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The turbulence generated in the variable density Rayleigh–Taylor mixing layer is studied
using the high-Reynolds number fully resolved 30723 numerical simulation of Cabot
and Cook (Nature Phys. 2 (2006), pp. 562–568). The simulation achieves bulk Reynolds
number, Re = HḢ

ν
= 32, 000, turbulent Reynolds number, Ret = k̃2

νε
= 4600, and

Taylor Reynolds number, Rλ = 170. The Atwood number, A, is 0.5, and the Schmidt
number, Sc, is 1. Typical density fluctuations, while modest, being one quarter the
mean density, lead to non-Boussinesq effects. A comprehensive study of the variable
density energy budgets for the kinetic energy, mass flux and density specific volume
covariance equations is undertaken. Various asymmetries in the mixing layer, not seen
in the Boussinesq case, are identified and explained. Hypotheses for the variable density
turbulent transport necessary to close the second moment equations are studied. It is
found that, even though the layer width becomes temporally self-similar relatively fast,
the transient effects in the energy spectrum remain important for the duration of the
simulation. Thus, the dissipation does not track the spectral energy cascade rate and
the integral lengthscale does not follow the expected Kolmogorov scaling, k̃3/2/ε. As a
result, the popular eddy diffusivity expression, νt ∼ k̃2/ε, does not model the temporal
variation of the turbulent transport in any of the moment equations. An eddy diffusivity
based on a lengthscale related to the layer width is found to work well in a gradient
transport hypothesis for the turbulent transport; however, that lengthscale is a global
quantity and does not lead to pointwise, local closure. Therefore, although the transient
effects may vanish asymptotically, it is suggested that, even long after the onset of the
self-similar growth, two separate lengthscale equations (or equivalent) are needed in a
moment closure strategy for Rayleigh–Taylor turbulence: one for the turbulent transport
and the other for the dissipation. Despite the fact that the intermediate scales are nearly
isotropic, the small scales have a persistent anisotropy; this is due to a cancellation
between the viscous and nonlinear effects, so that the anisotropic buoyancy production
remains important at the smallest scales.

Keywords: Rayleigh–Taylor instability; DNS; variable density turbulence; turbulent
mixing; moment closure; anisotropy

1. Introduction

Molecular mixing as a consequence of stirring by fluid motion is an important
process in many practical applications. If the microscopic densities of the fluids partici-
pating in the mixing are very different, we refer to such flows as variable density (VD)
flows in contrast to the Boussinesq approximation in which the densities are close. In such
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2 D. Livescu et al.

a flow, due to the tight coupling between the density and the velocity field, in addition
to the quadratic nonlinearities of the incompressible Navier–Stokes equations, new cubic
nonlinearities arise. In addition, in a VD fluid, the velocity field is no longer solenoidal and
the specific volume, a function of the amount of each material present, is a new dependent
variable. VD mixing is encountered in atmospheric and ocean flows, astrophysical flows,
combustion, and many flows of chemical engineering interest. In a VD flow, the mixing
process becomes fundamentally different than for the Boussinesq case [2]. Many of these
flows are driven by acceleration (e.g., gravity in geophysical and astrophysical flows) which,
because the density is not uniform, leads to large differential fluid accelerations. If the ac-
celeration is constant and the fluid configuration is unstable (i.e., the density gradient points
opposite to the body force), a fluid instability is generated in which perturbations of the
initial interface between the fluids can grow, interact nonlinearly, and lead to turbulence.
This instability is known as the Rayleigh–Taylor (RT) instability and is of fundamental
importance in a multitude of applications, from fluidized beds, oceans and atmosphere, to
ICF and supernovae explosions.

Here, we consider a variable density flow with two different density fluids, such that the
macroscopic specific volume is related to the mass fractions of the two fluids by

v∗ = 1

ρ∗ = Y1

ρ1
+ Y2

ρ2
, (1)

where Y1 + Y2 = 1 and ρ1 and ρ2 are the “microscopic densities” of the two pure fluids
and are constant for incompressible fluids. The index “2” refers to the heavier fluid. The
mixture density ρ∗ and the specific volume, v∗, change in both space and time. Such a flow
model describes active mixing in low speed flows, in which the turbulent Mach number is
small and the fluids participating in the mixing have constant microscopic densities.

The primary nondimensional parameter characterizing the differential acceleration ef-
fects is the Atwood number:

A ≡ ρ2 − ρ1

ρ2 + ρ1
⇒ ρ2

ρ1
= 1 + A

1 − A
. (2)

We examine the variable density mixing and turbulence in the highest Reynolds number
fully resolved simulation to date, performed by Cabot and Cook [1]. This simulation and
those of [2, 3] represent the only fully resolved simulations (we believe) of developed
variable density turbulence at Atwood numbers, while relatively modest at A = 0.5, large
enough to generate non-Boussinesq, VD effects. While the results are obtained from fully
resolved simulations, our investigation and discussion of the flow is guided by the first and
second Favre moment equations [4,5]. This is useful from two points of view: (1) it allows
one to understand what the flow is doing “on average” to better diagnose any new physics
and (2) it provides data and information useful to low-dimensional turbulence models.

The study addresses several issues relevant to variable density turbulence:

(1) A detailed examination of the energy budgets of the Favre-averaged kinetic energy,
mass flux and density specific volume correlation transport equations.

(2) The applicability of the simple and ever popular diffusive engineering “gradient trans-
port” models for the mass weighted advective turbulent transport. Specifically, models
for the mass weighted turbulent transport of the Favre-averaged kinetic energy, mass
flux and density specific volume correlation.
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Journal of Turbulence 3

(3) The differences with the Boussinesq case, as reflected in the asymmetry of various
quantities.

(4) The effects of buoyancy on VD turbulence at all scales of the motion and the universality
of the small scales.

(5) Providing data for second-order moment closures development, validation and verifi-
cation.

Section 2 summarizes the mathematical statement of the problem. The instantaneous
and the Favre-averaged equations for the first and second moments, that guide our diag-
nosis, are given. In Section 3, the large scale quantities characterizing the mixing layer
and its asymmetries, underlying the non-Boussinesq aspects of the flow, are discussed.
Subsequently, in Section 4, the energy budgets for the Favre kinetic energy, mass flux and
density specific volume covariance are undertaken. Modeling issues related to the gradient
transport hypothesis are then outlined. The summary and conclusions follow. An appendix
is devoted to the comparison of this inhomogeneous Rayleigh–Taylor simulation to, what
we call, the homogeneous Rayleigh–Taylor (HRT) simulations of [2, 3]. In general, all the
conclusions from these less-expensive simulations are relevant and borne out by the current
single RT realization.

2. Governing equations

The mathematical model describing the mixing of two incompressible fluids with different
densities subject to a constant acceleration is provided by the Navier–Stokes equations and
species mass fraction transport equations [1, 6, 7]:

(ρ∗u∗
i ),t + (ρ∗u∗

i u
∗
j ),j = −p∗

,i + τ ∗
ij,j + ρ∗gi (3)

(ρ∗Y ∗
m),t + (ρ∗Y ∗

mu∗
j ),j = D(ρ∗Y ∗

m,j
),j . (4)

where ∗ denotes total (instantaneous) variables. The viscous stress is considered Newtonian
with

τ ∗
ij = µ

[
u∗

i,j + u∗
j,i − 2

3
u∗

k,kδij

]
= µS∗

ij (5)

and the mass diffusion Fickian, with constant diffusion coefficient, D.
In Equations (3) and (4), u∗

i is the velocity in direction i, ρ∗ is the mixture density, p∗ is
the pressure, Y ∗

m is fluid m mass fraction and gi = (0, 0,−g) is the (constant) acceleration in
direction i. The independent variables are the time, t , and space variables, xi . The kinematic
viscosity, ν = µ/ρ∗, and the Schmidt number, Sc = ν/D, are assumed constant. Thus, the
stress tensor can be written as τ ∗

ij = νρ∗S∗
ij . Note that, in general, the dynamic viscosity, µ,

is a weaker function of density; the assumption ν constant ensures a uniform Sc throughout
the flow.

Summing over m = 1, 2 in the mass fraction equation and using Y ∗
1 + Y ∗

2 = 1 leads to
the continuity and, equivalently, the specific volume, v∗ = 1/ρ∗, equations:

ρ∗
,t + (ρ∗u∗

j ),j = 0 (6)

v∗
,t + (v∗u∗

j ),j = 2v∗u∗
k,k. (7)
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4 D. Livescu et al.

The change in the specific volume during mixing leads to nonzero divergence of velocity.
For Fickian diffusion, the divergence is [6]

u∗
j,j = −D(lnρ∗),jj . (8)

2.1. The moment equations

In this section, the general first and second moment equations for a buoyancy-driven variable
density fluid are given. As the flow is periodic in the horizontal directions, the moments
are planar averages taken perpendicular to the direction of gravity and parallel to the initial
mean interface. The equations are first presented in a general form, without making use of
(8), so that they are formally the same for a fully compressible, multi-component flow.

In defining the turbulence quantities, capital roman letters, overbars, and angle brackets
are used to denote Reynolds averages. Angle brackets are preferred for longer expressions
while overbars are used for quantities named with Greek letters. Lower case letters (Roman
or Greek) or primes are used to denote fluctuations. As the density is not spatially uniform,
some of the results are presented using density weighted (Favre) averages, denoted with ,̃
and the corresponding fluctuations with double primes. Thus, the instantaneous velocity,
density, pressure, and specific volume are decomposed as u∗

i = Ui + ui = Ũi + u′′
i , ρ∗ =

ρ + ρ, p∗ = P + p, and v∗ = V + v, respectively. Note that Ũi − Ui = ui − u′′
i = ai .

The definitions for the normalized mass flux, ai , Favre Reynolds stresses, Rij , turbulent
kinetic energy, k̃, and total kinetic energy, EK , and mass fraction flux, ϒmj

, are given below:

ai = 〈uiρ〉
ρ̄

= −〈u′′
i 〉, (9)

Rij = 〈ρ∗u′′
i u

′′
j 〉 = ρ̄ 〈uiuj 〉 − ρ̄ aiaj + 〈ρuiuj 〉, (10)

k̃ = Rkk/(2ρ̄ ) = (〈uiui〉 − aiai + 〈ρuiui〉/ρ̄ )/2, (11)

EK = 〈ρ∗u∗
i u

∗
i 〉/2 = (ρ̄ 〈uiui〉 + 〈ρuiui〉)/2, (12)

ϒmj
= 〈ρ∗u′′

jY
′′
m〉. (13)

The Favre first moment (or mean) equations are written as:

∂

∂t
ρ̄ + (ρ̄ Ũj ),j = 0 (14)

∂

∂t
(ρ̄ Ũi) + [ρ̄ ŨiŨj ],j + Rij,j = −P,i + τ̄ij,j + ρ̄ gi (15)

∂

∂t
(ρ̄ Ỹm) + [ρ̄ ỸmŨj ],j + ϒmj

= D(ρ̄ Ỹm,j
),j + D〈ρ∗Y ′′

m,j
〉,j (16)

Ũj,j − aj,j = −D
〈
ρ∗

,j

ρ∗

〉
,j

(17)

Equations (14)–(16) are formally the same for a fully compressible flow. For incompressible
two-fluid mixing, the mean density (14) and mean mass fraction equations (16) are not
independent; we will retain the mean density equation and consider the mean mass fraction
equations only for completeness.
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Journal of Turbulence 5

The equations for the Reynolds stresses and normalized mass flux, which are unclosed
in Equation (15), can be written following [4] as

∂

∂t
Rij + (ŨlRij ),l +Rijl,l = Pij + 	ij − εij − Tijl,l , (18)

∂

∂t
(ρ̄ ai) + (ρ̄ Ũj ai),j = −〈ρv〉Pi + ρ̄ 〈vpi〉 − ρ̄ aj (Ũi − ai),j

+ ρ̄ ,j

ρ̄
(〈ρuiuj 〉 − Rij ) + ρ̄ (aiaj ),j

− (〈ρuiuj 〉,j + ρ̄ 〈uid〉). (19)

The production term, Pij , appears with the opposite sign in the equations for ŨkŨk; it
represents a transfer of turbulence to and from the mean Favre energy. The definitions of
the terms on the right-hand side of the Rij equation are

Pij = −RilŨj,l − RjlŨi,l + aiPj + ajPi, (20)

Tijl = 〈puj 〉δil + 〈pui〉δjl − 〈ujτil + uiτjl〉, (21)

Rijl = 〈ρ∗u′′
i u

′′
ju

′′
l 〉, (22)

Pi = P,i − τ̄ij ,j , (23)

	ij = 〈p(ui,j +uj ,i )〉, (24)

εij = 〈τiluj,l + τjlui,l〉. (25)

The quantity b = −〈ρv〉 is a measure of the mixing state and is unclosed in the production
term for the normalized mass flux in 19. The transport equation for b is typically written as

∂

∂t
b + Ujb,j = −1 + b

ρ̄
(ρ̄ aj ),j − ρ̄ 〈vuj 〉,j + 2ρ̄ 〈vd〉. (26)

More intuitively, one can write an equation for the mean specific volume:

∂

∂t
V + (UjV ),j = 2V D − 〈ujv〉,j + 2〈vd〉, (27)

where d = ui,i and D = Ui,i . For variable density turbulence, using ρ∗v∗ = 1, the following
identities follow:

1 = ρ̄ V + ρV + ρ̄ v + ρv, (28)

ρ̄ V = 1 − 〈ρv〉 = 1 + b, (29)

ρ̄ 〈uiv〉 = −〈uiρ〉V − 〈uiρv〉 = −aiρ̄ V − 〈uiρv〉. (30)

The last equation is obtained by taking the moment with ui of the first and re-arranging; it
is exact. Thus, a closure for the volume flux is given in terms of the normalized mass flux
provided an expression for the triple moment can be found.

A moment closure approach at the second-order level requires modeled transport equa-
tions for the Favre turbulent kinetic energy, k̃, normalized mass flux, ai , and density specific
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6 D. Livescu et al.

volume correlation, b, or, alternatively, mean specific volume, V . Using the relations above,
the corresponding transport equations are written as

∂

∂t
ρ̄ k̃ + (ρ̄ Ũj k̃),j = ai(P,i − τ̄ij,j ) − Rij Ũi,j − 1

2
Riij,j

−〈ui(pδij − τij )〉,j + 〈pd〉 − 〈τijui,j 〉, (31)

∂

∂t
(ρ̄ ai) + (ρ̄ Ũkai),k = bPi + ρ̄ 〈vpi〉 − ρ̄ aj (ũi − ai),j + ρ̄ ,j

ρ̄
(〈ρuiuj 〉 − Rij )

+ ρ̄ (aiaj ),j − (〈ρuiuj 〉, j + ρ̄ 〈uid〉), (32)

∂

∂t
b + Ũj b,j = 2ajb,j − 2aj (1 + b)

ρ̄ ,j

ρ̄
+ ρ̄

( 〈ujρv〉
ρ̄

)
,j

+ 2ρ̄ 〈vd〉, (33)

∂

∂t
V + ŨjV,j = 2ajV,j + V Ũj,j +

( 〈ujρv〉
ρ̄

)
,j

+ 2〈vd〉. (34)

The equations above are general and describe the moments’ evolutions in a fully compress-
ible flow, regardless of the equation of state. Only after the application of (8) they become
specific to the VD case.

3. Investigating the basic flow physics

In this section, the turbulence properties inside the mixing layer are analyzed using metrics
pertaining to buoyancy-driven turbulence: lengthscales, Reynolds numbers, normal stresses
and their scale-dependent anisotropy, mean pressure gradient, density intensity, density spe-
cific volume correlation, turbulent kinetic energy, and potential energy conversion rate. The
large scales of the flow, as characterized by various mixing layer widths and lengthscales,
are shown to grow self-similarly. Various asymmetries inside the mixing layer, not seen in
the Boussinesq case, are identified and explained.

3.1. RT self-similarity

The extent of the RT layer, and especially the rate of increase of the layer width, is an im-
portant question in applications and one metric to gauge the efficacy of various models and
numerical simulations. It is generally agreed that (1) for domains large horizontally com-
pared to any characteristic wavelength of the perturbation, (2) for domains much longer in
the vertical direction than the width of the layer, and (3) for an initial perturbation spectrum
peaked near the most unstable linear mode, the turbulent mixing layer grows quadratically
in time. The quadratic growth has been known for a long time as a dimensionally consistent
result confirmed by experimental data [8–10]. More recently [11], using the moment equa-
tions, provided the first exact analytical derivation of the self-similar growth rate for the
Boussinesq case. The expression, h = αAgt2 + 2(αAgh0)1/2t + h0 has a quadratic term in
time but also a linear term which is important at early times. Cabot and Cook [1] accounted
for the linear term by calculating α = ḣ2

4Agh
and showed that α reaches its self-similar value

faster than the previous studies suggested. The data also suggest that the Boussinesq result
holds for the VD case, at least to A = 0.5. The value obtained for the simulation exam-
ined here is α ≈ 0.02. This value is lower than that obtained in most experiments [12, 13].
In general, the discrepancy between the numerical and experimental values of α is an
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open question, although recent results suggest this may be due to differences in the initial
conditions [14].

For the miscible case there is no unique way to define the width of the mixing layer.
Cabot and Cook [1] used the formula h = ∫ ∞

−∞ XP (ρ̄ )dz, where XP (ρ̄ ) is the maximum
product in a fast reaction analogy [1, 2]. Physically, h is the thickness of mixed fluid that
would result if the two fluids are perfectly homogenized. h is less sensitive to statistical
variability than the more usual width formula H = zmax − zmin with zmax and zmin being the z

locations where the mean density reaches some given values, usually within 1% or 5% of the
pure fluid values. For example, H0.01 is defined as the maximum vertical distance between
the points where the mean density equals ρ1 + 0.01(ρ2 − ρ1) and ρ2 − 0.01(ρ2 − ρ1).
Figure 1 shows the time variation of the 1% and 5% half-widths, H0.01/2 and H0.05/2 and the
corresponding bubble and spike heights, normalized by h. The ratios become approximately
constant in time, H0.01/h ≈ 2.4h and H0.05/h ≈ 1.9h, after t/τ ≈ 6, which is the time
when α reaches a constant value [1] and the flow becomes self-similar. In all figures, the
numerical time is nondimensionalized by τ = √

l0/(Ag), where l0 is the dominant initial
wavelength of the perturbation and corresponds to the most unstable wavelength of the linear
problem.

Figure 1 also indicates that both the bubble and spike heights grow self-similarly after
t/τ ≈ 6 and the spike-to-bubble height ratio becomes a constant. The ratio is larger if
the heights are calculated based on the 1% density level, showing that the two sides of
the layer are more asymmetric toward the edges (see also below). The values obtained,
Hs/Hb ≈ 1.4 for the 1% density level and ≈1.15 for the 5% density level, are within the
range of previously reported experimental and numerical values [12,14]. Thus, even though
the value of α is lower than what is usually obtained experimentally, the layer edges exhibit
similar asymmetry.

0 10 20 30
t/τ

0.8

1

1.2

1.4

1.6

H
s

0.01
/h

H
0.01

/2/h
H

b
0.01

/h

H
s

0.05

/h

H
0.05

/2/h
H

b
0.05

/h

Figure 1. Time variation of the normalized 1% and 5% layer half-widths, and the corresponding
bubble and spike heights.
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Figure 2. (a) Vertical variation of the integral lengthscales Lu, Lw , and � = k̃3/2/ε and (b) ratio
Lw/�, at t/τ = 31.

As the mixing layer is turbulent at later times, the turbulence integral scale provides
information about the size of the energy containing eddies in the layer. Figure 2(a) compares
the integral scales, Lu and Lw, with h across the layer at the end of the simulation, when
the Reynolds number is largest. Lu and Lw are calculated in the usual way from the 2D
spectra [15]. Lu is based on the velocity ui and Lw is based on the mass-weighted velocity√

ρ∗/ρ̄ u′′
i , to account for potential VD effects. The two lengthscales are about the same

after the very early times, as the Favre turbulent kinetic energy k̃ becomes close to the
kinetic energy per unit mass 〈uiui〉/2, similar to [3]. The turbulence integral scale becomes
almost constant across the layer for −1.25h < z < h.

Single-point turbulence models do not have access to the integral scale which requires
spectral or two-point information. Such models usually assume the validity of Kolmogorov’s
zeroth law and use the turbulence scale � = k̃3/2/ε, where ε = 〈τijui,j 〉 is the dissipation of
k̃ (31), as a surrogate for the integral scale. Figure 2(a) shows that � is not constant across
the layer and peaks on the light fluid side. The values of Lw/� in the central region of
the layer vary between 0.3 and 0.5 close to those obtained in other high-Reynolds number
flows [15]. At the edges, where the turbulent Reynolds number is small, Kolmogorov’s
zeroth law is not useful.

3.2. The turbulent Reynolds number

In RT turbulence, the range of flow scales increases continuously as the energy spectrum
broadens at both ends. The bulk Reynolds number, Re = H0.01Ḣ0.01

ν
, discussed in [1], is

a measure of the large scales. The turbulent Reynolds number (Figure 3(a)), defined by
Ret = k̃2

νε
, represents the magnitude of turbulent transport versus viscous transport and

defines the width of the energy spectrum. From the point of view of single point closures,
Ret is an important quantity as the eddy viscosity is proportional to νRet = k̃2

ε
in standard

gradient transport models. At the end of the simulation Retmax ≈ 4600, corresponding to a
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Figure 3. (a) Ret across the layer in the turbulent regime. (b) Time variation of peak Ret (continuous
line) and Ret at z = 0 multiplied by h−1.5.

Taylor Reynolds number calculated using the isotropic formula Reλ = √
20/3Ret of ≈175.

At the centerline, Ret ≈ 3700, corresponding to Reλ = 157. Ret peaks on the light fluid
side, close to the turbulence scale l peak.

As the flow becomes self-similar, Ret should grow, to leading order, as ∼t3 [11].
Asymptotically, as the lower order terms in the self-similar relation become negligible,
Ret should grow as h2/3. Figure 3(b) shows that neither the peak Ret nor the centerline
value follow this prediction. However, as shown below, the kinetic energy grows consistent
with the Boussinesq self-similar analysis. It is concluded that the faster growth in Ret

compared to h2/3 is due to the contributions from the lower order terms in the self-similar
formulae for the kinetic energy and dissipation. Even after the onset of the self-similar
growth, the spectral dynamics is still transient: there is a time lag between the rise in the
large scales energy due to buoyancy production and when this increase is felt at the viscous
scales. Thus, even though asymptotically Ret may become proportional to h2/3, the lack
of asymptotic self-similarity (or proportionality to h2/3) of Ret throughout the simulation
renders the gradient transport hypothesis for the transport terms using the usual turbulence
eddy diffusivity, νRet , inappropriate (see also below).

3.3. Production over dissipation

The kinetic energy production to dissipation ratio, P
ε

, where P = aiP,i and ε = 〈τijui,j 〉
(see Equations (31) and (42)), is shown in Figure 4. P

ε
is usually taken as a measure of

the “non-equilibrium” nature of the flow. After the early times, production over dissipation
varies slightly across the layer and peaks around the edges. At the centerline, P

ε
increases in

time, following the general trend implied by the total kinetic energy over total production
(K/δP ) discussed in [1]. Thus, there is a time lag between the increase in energy at the
large scales and the increase in the viscous dissipation.

This imbalance between production and dissipation suggests some phenomenological
issues that relate to general “non-equilibrium” turbulent flows. These effects can be un-
derstood in the following way. Let the eddy cascade rate of k̃ to smaller scales be εc. It
is usual to parametrize the cascade rate following the notion of an efolding decrease of
the energy on an eddy turnover timescale, k̃1/2/L, accomplished by the energy cascade
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Figure 4. Energy production over dissipation, P

ε
, (a) across the layer and (b) at z = 0.

to smaller scales [16]. Here L is a quantity that is characteristic of the large scale fea-
tures of the flow. In homogeneous isotropic turbulence, this scale is the two-point integral
lengthscale.

If there is a change in the large scales kinetic energy due to a change in the production,
geometry, etc., the finite time of the energy cascade process leads to a delay to the time
such change is felt by the dissipation. Thus, in general, εc and ε are different (Figure 5(a)).

The cascade rate, εc, and the dissipation rate, ε, are, thus:

εc = k̃3/2/L, ε = 〈τijui,j 〉. (35)
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Figure 5. (a) Vertical variation of εc/ε at t/τ = 31. (b) Time variation of Retc = k̃2/(νεc) at the
centerline. The integral scale used to calculate εc is L = Lu.
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The first equality is phenomenological and the second a precise mathematical definition. At
equilibrium, εc = ε, so that L = � = k̃3/2/ε and the turbulent Reynolds number becomes
Ret = ρ̄ k̃1/2�/µ = k̃2/(νε). Shown in Figure 5(b) is a Reynolds number based on L =
k̃2/εc, Retc = k̃2/(νεc), at the centerline, which is seen now to have the asymptotic self-
similar scaling.

Several points follow from this discussion that are relevant to “non-equilibrium” flows
and the turbulence modeling in such flows.

(1) The lengthscale � = k̃3/2/ε does not characterize the large scales of the flow: � �= L.
(2) The lengthscale � = k̃3/2/ε does not characterize the large scales of the flow that

are responsible for the turbulent transport and, as shown below, � is not the relevant
lengthscale for a gradient transport hypothesis.

(3) The equilibrium notion that the viscous dissipation, responsible for the decrease of
k̃, can be parametrized by the large scale relation k̃3/2/L is not tenable for “non-
equilibrium” flows.

3.4. Non-Boussinesq effects

At low Atwood numbers, the mixing layer remains symmetrical around the centerline and
the mean pressure equal to the hydrostatic pressure head. As the Atwood number is increased
and the flow becomes non-Boussinesq, the bubble and spike sides start to differentiate, with
the spikes falling faster than the ascending velocity of the bubbles [12]. In this section,
differences compared to the Boussinesq case pertaining to (1) asymmetry of mixing layer,
(2) density fluctuations, and (3) mean pressure gradient are investigated. The quantities
examined are suggested by closures required for the moment equations.

3.4.1. Mean density profiles and mixing layer asymmetry

The mean density profile is linear in the innermost region of the RT layer. As the mixing
layer grows, the profile expands at both ends but maintains a fixed point in the middle of
the layer (Figure 6(a)). If z is scaled by the width of the layer h, then the density profiles
collapse quite well after the initial time (Figure 6(b)). As ρ̄ (z/h(t)) remains the same in
time, it yields that z = 0 is the fixed point in the density profile (for all other z values ρ̄ (z)
changes in time). The existence of a fixed point in the mean density profile located at z = 0
has important consequences for the asymmetry of various quantities, as detailed below.

The half-layer position, zm, is an indication of the mixing layer asymmetry expected
to become important at high A [12]. It is usually defined as the vertical position equally
distanced from the edges of the layer. In this context the edges of the layer are the positions
where the density reaches n% of the pure fluid densities, i.e., ρ1 + n/100(ρ2 − ρ1) and
ρ2 − n/100(ρ2 − ρ1). zm can also be defined from

∫ zm

−∞ XP (ρ̄ )dz = h/2, in which case the
notation zmP

is used. Figure 7 shows zm0.01 , zm0.05 , and zmP
. Interestingly, zmP

coincides with
the mean density profile fixed point and remains at z = 0. As most of the contribution to h

comes from the interior of the layer, this suggests that the mixing layer, as reflected by the
mean density, remains symmetrical with respect to the centerline in the central region. The
half-layer positions based on the 0.01 and 0.05 density levels move toward the light fluid
side, as the spikes penetrate more than the bubbles. After the very early times, zm starts
scaling with h. The mixing layer becomes more asymmetric at the edges as the bubble and
spike fronts start moving with different velocities; zm0.01 moves more to the light fluid side
than zm0.05 .
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Figure 6. Mean density at different times as a function of (a) vertical plane number and (b) scaled
vertical position.

3.4.2. Density variance and mean pressure gradient

The density intensity peaks on the light fluid side and its profile does not change much in
time (Figure 8(a)). The Boussinesq limit corresponds to ρrms/ρ̄ → 0 and a value of 0.05 is
usually taken to define this limit. According to this, variable density effects, though modest
at 0.25, are important in most of the layer. Below, it is shown that, even at low density
intensities, there are non-negligible non-Boussinesq effects at the edges of the layer.

The density specific volume correlation, b, mediates the mass flux production mech-
anism, unlike the Boussinesq case where this role is played by the density variance [3].
Since, as is shown below, the mass flux is essential in setting the energy conversion rate,
differences between b and the normalized density variance lead to structural flow changes
between VD and Boussinesq cases and are indicative of non-Boussinesq effects. Figure 9
shows the b profiles across the layer at several times. Similar to density intensity, b peaks
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t/τ

–0.2

–0.15

–0.1

–0.05

0

z
m

z
m

0.01

z
m

0.05

z
m

P

Figure 7. Vertical variation of the half-layer position, zm, scaled by h.
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Figure 8. (a) Density intensity iρ = ρrms/ρ̄ and (b) ratio of b to the square of density intensity across
the layer at different times.

on the light fluid side. After the early times, b collapses quite well across the layer and
becomes spatially self-similar.

Taking moments of the Taylor series of v = v(ρ) about v∗ = V , it is straightforward to
show [2]

〈ρv〉 = −〈ρ2〉
ρ̄ 2

[
1 − iρ

〈ρ3〉
〈ρ2〉3/2

+ i2
ρ

〈ρ4〉
〈ρ2〉2

− i3
ρ

〈ρ5〉
〈ρ2〉5/2

+ · · ·
]
, iρ = 〈ρ2〉1/2

ρ̄
.

(36)

The successive normalized moments are called skewness, kurtosis, hyperskewness, etc. As
iρ → 0, the formula reduces to the Boussinesq relation:

〈ρv〉 = −〈ρ2〉
ρ̄ 2

. (37)
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Figure 9. b variation across the layer.
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The density PDF is skewed on either side of the centerline with negative skewness on the
heavy fluid side and positive on the light fluid side, as few less mixed fluid regions approach
the opposed side of the layer. Thus, away from the centerline all odd terms in the expansion
(36) have the same sign. Therefore, even though iρ is small toward the edges, the departure
from the Boussinesq formula (37) is largest at the edges of the layer, consistent with Figure
8(b).

〈ρv〉 and 〈ρ2〉
ρ̄ 2 mediate the production of the mass flux, which sets the energy conversion

rate (see below and [3]) in the VD and Boussinesq cases, respectively. On the heavy fluid
side, 〈ρv〉 has larger magnitude than 〈ρ2〉

ρ̄ 2 ; on the light fluid side has smaller magnitude.
Therefore, the Boussinesq equations lead to larger energy conversion rate in the light fluid
side and smaller on the heavy fluid side, compared to the VD equations, when used for
the same density differences. Since solving the Boussinesq equations is, in general, less
expensive than solving the VD equations, one would like to use these equations for as large
density differences as possible. The arguments above suggest that a good criterion for the
validity of the results using the Boussinesq approximation is the emergence of asymmetries
in the mixing layer.

The mean pressure gradient exhibits only modest non-Boussinesq effects (Figure 10(a)).
However, the departure from the hydrostatic pressure head is partially responsible for the
asymmetry of the turbulent kinetic energy. The other factor contributing to this asymmetry
is the fixed point in the mean density profile. The largest departures, of about 10%, are
obtained away from the centerline and the edges. After the early times (t/τ > 6), P,3/(ρ̄ g3)
changes little in time. Figure 10(b) shows that the mean pressure gradient is close to the
formula used in the homogeneous simulations of [2, 3].

3.5. Mean velocities and mass flux asymmetries

For immiscible incompressible fluids ∂U3
∂z

= 0 and since U3 = 0 outside the layer, it yields
U3 = 0 everywhere. For the miscible case the divergence of the velocity is not zero. In the
present Rayleigh–Taylor configuration, U1 = U2 = 0 and U3 = − 1

ReSc
〈 ∂(lnρ∗)

∂z
〉. Thus, the
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Figure 10. (a) Mean pressure gradient normalized by the pressure head and (b) mean pressure
gradient compared to the formula used in the homogeneous simulations of [2, 3], P,3 h = 1

V
(g3 −

〈vp,i〉 + 〈uiuj,j 〉 + 〈vτij,j 〉). For clarity, the results have been smoothed by applying a running average.
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mean velocity is purely dilatational and arises solely due to the molecular mixing. In fact,
U3 can be related to the (interspecies) diffusion velocity, V3, by U3 = −〈V3(ρ2 − ρ)/ρ2〉.
At very early times, when the density gradients are sharp, U3 is important. However, after
the initial instant, the Reynolds mean velocity is small so that Ũ3 ≈ a3.

A fixed point in the mean density profile, ρ̄ ,t = 0, is observed to occur at z = 0 (see
above). From the mean continuity equation (14) this leads to ∂

∂z
(ρ̄ Ũ3) = 0 at z = 0 and,

thus, ρ̄ Ũ3 is maximum in magnitude (note Ũ3 < 0) at z = 0. As the mean density increases
with the height z, Ũ3 (and a3) has its minimum value (maximum in magnitude) below the
centerline (Figure 11(a)).

Ũ3 at the centerline and maximum Ũ3 both increase linearly in magnitude after t/τ ≈ 6
(Figure 11(b)), consistent with the time when α = ḣ2

4Agh
reaches a constant value [1].

Similar to the Favre mean kinetic energy, K̃ = 1/2ŨiŨi , the Favre turbulent kinetic
energy, k̃, profile peaks on the light fluid side (Figure 12(a)), which is shown below to also
be related to the mean density profile features. Both the centerline and peak values of k̃

increase quadratically in time after t/τ ≈ 6, consistent with the self-similarity of the flow
(Figure 12(b)).

3.6. Anisotropy

Since buoyancy production is inherently anisotropic, it is expected that the normal stresses
be anisotropic. A measure of the large scale anisotropy, which appears in the moment
equations, is the Favre Reynolds stress anisotropy tensor:

bij = Rij

Rkk

− 1

3
δij (38)

which is bounded by − 1
3 ≤ bij ≤ 2

3 . The lower bound for a diagonal component corresponds
to no energy in that component and the upper bound, 2

3 , to 100% of the energy in that
component. Similar to the Boussinesq case [11] and the homogeneous configuration [3],
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Figure 11. (a) Vertical variation of the Favre mean velocity Ũ3 at t/τ = 1, 6, 12.5, 19, 25, and 31.
(b) Time variation of peak Ũ3 (continuous line) and Ũ3 at the centerline (dashed line).
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Figure 12. (a) Vertical profiles of the Favre turbulent kinetic energy at t/τ =
1, 6, 12.5, 19, 25, and 31. (b) Time evolution of peak k̃ (continuous line) and k̃ at the center-
line.

the normal stresses are non-isotropic at all times (Figure 13). Note that for the present
configuration, as well as HRT, bij defined based on the Favre Reynolds stresses is close to
that defined based on the Reynolds stresses. b33 seems to become almost constant across
the layer, with an asymptotic value b33 ≈ 0.3 corresponding to ≈65% energy in the vertical
component. Values of b33 ≈ 0.3 were also reported for the Boussinesq case at long times
at the centerline by [11].

3.6.1. Scale dependence of the normal stresses anisotropy

It is generally believed that in high-Reynolds number flows the small scales become isotropic
and decoupled from the large scales as, in general, production mechanisms tend to be
confined to large scales. However, [2] showed that buoyancy production, even though it
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Figure 13. Vertical variation of b33 at different times.
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Figure 14. Wave number dependence of b33(κ) at different z locations.

becomes much smaller than the nonlinear transfer at large wave numbers, has a significant
effect on the smallest scales of the flow during the kinetic energy growth stages in HRT.
This is because in the viscous range there is a cancellation between nonlinear transfer
and viscous dissipation so that buoyancy production leads to a persistent anisotropy of
the normal stresses at these scales. This is substantiated by the fact that the dissipation
itself tends to be more isotropic. As the small scales kinetic energy grows, the dissi-
pation first increases in response to the rise in the nonlinear transfer and there is a lag
between the increase in the buoyancy production and the response in the dissipation. Thus,
Livescu and Ristorcelli [2] suggested that for buoyancy-driven flows, the viscous scales
are not universal. However, in some intermediate range, far from the large scales domi-
nated by buoyancy production and small scales where viscous dissipation starts to play a
role, the normal stresses become close to isotropic, suggesting that an inertial range may
develop.

The results regarding anisotropy found in HRT [2, 3] also hold for the RT con-
figuration: the normal stresses tend to become isotropic only in some intermediate
range (Figure 14). At the largest and smallest scales, the normal stresses remain
anisotropic. Unexpectedly, at the smallest scales, b33(κ) ≈ 0.15 (which is close to the
HRT value at similar A and Sc), corresponding to ≈50% energy in the vertical com-
ponent. Similar to HRT, however, the dissipation itself becomes more isotropic at long
times [1], supporting the suggestion that, due to the cancellation between nonlinear
transfer and viscous dissipation, the buoyancy production remains important at small
scales.

3.7. Energy conversion

Kinetic energy is produced in the flow because there is net available potential energy. The
available potential energy inside a control volume is

E∗
p(t) = −gi

V

∫
V

(ρ∗ − ρ0) xi dV, (39)

where ρ0 is the density in the final (equilibrium) state. The rate of change of the potential
energy is the sum of the time rate of change of the potential energy inside the control volume
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and the flux of potential energy through the boundaries. To obtain the vertical variation, the
control volume is defined having an infinitesimal extent δz in the vertical direction:

∂

∂t
E(z, t) = ∂

∂t
E∗

p + FE∗
p

= − ∂

∂t

(
gi

Sδz

∫
V

(ρ∗ − ρ0) xi dV
)

− gi

Sδz

∫
S

(u∗
j ρ

∗ − u∗
jequil

ρ0) xidSj

= gi

Sδz

∫
V

(ρ∗u∗
j ),j xi dV − gi

Sδz

∫
S

(u∗
j ρ

∗ − u∗
jequil

ρ0) xidSj

= − gi

Sδz

∫
V

ρ∗u∗
i dV + giρ0

Sδz

∫
S

u∗
jequil

xidSj

= −g3

δz
〈ρ∗u∗

3〉δz + g3ρ0U3equil

= −g3ρ̄ Ũ3 ≈ −g3ρ̄ a3. (40)

U3equil accounts for an eventual solid body motion in the equilibrium state, when ρ∗ = ρ̄ .
For the present configuration, with wall-bounded domain, it is zero. The expression above
is the same as in the homogeneous configuration [3]. At each z level, the rate of conversion
of potential into kinetic energy is proportional to the normalized mass flux. In addition,
since −ρ̄ Ũ3 has the largest value at z = 0, the energy conversion rate is maximum at the
centerline.

4. Energy budgets of the second moment equations

The energy budgets for the Favre turbulent kinetic energy, k̃, normalized mass flux, ai ,
density specific volume correlation, b, and mass fraction, Ym, transport equations are now
examined. These equations are relevant to a second-order moment closure of the flow, so
the information presented also represents an archival database for model testing. Issues
related to the ability of gradient transport hypothesis to describe the turbulence transport
are then investigated. As the data become noisy at late times, a running average was used
in all late time plots for clarity.

4.1. Kinetic energy equation budget

The transport equations for the Favre mean and turbulent kinetic energies for the current
configuration can be easily derived from Equations (17) and (31):

∂

∂t
(ρ̄ K̃) = −(ρ̄ Ũ3K̃),3 − (Ũ3R33),3 + ρ̄ Ũ3g3 − Ũ3P,3 + R33Ũ3,3 + Ũ3τ̄33,3, (41)

∂

∂t
(ρ̄ k̃) = −(ρ̄ Ũ3k̃),3︸ ︷︷ ︸

I

+a3P,3︸ ︷︷ ︸
II

−R33Ũ3,3︸ ︷︷ ︸
III

−a3τ̄33,3︸ ︷︷ ︸
IV

−1

2
Rii3,3︸ ︷︷ ︸
V

−〈u3p〉,3︸ ︷︷ ︸
V I

+〈uiτi3〉,3︸ ︷︷ ︸
V II

+〈pd〉︸ ︷︷ ︸
V III

−〈τijui,j 〉︸ ︷︷ ︸
IX

. (42)
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Figure 15 shows the terms in the Favre turbulent kinetic energy equation at different
times. The mean Favre kinetic energy production term, ρ̄ Ũ3g3, is exactly the negative of
the potential energy rate of change (40). Thus, potential energy is directly converted into
Favre mean kinetic energy. Energy is then transferred to Favre turbulent kinetic energy by
the mass flux mean pressure gradient product (a3P,3) and also to and from mean kinetic
energy by −R33Ũ3,3. As the mean shear is zero in this flow, the mean velocity gradient term
is not a net production mechanism for turbulent kinetic energy, so that −R33Ũ3,3 can have
either sign.

The production term a3P,3, is the largest term in Equation (42), underlying the funda-
mental role of the mass flux in the energy conversion mechanism. It is shown above that the
fixed point in the mean density profile implies that ρ̄ Ũ3 (and ρ̄ a3) peaks at the centerline.
In addition, the mean pressure gradient is larger than the hydrostatic head, ρ̄ g, in the light
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Figure 15. Terms in the Favre turbulent kinetic energy equation: (a) t/τ = 1, (b) t/τ = 6, (c)
t/τ = 19, and (d) t/τ = 31.
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fluid side and smaller in the heavy fluid side (although by small amounts at the moderate
Atwood number of this flow). Therefore, as shown in Figure 15, term II, a3P,3, has the
largest magnitude slightly off the centerline, on the light fluid side. The mean velocity
gradient (term III) transfers energy from the mean flow to turbulence on the light fluid
side and vice versa on the heavy fluid side. Thus, the ρ̄ k̃ production is largest on the light
fluid side. This leads to an asymmetry in ρ̄ k̃ and even larger asymmetry in Favre turbulent
kinetic energy profiles (Figure 12(a)).

The transport terms I, V, VI, and VII redistribute the energy inside the layer. Term
I transports energy from heavy to light fluid sides, contributing to the kinetic energy
asymmetry, V from interior of the layer to the edges (main mechanism for the spreading of
the turbulent kinetic energy), and VI back from the edges to the interior (opposes the spread
of the layer). As more energy is produced in the light fluid side, term V also has larger
magnitudes below the centerline (negative in the largest production region and positive
toward the edge). This is consistent with the asymmetry between the bubble and spike
fronts discussed earlier. The last transport term, VII, becomes small after the very early
times.

Interestingly, the viscous dissipation (term IX) remains symmetrical with respect to
the centerline throughout the evolution of the flow. The non-Boussinesq effects primarily
affecting the asymmetry of the flow are large scale and manifest in the asymmetry of the
mean pressure gradient and Favre mean velocity.

The rest of the terms in Equation (42), terms IV and VIII (pressure dilatation), become
small after the initial times.

In summary, the leading order energy balances in the high Re (late time) regime, with
their magnitude relative to the time derivative, are as follows:

RT layer interior

∂

∂t
ρ̄ k̃ = +a3P,3︸ ︷︷ ︸

II (≈3)

−〈τijui,j 〉︸ ︷︷ ︸
IX (≈−1.5)

−1

2
Rii3,3︸ ︷︷ ︸

V (≈−1)

−〈u3p〉,3︸ ︷︷ ︸
V I (≈0.5)

+ · · · . (43)

RT layer edges

∂

∂t
ρ̄ k̃ = −1

2
Rii3,3︸ ︷︷ ︸

V (≈1)

+ · · · . (44)

The important terms which need closure in Equation (42) are the dissipation (term
IX) and the transport term V. As a transport equation for dissipation is overly cumbersome,
most single point closures model it either by assuming some similarity (through a timescale)
with the kinetic energy, or considering a phenomenological transport equation. Below, it is
shown that the dissipation lags behind the kinetic energy, for the duration of the simulation,
and does not attain a similar self-similar state with the kinetic energy. Thus, a dissipation
transport equation is required to capture the dissipation evolution in this flow. The turbulence
transport terms are usually closed using a gradient transport hypothesis and such models
are examined in Section 4.4.
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4.2. Mass flux equation budget

The transport equation for the mass flux in the vertical direction, for the present configura-
tion, is

∂

∂t
(ρ̄ a3) = −(ρ̄ Ũ3a3),3︸ ︷︷ ︸

I

+b(P,3 − τ̄33,3)︸ ︷︷ ︸
II

+ρ̄ (〈vp,3〉 − 〈vτ3j,j 〉)︸ ︷︷ ︸
III

−ρ̄ a3(Ũ3 − a3),3︸ ︷︷ ︸
IV

+ ρ̄ ,3

ρ̄
(
〈
ρu2

3

〉 − R33)︸ ︷︷ ︸
V

+ρ̄
(
a2

3

)
,3︸ ︷︷ ︸

V I

−(〈
ρu2

3

〉
, 3︸ ︷︷ ︸

V II

+ρ̄ 〈u3d〉)︸ ︷︷ ︸
V III

. (45)

Figure 16 shows the terms in the mass flux equation at different times. Barring the sta-
tistical variability, the production, terms II and V, and destruction, term III, are symmetrical
with respect to the centerline. This is consistent with the fixed point found above in the
mean density profile, which required that ρ̄ a3 peaked at the centerline and the normalized
mass flux itself on the light fluid side. The two production terms have relatively close
magnitude,with term II the largest between the two. This term depends directly on the fluid
configuration (or the mix state) through b.

The transport terms I and VI have opposite sign and close magnitude. Term I transports
the mass flux from the heavy to light fluid sides while term VI increases ρ̄ a3 on the
heavy fluid side. The velocity dilatation part of term VII becomes small after very early
times, while the transport part moves mass flux from the interior toward the edges and is
responsible for the spreading of the mass flux.

After the very early times, the destruction term III becomes the largest term in the
interior of the layer. This term represents a direct manifestation of non-Boussinesq effects,
as the fluctuating pressure gradient is directly proportional to departures from the hydrostatic
pressure head.

In summary, the leading order mass flux balances in the high Re (late time) regime,
with their magnitude relative to the time derivative, are as follows:

RT layer interior

∂

∂t
(ρ̄ a3) = +ρ̄ 〈vp,3〉︸ ︷︷ ︸

III (≈19)

+bP,3︸ ︷︷ ︸
II (≈−15)

− ρ̄ ,3

ρ̄
R33︸ ︷︷ ︸

V (≈−11)

−〈
ρu2

3

〉
, 3︸ ︷︷ ︸

V II (≈6)

+. (46)

RT layer edges

∂

∂t
(ρ̄ a3) = −〈

ρu2
3

〉
, 3︸ ︷︷ ︸

V II (≈1)

+ · · · . (47)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
o
s
 
A
l
a
m
o
s
 
N
a
t
i
o
n
a
l
 
L
a
b
o
r
a
t
o
r
y
]
 
A
t
:
 
1
9
:
2
1
 
7
 
J
u
l
y
 
2
0
0
9



22 D. Livescu et al.

−1.5 −1 −0.5 0 0.5 1
z/h(t)

−0.1

−0.05

0

0.05

0.1

0.15

0.2
I
II
III
V
VI
VII
VIII

0
z/h(t)

−0.1

0

0.1

0.2

a)

b)

−1.5 −1 −0.5 0 0.5 1
z/h(t)

−0.1

0

0.1

0.2

I
II
III
V
VI
VII
VIII

−1.5 −1 −0.5 0 0.5 1 1.5
z/h(t)

−0.1

0

0.1

0.2

c) d)

Figure 16. Terms in the normalized mass flux, a3, transport equation (a) t/τ = 1, (b) t/τ = 6, (c)
t/τ = 19, and (d) t/τ = 31.

4.2.1. Modeling issues

At the centerline, the four leading order terms are much larger than the time derivative.
Thus, a quasi-equilibrium assumption in which the left-hand side of Equation (45) is set
to zero appears appealing. However, it was shown before that the mass flux is not constant
and increases linearly in time, consistent with the Boussinesq self-similar analysis of [11].
Therefore, the quasi-equilibrium assumption, ∂

∂t
(ρ̄ a3) ≈ 0, is not valid. Modeling equation

(45) imposes unique challenges, as the mass flux time variation is given by a delicate balance
of large terms.

After the initial times, as mixed fluid occupies large areas inside the layer, the specific
volume pressure gradient (part of term III), which acts as a destruction term for the mass

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
o
s
 
A
l
a
m
o
s
 
N
a
t
i
o
n
a
l
 
L
a
b
o
r
a
t
o
r
y
]
 
A
t
:
 
1
9
:
2
1
 
7
 
J
u
l
y
 
2
0
0
9



Journal of Turbulence 23

flux, dominates the balance in Equation (45). Thus, an accurate model for 〈vp,3〉 is essential
for predicting the mass flux; this is the subject of current research.

The production term, bP,3, is crucial to the prediction of the sign change of the mass
flux when the mean pressure changes sign in response to a change in the body force. In
flows with significant amounts of non-mixed fluids, this term is largest in Equation (45)
and sets the mass flux rate of change. If the fluids are mostly mixed, then b is small and
bP,3 does not produce the differential accelerations that generate the mass flux. Closing
bP,3 requires a model or transport equation for b; this is discussed next.

The largest contribution to term V comes from R33; its usual modeling in terms of the
kinetic energy requires knowledge of the large scale anisotropy, discussed above. The triple
correlation 〈ρu2

3〉 represents the largest part of term VII and appears in divergence form.
Gradient transport hypotheses for 〈ρu2

3〉 are explored in Section 4.4.

4.3. Density specific volume correlation equation budget

The transport equation for b, for the present configuration, is

∂

∂t
b = −Ũ3b,3︸ ︷︷ ︸

I

+2a3b,3︸ ︷︷ ︸
II

−2a3(1 + b)
ρ̄ ,3

ρ̄︸ ︷︷ ︸
III

+ρ̄

( 〈u3ρv〉
ρ̄

)
,3︸ ︷︷ ︸

IV

+2ρ̄ 〈vd〉︸ ︷︷ ︸
V

. (48)

Figure 17 shows the terms in the b equation at different times. The production term III
peaks on the light fluid side, a direct consequence of the fixed point at z = 0 in the mean
density profile. Thus, a3ρ̄ peaks at the centerline and therefore a3ρ̄ ,3 has the largest mag-
nitude below the centerline. The asymmetry of the production of b leads to the asymmetry
of b shown earlier.

Terms I and II redistribute b across the layer (term I from the heavy fluid side to the
light fluid side and term II vice versa) and become small after the initial instant. Term IV
transports b toward the edge regions, representing the main mechanism for the spreading
of the b profile. Term V represents the destruction of b. Unlike the destruction terms in k̃

and a3 equations, term V is also asymmetric with respect to the centerline.
In summary, the leading order b balances in the high Re (late time) regime, with their

relative magnitude compared to the largest term on the right-hand side of the equation, are
RT layer interior

0 = −2a3(1 + b)
ρ̄ ,3

ρ̄︸ ︷︷ ︸
III (≈1)

+2ρ̄ 〈vd〉︸ ︷︷ ︸
V (≈−0.75)

+ρ̄

( 〈u3ρv〉
ρ̄

)
,3︸ ︷︷ ︸

IV (≈−0.25)

+ · · · . (49)

RT layer edges

∂

∂t
b = ρ̄

( 〈u3ρv〉
ρ̄

)
,3︸ ︷︷ ︸

IV (≈1)

+ · · · . (50)

The unclosed terms in the b equation are 〈vd〉 and the triple correlation, 〈u3ρv〉. A
modeling strategy for 〈vd〉 is not discussed here and is the subject of future work. Gradient
transport hypotheses for 〈u3ρv〉 are explored in Section 4.4.
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Figure 17. Terms in the b transport equation (a) t/τ = 1, (b) t/τ = 6, (c) t/τ = 19, and (d) t/τ = 31.

4.4. Investigating the gradient transport hypothesis

In this section, the popular gradient transport hypothesis for the turbulent transport terms
in the moment equations is investigated. Usually, the eddy viscosity is modeled using the
time and lengthscales defined based on the kinetic energy and dissipation, τt = k̃/ε and
l = k̃3/2/ε, since these quantities are readily available in one-dimensional models, resulting
in ν ′

t = (Cµ/σt )k̃2/ε.
The variation of k̃2/ε across the layer was discussed above, as this quantity is pro-

portional to Ret . It was shown that, throughout the simulation and long after the onset of
self-similar growth, Ret is not proportional to h2/3, as required by asymptotic self-similarity.
It was also shown that l does not represent the true integral scale as the Kolmogorov’s ze-
roth law is not satisfied. Similar to l, the eddy turnover time τt is not constant across the
layer (Figure 18(a)). There is a minimum value which occurs around the centerline and τt

becomes very large toward the edges, where the dissipation decreases to zero faster than
the kinetic energy.

Below it is shown that the transport terms are better described using ν ′′
t = (Cµ/σt )hk̃1/2

instead of ν ′
t as the eddy viscosity in the gradient transport hypothesis. This is a consequence
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Figure 18. Vertical profiles of τt = k̃/ε at t/τ = 1, 6, 19, and 31.

of the transient spectral dynamics, occurring even after the flow becomes self-similar: the
dissipation still lags the large scale energy production.

4.4.1. Mass flux

The gradient transport hypothesis for the mass flux, which appears in divergence form in
the mean continuity equation, is

ρ̄ a3 = 〈ρu3〉 = −νt ρ̄ ,3, (51)

where νt is usually taken to be a constant or νt = ν ′
t = Cµ/σt k̃

2/ε. Figure 19 clearly shows
that a constant νt is not justified. More importantly, the match using νt = ν ′

t is very poor in
time, although at later times the spatial variation is relatively well captured away from the
edges. The main reason for this mismatch is the lag between the evolution of the dissipation
and the increase in large scale energy. However, 〈ρu3〉 seems to follow surprisingly well
−(Cµ/σth)

√
k̃ρ̄ ,3 with Cµ/σt ≈ 0.39 changing little in time. The Cµ/σt value calculated

using Hb instead of h is ≈0.33, which is slightly higher than the 0.288 value reported
by [17] and much larger than the standard value for shear flows, 0.09 [15].

4.4.2. Kinetic energy equation

Term V in Equation (42) is important both at the center and edges of the layer and is unclosed.
The term can be rewritten as Rii3,3 = (ρ̄ Rii3/ρ̄ ),3. The gradient transport hypothesis, in
this case, is

Rii3/ρ̄ = −νt k̃,3. (52)

Neither option for νt (ν ′
t or ν ′′

t ) works as well as for the mass flux, however

−(Cµ/σt )h
√

k̃k̃,3 gives a fit for Rii3/ρ̄ which is less dependent on time (Figure 20).
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Figure 19. Comparison of 〈ρu3〉 across the layer with a gradient transport hypothesis, −0.39h
√

k̃ρ̄ ,3

and −0.65k̃2/ερ̄ ,3 at a) t/τ = 6, b) t/τ = 31. The coefficients were chosen to provide a good fit in
the interior of the layer at t/τ = 31.

4.4.3. Mass flux equation

The term 〈ρu2
3〉,3 is an important term in Equation (45) and is unclosed. The term can be

rewritten as 〈ρu2
3〉,3 = (ρ̄ 〈ρu2

3〉/ρ̄ ),3. The gradient transport hypothesis becomes in this
case:

〈ρu2
3〉/ρ̄ = −νta3,3. (53)
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Figure 20. Comparison of Rii3/ρ̄ across the layer with a gradient transport hypothesis, −1.5h
√

k̃k̃,3

and −2.5 k̃2

ε
k̃,3 at (a) t/τ = 6 and (b) t/τ = 31. The coefficients were chosen to provide a good fit in

the interior of the layer at t/τ = 31.
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Figure 21. Comparison of 〈ρu2
3〉/ρ̄ across the layer with a gradient transport hypothesis,

−0.72h
√

k̃a3,3 and −1.2 k̃2

ε
a3,3 at (a) t/τ = 6 and (b) t/τ = 31. The coefficients were chosen to

provide a good fit in the interior of the layer at t/τ = 31.

Similar to the mass flux, the turbulent eddy diffusivity given by (Cµ/σt )h
√

k̃ seems to work
better than (Cµ/σt )k̃2/ε, as the former option provides a Cµ/σt which changes little in time
(Figure 21).

4.4.4. b equation

Term IV, which contains a triple correlation and needs closure, is an important term in the
b equation. The gradient transport hypothesis for this term is

〈ρvu3〉 = −νtb,3. (54)

The data are noisy at long times, but it seems that 〈ρvu3〉 scales better across the layer
with −h

√
k̃b,3 than with − k̃2

ε
b,3 (Figure 22). As with the other transport terms examined,

the fit with −h
√

k̃b,3 also changes little in time.

4.4.5. Mass fraction transport equation

For variable density (incompressible) two fluid mixing, the density and mass fractions are
not independent. Using (1), the mass fraction flux can be written for the present configuration
as

ϒ13 = −ϒ23 = − ρ2ρ1

ρ2 − ρ1
a3. (55)

Thus, the mass fraction flux is directly proportional to the mass flux. If a model is provided
for the mass flux, the same model should be used for the mass fraction flux; if a transport
equation is considered for a3, then the mass fraction flux is no longer unclosed.
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Figure 22. Comparison of 〈ρvu3〉 across the layer with a gradient transport hypothesis, 0.5h
√

k̃b,3

and − k̃2

ε
b,3 at (a) t/τ = 6 and (b) t/τ = 31. The coefficients were chosen to provide a good fit in the

interior of the layer at t/τ = 31.

4.4.6. Discussion

Usual turbulence eddy viscosity, ν ′
t ∼ k̃2/ε, does not capture the time variation of the

turbulent transport in any of the equations considered, even though it provides a weak spatial
fit. However, an eddy diffusivity, ν ′′

t ∼ h
√

k̃, provided a very good fit for the mass flux, both
temporally and spatially, and a somewhat weaker fit for the transport terms in the mass flux,
kinetic energy, and b transport equations. Unfortunately, h is a global quantity which is
not available in single point turbulence models. In addition, extensions to general flows are
questionable. Thus, one would like to use turbulence scales to define an eddy viscosity. The
problem with the turbulent eddy diffusivity, ν ′

t ∼ k̃2/ε, can be traced back to the lag between
the rise in the large scales energy due to buoyancy production and when this increase is felt
at the viscous scales. This lag persists even long after the onset of the self-similar growth.
However, since the kinetic energy and dissipation follow, to leading order, the self-similar
predictions, it is conceivable that, asymptotically, the leading order terms in their self-similar
expressions become dominant. In that case, � and k̃2/ε may follow the self-similar scaling
with the width of the layer, h, and become useful for gradient diffusion-type closures.
Nevertheless, long after the onset of the self-similar growth, the usual closures for the
moment equations using the turbulence lengthscale, �, and the gradient transport hypothesis
for the turbulence transport or similarity arguments for the dissipation fail in RT turbulence.

5. Overview of results

The flow physics and statistics of the very large 30723 simulation by [1] of variable density
Rayleigh–Taylor mixing layer have been studied using the single point moment equations
as a diagnostic tool. There are several findings to report.

� Mean density symmetry and mixing layer asymmetry: the mean density profile re-
mains symmetrical with respect to the initial condition centerline in the central
region of the layer. Departures from the Boussinesq behavior (for which the layer is
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symmetrical) are seen at the edges of the layer where the spike front attains speeds
faster than the bubble front.

� Non-Boussinesq effects: the non-Boussinesq effects in the RT mixing layer manifest
themselves as (1) large departure of k̃, a3, b from symmetry with respect to the
centerline, with maxima on the light fluid side, (2) the departure of the mean pressure
gradient from the hydrostatic value, (3) departure of the specific volume density
correlation from the normalized density variance due to large non-Gaussian density
PDF moments or large density intensity.

� Turbulence asymmetry: near the centerline, the mean density profile is linear. This
produces a mean density fixed point at z = 0 and predicts that the largest mass
flux is on the light fluid side. As the major production mechanisms are directly or
indirectly related to the mass flux and mean density, the corresponding terms in k̃

and b equations peak on the light fluid side. Thus, k̃ and b are asymmetric and reach
their maximum values below the centerline, on the light fluid side. For a Boussinesq
fluid their maxima are on the centerline.

� In the mass flux equation 〈vp,i 〉 is one of the largest terms: from the energy budget
analysis of the a3 equation, the specific volume pressure gradient correlation, 〈vp,i 〉,
is seen to be important; it is in fact the largest term in the equation. The 〈vp,i 〉
term acts to reducing the rate of growth of the mass flux. This term is neglected in
most single point closures for VD turbulence and will require closure for an accurate
model.

� The flow becomes self-similar relatively fast, however the lower order terms in the
self-similar relations are important throughout the simulation: the quantities ex-
amined follow, to leading order, the self-similar predictions after t/τ ≈ 6. While
it is expected that, asymptotically, the lower order terms in the self-similar rela-
tions become negligible, throughout the simulation these terms retain their relative
importance.

� Non-equilibrium spectral cascade: long after the onset of the self-similar growth,
the transient effects in the energy spectrum remain important for the duration of
the simulation. Thus, there is a time lag between the energy increase at large scales
and the rise in the dissipation: the dissipation does not track the spectral energy
cascade rate and this has several important consequences for the gradient transport
hypothesis.

� The eddy viscosity ν ′
t ∼ k̃2/ε in the gradient transport hypothesis is in substantial

error for the duration of the simulation: using � = k̃3/2/ε as the transport lengthscale
in gradient transport models leads to significant error. While the gradient transport
hypothesis does capture the spatial profile of the mass flux, it does not capture
its temporal variation. This is because the lengthscale, � = k̃3/2/ε, based on the
dissipation, is not a good approximation of the integral scale which sets the turbulent
transport.

� An eddy viscosity ν ′′
t ∼ k̃1/2h works well: the gradient transport hypotheses in which

h is the transport lengthscale and k̃1/2h the eddy viscosity works better in capturing
both the spatial profile of the transport as well as its temporal scaling. This is true of
all the second order turbulent transport terms. Unfortunately, h is an integral quantity
which cannot be obtained from a single point closure.

� Spectral anisotropy of the energy: the turbulence structure has been examined both at
large and small scales. Due to the buoyancy production anisotropy, the kinetic energy
components, at the largest scales of the motion, remain anisotropic with ≈65% of the
energy in the vertical direction. Because of the cancellation between nonlinear and
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viscous effects, the buoyancy force leads to a persistent anisotropy at small scales,
with ≈50% of the energy in the vertical direction at the smallest scales. In some
intermediate range however, the energy is approximately isotropic.

� The utility of Boussinesq computations: the asymmetries in the turbulence quantities
are exacerbated if the Boussinesq equations are used for the same density difference.
Thus, it appears that a conservative criterion for the validity of the Boussinesq
equations and a Boussinesq computation is the emergence of the asymmetries in
k̃, a3, b.

6. Conclusions

Detailed quantitative budgets of the kinetic energy, mass flux, and density specific volume
correlation transport equations together with various lengthscales and moments have been
examined to (1) investigate the fluid physics in VD RT, (2) provide an archival database
for validating VD turbulence models, (3) characterize and explain various asymmetries not
seen in the Boussinesq case, and (4) explore the applicability of the usual turbulence scales
in simple similarity type gradient transport closures.

Variable density Rayleigh–Taylor turbulence is characterized by asymmetries of the
mixing layer and various turbulence quantities, not seen in the Boussinesq case. For mod-
erate A numbers, as is the case with the 30723 simulation of [1] discussed here, the inner
region of the mean density profile remains symmetric but develops an asymmetry at the
layer edges as the bubbles and spikes fronts move with different velocities. It is the presence
of a fixed point at z = 0 in the mean density profile, together with the departure of the mean
pressure gradient from the hydrostatic pressure head, that causes the asymmetry of the tur-
bulent kinetic energy. In addition, it was shown that the fixed point also leads to asymmetry
of the normalized mass flux, a3, density specific volume correlation, b, and the production
terms in their transport equations. All these quantities have their largest magnitude on the
light fluid side.

The flow reaches a self-similar state as described by the [11] analysis, at t/τ = 6,
when α reaches its constant value [1]. However, all the self-similar formulae also have
lower order terms which remain important throughout the simulation. Consistently, the
spectral dynamics remains transient and the dissipation lags the spectral cascade rate. In
addition, the turbulence lengthscale and Reynolds number do not scale as the layer width.
As a result, the gradient transport hypothesis with the usual turbulent eddy diffusivity,
ν ′

t ∼ k̃2/ε, and simple similarity based closures are inappropriate for this flow for the
duration of the simulation. However, turbulent transport closures using a large scale eddy
diffusivity, ν ′′

t ∼ k̃1/2h, (which unfortunately is not available in a single point closure) works
reasonably well.

The large scales of the flow remain anisotropic at all times due to the buoyancy pro-
duction. At smaller scales, buoyancy production becomes small and in some intermediate
range the flow is close to isotropic. However, in the viscous range, there is a cancellation
between the viscous and nonlinear effects, so that buoyancy production retains its relative
importance and there is a persistent anisotropy of the smallest scales.

In short, in VD RT turbulence: (1) Favre mean and turbulent kinetic energies, normalized
mass flux, b and the production terms in their transport equations are asymmetric and have
their largest magnitude on the light fluid side, (2) the flow becomes self-similar relatively
fast, however, the turbulent lengthscale and Reynolds number do not scale as the layer width,
(3) the gradient transport models based on the usual turbulent eddy diffusivity, ν ′

t ∼ k̃2/ε,
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are not appropriate for this flow, and (4) buoyancy production changes the turbulence
structure with persistent anisotropy of the smallest scales.

Acknowledgements
Computational resources at Los Alamos National Laboratory were provided through the Institutional
Computing Project. This work was performed under the auspices of US Department of Energy.

References
[1] W.H. Cabot and A.W. Cook, Reynolds number effects on Rayleigh–Taylor instability with

possible implications for type-ia supernovae, Nature Phys. 2 (2006), pp. 562–568.
[2] D. Livescu and J.R. Ristorcelli, Variable-density mixing in buoyancy-driven turbulence, J. Fluid

Mech. 605 (2008), pp. 145–180.
[3] ———, Buoyancy-driven variable-density turbulence, J. Fluid Mech. 591 (2007), pp. 43–71.
[4] D. Besnard et al., Turbulence transport equations for variable-density turbulence and their

relationships to two field models, Tech. Rep. LA-12303-MS, Los Alamos National Laboratory,
1992.

[5] V. Adumitroaie, J.R. Ristorcelli, and D.B. Taulbee, Progress in Favre–Reynolds stress closures
for compressible flows, Phys. Fluids 11 (1999), pp. 2696–2719.

[6] A.W. Cook and P.E. Dimotakis, Transition stages of Rayleigh–Taylor instability between mis-
cible fluids, J. Fluid Mech. 443 (2001), pp. 69–99, 2001.

[7] A.W. Cook, W.H. Cabot, and P.L. Miller, The mixing transition in Rayleigh–Taylor instability,
J. Fluid Mech. 511 (2004), pp. 333–362.

[8] D.L. Youngs, Numerical simulation of turbulent mixing by Rayleigh–Taylor instability, Physica
D 12 (1984), pp. 32–44.

[9] K.I. Read, Experimental investigation of turbulent mixing by Rayleigh–Taylor instability,
Physica D 12 (1984), pp. 45–58.

[10] M.J. Andrews and D.B. Spalding, A simple experiment to investigate two-dimensional mixing
by Rayleigh–Taylor instability, Phys. Fluids A 2 (1990), pp. 922–927.

[11] J.R. Ristorcelli and T.T. Clark, Rayleigh–Taylor turbulence: Self-similar analysis and direct
numerical simulations, LANL Report 03-4273;
J.R. Ristorcelli and T.T. Clark, J. Fluid Mech. 507 (2004), pp. 213–253.

[12] G. Dimonte and M.Schneider, Density ratio dependence of Rayleigh–Taylor mixing for sus-
tained and impulsive acceleration histories, Phys. Fluids 12 (2000), pp. 304–321.

[13] G. Dimonte et al., A comparative study of the turbulent Rayleigh–Taylor instability using high-
resolution three-dimensional numerical simulations: The Alpha-Group Collaboration, Phys.
Fluids 16 (2004), pp. 1668–1692.

[14] A. Banerjee and M.J. Andrews, 3D simulations to investigate the initial conditions effects on
the growth of Rayleigh–Taylor mixing, Int. J. Heat Mass Transfer (2009) in press.

[15] S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
[16] H. Tennekes and J.L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, 1972.
[17] A. Banerjee and M.J. Andrews, Statistically steady measurements of Rayleigh–Taylor mixing

in a gas channel, Phys. Fluids 18 (2006), pp. 035107-1–035107-13.

Appendix 1. Homogeneous versus inhomogeneous RT turbulence

In this appendix the current variable density RT findings and those of the homogeneous RT
(HRT) of [2,3] are compared. In HRT, the moment equations do not have the inhomogeneous
transport terms, implying that HRT provides a simpler test case that isolates the essential
nonlinearities from the inhomogeneous transport issue. The benefit is that one can more
confidently use the less-expensive HRT simulations to assist with modeling the buoyancy-
driven variable density hydrodynamic and mixing problems and to study initial condition
dependence issues. The highest turbulent Reynolds number obtained in the HRT by [3] in
a 10243 simulation is about 1.5 times smaller than that obtained in the 30723 RT discussed
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here. Estimating that a 15363 HRT simulation is capable of getting the same Reynolds
number, then there is a factor of 16 reduction in computational cost of HRT versus RT
for the same Re. This estimate includes the decay phase, after the maximum k̃ has been
reached. If one is only interested in the transition and growth phase then one can achieve
a much larger reduction in computational cost. Moreover, the statistics collected in HRT,
since they are volume-averaged statistics, are more robust as compared to RT where the
statistics are area averaged over planes with different Re.

In HRT, the kinetic energy increases initially due to the acceleration of the fluids, then,
as the two fluids become molecularly mixed the kinetic energy decays. During this growth
stage, while there is still pure fluid, HRT is very much like the RT problem in which there is
always a source of pure fluid. As such, HRT is also a simpler (as well as cheaper) benchmark
for understanding buoyancy effects on the turbulent motions and the subsequent mixing
process.

During the growth stage of HRT, many similarities with the RT problem can be identified.
The primary ones are:

� Same potential to kinetic energy conversion process: in both RT and HRT the rate of
conversion of the potential to kinetic energy is (after the initial instant)

∂

∂t
E(z, t) ≈ −g3ρ̄ a3. (56)

The mass flux is of central importance in the conversion of potential energy to kinetic
as well as the transition and turbulence growth in both of these configurations.

� Same mean pressure gradient: the consequence of the HRT ansatz U3 = 0 made
in [3] in order to obtain the maximally non-equilibrium flow is that the mean pressure
gradient, while constant in space, is a function of time. The mean pressure gradient
is usefully represented in RT by the formula used in the HRT simulations (see Figure
10).

� Zero Reynolds mean velocity: moreover, U3 ≈ 0 in the RT configuration, as was
assumed in the HRT simulations to set a free parameter in the homogeneous equations.
The Favre mean velocity is not zero.

� Equivalent L and � relations: the ratio of length-scales L/l for A = 0.5 reported in
the HRT [3] at early times (when kinetic energy is increasing) is mirrored in the RT
simulations. L is the integral scale and � = k̃3/2/ε is the turbulence lengthscale used
in transport models.

� Equivalent anisotropies: b33 is the same order, perhaps a few percent larger, during
the HRT kinetic energy growth stage than in RT. Values of b33 ≈ 0.3 are obtained at
the peak kinetic energy time.

� Same spectral anisotropy: the unexpected scale dependence of b33(κ) and its
anisotropy in the viscous range are similar in both HRT and RT.

The only modest difference we have seen between HRT and RT is that in the growth
phase HRT is more “non-equilibrium” than RT: production over dissipation ratios are
much larger in HRT and higher Reynolds numbers are achieved sooner. This suggests that
HRT can minimize the computational expense to generate high-Reynolds number variable
density RT databases for model development as well as can be a better study for stronger
“non-equilibrium” issues.
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