production is inherently anisotropic, it is expected that the
normal stresses be anisotropic. A measure of the large-scale
anisotropy, which appears in the moment equations, is the
Favre Reynolds stress anisotropy tensor:

bij:_’-f__(g.,

1] ]5
Ry 3% s)

which is bounded by —% < by < % The lower bound for
a diagonal component corresponds to no energy in that
component and the upper bound, %, to 100% of the energy
in that component. Both simulations show that the normal
stresses are anisotropic at all times. Note that for the
present configuration, as well as HRT, b;; defined based
on the Favre Reynolds stresses is close to that defined
based on the Reynolds stresses. b33 seems to become almost
constant across the layer, with an asymptotic value b33 &~ 0.3
(figure 3(a)) corresponding to ~65% energy in the vertical
component. Values of b33 & 0.3 were also reported for the
Boussinesq case at long times at the centerline in [9]. Similar
values are obtained in HRT during the growth stage, after
initial transients [1, 3].
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Figure 4. Terms in the Favre turbulent kinetic energy equation, scaled by 73/L2, for (a) RT1 and (b) RT2.

It is generally believed that in high Reynolds number
flows, the small scales become isotropic and decoupled from
the large scales as, in general, production mechanisms tend
to be confined to large scales. However, in [1], it was shown
that buoyancy production, even though it becomes much
smaller than the nonlinear transfer at high wavenumbers, has
a significant effect on the smallest scales of the flow during
the kinetic energy growth stages in HRT. This is because in
the viscous range there is a cancellation between nonlinear
transfer and viscous dissipation so that buoyancy production
leads to anomalous anisotropy of the normal stresses at
these scales. The results regarding anisotropy found in
HRT [1, 3] were shown to hold in the RT configuration
at A=0.5 [2] and later confirmed in the stationary VD
simulations of [15]: the normal stresses tend to become
isotropic only at intermediate scales. At the largest and
smallest scales, the normal stresses remain anisotropic.
Figure 3(b) shows that this is not strictly a VD effect. The
low Atwood number simulation RT2 exhibits a similar
behavior, with reduced anisotropy in some intermediate
range of scales and an increase at the small scales. The
RT?2 results also show that in time, as the Kolmogorov scale
decreases, the small-scale anisotropic region moves to the
right in spectral space. At the end of the two simulations,
the small-scales anisotropy peak reaches the end of the
spectrum, suggesting that in both situations this feature starts
to become under-resolved. Although the Taylor—Reynolds
number and the Kolmogorov microscale are not well defined
for inhomogeneous flows, we note that using the isotropic
formulae leads to Re; &~ 170 and 150 and nkp.x &~ 6.0 and
3.5 for RT1 and RT2, respectively. Thus, in order to capture
the anomalous small-scale anisotropy, much more resolution
is needed than usually assumed to be sufficient for canonical
isotropic turbulence simulations. At the end of RT1 and RT2,
b33(k) reaches values of 0.15 and 0.25, corresponding to
~50% and ~ 60% energy in the vertical component for
RT1 and RT2, respectively. These values are close to
those obtained in HRT at similar A and Sc. We also note
that dissipation itself is not a good measure of the local
(in scale) anisotropy as it is an integral quantity; for both the
simulations presented here, dissipation becomes isotropic at
later times.

3.3. Energy budgets of the second moments equations

The energy budgets for the Favre turbulent kinetic energy,
I;, normalized mass flux, a;, and density specific volume
correlation, b, transport equations are now examined. These
equations are relevant to a second-order moment closure of
the flow, so the information presented also represents an
archival database for model testing. The equations correspond
to the specific configuration of the RT runs, with gravity
acting in direction { =3 and homogeneity assumed in the
horizontal directions. All results presented here are obtained
at the latest times in the two RT simulations. For clarity,
some of the results have been smoothed by applying a running
average.

The Favre mean and turbulent kinetic energy transport
equations are

3 - L 3 s
E(PK) = — (pU3K) 3 — (U3sR33) 3+ pU3g3

—UsP3+ Ry3Us 3+ Uzt 3, (16)

0 _- _o o - . 1
—(pk) = —(pUsk) 3 +a3P3 —R33Us3 —a3T333 —=Riiz3
ot —_— —— —— — — — 2

1 11 I v

\%

—(u3p) 3 +{u;iti3)3 Hpd) —(Tiju; ;). (17)
—— — ) e

—

VI Vil A1t X

Figure 4 compares the main terms in the Favre turbulent
kinetic energy equations between RT1 and RT2. In general,
the results are qualitatively similar. Note that the kinetic
energy itself is asymmetric in RT2 (see above); however,
pk is close to symmetrical, together with most of the terms
in its transport equation. The advection terms I and III,
which are inherently asymmetric, are negligible near the
Boussinesq limit. However, the turbulent transport term,
term V, remains sizable at A =0.04 and again dominates
the energy balance near the edges of the layer. Note that at
A =0.5 the asymmetry of the advection terms is matched
by an opposite asymmetry in the turbulent transport so that
the overall balance remains symmetrical with respect to the
centerline.
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Figure 6. Terms in the equation for b, scaled by t, for (a) RT1 and (b) RT2.

The production term II in equation (17) depends on the
mass flux and the mean pressure gradient. Since the mass
flux is a second-order quantity, a moment closure at the
second-order level requires a transport equation for a3

J _ o~ _ _
5(/003) = —(pUsaz) 3 +b(P3—1333) +p({vp3)— (V13 ;)
I 1l

il

_ - 0.3 _
—pay(Us —az) 3 +—=((pu3) — R33) +p(a3) 3
N————— p ——

v

VI
\

—(pu3), 3 —plusd). (18)
\‘/——/

[ —

VIl VIII

Again, barring the statistical variability, production, terms II
and V, and destruction, term III, are symmetrical with respect
to the centerline (figure 5). This is consistent with mass flux
paz remaining symmetrical up to A = 0.5, as shown in [2].
The results obtained at A = 0.5 and A = 0.04 are qualitatively
similar, except that the advection terms I and VI, which are
asymmetrical, remain negligible at A = 0.04. Similar to the
turbulent kinetic energy equation, turbulent transport, term
VII, remains important near the Boussinesq limit.

Term II is the largest production term in equation (18).
It depends on the mean pressure gradient and mixing state
through density-specific volume covariance, b. The transport
equation for b is required in a moment closure at the
second-order level.

3 ~ -
—b = —U3b’3 +2a3b_3 —2613(1 +b)@
ot —— —— 0
——
1 II pe
_ [ (uzpv) .
+o | —— +2p(vd) . (19)
0 53—
—_— — v
v

Unlike pk and pasz, b is asymmetric at A =0.5, a direct
consequence of the mean density profile asymmetry. Thus,
the results shown in figure 6 are qualitatively different
in RT1 and RT2, because near the Boussinesq limit all
the terms in equation (19) are close to symmetrical with
respect to the centerline. In particular, this symmetry requires
that the advection terms, I and II, are negligible at A =
0.04, similar to the results obtained for the other two
moments equations considered. Again, the turbulent transport
term IV remains important near the Boussinesq limit. The
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Figure 7. Several mix measures across the RT layer for (a) RT1 and (b) RT2.

importance of the turbulent transport in the second-order
moments equations substantiates the significance of the slow
rate for asymptotic self-similarity shown above. One of
the main consequences, the lack of temporal self-similarity
of the turbulent Reynolds number, renders the gradient
diffusion hypothesis for the turbulent transport with the usual
turbulence scales inappropriate for RT turbulence long after
the onset of self-similar growth of the layer width.

4. Mixing state

Several metrics for assessing the state of the mixing will now
be discussed. These metrics are compared in the context of the
underlying density PDF and the question of how much pure
and mixed fluids are in the field. All metrics are normalized to
vary between O for a heterogeneous mixture of pure fluids and
1 for the fully mixed fluid.

In general, all mix metrics in use today for RT turbulence
are constructed from lower-order moments of the density PDF.
Thus, 8 = (f1 f2)/F1F>, used in [23, 24], depends on the
mean and variance of the density. While the density variance
does appear in the dynamical equations in the Boussinesq
limit [1], the VD moment equations do not contain any
term depending on (p?). From the point of view of the
dynamical equations, a more appropriate mix metric for the
VD case would be constructed from density-specific volume
covariance, 0,, = 1 — b/b,,,, where the no-mix value of b
i8S by = [(p — p1)(p2 — P)1/p1p2. Figure 7 shows that the
two metrics are close at A =0.04, as expected, but they are
different at A = 0.5. Thus, RT1 results indicate a qualitatively
different behavior across the RT layer, as 6 and 6,, predict
more mixing on the opposite sides of the layer. Nevertheless,
both metrics have relatively large values across the whole
layer, which is shown below to misrepresent the density
PDF. Additionally, they cannot capture any asymmetry in
the underlying PDF. Nevertheless, at higher A, the mixing
becomes asymmetric even in the HRT case, which starts with
a symmetrical density PDF [1]. Cook and Dimotakis [13] used
a fast reaction analogy to calculate the average amount of
completely mixed fluid, (Xp). Figure 7 shows that (Xp) better

Figure 8. (a) Surface plot of density PDF and (b) density PDF at
several locations across the layer in RT1, at the latest time in the
simulation.

follows the expected behavior of the mixed fluid, although it
can still not address any asymmetry in the density PDF and,
in general, any information related to the pure or partially
mixed fluid. Interestingly, at A =0.04, (Xp) becomes close
to 1.0 at the centerline, suggesting a homogeneous mixture
with density close to (p; + 0,)/2 around the centerline. For
reference, figure 7 also shows the variation of the mean
volume fraction of the heavy fluid, F;. Other mixing metrics
proposed, for example the time-dependent Atwood number
used in [25, 26], while useful in certain instances, are still only
low-order representations of the underlying density PDF.

The density PDF shown in figure 8 for RT1 makes clear
the limitations in evaluating the molecular mixing based on
lower-moment metrics like 6. At the top of the layer the
PDF is spiked at the heavy fluid end and includes some
partially mixed fluid. At the bottom of the layer the PDF is
spiked at the light fluid with some partially mixed fluid. The
transition from one side to the other is also not monotonic.
Yet, across the layer 6 varies slowly not in any way giving
a notion as to the radically different amounts of pure or
mixed fluid. See [24, 27] for examples of such PDFs given
by coarse-grained simulations. Livescu and Ristorcelli [1]
provide rigorous bounds on the pure and the mixed fluid
based on several mix metrics. These bounds emphasize the
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Figure 9. PDFs of the (a) eigenvalues of s;; and (b) cosines of the angles between V p and the eigenvectors of s;; in the light fluid, p < p

(continuous lines), and heavy fluid, p > p (dashed lines), at A = 0.5.

uncertainty in knowing the underlying mixing state when only
lower-moment metrics are specified.

The density PDF at the centerline of the RT1 simulation
also has an interesting behavior, first observed in HRT [1]: the
PDF is not symmetrical. The peak is at p < 2 and the amount
of pure heavy fluid is larger than that of pure light fluid. As
a result, the penetration distance of the pure heavy fluid is
longer than that of the pure light fluid. Thus, similar to HRT,
the two pure fluids mix at different rates in the VD case.

In HRT, the density PDF starts as a double delta and
then evolves towards a single peaked PDF as the fluids
become molecularly mixed. At low A, near the Boussinesq
approximation, the PDF remains symmetrical at all times [1].
At higher A, the PDF becomes rapidly skewed as the two pure
fluids mix at different rates, with the pure light fluid mixing
faster than the pure heavy fluid.

Below, we provide an explanation for this mixing
asymmetry, using HRT data (see also [28]). The asymmetry
of the density PDF in the VD case can be understood from the
skewness, S = (p3)/((p?)3/?), equation

d (;O,kp,k>< S Apojp,) ) (20)
dr” " ReogSc \2(p%)  (pxpa)(p?)?)"

As the flow begins with § =0, it is the second term, the
production, that generates the skewness of the PDF. The
quantity (pp_;p,;) is weighted towards large squared density
gradient events occurring in lower than average density
regions so that S > 0 at early times. In other words, the light
fluid blobs become more fragmented at higher A. As the
mixing proceeds, the production term and the magnitude of
the density gradient approach zero and the rate of change of
the skewness becomes small.

The density PDF skewness generation mechanism,
(0p,jp,j), is determined, through changes in the magnitude
of the density gradient, by the eigenvalues of the strain
rate tensor, s;; = (u; j+u;;)/2, and the relative alignment
between V p and the eigenvectors of s;;:

d

—(p.jp.j) = —=2(p.i8ip.j) + (uii(p ;P +20"0,jj))

o 21

where the second term, which depends on the velocity
divergence, is small after the initial transients. Let xj,
x2 and x3 be the angles between Vp and the «-, 8- and

y-eigenvectors, which correspond to the eigenvalues
labelled using the usual convention o > 8 > y. In isotropic
turbulence, it is known that passive scalar gradients tend to
align with the most compressive (y) eigenvector of s;; [29].
Similar results are obtained in HRT; however, there are
important differences between the low and high A cases:

e Low A: the relative alignment and the magnitude of the
eigenvectors are about the same in the light and heavy
fluid regions.

e High A: both the eigenvalues and the alignment of Vp
with the principal axes of s;; are different in the light and
heavy fluids (figure 9).

In the light fluid, the eigenvalues o and y have larger
magnitudes as the reduced inertia allows higher deformation
rates of a fluid particle. Moreover, the alignment of Vp with
the y-eigenvector weakens in the heavy fluid regions, as the
inertia of the heavy fluid particles tends to make them less
responsive to deformations due to local strain. Thus, the local
structure of the flow changes in response to the inertia of the
fluid particles. The net result is a decrease in the magnitude
of (p,jsijp,j) (note that this quantity has negative sign) in
the heavy fluid regions compared to the light fluid regions.
Consequently, the inertia of the heavy fluid inhibits the growth
of the density gradients and reduces the rate at which heavy
fluid regions are broken up by stirring, ultimately leading to
reduced mixing.

5. Summary and conclusions

An overview of turbulence and turbulent mixing
characteristics in buoyancy-driven flows with moderate
VD effects has been provided using the largest data sets
available in two unit configurations: classical RT instability
and an idealized triply periodic buoyancy-driven flow.
For the RT case, with a 30723 data set, A =0.5, the
simulation of Cabot and Cook [4], further analyzed in [2],
has been compared to a new simulation, at A =0.04, on a
10242 x 4032 mesh. For the HRT case, the simulations used
cover the range A = 0.05-0.5, on up to 10243 meshes.

The results discussed in this study can be divided
into three main categories: (i) the marked difference in
the mixing between different density fluids as opposed
to mixing that occurs between fluids of commensurate
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densities, corresponding to the Boussinesq approximation;
(i) anomalous small-scale anisotropy persistence at small
Atwood numbers; and (iii) the different rates of approach
to self-similarity for different classes of quantities and the
implications for turbulence models.

The main points of the paper can be summarized as
follows:

e Mixing asymmetry. Mixing is qualitatively different in
VD flows compared to the Boussinesq limit, with the
pure heavy fluid mixing more slowly than the pure light
fluid. Thus, in HRT, an initially symmetric density PDF
develops a marked skewness. One consequence for the
RT layer is that penetration distance of the pure heavy
fluid is larger than that of the pure light fluid. None of
the mix metrics currently used for RT turbulence, e.g.
0, can capture this asymmetry. A mechanism producing
the mixing asymmetry, based on the changes in local
structure of the flow in response to the fluid inertia, has
been proposed.

VD mixing and the asymmetry of the turbulence statistics.
At moderate A, the turbulence, as reflected in the Favre
turbulent kinetic energy and mean velocity, normalized
mass flux and density-specific volume covariance,
develops asymmetry across the RT layer related to that
of the mean density profile. This is a consequence of the
behavior of the mean density profile in the interior of the
RT layer.

e Anomalous small-scale anisotropy. The scale dependence
of the normal stresses anisotropy indicates anomalous
anisotropy at small scales, even though the flow becomes
close to isotropic at intermediate scales. The results hold
both near the Boussinesq limit and at A = 0.5.

Slow approach to the self-similarity of derived turbulence
quantities. Although the RT Ilayer width growth
becomes self-similar relatively fast, full or asymptotic
self-similarity (such that a single lengthscale describes
the flow) takes a much longer time to achieve.
For the duration of RTI and a significant part
of RT2, the lower-order terms in the self-similar
expressions for the large- and small-scale primitive
quantities remain mismatched. As a consequence, derived
quantities, such as the turbulent Reynolds number or
turbulence lengthscale, are slow to reach self-similarity,
in contradistinction to primitive quantities, such as kinetic
energy. Since Re; is proportional to the eddy diffusivity
in the popular gradient diffusion hypothesis, the results
indicate that the current turbulent transport models cannot
be used before the asymptotic self-similar state is reached
and that self-similarity of the layer width growth is a poor
indicator of reaching this state.

In addition, the energy budgets for the Favre turbulent
kinetic energy, mass flux and density-specific volume
correlation transport equations, relevant to a second-order
moment closure of the flow, have been provided as an archival
database for model testing.

The paper discusses some unexpected new physics
associated with buoyancy and VD effects. It would be
interesting to know how (and if) the findings would change
at even higher A and/or Reynolds numbers. This question is
being addressed with higher-resolution simulations, currently
under way.
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