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The effects of heat release on the energy exchange
in reacting turbulent shear flow
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The energy exchange between the kinetic and internal energies in non-premixed
reacting compressible homogeneous turbulent shear flow is studied via data generated
by direct numerical simulations (DNS). The chemical reaction is modelled by a one-
step exothermic irreversible reaction with Arrhenius-type reaction rate. The results
show that the heat release has a damping effect on the turbulent kinetic energy for
the cases with variable transport properties. The growth rate of the turbulent kinetic
energy is primarily influenced by the reaction through temperature-induced changes
in the solenoidal dissipation and modifications in the explicit dilatational terms
(pressure–dilatation and dilatational dissipation). The production term in the scaled
kinetic energy equation, which is proportional to the Reynolds shear stress anisotropy,
is less affected by the heat release. However, the dilatational part of the production
term increases during the time when the reaction is important. Additionally, the
pressure–dilatation correlation, unlike the non-reacting case, transfers energy in the
reacting cases, on the average, from the internal to the kinetic energy. Consequently,
the dilatational part of the kinetic energy is enhanced by the reaction. On the contrary,
the solenoidal part of the kinetic energy decreases in the reacting cases mainly due
to an enhanced viscous dissipation. Similarly to the non-reacting case, it is found
that the direct coupling between the solenoidal and dilatational parts of the kinetic
energy is small. The structure of the flow with regard to the normal Reynolds stresses
is affected by the heat of reaction. Compared to the non-reacting case, the kinetic
energy in the direction of the mean velocity decreases during the time when the
reaction is important, while it increases in the direction of the shear. This increase
is due to the amplification of the dilatational kinetic energy in the x2-direction by
the reaction. Moreover, the dilatational effects occur primarily in the direction of the
shear. These effects are amplified if the heat release is increased or the reaction occurs
at later times. The non-reacting models tested for the explicit dilatational terms are
not supported by the DNS data for the reacting cases, although it appears that some
of the assumptions employed in these models hold also in the presence of heat of
reaction.

1. Introduction
Turbulent combustion is a complex physico-chemical phenomenon which is spa-

tially three-dimensional and is of transient nature. This phenomenon has been the
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subject of intense research over the past sixty years and continues to be of high pri-
ority in view of the worldwide concern about energy and pollution control (Givi 1989;
Pope 1990; Libby & Williams 1994; Vervisch & Poinsot 1998). Turbulent flows with
‘non-premixed’ reactants are in use in the majority of practical combustion systems.
Examples are, to name a few, gas and oil furnaces and burners, diesel engines, and
hypersonic propulsion systems.

The intricate interactions between turbulence and chemical reaction occur over
a broad spectrum of length and time scales and involve many different quantities.
Our lack of adequate understanding of these interactions places severe limitations
on the modelling of chemically reactive turbulent flows. For example, most of the
existent turbulence closures which are used for reacting flow calculations are based
on those developed for non-reacting flows. These closures are potentially limited and
do not account for important characteristics of the turbulent combustion such as the
extensive density and molecular property variations, significant dilatational turbulent
motions, etc.

Theoretical studies of compressible turbulence were performed as early as 50 years
ago; however much less is known in comparison with incompressible turbulence.
Kovasznay (1953) studied the linearized equations of compressible turbulence and
identified the existence of three basic modes: the vorticity, acoustic and entropy
modes. Chu & Kovasznay (1958) extended the analysis to first-order interaction
terms and examined the weakly nonlinear interaction between the modes. However, it
is not clear how this analysis can be extended to fully nonlinear turbulence (Blaisdell,
Mansour & Reynolds 1993).

Moyal (1951) introduced the decomposition of the velocity field in Fourier space
into a solenoidal and a dilatational part and showed that the two fields interact only
through nonlinear terms for isotropic turbulence. Such a decomposition has been
exploited by rapid distortion theories in studies of shock–turbulence interaction and
homogeneous turbulence subjected to bulk compression or uniform mean shear (for
a review see Lele 1994).

Direct numerical simulation (DNS) is becoming a powerful investigative tool to
study compressible turbulence. This method has enabled the examination of turbulent
flows in a temporally and spatially accurate manner without the need for turbulence
modelling (Givi & Madnia 1992; Givi 1994; Moin & Mahesh 1998). Moreover,
recently it has been successfully employed in simulating laboratory experiments on
turbulent mixing (Livescu, Jaberi & Madnia 2000). An assumption usually made in
DNS of turbulent flows is that the flow is homogeneous. This idealization is unable
to retain some important aspects of inhomogeneous compressible flows such as mean
density variations or acoustic radiation to the far field. However, it allows the study
of some effects of compressibility that are shared by different types of turbulent flows.

DNS of non-reacting isotropic compressible turbulence has been performed by
several investigators. Kida & Orszag (1990, 1992) considered the transport equations
of the solenoidal and dilatational parts of the turbulent kinetic energy and showed
that their direct coupling is weak. Erlebacher et al. (1990) decomposed the pressure
fluctuations into a compressible and an incompressible part and discussed the equi-
librium between the kinetic and potential energies of the compressible component for
two-dimensional turbulence. This analysis is extended to the three-dimensional case
by Sarkar et al. (1991b).

There have been several previous numerical studies of homogeneous non-premixed
reacting flows (Givi 1989; Vervisch & Poinsot 1998). The heat release effects on
compressible isotropic forced and decaying turbulence are considered by Mahalingam,
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Chen & Vervisch (1995), Balakrishnan, Sarkar & Williams (1995), Jaberi & Madnia
(1998), Martin & Candler (1998) and Jaberi, Livescu & Madnia (2000). It is shown
that the heat release influences the dilatational and solenoidal fluid motions differently.
Thus, the localized expansions which occur due to an exothermic reaction increase
the dilatational turbulent kinetic energy. Moreover, if the reaction rate is temperature
dependent then there is a feedback mechanism between the chemical reaction and the
turbulent motions.

The next level of complexity over the isotropic turbulence is the homogeneous shear
flow. Since mean shear is present in most turbulent flows, the study of homogeneous
shear flow can reveal some important features of compressibility in practical turbulent
flows. Experimental results concerning homogeneous shear flow are available only
for the incompressible case (Tavoularis & Corrsin 1981; Tavoularis & Karnik 1989;
Souza, Nguyen & Tavoularis 1995; Garg & Warhaft 1997).

Nomura & Elghobashi (1992) and Leonard & Hill (1992) studied the mixing and
chemical reaction in isotropic and homogeneous sheared incompressible flows. The
non-reacting compressible homogeneous shear flows have been studied numerically by
Feieresen et al. (1982), Sarkar, Erlebacher & Hussaini (1991a), Blaisdell et al. (1993),
Sarkar (1995), Blaisdell, Coleman & Mansour (1996), Simone, Coleman & Cambon
(1997), Hamba (1999). It was found that the turbulent kinetic energy increases almost
exponentially after an initial development time and that the compressibility has a
stabilizing effect on the growth of the turbulent motion. The reduced growth rate for
higher values of the turbulent Mach number, MT , or shear rate, S , is the result of less
efficient turbulent production and an increase in the dissipation rate. Additionally,
the ratio of the dilatational to solenoidal dissipation, χε, becomes independent of
the initial conditions and exhibits a M2

T dependence. The normalized pressure and
density fluctuations are also proportional to M2

T (Sarkar et al. 1991a). The effect
of compressibility on the growth of the turbulent kinetic energy is similar to the
behaviour observed in experiments and simulations of compressible mixing layers
and wakes (Dimotakis 1991; Sandham & Reynolds 1989; Chen, Cantwell & Mansour
1989; Sarkar 1995).

The results of the previous studies, as briefly mentioned above, reveal many in-
teresting features of turbulent compressible non-reacting and isotropic chemically
reacting flows. However, the complex role played by the combined influence of the
turbulence and the chemical reaction in compressible fluid medium is not fully un-
derstood. Moreover, there are no available DNS data for the case of compressible
reacting homogeneous shear flow.

The present study thus aims to identify: (i) the changes in the structure of the
reacting compressible homogeneous turbulent shear flow due to the heat release, (ii)
the energy transfer among different components of the turbulent kinetic energy and
internal energy responsible for these changes, and (iii) the performance of the existing
non-reacting models for the explicit dilatational terms in the turbulent kinetic energy
equation for the reacting case.

This paper is organized as follows. Section 2 contains the governing equations and
the numerical methodology. The heat release effects on the energy exchange among
different types of energy are presented in § 3. In § 3.1 the transport equations for
the turbulent kinetic, internal and total energies are discussed. Also in this section
some non-reacting models for the pressure–dilatational correlation are assessed. Since
the heat release strongly influences the explicit dilatational terms in the kinetic
energy equation, in § 3.2 the transport equations for the dilatational and solenoidal
components of the kinetic energy are examined. The DNS data are also used to
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evaluate models for the dilatational dissipation. Due to the anisotropy of the flow, the
kinetic energy in each direction is affected differently by the reaction. Consequently, the
transport equations for the kinetic energy components in each coordinate direction are
studied in § 3.3. Also in this section the behaviour of the production of the turbulent
kinetic energy is analysed by considering the transport equation for the Reynolds
shear stress anisotropy. In order to explain some of the findings, in § 3.4 the transport
equations for the solenoidal and dilatational parts of the kinetic energy in each
coordinate direction are examined. A summary and conclusions are given in § 4.

2. Problem formulation and computational methodology
2.1. Governing equations

The conservation equations governing a compressible flow in a continuum medium
undergoing chemical reaction are the continuity, momentum transport, energy and
species-mass-fraction transport equations (Williams 1995; Livescu 2001). These equa-
tions are non-dimensionalized by the initial r.m.s. velocity fluctuations (u0), initial
mean temperature (T0), initial mean density (ρ0) and a reference length scale (l0)
related to the computational box size. The instantaneous velocity is decomposed into
a mean (ũi) and a fluctuating (u′′i ) part using the Favre average (Favre 1965). Although
in homogeneous flows the Favre averaging and Reynolds or ensemble averaging of
the velocity field are equivalent, the formal distinction between the two averages
is maintained throughout the paper. The volumetric-averaged density 〈ρ〉, pressure
〈p〉, and temperature 〈T 〉 are uniform in space, conditions necessary and sufficient
to preserve the homogeneity for a non-reacting flow (Feieresen et al. 1982; Blaisdell,
Mansour & Reynolds 1991). For reacting flows, the nonlinear nature of the source
terms in the scalar and energy transport equations gives rise to a supplementary
condition for maintaining the homogeneity. This condition is fulfilled only when the
mean mass fractions are uniform in space, for all species considered.

After applying Rogallo’s transformation of coordinates (Rogallo 1981), x′i =
Bij(t)xj , where the transformation matrix has constant diagonal components βi and
the only non-zero off-diagonal component is B12 = −β1St, the conservation equations
for a calorically perfect fluid satisfying Stokes’ hypothesis become (Livescu 2001)

∂ρ

∂t
+

∂

∂x′k
(ρu′′j )Bkj = 0, (2.1)
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where S = ∂ũ1/∂x2, τij = (2µ/Re0)(sij− 1
3
∆δij), sij = 1

2

((
∂u′′i /∂x′k

)
Bkj +

(
∂u′′j /∂x′k

)
Bki
)

is the strain rate tensor and ∆ =
(
∂u′′i /∂x′k

)
Bki is the dilatation of the velocity

fluctuations. The primary transport variables are the density ρ, velocity fluctuations
in the xi-direction u′′i , modified total energy φ ≡ p/(ρ(γ − 1)) + 1

2
u′′i u′′i , where γ = 1.4

is the ratio of the specific heats and p is the instantaneous pressure (p = 〈p〉 + p′
with p′ the pressure fluctuations), and Yα is the species mass fractions. The pressure
is non-dimensionalized by ρ0u

2
0 such that the non-dimensional form of the ideal gas

equation of state becomes p = ρT/γM2
0 .

The non-dimensional parameters in equations (2.1)–(2.4) are the computational
Reynolds number, Re0 = ρ0u0l0/µ0, the Prandtl number, Pr = µ0cp/κ0, the Schmidt
number, Sc = µ0/ρ0D0, and the reference Mach number, M0 = u0/

√
γRT0, where

R is the gas constant. The reference viscosity, µ0, thermal diffusivity, κ0, and mass
diffusivity, D0, are assumed to be proportional to Tn

0 and in all cases the Lewis number
is unity with Pr = Sc = 0.7. Also, in all simulations Re0 = 180. The non-dimensional
viscosity, µ, is modelled by assuming a power-law temperature dependence, µ = Tn.

The chemical, wα, and heat, Q, source terms are modelled by assuming a single-step
irreversible reaction A + rB → (1 + r)P (r = 1 in this study) with Arrhenius-type
reaction rate

wA =
1

r
wB = − 1

1 + r
wP = −Daρ2YAYB exp (−Ze/T ),

Q =
Ce

(γ − 1)M2
0

wP .

 (2.5)

The field is composed of the reactants A, B and product P , so the index α in
equation (2.4) corresponds to A, B or P and YP = 1−YA−YB . The non-dimensional
quantities affecting the chemistry are the heat release parameter, Ce = −H0/cpT0, the
computational Damköhler number, Da = Kfρ0l0/Mmu0, and the Zeldovich number,
Ze = Ea/RuT0, and are assumed to be constant. Here, −H0 is the heat of reaction, Kf

is the reaction rate parameter, Mm is the molar mass, Ru is the universal gas constant,
and Ea is the activation energy.

2.2. Numerical solution procedure

Equations (2.1)–(2.4) are integrated using the Fourier pseudo-spectral method (Got-
tlieb & Orszag 1977; Givi 1994) with triply periodic boundary conditions. The
variables are time advanced in physical space using a second-order-accurate Adams–
Bashforth scheme. All simulations are performed within a box containing 1283 grid
points. The computational domain is twice as long in the streamwise direction as
in the cross-stream and spanwise directions in order to account for the elongated
turbulent structures due to the presence of the shear (Rogers, Moin & Reynolds 1987;
Blaisdell et al. 1991). Because the computational domain should become 2π×2π×2π
after the transformation of coordinates, this yields β1 = 0.5, β2 = 1.0 and β3 = 1.0.
The transformation of coordinates also makes necessary a periodic remeshing of the
grid in order to avoid errors associated with highly skewed grids. For the computa-
tional domain used this is done at St = 2m − 1 (where m is a positive integer) such
that no interpolation onto the new domain is needed. In order to avoid aliasing errors,
the remeshing procedure is carried out in wavenumber space. Aliasing errors are also
generated at the evaluation of nonlinear terms. These errors are controlled by writing
the convective terms from equations (2.2)–(2.4) in the skew-symmetric form which
minimizes the aliasing errors (Blaisdell et al. 1993). Also, the range of parameters
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which control the flow field are chosen in such a way that the magnitudes of the
unresolved Fourier modes formed at the evaluation of the nonlinear terms are small.

2.3. Initial conditions and test case

The velocity fluctuations field is initialized as a random, solenoidal, three-dimensional
field with Gaussian spectral density function and unity r.m.s. The location of the peak
of this spectrum is k0 = 10 for all simulations. The density and temperature fields are
non-dimensionalized by their initial mean value, so the mean non-dimensional initial
density and temperature are set to one. The initial density field has no fluctuations
and, therefore, the average initial pressure can be computed from the mean equation
of state, 〈p〉 = 〈ρ〉〈T 〉/γM2

0 . The initial pressure fluctuations are evaluated from a
Poisson equation.

In order to test the influence of the initial conditions on the results presented in
this paper, the reacting and non-reacting base runs (see below) were also performed
by extending the initialization of the velocity and thermodynamic fields proposed for
isotropic turbulence by Ristorcelli & Blaisdell (1997) to the case of homogeneous
shear flow. As before, the initial pressure fluctuations are evaluated from the initial
solenoidal velocity field by solving a Poisson equation. In addition, the linearization
of the continuity equation provides an equation for the dilatation which yields the
initial dilatational velocity field. Furthermore, the initial density and temperature
fluctuations are calculated from the linear adiabatic equation of state. The results
obtained using this initialization are in good agreement with our results. In general,
the differences between the two initializations in all the quantities presented in this
paper are less than 5% above St = 2.

The scalar field is initialized following the method first proposed by Eswaran &
Pope (1988). Scalar A is initialized by generating a random field with Gaussian energy
spectrum. The location of the peak of this spectrum is k0s which is used to control
the initial length scale of the scalar field. The scalar field generated is transformed
into physical space where all negative values are set to −1 and all positive values to
1. The result is a field with double-delta PDF which is smoothed by applying a filter
function to decrease the weights at high wavenumbers. The physical values of the
scalar are no longer bounded by ±1 and, in order to reduce their amplitude, the field
is allowed to go through molecular diffusion. Finally, the interval [−1, 1] is mapped
onto [0, 1] to obtain the scalar mass fractions. The resulting scalar field has a mean of
0.5 and a length scale controlled by the peak of the initial Gaussian energy spectrum.
Scalar B is perfectly anti-correlated with A and there is no P in the domain at initial
time.

The computer code developed for this work was validated by running a non-
reacting simulation, case scb96 from Blaisdell et al. (1991). For the reacting case,
the code was tested against isotropic simulations performed in earlier studies by the
authors (Jaberi & Madnia 1998; Jaberi et al. 2000).

3. Energy exchange
Direct numerical simulations of chemically reacting compressible turbulent shear

flows were performed. Table 1 provides a list of the relevant information about each of
the cases studied. S∗0 , Reλ0

and ReT0
are the initial values of the non-dimensional shear

rate, S∗ = S(2K)/ε, Reynolds number based on Taylor microscale, and turbulent
Reynolds number, ReT = ((2K)2/εµ̃)Re0, respectively. Here K = 1

2
〈ρu′′i u′′i 〉 is the

turbulent kinetic energy and ε = 〈τik(∂u′′i /∂x′k)Bkj〉 is the rate of dissipation of
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Case Ce Da k0s n

1 0 0 4 0.7
2 1.44 1100 4 0.7
3 1.44 1100 4 0.0
4 2.16 1100 4 0.7
5 1.44 500 4 0.7
6 1.44 1100 10 0.7
7 1.44 1750 4 0.7
8 0.576 1100 4 0.7

Table 1. Parameters for the DNS cases. M0 = 0.3, S∗0 = 7.24, Reλ0
= 21, ReT0

= 256.
All reacting cases have Ze = 8.

turbulent kinetic energy per unit volume. Cases 1 and 2 are the reference non-reacting
and reacting cases, respectively. In order to isolate the influence of temperature
dependence of the transport properties, a simulation with n = 0 (case 3) and the same
parameters as the reference reacting case was performed. A non-reacting simulation
with n = 0 was also performed. However, since the mean temperature increase for
this case is very small, the results obtained are very close to those obtained for
case 1. Consequently, only cases 1, 2 and 3 are used for examining the variation of
the molecular transport properties with temperature. The influence of the reaction
parameters Ce, Da and initial scalar length scale is considered in cases 4–8.

The reaction parameters chosen for the cases considered mimic the combustion of a
typical hydrocarbon in air at low to moderate values of Reynolds number. Estimating
an initial temperature T0 = 300–1000 K which is in the range of temperatures in an
internal combustion engine before the ignition, and using characteristic hydrocarbon
values for µ0 and cp, yields Kf ∼ O(1014 cm3 mol−1), Ea ∼ O(45 kJ mol−1) and −H0 ∼
O(60 kJ mol−1), values in the range of the elementary reactions for hydrocarbon
combustion (Turns 2000).

Since the purpose of this paper is to study the influence of the heat release on
the energy exchange in homogeneous shear flows, only the parameters which directly
influence the reaction are discussed here. However, the influence of initial Mach
number (0.1 < M0 < 0.6) and mean shear rate (4.8 < S∗ < 22) was also examined
and the results presented in the subsequent sections are found to be qualitatively
unchanged for the range of M0 and S∗ considered.

The time evolution of the mean reaction rate (〈w〉 = 〈wP 〉) shown in figure 1(a) ex-
hibits the expected behaviour for an Arrhenius reaction rate. By modifying the values
of Ce, Da or k0s both the magnitude and the time location of the peak of the mean re-
action rate change. In turbulent reacting flows the structure of the flame is dependent
on the underlying turbulent field as well as the chemistry parameters. Additionally,
the reaction rate depends on the variations of the thermodynamics variables. The heat
of reaction in turn affects the turbulent motions and the thermodynamic variables,
hence a two-way coupling between turbulence and chemical reaction exists. In order
to make meaningful comparisons among different cases, the reaction parameters are
chosen such that the peak of the mean reaction rate occurs approximately at the
same time for cases 4, 6 and 7 and cases 5 and 8, respectively. In addition, to further
facilitate the comparisons, each case considered has the value of only one parameter
different from that used for the reacting base case. Thus, for example by comparing
cases 4 and 6 which have different values for the heat release parameter, Ce, but
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Figure 1. Time evolution of (a) mean reaction rate for product, (b) characteristic time scales for
case 2, and (c) turbulent Reynolds number.

similar behaviour for the mean reaction rate, information about the influence of Ce
can be extracted. It should be noted that, since approximately 90% of the reactants
are consumed before the end of the simulation, Ce is directly proportional to the
total amount of heat injected in the flow. Furthermore, a comparison between cases
6 and 7 with the same Ce isolates the effects of the magnitude of the mean reaction
rate peak.

The reaction parameters are chosen such that the peak of the mean reaction rate
occurs after the kinetic energy starts to grow (see figure 2). Furthermore, the heat
release was kept above a certain value so that the mean reaction rate exhibits a
well-defined peak. The simulations presented are stopped at St = 12, following the
consumption of almost all the reactants. Additionally, the compressible scales remain
small compared to the box size at all times (Livescu 2001).

In order to evaluate how fast the reaction is, figure 1(b) compares the characteristic
reaction time (tr ≡ 〈ρYP 〉/〈wP 〉), the acoustic time (tc ≡ (2K)3/2/(ε〈c〉)), the Kol-

mogorov time (tK ≡
√〈µ〉/(Re0〈ρ〉ε), the turbulent time (tT ≡ 2K/ε), the time scale

of the mean velocity (tM ≡ 1/S) and the diffusion time (tdiff ≡ 1/χ̃st) for case 2. Here
〈c〉 is the mean speed of sound and χ̃st = 〈2µ/(Re0Sc)∇Z · ∇Z |Z=Zst〉 is the mixture
fraction dissipation taken at the stoichiometric surface. As expected, the diffusion
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Figure 2. Temporal variation of the turbulent kinetic energy.

time scale is much larger than the other characteristic times. The reaction time scale
is greater than the Kolmogorov time scale at all times, although they become close at
the time when the mean reaction rate peaks. The characteristic time of the mean flow
is always close to the acoustic time. Similar results are obtained for the other runs
considered. For cases 4 and 6, the minimum values of tr decrease, but remain larger
than the acoustic time scale.

Since the chemical reaction significantly increases the temperature and consequently
the values of the molecular viscosity, it is useful to examine the time evolution of
ReT . Figure 1(c) shows that in the absence of heat release, ReT grows continuously
after a development time. All the reacting cases with variable transport properties
have lower values of ReT than the non-reacting case. A comparison between cases 2
and 3 indicates that the values of ReT decrease when the reaction becomes important
due to the variation of the transport properties with temperature.

The rest of this section is organized as follows: first the energy exchange between
the kinetic and internal energies is discussed; then the kinetic energy is decomposed
into different components and the energy exchange among them is examined.

3.1. Kinetic, internal and total energies

The evolution of the turbulent kinetic energy in non-reacting homogeneous compress-
ible shear flow has been studied by several authors (Blaisdell et al. 1993; Sarkar 1995;
Simone et al. 1997; Hamba 1999). The results obtained for case 1 (figure 2) are in
agreement with the previous results and exhibit typical behaviour for a non-reacting
flow. Since the initial velocity field is isotropic, the production term in the turbulent
kinetic energy equation (〈−ρu′′1u′′2S〉) is zero at the beginning of the simulation and the
turbulence decays. As the flow develops, the anisotropy of the flow increases and the
production eventually outweighs the dissipation rate, such that the turbulent kinetic
energy grows. The experimental (Tavoularis & Karnik 1989) and numerical (Rogers
et al. 1987) results obtained for incompressible shear flow suggest an exponential
growth rate for K . Although a quasi-exponential growth rate was also obtained at
later times in compressible shear flow (Blaisdell et al. 1993) it is well known that
the growth of the turbulent kinetic energy is not universal and is affected by the
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compressibility (Sarkar 1995; Simone et al. 1997; Hamba 1999). However, for the
time range simulated, case 1 exhibits a nearly exponential growth of the turbulent
kinetic energy (figure 2).

In the presence of heat release, the growth of the turbulent kinetic energy is
significantly modified. For all reacting cases with variable transport properties K
decreases compared to the non-reacting case, after the time when the mean reaction
rate peaks. However, there is a short period of time when K has a larger magnitude
than for case 1. This effect, significant in case 4, is shown in the next section to be
related to the different behaviour of the solenoidal and dilatational kinetic energies
under the influence of heat release. Furthermore, the time evolution of K is very
different for case 3 with constant transport properties compared to case 2. Thus, as
the mean reaction rate becomes significant, the growth rate of K for case 3 increases
compared with the non-reacting case. Consequently, the values of K are higher for
case 3 than for case 1.

In order to examine the energy transfer leading to the modifications in the rate of
growth of the turbulent kinetic energy in the presence of the heat of reaction, the
transport equations for turbulent kinetic (K), internal (EI ≡ 〈ρeI〉 = 〈p〉/(γ − 1)), and
modified total (Et ≡ 〈ρφ〉) energies are considered. All the terms in the equations are
scaled by SK in order to make a meaningful comparison between the reacting and
non-reacting cases:

1

K

d

d(St)
K = P + PD + VD + VD1, (3.1)

1

K

d

d(St)
EI = −PD − VD +HR − VD1 + VD2, (3.2)

1

K

d

d(St)
Et = P +HR + VD2, (3.3)

where PD, P , VD and HR represent the pressure–dilatation, production, viscous
dissipation and the heat release, respectively. The terms VD1 and VD2 are viscous-
dissipation terms which arise due to the interaction with the mean flow. The definitions
of the terms in equations (3.1)–(3.3) are presented in Appendix A. The pressure–
dilatation and viscous-dissipation terms transfer energy between K and internal
energy and their net effect on Et is zero. The heat release term is much larger than the
other terms in equation (3.2) for the reacting cases considered in this study and thus
the magnitude of the internal energy is much larger than that of the kinetic energy.
The simulations show, for all cases considered, that the terms involving fluctuations
of the viscosity are negligible. It should be noted that the mean kinetic energy does
not vary with time and hence equation (3.3) also represents the transport equation
for the total energy.

The growth rate of the turbulent kinetic energy, as discussed above, is not directly
dependent on the heat release. However, the terms in equation (3.1) are affected by
the change in the internal energy. Figure 3(a) compares the time evolution of the
terms in equation (3.1) for cases 1–3. For non-reacting shear flow, Sarkar (1995)
showed that the production term is affected by compressibility and is responsible
for the decrease in the growth of turbulent kinetic energy at higher Mach numbers
or shear rate values. However, a comparison among the base cases indicates that
the heat of reaction does not have a significant influence on the evolution of the
production term. The same behaviour is obtained for the other cases considered and
it is explained by examining the terms in the transport equation for the Reynolds
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shear stress anisotropy (§ 3.3). At higher values of shear rate S∗, the production term
increases slightly during the time when the reaction is important, but it remains less
affected than the other terms in the kinetic energy equation.

The magnitude of the viscous-dissipation term increases significantly for case 2
compared to the non-reacting case and increases slightly if the transport properties
do not vary with temperature. The influence of heat release on the viscous-dissipation
term can be further examined by considering the usual decomposition into a term pro-
portional to the mean enstrophy, εs (solenoidal dissipation), and a term proportional
to the mean-squared dilatation, εd (dilatational dissipation), as shown in Appendix A.
The time evolution of these terms, presented in figure 3(b), shows that the dissipation
occurs primarily through the vortical motion in both the reacting and non-reacting
cases. The dilatational dissipation is significantly enhanced by the heat of reaction.
This effect is amplified if the heat release parameter is increased (compare case 4 with
cases 6 and 7) or the reaction takes place at later times (compare cases 2, 5 and 7).
The temperature dependence of the transport properties does not appear to have an
important influence on the dilatational dissipation since the results obtained for cases
2 and 3 are close.

On the other hand, the results presented in figure 3(b) indicate that the solenoidal
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dissipation is affected by the heat release primarily through the variation of the
transport properties with temperature (compare case 1, 2 and 3). Moreover, the
magnitude of εs is increased by the reaction for all cases with variable transport
properties. However, the value of Ce does not appear to influence significantly this
increase since the results obtained for case 4 and cases 6 and 7 are close. The heat of
reaction influences the viscous-dissipation term through the changes in the viscosity
and the small-scale turbulent motions. Thus, the solenoidal dissipation depends on
the average viscosity and the mean enstrophy. The average viscosity, 〈µ〉, depends
only on the mean temperature, which increases due to reaction, and its final value is
proportional to the amount of heat injected in the flow. Consistent with the decaying
turbulence results of Jaberi et al. (2000), the energy spectra of the solenoidal velocity
component indicate that the small solenoidal scales decrease their energy for the
reacting cases with variable transport properties. As a result, the mean enstrophy,
which is a measure of the small scales of the solenoidal velocity, decreases for the
reacting cases compared to the non-reacting case (figure 3c). Additionally, figure 3(c)
indicates that as Ce increases (and consequently the mean temperature) the mean
enstrophy decreases. Consistent with the results of Jaberi et al. (2000), the values of
the scaled mean enstrophy are not significantly different for cases 1 and 3, suggesting
that the heat release influences the mean enstrophy mainly due to the variations
in the molecular transport coefficients. Since 〈µ〉 and the scaled mean enstrophy
are oppositely affected by the value of Ce, εs depends weakly on the heat release
parameter.

The pressure–dilatation term oscillates around zero and exchanges energy between
EI and K (figure 3a). In the non-reacting case, the amplitude of the oscillations of
PD is small at early times and increases as the kinetic energy grows. In cases 2
and 3, as the mean reaction rate increases the pressure–dilatation does not oscillate
much and its magnitude is positive. However, after the mean reaction rate peaks, the
oscillations of PD are greatly enhanced. These oscillations increase their amplitude
if Ce is increased. A comparison between the results for cases 2 and 3 indicates
that the variation in transport properties has little effect on the evolution of the
pressure-dilatation term, similar to the results obtained for isotropic turbulence by
Jaberi et al. (2000).

Since the values of PD oscillate around zero, its time-integrated values can provide
information about its average behaviour and help in understanding its contribution
to the variation of K . Figure 4 shows that, on average, the scaled pressure–dilatation
correlation has a different role in the reacting and non-reacting cases. In agreement
with the previous simulations of compressible non-reacting shear flows (Blaisdell et
al. 1993; Sarkar et al. 1991a; Sarkar 1995) PD transfers energy, on average, from
the kinetic energy to the internal energy. On the contrary, in the presence of heat
release, the results indicate that the average contribution of PD to the change of the
kinetic energy increases as Ce increases and becomes positive if the heat release is
significant. After the magnitude of the mean reaction rate becomes small (figure 1a),
the time-averaged values of PD do not decrease and the long-time results obtained
for cases 2, 5, 6 and 7 (same value of Ce) are close. The behaviour of the pressure–
dilatation term in the turbulent reacting shear flow found here is also similar to that
found in numerical simulations of reacting isotropic turbulence (Martin & Candler
1998; Jaberi et al. 2000).

To summarize, the heat release has a significant influence on the energy exchange
between the internal and turbulent kinetic energies. Thus, the contribution from the
pressure-dilatation term increases and changes the direction of energy transfer in
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the reacting cases with significant heat release. The contribution from the viscous
dissipation term increases significantly in cases with variable transport properties
and, since the contribution from the production term to the change of the kinetic
energy is slightly affected by the heat release, it can be concluded that the enhanced
dissipation is responsible for the reduced growth of the kinetic energy in these cases.
On the other hand, the contribution from the viscous-dissipation term increases in
case 3 compared to case 1, so that the pressure-dilatation term is responsible for the
higher rate of growth of kinetic energy in case 3.

The pressure–dilatation correlation was modelled in non-reacting homogeneous
flows by Durbin & Zeman (1992) using the assumption

〈p′∆〉 = − 1

2γ〈p〉
d〈p′2〉

dt
. (3.4)

This relation can be obtained by starting from the linearized equations (Kovasznay
1953; Blaisdell et al. 1993) and combining the continuity and entropy equations,
as was done by Durbin & Zeman (1992). Alternatively, one can consider the exact
transport equation for the pressure variance, which, for the case of homogeneous
reacting shear flow, can be written as

d〈p′2〉
dt

= −2γ〈p〉〈p′∆〉︸ ︷︷ ︸
I

−(2γ − 1)〈p′2∆〉︸ ︷︷ ︸
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2

M2
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. (3.5)
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Consistent with the previous studies (Sarkar et al. 1991a; Hamba 1999), for the non-
reacting case only terms I (proportional to the product between mean pressure and
pressure–dilatation correlation) and III (correlation between pressure fluctuations and
temperature diffusion) are important. Figure 5(a) shows, however, that term III varies
much slower in time than term I for case 1. Furthermore, since the magnitude of term
III is much smaller than the peak values of term I, equation (3.4) represents a good
approximation for the pressure–dilatation. For the reacting case, term V becomes
significant as the mean reaction rate increases (figure 5b). During this time, Durbin &
Zeman’s (1992) assumption ceases to hold. Later, as the mean reaction rate decreases,
term III balances term V. Consequently, equation (3.4) becomes a good approximation
for 〈p′∆〉.

The next assumption of Durbin & Zeman (1992) is that the normalized pressure
variance relaxes to an equilibrium value on the acoustic time scale. This equilibrium
value is a function of the turbulent Mach number. Although tr is much larger than tc
most of the time for the cases considered, the addition of heat prevents the pressure
variance being modelled in terms of Mach number only. In particular, figure 5(c)
shows that although prms/〈p〉 scales with M2

T in the non-reacting case, in agreement
with the results of Sarkar et al. (1991a), it has a very different behaviour in the
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presence of heat release. Consequently, in order to properly model the evolution of
the pressure variance in the reacting case, the model should consider the amount of
heat injected into the flow.

3.2. Solenoidal and dilatational components of the turbulent kinetic energy

It is shown in the previous section that the heat of reaction influences the growth of
the kinetic energy primarily through explicit dilatational effects (pressure–dilatational
correlation and dilatational dissipation) and temperature-induced changes in the
solenoidal viscous dissipation. This suggests that the solenoidal and dilatational mo-
tions are influenced differently by the heat of reaction. In order to further examine
this influence, Wi =

√
ρu′′i is decomposed into its solenoidal, dilatational, and mean

parts (Kida & Orszag 1990, 1992; Jaberi & Madnia 1998; Jaberi et al. 2000). Conse-
quently, the kinetic energy components are defined as Kα = 1

2
〈|W α|2〉, where α ≡ s, d, o

denotes the solenoidal, dilatational, and mean components of Wi (and of the kinetic
energy), respectively. This decomposition accounts for the density fluctuations, which
can become important in the presence of heat release. For all cases considered, Ko is
negligible compared to Ks and Kd.

Figure 6(a) shows that the solenoidal kinetic energy increases faster in case 3 than in
case 1 and it is significantly reduced in the reacting cases with temperature-dependent
transport properties. By comparing cases 4, 6 and 7 it can be seen that the heat
release parameter is not as important to the change in Ks as the magnitude of the
mean reaction rate peak. On the contrary, the dilatational kinetic energy is amplified
during the time when the reaction is important (figure 6b). This amplification is
strongly influenced by the heat release parameter, as the results obtained for case 4
are significantly larger than those obtained for the other reacting cases. A comparison
of cases 2, 5 and 7 indicates that the influence of the reaction is amplified if the mean
reaction rate peak occurs at later times. Additionally, the magnitude of the mean
reaction rate peak does not appear to influence very much the evolution of Kd

(compare cases 6 and 7). The results obtained for case 3 are close to those obtained
for case 2 at early times, and become slightly higher at later times.

For non-reacting isotropic turbulence Sarkar et al. (1991b) showed that at
acoustic equilibrium there is an equipartition between the kinetic and potential
components of the compressible energy. This equipartition can be written as Kd ≈ Ep,
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where Ep ≡ 〈p′c2〉/2γ〈p〉, and the compressible fluctuating pressure is defined by
p′c = p − 〈p〉 − p′I . The incompressible fluctuating pressure, p′I , and the solenoidal
velocity satisfy the Poisson equation. The equipartition should occur as long as
the other time scales of the problem are much larger than the acoustic time
scale. Moreover, the simulations of Sarkar et al. (1991a) indicate that this equipar-
tition approximately holds for turbulent homogeneous shear flow. For the reacting
cases discussed in this paper the reaction time scale is larger than the acoustic
time scale at all times. Therefore, as figure 7(a) suggests, the equipartition be-
tween Kd and Ep is not significantly affected by the reaction. However, the heat
addition substantially modifies the magnitude of Kd (and EP ). Moreover, although
〈pIrms〉/〈p〉 scales with M2

T as in the non-reacting case, its compressible counterpart
does not.

Numerical simulations of compressible non-reacting shear flows (Blaisdell et al.
1993; Sarkar et al. 1991a) show that χε ≡ εd/εs becomes independent of the initial
compressibility level, after a development time. Using the equipartition between the
kinetic and potential energies of the compressible component and assuming pCrms ∼M2

T

and χε ∼ Kd/Ks, Sarkar et al. (1991b) derived the relation χε = αM2
T . This relation

is supported by the non-reacting shear flow simulations of Blaisdell et al. (1993)
and Sarkar et al. (1991a) with the value of 0.5 for α. Although the equipartition of
energy seems to approximately hold for the reacting case, the next two assumptions
in deriving the M2

T dependence of χε (see above) are not valid in the presence of heat
release and the evolution of χε does not exhibit a M2

T dependence (figure 7b). Similar
results are obtained for the model proposed by Zeman (1990), which expresses χε as
a function of MT and the kurtosis 〈u′′2i u′′2i 〉/〈u′′i u′′i 〉2. In the presence of heat release,
the model prediction deviates significantly from the DNS results.

In order to examine the energy exchange leading to different behaviour of the
dilatational terms in the reacting and non-reacting simulations, the transport equations
for the solenoidal and dilatational parts of the kinetic energy are considered. The
interactions between the components of the kinetic energy in isotropic flows are
studied in detail by Kida & Orszag (1990, 1992) for the non-reacting case, and by
Jaberi & Madnia (1998) and Jaberi et al. (2000) for the reacting case. Here, we extend
this analysis for the case of turbulent shear flow. The scaled transport equations for
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the solenoidal, dilatational, and mean parts of the kinetic energy for this case are

1

K

d

d(St)
Kα = CTα + ADα + PDα + Pα + VDα + VD1α. (3.6)

The term CTα arises in equation (3.6) due to the transformation of coordinates. The
remaining terms represent the effect of advection, pressure–dilatation, production,
viscous dissipation, and viscous dissipation due to the interaction with the mean
flow on the volumetric-averaged values of the turbulent kinetic energy components,
respectively. The definitions of the terms in equation (3.6) are presented in Appendix B.
It should be noted that, consistent with the numerical methodology described in § 2.2,
ADα was calculated using the skew-symmetric form of the convective terms. Our
results indicate that in both non-reacting and reacting cases the mean component of
the kinetic energy and all the terms in its transport equation are negligible compared
to their solenoidal and dilatational counterparts. Also VDs ≈ −εs and VDd ≈ −εd
for all cases considered.

Both CTα and ADα terms have negligible net effect on the kinetic energy; they
only transfer energy between the solenoidal and the dilatational components of K .
For the non-reacting case the solenoidal and dilatational parts of both CTα and ADα
have negative and positive time-averaged values, respectively, indicating a transfer of
energy from the solenoidal to the dilatational component of K . However, when the
reaction is significant, the two terms change sign and the energy transfer is reversed.
Nevertheless, the values of CTα and ADα are small compared to the other terms in
equation (3.6), so the direct coupling between the solenoidal and dilatational motions
is small for the cases considered.

As expected, the solenoidal component of the pressure–dilatation correlation is
small compared to its dilatational counterpart for both the non-reacting and reacting
cases. Consequently, the energy exchange by reversible work between the kinetic and
internal energies occurs primarily through the dilatational motions.

It was shown in § 3.1 that the production term is only slightly affected by the
heat release. Figure 8 shows, however, that both the solenoidal and the dilatational
components of the production term are affected by heat release. While the production
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Figure 9. Energy flow diagrams for solenoidal and dilatational parts of the
turbulent kinetic energy for 2 < St < 8.

term in the scaled dilatational kinetic energy equation is amplified by the heat
release, the production of the solenoidal kinetic energy decreases when the reaction
is significant. A comparison among cases with different reaction parameters indicates
that the influence of heat release on the solenoidal and dilatational components of
the production term primarily depends on the value of Ce.

In order to quantify the contribution of each term in equations (3.2), (3.3) and
(3.6) to the energy exchange and the effects of the reaction on this exchange, these
equations are integrated from St = 2 to St = 8. Outside this interval, only 15% of the
total area lies under the mean reaction rate for the base case and 〈w〉 is always smaller
than 10% of its maximum value. Thus, most of the reaction occurs during 2 < St < 8.
Figure 9 presents the change in the solenoidal and dilatational parts of the turbulent
kinetic energy, internal and modified total energies and the contribution of each term
in their scaled transport equations to this change for 2 < St < 8. Here ∆EI , ∆Et,
∆Ks and ∆Kd represent the integrated values of the left-hand side of equations (3.2),
(3.3) and (3.6), respectively. The arrows point in the direction of energy transfer. Each
arrow represents a term in the transport equations for EI , Et and Kα and is labelled
with the value of the time integral from St = 2 to St = 8 for that term.

The results presented in figure 9 are consistent with the previous discussion and
show that both components of the kinetic energy are affected by the heat release.
However, the modification in the transport properties with the temperature influences
mostly the solenoidal part of the kinetic energy. Similar to the evolution of the kinetic
energy, its solenoidal part decreases in the reacting case with variable molecular
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transport coefficients primarily due to an enhanced viscous dissipation. The average
change in the dilatational kinetic energy and all the terms which contribute to this
change are not significantly affected by the variation of the transport properties.
Compared with the non-reacting case, the dilatational kinetic energy increases due to
both an increased production and a transfer of energy from the internal energy by
the pressure–dilatation correlation.

3.3. Reynolds stresses

So far we have discussed the heat release effects on the evolution of turbulent kinetic
energy and its solenoidal and dilatational components. However, due to the presence
of the shear, the initially isotropic flow becomes anisotropic, and it is well known that
for the non-reacting case most of the turbulent kinetic energy is in the x1-component
while the kinetic energy in the direction of the shear is the smallest (Blaisdell et
al. 1991). In the presence of heat release all three components of the kinetic energy
(normal Reynolds stresses) are affected (figure 10). For the reacting cases with variable
transport properties the kinetic energy in the x1- and x3-directions decreases compared
to the non-reacting case and it is shown below that this effect can be attributed to
an enhanced viscous dissipation in these directions. However, the kinetic energy in
the direction of the shear increases during the time when the reaction is important,
compared to the non-reacting case. This behaviour, explained below, is related to the
enhancement of the energy transfer from the internal energy to the kinetic energy in
the x2-direction, by the reaction. In the next section, it is shown that in general the
explicit dilatational effects in the transport equation for kinetic energy occur primarily
in the x2-direction.

The kinetic energy in each coordinate direction can be scaled by K to ob-
tain the diagonal components of the Reynolds stress anisotropy tensor, bij =
〈ρu′′i u′′j 〉/〈ρu′′ku′′k〉 − 1

3
δij . During the time when the reaction is important b11, the

highest diagonal component, and b22, the lowest, become closer (Livescu 2001). This
indicates that the heat release acts to decrease the anisotropy among the normal
stresses. Similar behaviour is obtained for the range of M0 and S∗ examined, al-
though the reaction effects on b11 and b22 are amplified as the value of S∗ increases.
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The decrease of the anisotropy among normal stresses due to the reaction was also
observed in numerical simulations of reacting mixing layers (Luo 1999).

The scaled transport equations for the kinetic energy components are discussed
below:

1

K

d

d(St)
K1 = P +Π11 − εd11 − εs11 + O(µ′′), (3.7)

1

K

d

d(St)
K2 = Π22 − εd22 − εs22 + O(µ′′), (3.8)

1

K

d

d(St)
K3 = Π33 − εd33 − εs33 + O(µ′′), (3.9)

where Ki = 1
2
〈ρu′′2i 〉 and the rest of the terms in equations (3.7)–(3.9) are presented in

Appendix C. The terms containing µ′′ are small for all cases and can be neglected.
Figure 11(a) shows the time variation of the pressure–strain term for the base cases.

As expected, the pressure–strain acts to redistribute energy from the x1-component
of the kinetic energy (the only component with a production term in its transport
equation) to the other two components. For both the reacting and the non-reacting
cases the pressure–dilatation oscillations shown in the previous sections (figure 3a)
are correlated with the evolution of Π22. Although Π11 and Π33 oscillate in time, the
amplitude of the oscillations is much smaller than those of Π22 and the results for
Π11 and Π33 obtained for cases 1 and 2 are not very different. The latter observation
becomes more clear if the time-integrated values of the pressure–strain terms are
considered (figure 11b). Π11 and Π33 are only slightly affected by the reaction and
most of the heat release influence on the pressure–dilatation correlation (which is
equal to the sum of three pressure–strain terms) comes from the contribution of Π22.

Both the dilatational and the solenoidal parts of the dissipation tensor are strongly
affected by the reaction. Figure 12(a) shows that the magnitude of εd22 is much larger
than the magnitude of εd11 and εd33 for both non-reacting and reacting cases, and it
is strongly amplified by the heat release. A further increase in the magnitude of εd22

can be obtained by increasing Ce or if the mean reaction rate peaks at later times
(Livescu 2001). The largest solenoidal component is εs11 and εs22 is the smallest, as
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indicated by figure 12(b). Interestingly, the solenoidal dissipation in the x2-direction
is only slightly affected by heat release, while εs11 is significantly changed.

It was shown in section § 3.1 that the production term in the scaled kinetic energy
equation is not significantly affected by the heat release, although its solenoidal and
dilatational components change in the presence of the reaction. In order to further
understand this behaviour, the scaled transport equation for the Reynolds shear stress
anisotropy is considered:

d

d(St)

−〈ρu′′1u′′2〉
K

= P12 −Π12 + εd12 + εs12 + O(µ′′). (3.10)

The terms in equation (3.10) are presented in Appendix C.
Figure 13 presents the time variation of the terms in equation (3.10). Both the

solenoidal and the dilatational parts of the viscous term are almost unaffected by
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Figure 14. Evolution of (a) solenoidal and (b) dilatational components of the turbulent kinetic
energy along each coordinate direction.

the heat release. The two important terms in the equation, the production and the
pressure–strain terms, increase significantly during the time when the reaction is
important. This increase is amplified as Ce increases and it seems little influenced by
the magnitude of the mean reaction rate peak or the time when this peak occurs.
As figure 13 indicates, the production and pressure–strain terms make an opposite
contribution to the right-hand side of equation (3.10) and the net effect to the change
in the normalized shear stress is small for all cases considered.

3.4. Solenoidal and dilatational components of the normal stresses

It was shown above that the solenoidal–dilatational decomposition of the kinetic
energy is useful in understanding the effects of reaction, since the mechanisms through
which the heat of reaction changes these components are different. The kinetic energy
in each direction is also affected differently by the reaction. Moreover, if the solenoidal
and dilatational parts of the kinetic energy in each direction are considered, then the
effects of heat release can be better isolated and understood. It should be noted here
that Ki = Kid + Kis + 〈WisW(i)d〉 (no summation over i). Consistent with the non-
reacting simulations of Blaisdell et al. (1991) the cross Reynolds stresses are small
for both reacting and non-reacting cases and are of the same order as K1d and K3d .
Additionally, as is shown below, their overall contribution to the energy transfer is
negligible.

The solenoidal part of the kinetic energy in each coordinate direction is larger
than its dilatational counterpart and, as figure 14(a) shows, is strongly affected by the
reaction. In both reacting and non-reacting cases the largest solenoidal component is
the solenoidal kinetic energy in the x1-direction, K1s , and the smallest is K2s . Similar
to the results obtained for Ks, the evolution of the solenoidal components exhibit
little sensitivity to the value of the heat release parameter (compare cases 4 and 6)
although it appears to depend on the magnitude of the mean reaction rate peak
(compare case 7 with cases 4 and 6).

However, the dilatational part of the kinetic energy has a very different behaviour
(figure 14b). For both the reacting and non-reacting cases K2d becomes the only
important dilatational component of the kinetic energy after the development time.
While K2d increases during the simulation for case 1, for the reacting cases it is
significantly amplified during the time when the reaction is important. The strong
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Figure 15. Temporal variation of (a) dynamic terms and (b) solenoidal pressure–strain
components in equation (3.11).

anisotropy among the dilatational components of the kinetic energy in favour of
the x2-component was first recognized for non-reacting shear flows by Blaisdell et
al. (1991). The present results confirm the previous findings and show that the heat
release amplifies even more the x2-component of the dilatational kinetic energy. This
behaviour is related to the spatial structure of the scalar field in the presence of
the shear. The scalar field initially composed of non-premixed blobs is distorted by
the mean shear and tends to align in parallel layers at a small positive angle with
respect to the (x1, x3)-plane. The reaction takes place mostly at the interface of the
scalar blobs and the heat of reaction produces local expansion zones. The result is an
amplification primarily of the x2-component of the dilatational energy.

In order to understand how the solenoidal and dilatational components of the
kinetic energy in each coordinate direction are coupled and affected by the heat
release, their transport equations are considered (no summation over i):

1

K

d

d(St)
Kiα = Diα + ADiα +Πi(i)α + Piα + VDiα + VD1iα (3.11)

The terms in equation (3.11) are presented in Appendix D. It should be noted that the
transport equations for the dilatational and solenoidal parts of the kinetic energies
in each direction are coupled through dynamical terms, Diα . These terms represent
correlations between the solenoidal (dilatational) velocity and dilatational (solenoidal)
acceleration, respectively. By comparing equations (3.11) and (3.6) it can be observed
that

∑
i Diα = CTα. Furthermore, the results indicate that Dis ≈ −Did . Figure 15(a)

shows the time evolution of D1d and D2d . The x3-component is small compared to
the other two components for all cases, and, for clarity, is not shown in figure 15(a).
Except for very early times, D1d is always negative and D2d always positive, so the
energy is transferred from the dilatational to the solenoidal component in the x1-
direction and in vice versa in the x2-direction. During the time when the reaction is
significant D1d and D2d increase their magnitude as Ce increases, but the direction of
energy transfer is not affected.

The time evolution of the solenoidal components of the pressure–strain tensor
is presented in figure 15(b). Since the sum of these components is equal to the
solenoidal part of the pressure–dilatation, which is small for the cases considered,
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Figure 16. Time integral of the dilatational pressure–strain components in (a) the x1-direction,
(b) x2-direction and (c) x3-direction.

the role of the solenoidal pressure–strain is only to redistribute the energy among
the solenoidal components of the turbulent kinetic energy. For both the reacting and
non-reacting cases, the energy is transferred by the solenoidal pressure–strain from the
x1-component to the x2- and x3-components of the solenoidal kinetic energy. During
the time when reaction is important, the energy transfer in the x1- and x2-directions
by the solenoidal pressure–strain term is amplified. Similar results are obtained for
the other cases considered, although the change in the pressure–strain components
increases with Ce.

The dilatational components of the pressure–strain tensor are smaller than their
solenoidal counterparts, although Π22d has large oscillations with peaks that can
approach values close to those of Πi(i)s . For both the reacting and non-reacting cases,
the oscillations in the pressure–dilatation term discussed in the previous sections cor-
respond primarily to oscillations in Π22d . This is consistent with the above discussion,
indicating that the dilatational effects occur mostly in the direction of the shear. Since
the dilatational components of the pressure–strain tensor have positive and negative
values, it is useful to examine their time integrals (figure 16). For the non-reacting
case, the average contributions in the x1- and x3-directions to the dilatational motions
are always negative and oscillate close to zero for the x2-direction. For the reacting
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cases with significant heat release, the dilatational components of the pressure–strain
tensor increase their values and for the cases considered they transfer energy, on
average, from the internal energy to the dilatational kinetic energy. Additionally, fig-
ure 16 shows that the time average of Πi(i)d is dependent on the value of Ce. The time
when the mean reaction rate peak occurs influences the dilatational pressure–strain
components differently. Thus, a comparison between the results obtained for cases 2
and 5 shows that the contribution from Π22d to the change of the kinetic energy is
amplified as the reaction rate peaks at later times (figure 16b), while the contributions
from the other two components are reduced (figures 16a and 16c). Thus, the net
result for the time average of PD (figure 4) is that the long-time values are slightly
dependent on the time when the mean reaction rate peak occurs.

In order to gain a better understanding of the contribution of each term to the
energy exchange, equation (3.11) can be integrated during the time when the reaction is
significant. The results are presented in figure 17. Both the solenoidal and dilatational
kinetic energies in the x1-direction increase due to the production terms. However,
the energy is transferred from the dilatational to the solenoidal kinetic energies
by the velocity–acceleration correlation. On the contrary, the velocity–acceleration
correlation transfers energy, on the average, from the solenoidal to the dilatational
motions in the x2-direction. This transfer is amplified in the presence of heat release,
and is not much influenced by the variation in the transport properties (compare cases
2 and 3). This is also the main mechanism of enhancing the x2 dilatational kinetic
energy in both the reacting and non-reacting cases. Moreover, in the presence of
heat release the contribution from the pressure–strain term to the variation of the x2

dilatational motions is significantly enhanced and the dilatational kinetic energy in the
x2-direction increases compared to the non-reacting case. All the terms contributing
to the change of x1 and x3 dilatational kinetic energies are influenced by heat release,
with small differences between the results obtained for cases 2 and 3. However, these
contributions cancel each other and the changes in the dilatational kinetic energy in
the x1- and x3-directions are not significantly affected by the reaction. The results
presented remain qualitatively the same for all cases considered and also for the range
of M0 or S∗ examined.

4. Summary and conclusions
Direct numerical simulations are conducted of chemically reacting homogeneous

compressible shear flows under non-heat-releasing and heat-releasing (exothermic)
non-premixed reacting conditions. The chemistry is modelled with a single-step irre-
versible reaction with Arrhenius-type reaction rate. Simulations are carried out with
different values of the parameters which control the reaction rate and the amount of
heat released in the flow. The conclusions drawn from the results of these simulations
should be considered with the caveat that they are established only in the range of
parameters and within the time durations considered in the present simulations.

The energy exchange between internal, EI , and turbulent kinetic, K , energies is
examined and the influence of heat of reaction is assessed. By considering the scaled
transport equations for EI and K , the role of different terms in the energy exchange
is identified. It is found that the heat release influences the growth of the turbulent
kinetic energy primarily through temperature-induced changes in the solenoidal dis-
sipation and the modifications of the explicit dilatational terms (pressure–dilatation
and dilatational dissipation). Additionally, the heat-release-induced changes in the
production term play a less important role in the evolution of the turbulent kinetic
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Figure 17. For caption see facing page.

energy for all cases considered. To further analyse this behaviour, the scaled transport
equation for the production term is considered. The two important terms in this
equation, pressure–strain and production, are affected by the heat release. However,
since they make opposite contributions to the rate of change of the normalized shear
stress, the net effect is small for the cases considered.

Since the heat of reaction directly influences the explicit dilatational terms in the
kinetic energy equation, a solenoidal–dilatational decomposition of the kinetic energy
(Ks and Kd, respectively) can better reveal the influence of heat release on the flow. It
is found that the heat release changes the solenoidal and dilatational velocity fields
differently. Thus, during the time when the reaction is important, the production of
Ks decreases, while the production of Kd increases. Additionally, since most of the
pressure–dilatation contribution goes into the dilatational kinetic energy, Kd increases
compared to the non-reacting case. The advection and the coordinate transformation
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Figure 17. Energy flow diagrams for the solenoidal and dilatational turbulent kinetic energy
components along each coordinate direction.

terms in the transport equations for Ks and Kd are responsible for the direct coupling
between the solenoidal and dilatational components of the kinetic energy. Although
these terms are modified by the heat of reaction, their magnitudes remain small
compared to other terms. This results in a weak coupling between the solenoidal and
dilatational fields for the cases considered.

The examination of the evolution of the turbulent kinetic energy and its solenoidal
and dilatational components is useful for the analysis of the flow. However, the
velocity field is not isotropic and the heat release affects the kinetic energy differently
in each direction. The results show that in all reacting cases, the kinetic energy
in the x2-direction increases compared to the non-reacting case, during the time
when the reaction is important. This is different from the evolution of the kinetic
energies in the x1- and x3-directions, which significantly decrease their magnitudes
compared to the non-reacting case. The increase in K2 is due to an amplification of
the dilatational kinetic energy in the x2-direction. More generally, it is shown that the
explicit dilatational effects occur primarily in the direction of the shear for both non-
reacting and reacting cases. For the reacting cases, due to the preferential alignment
of the scalar structures with the direction of the shear, this effect is amplified.

Although the dilatational and solenoidal parts of the kinetic energy are only weakly
coupled, their components in the x1- and x2-directions are strongly coupled. This
coupling is made through correlations between the solenoidal (dilatational) velocity
and dilatational (solenoidal) acceleration, respectively. For all the reacting and the
non-reacting cases considered these velocity–acceleration correlations, Diα , transfer
energy from the dilatational to the solenoidal parts of the x1-component of the
kinetic energy, and in the opposite direction for the x2-component. As the value of Ce
increases, the magnitudes of Diα terms are increased but their sign remains the same.

Due to the two-way coupling between the reaction and turbulence, both the
magnitude of the mean reaction rate peak and the time when this peak occurs
are important for the evolution of the turbulent kinetic energy. The sensitivity of
the energy transfer among different types of energy to these parameters as well as
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on the amount of heat released in the field is assessed by considering simulations
with different values of Ce, Da and k0s. It is found that the change in the explicit
dilatational terms is directly influenced by the amount of heat injected into the flow.
Additionally, the effects of heat release on these terms are amplified if the reaction
occurs at later times. However, the solenoidal dissipation and its components in each
direction are not very sensitive to the value of Ce. As a result, the solenoidal turbulent
kinetic energy depends weakly on Ce.

Since the explicit dilatational terms in the kinetic energy equation are important
for understanding the energy exchange in the turbulent reacting shear flow, the
performance of the existing non-reacting models for these terms was assessed for
the reacting case. In general, the models examined for the pressure–dilatation and
dilatational dissipation do not work well in the presence of heat release. This is partly
because neither these terms nor the pressure fluctuations can be described in terms
of only one parameter (i.e. MT ). However, some of the assumptions employed for
the non-reacting models seem to hold also for the reacting cases considered (e.g.
the equipartition between the kinetic and potential components of the dilatational
energy) and might be helpful for devising models for turbulent reacting flows.

In this paper the influence of heat release on the energy exchange has been
investigated. All the conclusions presented above remain valid for the range of initial
Mach number (0.1 < M0 < 0.6) and mean shear rate (4.8 < S∗ < 22) examined.

We are indebted to Professor G. A. Blaisdell for graciously providing us the initial
fields of scb96 case from Blaisdell et al. (1991) for validating our code. This work is
sponsored by the National Science Foundation under Grant CTS-9623178 and by the
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Society under Grant 35064-AC9. Computational resources were provided by the San
Diego Supercomputer Center, National Center for Supercomputer Applications at
the University of Illinois Urbana-Champaign, and the Center for Computational
Research at State University of New York at Buffalo.

Appendix A. Terms in the transport equations for kinetic, internal and
total energies

The definitions of the terms in the transport equations (3.1)–(3.3) for the turbulent
kinetic, internal and total energies are

PD =
〈p′∆〉
SK

, (A 1)

P = −〈ρu
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and the vorticity vector is defined by: ωi = εijk(∂u
′′
k/∂x

′
l)Blj .

Appendix B. Terms in the transport equations for the kinetic energy
components

The definitions of the terms in the transport equation (3.6) for the mean, solenoidal
and dilatational kinetic energies are

CTs =
〈W1dW2s〉
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Appendix C. Terms in the Reynolds stresses transport equations
The definitions of the terms in the transport equations for the normal (equa-

tions (3.7)–(3.9)) and shear (equation (3.10)) stresses are
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Appendix D. Terms in the decomposed normal stresses transport equations
The definitions of the terms in the transport equations (3.11) of the decomposed

normal stresses are
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)]
BkjW(i)α

〉
, (D 8)
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VD11α =
1

K Re0

〈
1√
ρ

∂µ

∂x′k
Bk2W1α

〉
, (D 9)

VD12α =
1

K Re0

〈
1√
ρ

∂µ

∂x′k
Bk1W2α

〉
, (D 10)

VD13α = 0. (D 11)
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