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Abstract The interaction of a shock wave with quasi-
vortical isotropic turbulence (IT) represents a basic problem
for studying some of the phenomena associated with high
speed flows, such as hypersonic flight, supersonic com-
bustion and Inertial Confinement Fusion (ICF). In general,
in practical applications, the shock width is much smaller
than the turbulence scales and the upstream turbulent Mach
number is modest. In this case, recent high resolution shock-
resolved Direct Numerical Simulations (DNS) (Ryu and
Livescu, J Fluid Mech 756:R1, 2014) show that the inter-
action can be described by the Linear Interaction Approx-
imation (LIA). Using LIA to alleviate the need to resolve
the shock, DNS post-shock data can be generated at much
higher Reynolds numbers than previously possible. Here,
such resultswithTaylorReynolds number approximately 180
are used to investigate the changes in the vortical structure as
a function of the shock Mach number, Ms , up to Ms = 10. It
is shown that, as Ms increases, the shock interaction induces
a tendency towards a local axisymmetric state perpendicular
to the shock front, which has a profound influence on the
vortex-stretching mechanism and divergence of the Lamb
vector and, ultimately, on the flow evolution away from the
shock.
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1 Introduction

The interaction of shock waves with turbulence is an impor-
tant aspect in many types of flows, from hypersonic flight,
to supersonic combustion, to astrophysics and Inertial Con-
finement Fusion (ICF). In general, the shock width is much
smaller than the turbulence scales, even at low shock Mach
numbers, Ms , and it becomes comparable to the molec-
ular mean free path at high Ms values. When there is a
large scale separation between the shock and turbulence, vis-
cous effects become negligible during the interaction. If, in
addition, the turbulentMach number,Mt , of the upstream tur-
bulence is small, the nonlinear effects can also be neglected
during the interaction. In this case, the interaction can be
treated analytically using the linearized Euler equations and
Rankine–Hugoniot jump conditions. This is known as the
Linear InteractionApproximation (LIA) [1–3].However, due
to the high cost of simulations for the parameter space close
to the LIA limit (and practical applications) and difficulties
with accurate experimental measurements close to the shock,
previous studies have shown only limited agreement with
LIA [3–10]. Recently, Ryu and Livescu [11], using high res-
olution fully resolved Direct Numerical Simulations (DNS)
extensively covering the parameter range, have shown that
the DNS results converge to the LIA solutions as the ratio
δ/η, where δ is the shock width and η is the Kolmogorov
microscale of the incoming turbulence, becomes small. The
results reconcile a long time open question about the role
of the LIA theory and establish LIA as a reliable prediction
tool for low Mt turbulence–shock interaction problems. Fur-
thermore, when there is a large separation in scale between
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the shock and the turbulence, the exact shock profile is no
longer important for the interaction, so that LIA can be used
to predict arbitrarily high Ms interaction problems, when
the Navier–Stokes equations are no longer valid and fully
resolved DNS are not feasible.

The shock–turbulence interaction has been traditionally
studied in an open-ended (shock-tube) domain, with the tur-
bulence fed through the inlet plane encountering a stationary
shock at some distance from the inlet. Usually, turbulence
has been generated either directly in the inlet plane or with
additional decaying isotropic turbulence (IT) simulations
and then used in the spatial domain by invoking the Tay-
lor hypothesis. To avoid this hypothesis, which limits the
magnitude of the acoustic component and overall turbulence
intensity to small values, Ryu and Livescu [11] have gener-
ated the inlet turbulence in separate forced compressible IT
simulations with background velocity matching the shock
speed and using the linear forcing method [12] (Fig. 1). This
forcing method has the advantage of specifying the Kol-
mogorov micro scale and ratio of dilatational to solenoidal
kinetic energies, χ , at the outset. Nevertheless, the shock-
tube approach is very expensive (with or without realistic
inlet turbulence), even when a shock-capturing scheme is
used, and limited to low Taylor Reynolds numbers, Reλ.
However, the range of the achievable Reλ values can be sig-
nificantly increased if, instead, one uses the LIA theory to
generate the post-shock fields. To be able to generate full 3-
D fields, Ryu and Livescu [11] have extended the classical
LIA formulas, which traditionally have been used to calcu-
late second order moments only. Using this procedure, they
showed profound changes in the structure of post-shock tur-
bulence, with significant potential implications on turbulence
modeling.

The analysis of small amplitude fluctuations in a com-
pressible medium performed by Kovasznay [13] showed
the existence of three basic modes: the vorticity, acoustic
and entropy modes. For uniform mean flow, in the invis-
cid limit, the modes evolve independently. The vortical and
entropy modes are advected by the mean flow, while the
acoustic mode travels at the speed of sound. The vortical
mode consists in a solenoidal velocity field only, the entropic
mode only has density and temperature fluctuationswhile the
acoustic mode has isentropic pressure and density fluctua-
tions and a corresponding irrotational (dilatational) velocity
that satisfies the acoustic wave equation. Thus, the velocity
field has contributions from the acoustic and vortical modes,
the density and temperature fields from acoustic and entropic
components and the pressure field is only associated with the
acoustic mode. The interaction with the shock generates all
threemodes, evenwhen the upstream turbulence has only one
mode present. In many practical applications, the intensity
of the upstream turbulence fluctuations is small enough that
the fast interaction with a thin shock is in the linear regime

Fig. 1 Numerical setup for DNS of shock–turbulence interaction in
Ref. [11]: data recorded from forced IT simulations with background
velocity matching the shock speed a are fed through the inlet of an
open-ended domain b. The red rectangle is the plane where the flow
data are recorded a and the location of inlet feeding b. Eddy structures
are visualized by the Q-criterion

[11]; however, the flow evolution away from the shock occurs
over much longer time and length scales and nonlinear and
viscous effects can no longer be neglected. In this case, the
three modes become fully coupled [14,15]. Nevertheless, the
evolution following the interaction with the shock, be it pure
decay or subsequent interactions, depends on the properties
of the post-shock turbulence.

While recent shock–turbulence interaction studies [9,10]
using shock-capturing techniques or full DNS [11] have sig-
nificantly extended the range of Reynolds numbers achieved
in such a flow (∼70 for shock capturing and ∼45 for full
DNS), the Reλ values are still smaller than those considered
necessary to reach the transition to fully developed turbu-
lence. For example, IT is considered to be fully developed if
Reλ >100 [16], although much larger values may be needed
if higher order statistics are investigated. In addition, previous
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studies have examined in detail various quantities related to
the transport equations for the second ordermoments, such as
Reynolds stresses (e.g. [9,10]). Ryu and Livescu [11] have
extended the analysis of the post-shock fields to the local
properties of the strain rate tensor, S. Yet, there are still many
gaps in our knowledge of post-shock turbulence, for example
concerning the vorticity field, such as the vortex-stretching
mechanism and its relation to the energy cascade and the
Lamb vector and its connection with coherent structures.

Simulations of turbulent flowswith shocks have to contend
with contradictory requirements for the numerical algorithms
to simultaneously capture the turbulence and the shocks.
Thus, turbulence simulations require the minimization of
numerical dissipation for small scale representation, while
the shocks require increased local dissipation to regularize
the algorithm [17]. Explicit subgrid models also need to
account for the presence of the shock. Yet, available high
Reλ data necessary to investigate the turbulence models are
scarce.

This study aims at using the novel procedure proposed
by Ryu and Livescu [11] to generate high Reλ post-shock
data and study the properties of post-shock turbulence, as
reflected in the characteristics and dynamics of the vorticity
field. First, the results are shown to be consistent with our
extensive DNS database for up to Ms = 2.2 and then used
to predict the characteristics of the vorticity field after the
shock and its downstream evolution at high Ms values. Here,
the incoming turbulence is vortical; results with incoming
turbulence having significant entropic and acoustic modes
will be presented elsewhere.

The paper is organized as follows. Section 2 contains
the governing equations, problem setup and the numerical
methodology, as well as the extended LIA formulas. Section
3 is the main results section of the paper. Thus, Sect. 3.1
shows the convergence of the DNS enstrophy amplification
to the LIA prediction, Sect. 3.2 discusses the vorticity field
and the vortex-stretchingmechanism, Sect. 3.3 focuses on the
Lamb vector and its divergence and Sect. 3.4 provides some
data on the correlation between vorticity and the thermody-
namic variables. Finally, Sect. 4 provides the conclusions.

2 Problem setup and numerical methods

The equations considered for studying the properties of
post-shock turbulence are the compressible Navier–Stokes
equations with the perfect gas assumption [12]. The ratio of
specific heats is γ = 1.4, the viscosity varies with the tem-
perature as μ = μ0(T/T0)0.75, and the Prandtl number is
Pr = 0.7. All simulations use the compressible version of
the CFDNS code [11,12,18]. The setup for the DNS of the
shock–turbulence interaction (Fig. 1) is described in detail in
Ref. [11].

In order to generate high Reλ post-shock data, forced
compressible IT simulations are performed first. The forc-
ing procedure, proposed in Ref. [12], is the same as that
used for the DNS of the shock–turbulence interaction in
Ref. [11]. Then the turbulent fields, instead of being fed
through the inlet of the shock-tube, are passed through the
LIA formulas. Thus, by alleviating the need to resolve the
shock in the shock-tube simulations, much higher Reynolds
number turbulence data can now be used. For this paper,
the forced turbulence simulations are performed on 5123

domains, with η/Δx = 0.8 (for which the differentia-
tion error is small compared to a spectral simulation with
ηkmax = 1.5 [12]), χ = 0.01 (quasi-vortical upstream tur-
bulence) and Mt = 0.05. For this upstream turbulent Mach
number, the downstream ratio between the turbulent, Mt2,
and mean flow, Ms2, Mach numbers is less than 0.1, indi-
cating small nonlinear effects during the interaction [11].
Also, the ratio δ/η � 7.69Mt/(Re0.5λ (Ms − 1)) is around
0.14 for the smallest (Ms = 1.2) and 0.003 for the largest
(Ms = 10) Ms value considered. The forced turbulence sim-
ulations yield a Reynolds number Reλ � 180, which is much
larger than previous shock-tube simulations (with or without
shock capturing) and above the transition to fully developed
turbulence.

2.1 Linear interaction analysis

TraditionalLIAonly requires information about the upstream
turbulence spectrum shape and provides solutions for the
second-moment statistics behind the shock wave. To com-
pute full post-shock flow fields, which are necessary for
higher order statistics, one needs full flow fields in front of
the shock as well. These fields are taken from separate three-
dimensional forced IT calculations described above. First,
the velocity components are Fourier transformed in all three
physical directions (x, y, z), and each Fourier mode with
(kx , ky, kz) wavenumber component is related to the two-
dimensional plane wave in the traditional LIA by a spherical

coordinate transformation: k=
√
k2x + k2y + k2z , kx = k cos

ψ , and kz = ky tan φ. Here, the wavenumber kx is in the
direction perpendicular to the shock wave and the two-
dimensional plane wave lies in the plane formed by the x
direction and thewave vectork. Then, k,ψ , andφ are, respec-
tively, the wavelength of the plane wave, the angle between
the wave vector and x direction and the angle between the
y axis and the plane of the wave. In this study, we focus on
the interaction of a shock wave with vortical turbulence. The
Helmholtz decomposition [15] is used to remove the small
dilatational part of the upstream velocity, which is less than
1% of the total kinetic energy (χ = 0.01). This small magni-
tude component does not affect the overall numerical results;
however, the vortical LIA formulas rely on zero divergence
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of velocity. In order to be able to apply the LIA procedure,
the velocity vector is decomposed into a component lying in
the plane of the wave, u�, and a component perpendicular to
the plane of the wave, u⊥. For non-interacting plane waves,
the latter acts as a constant background velocity, parallel to
the shock wave, which should pass unchanged through the
shock [1]. Thus, for small Mt values, the full 3-D turbulence
fields can be decomposed into a collection of non-interacting
plane waves, which follow the LIA theory [1,2], each with
an additional velocity component which remains unchanged
through the shock.

The velocity vector in the plane of the wave is perpendic-
ular to the wave vector and has a complex velocity amplitude
Av = ûsx/ sinψ , where ûsx is the Fourier coefficient of the
solenoidal streamwise velocity disturbance. The complex
amplitude ofu⊥ can bewritten as u⊥ = −ûsy sin φ+ûsz cosφ,

where ûsy and û
s
z are the Fourier coefficients of the solenoidal

transverse velocity fluctuations.
Then, for given Ms values, the post-shock velocity distur-

bances are

u′
x =

∞∫

k=0

π∫

ψ=0

2π∫

φ=0

Av

{
F̃eik̃x + G̃eikxr x

}
�k2dVs, (1)

u′
y =

∞∫

k=0

π∫

ψ=0

2π∫

φ=0

{
Av cosφ

[
H̃eik̃x + Ĩeikxr x

]

−u⊥ sin φeikxr x
}

�k2dVs, (2)

u′
z =

∞∫

k=0

π∫

ψ=0

2π∫

φ=0

{
Av sin φ

[
H̃eik̃x + Ĩeikxr x

]

+ u⊥ cosφeikxr x
}

�k2dVs, (3)

where k̃ is the post-shock acoustic wavenumber, r is the ratio
of the upstream and downstreammean streamwise velocities,
� = ei(ky y+kz z), dVs = sinψdφdψdk, and F̃ , G̃, H̃ and Ĩ
are the LIA coefficients. Note that ψ and φ are varied from
0 to π and from 0 to 2π , respectively, to consider the full
flow field; whereas ψ is varied from 0 to π/2 and the φ

variation is not considered in the traditional LIA due to the
symmetry and homogeneity of the second-moment statistics
with the angles. Also, the u⊥ contribution does not appear in
the final formulas for the Reynolds stresses but it needs to be
included when considering the full flow fields. The formulas
for the density and pressure fluctuations behind the shock can
be found in Ref. [3]. k̃ is the root of the quadratic equation
which is derived from the pressure wave equation behind
the shock wave. The root which corresponds to the physical
solution is chosen; the other root implies either exponentially
growing or upstream propagating acoustic wave behind the

shock wave. For ψ < ψc and ψ > π − ψc, k̃ is real; the
+ sign is chosen for the former and − sign for the latter. ψc

is the critical angle at which the term under the square root
is zero. The derivatives with respect to ψ have an infinite
discontinuity at ψc, due to the divergence of the k̃ derivative.
The solutions themselves are continuous with a cusp at ψc,
which leads to a much larger amplification at ψc. Physically,
as k̃ changes from real to complex atψc, the acoustic solution
acquires a decaying component in the streamwise direction
and the downstream velocity in a frame of reference moving
along the shock with velocity V changes from supersonic to
subsonic [1]. The moving velocity V is chosen such that the
disturbance velocity in the plane of the wave does not change
its direction through the shock.

The definitions of the LIA coefficients are presented
below. The complete derivation of these coefficients can be
found in Refs. [1–3]. Here, the final formulas are shown as
required by the extended procedure.

F̃ = αD1(l − L̃), (4)

G̃ = L̃(1 − B1) − F̃ + B1l, (5)

H̃ = βD1(l − L̃), (6)

Ĩ = −mr

l
(1 − B1 + αD1)L̃ + mrαD1 − mr B1, (7)

where

α = 1

γ r2M2
s2

k̃/k

m − k̃/(kr)
, (8)

β = 1

γ r2M2
s2

l

m − k̃/(kr)
, (9)

B1 = (γ − 1)M2
s − 2

(γ + 1)M2
s

, (10)

D1 = 4γ M2
s

2γ M2
s − (γ − 1)

, (11)

E1 = 2(M2
s − 1)

(γ + 1)M2
s
, (12)

L̃ = −m − βD1l − mrαD1 + mr B1

E1l2 − βmlD1 − m2(1 − B1 + αD1)
ml, (13)

m = cosψ , l = sinψ , γ is the ratio of specific heats, Ms2 is
the mean Mach number behind the shock, which is given by
the Rankine–Hugoniot relations, and, finally,

k̃ =
−m ± 1/Ms2

√
m2 − (1/M2

s2 − 1)l2/r2

1/M2
s2 − 1

kr. (14)

It is noted that the formulas above do not require isotropy, so
they can be applied to anisotropic turbulence as well.
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3 Results and discussion

The properties of post-shock turbulence, as related to sev-
eral aspects of the vorticity field, are examined below. First,
a discussion is provided for the convergence of the DNS
results for enstrophy amplification to the traditional LIA pre-
diction. These results use theDNS database generated in Ref.
[11]. Then, highReλ post-shock turbulence data are analyzed
using the new forced compressible IT fields and extended
LIA formulas described above.

Below,Shock-LIAandShock-DNS refer to the post-shock
fields computed using the extended LIA theory and DNS,
respectively. The Shock-DNS results for the vorticity ampli-
fication are calculated at the shock, for comparison with
previous studies. Those results are averaged in time and
over the transverse directions. However, note that enstro-
phy remains constant after the shock in Shock-LIA. The
Shock-LIA results correspond to the plane of maximum
amplification of the streamwise Reynolds stress, which
occurs approximately at k0x = π . Here, k0 = 1 is the
wavenumber of the peak of the kinetic energy spectrum (the
forcing wavenumber for the forced turbulence simulations).
At k0x = π , the variations in themean fields become small in
a corresponding shock-tube DNS, so that the contributions
from the mean flow to the turbulence quantities discussed
here are small. Physically, this location corresponds to the
end of the inviscid adjustment of the acoustic component, fol-
lowing the shock–turbulence interaction, after which the LIA
statistics become spatially constant. The region of agreement
between DNS and LIA can be extended into this constant
regime, provided that δ/η and Mt are small enough, since
the eddy turnover time and, consequently, the decay distance
increase with decreasing Mt at fixed Reλ [11]. Note that fea-
tures of the evolution away from the shock, like return to
isotropy, cannot be captured by the LIA solutions. However,
such effects due to nonlinear interactions can be made arbi-
trarily small by decreasing Mt . The Taylor Reynolds number
for Shock-LIA is Reλ = 180 and for shock-DNS it varies
between 10 and 45.

3.1 Enstrophy amplification

As the scale separation between the shock wave width and
the turbulence scales becomes large, for small upstream Mt

values, the viscous and nonlinear effects become negligible
during the interaction process, even at relatively low Reλ

values. In this case, the DNS results should be close to the
LIA prediction. Ref. [11] showed that the results can become
fully converged for the streamwise variation of the Reynolds
stresses and enstrophy in a region close to the shock wave,
even at Reλ ≤ 45. The extent of this region increases as the
scale separation increases. Since for upstream IT the ratio
of the shock width to Kolmogorov microscale is given by

Fig. 2 Convergence of �tr amplification to the LIA solution for dif-
ferent values of Reλ. In this figure only, the results are calculated at the
shock, for comparison with previous studies. Symbols along the vertical
axis represent the LIA solution with the shape and color matched for the
symbol-lines of corresponding Ms . Higher Reλ cases are located above
the corresponding lower Reλ cases. Additional results can be found in
Ref. [11]

δ/η � 7.69Mt/(Re0.5λ (Ms − 1)), the scale separation can
be arbitrarily increased at a fixed Reλ value by decreasing
the turbulent Mach number. Figure 2 shows the transverse
enstrophy amplification, �tr = 〈ω2

y + ω2
z 〉d/〈ω2

y + ω2
z 〉u ,

where the exponents d and u represent the values immedi-
ately downstream and upstream of the shock and ω = ∇ × u
is the vorticity, for some of the DNS cases discussed in Ref.
[11]. The amplifications, as well as the streamwise variation
immediately following the shock (not shown here), become
fully converged to the LIA solutions for theReλ values acces-
sible inDNS.The convergence region includes the location of
the streamwise Reynolds stress maximum amplification and
extends into the region where the LIA statistics become spa-
tially constant. When the enstrophy amplification converges
to the LIA solutions, it no longer changes as the Reynolds
number is increased (Fig. 2).

The traditional LIA procedure calculates second order
moments of the turbulence fields, which require information
about the incoming turbulence spectra only. Thus, higher
order correlations characterizing the turbulence fields and
their change through the shock cannot be predicted by the
usual LIA formulas. In principle, formulas to predict higher
order moments could be derived from (1)–(3); however,
these formulas would require knowledge about higher order
moments upstream of the shock as well and involve increas-
ingly cumbersome convolution products. The procedure used
here, with full flow fields ahead of the shock, provides full
information downstream of the shock. Figure 3 shows the
Probability Density Function (PDF) of the transverse veloc-
ity component, normalized by the corresponding enstrophy
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Fig. 3 PDF of transversal vorticity component. All Shock-LIA PDFs
are normalized by

√
�tr , so that they have the same variance as the IT

PDF

jump. Any departure from the IT profile after the normaliza-
tion is reflective of the contributions from the higher order
correlations. The largest differences occur around the peak of
the PDF and at lower Ms values. After Ms = 6, the changes
in the PDF are small.

3.2 Vorticity field and the vortex-stretching mechanism

While the DNS results converge to the LIA predictions even
at low Reynolds numbers, investigating post-shock turbu-
lence properties requires Reynolds numbers large enough
that the upstream turbulence is fully developed. The results
presented below are obtained using the Shock-LIA proce-
dure, with Reλ ≈ 180. Some comparisons are made with the
database from Ref. [11] using both Shock-DNS and the cor-
responding Shock-LIA results from the M = 1.8 run with
Reλ � 30, which had δ/η � 0.3.

The LIA relations show that the shock interaction ampli-
fies preferentially the transverse components of the rotation
and strain stress tensor [3,11]. This leads to an increase in
the correlation between the two quantities as Ms increases
[11,19]. Ref. [11] provides some information based on the
joint PDF of the strain and rotation tensors magnitudes. In
order to investigate this behavior in more detail and also
assess the Reynolds number influence, Fig. 4 shows the PDF
of the strain-enstrophy angle, Ψ , defined as [20]:

Ψ = tan−1 Si j Si j
Wi jWi j

(15)

where the strain and rotation tensors components are given
by Si j = 1

2 (Ai j +Ai j ) andWi j = 1
2 (Ai j −Ai j ), respectively,

with Ai j = ∂ui/∂x j . By definition, large values ofΨ (45◦)
correspond to strain dominance and small values (�45◦) cor-
respond to rotation dominance. The regions with Ψ ∼ 45◦
are the highly correlated regions. In IT, the PDF of Ψ peaks

Fig. 4 PDF of the strain-enstrophy angle Ψ (degrees). The Reλ = 30
results are obtained from the database of Ref. [11]. The present results
have Reλ = 180

at large values, consistent with previous results [20,21]. This
behavior can be seen even at relatively low Reynolds num-
bers. However, after the shock interaction, some differences
in low and highReynolds number behavior start to appear. As
theMach number increases, the PDF becomesmore symmet-
rical, with a stronger peak atΨ = 45◦. Nevertheless, the tails
of the PDF remain asymmetric, as there are still more regions
of strain dominance compared to rotation dominance. The
low Reynolds number results with Ms = 1.8, while showing
good agreement between Shock-DNS and Shock-LIA, tend
to underestimate these regions (Fig. 4).

In most fully developed 3-D turbulent flows, there is a
preferential alignment between the vorticity vector and the
eigenvectors of the strain rate tensor [22–24]. This is due
to the local dynamics of vorticity and strain rate tensor, and
can be affected by several mechanisms, e.g. the formation
of distinct spatial structures [25] or by heat release due to
the enhancement of dilatational motions or local decrease in
Reynolds number [21,26]. Thus, the vorticity vector tends
to align with the intermediate (β-) eigenvector and there
is no preference with respect to the most extensive (α-)
eigenvector. The eigenvectors correspond to the eigenval-
ues α, β and γ , denoted with the usual convention that
α > β > γ . For quasi-vortical vortical upstream turbulence,
α + β + γ = Aii � 0. Figure 5 shows that IT turbulence
results are consistent with the previous studies. However, in
post-shock turbulence, the alignmentwith theβ-eigenvectors
strengthens and there is a tendency towards a local alignment
with the vorticity perpendicular to the α- and γ - eigenvectors
as Ms increases. Here, the angles ζ1, ζ2 and ζ3 correspond
to the α-, β- and γ -eigenvectors, respectively. The enhance-
ment of the alignment with the β-eigenvector was also found
in Ref. [19]. This change in alignment is due to a preferential
amplification of the transverse vorticity and strain rate ten-
sor components due to the compression in the shock normal
direction.
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Fig. 5 PDF of cosines of the angles between ω and the eigenvectors of
the strain rate tensor, S: cos ζ1, dash dotted lines, cos ζ2, dashed lines,
cos ζ3, solid lines

Indeed, Fig. 6 shows that both vorticity and the β-
eigenvector are increasingly aligned at a 90◦ angle with the
shock normal (streamwise) direction, as Ms increases. At
the same time (not shown) the other two eigenvectors tend
to align in the shock normal direction. In fully developed
turbulence, there is no preferential orientation of the inertial
range structures with the coordinate directions, consistent
with the IT results in Fig. 6. However, the interaction with
the shock changes the turbulence at all scales and vorticity
and strain rate eigenvectors acquire a strong directionality
with the coordinate directions. Post-shock turbulence is no
longer fully developed 3-D turbulence, there is a tendency,
amplified as Ms increases, towards an axisymmetric (2-D)
local state.

The state and structure of post-shock turbulence are very
important for the evolution away from the shock.The changes
in the orientation of vorticity and strain rate eigenvectors will
give rise to various transients, until a fully developed state
is again reached. Some consequences of these changes can
be highlighted by considering the transport equation for the
enstrophy:

∂〈�〉
∂t

+ 〈∇ · (v�)〉 = 〈ω · S · ω〉 − 〈�∇ · v〉

−
〈
ω ·

(∇ p × ∇ρ

ρ2

)〉
+

〈
ω ·

(
∇ ×

[∇ · τ

ρ

])〉
, (16)

where� = |ω|2/2 and τ represents the stress tensor. [4,5,27]
analyzed this equation to explain the evolution of the vortic-
ity through the shock. Here, the focus is on the consequences
of the changes in the turbulence structure behind the shock
for the evolution downstream of the shock. The terms on the
right hand side (RHS) of (16) represent vortex-stretching,
vorticity-expansion, production due to baroclinic torque and
viscous dissipation. During the evolution through the shock,
the variations in the mean fields give most of the contribu-

Fig. 6 PDF of cosine of the angle between a ω and b β-eigenvector
with the streamwise direction

tions to the terms in (16). Thus, vortex-stretching and viscous
terms are negligible and the advection, vorticity-expansion
and baroclinic terms are dominant [27]. However, after the
shock interaction, for the case of upstream vortical turbu-
lence, these terms become small and are not discussed here,
although we note that both are amplified as Ms increases, in
both absolute magnitude and relative to the upstream fields.

The two important terms in (16) after the shock interac-
tion with quasi-vortical turbulence are vortex-stretching and
viscous terms. The vortex-stretching term is a fundamen-
tal aspect of 3-D turbulence and is intimately related to the
energy cascade to small scales. Due to the change in the ori-
entation of both vorticity and strain rate eigenvectors and
tendency towards a local axisymmetric state, an important
question is about the effect on the vortex-stretching mecha-
nism. This term can be expressed using the eigenvectors and
eigenvalues of S as:

〈ω · S · ω〉 =
〈
|ω|2

(
α cos2 ζα + β cos2 ζβ + γ cos2 ζγ

)〉

(17)

As both cos2 ζα and cos2 ζγ are larger after the shock (Fig.
5), there is an increasing cancelation between the first and last
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Fig. 7 Amplification of transverse vorticity variance and vortex-
stretching term in the enstrophy equation, normalized by�tr , turbulence
time scale and the corresponding IT value

contributions to vortex-stretching, while the increased align-
ment with the β-eigenvector does not play a role since the β

eigenvalue has small magnitude. Nevertheless, the enstrophy
and α and γ eigenvalues increase substantially in magni-
tude due to the compression in the shock normal direction.
This leads to an amplification in the absolute value of the
vortex-stretching term after the shock interaction. However,
after the normalization by the enstrophy and turbulence time
scale, τ = K/ε, where K = Rii/2 is the turbulent kinetic
energy, Ri j = 〈uiu j 〉 are the Reynolds stresses and ε is the
dissipation, Fig. 7 shows that vortex-stretching becomes sub-
stantially lower than in IT. As a result, on the time scale of
the turbulence, the flow may take a much longer time, com-
pared to a similar non-shocked flow, to return to a 3-D, fully
developed state. This tendency is stronger at higher Ms val-
ues, indicating a slower rate of return; however, the changes
are less significant as Ms increases above 6.

3.3 The Lamb vector

The advection, vortex-stretching and vortex-expansion terms
in (16) can be grouped together using the Lamb vector, l ≡
ω × v:

ω · ∇ × l = ∇ · (v�) − ω · S · ω + �∇ · v (18)

The Lamb vector also appears in the momentum equation,
if the advection term is re-written as:

(v∇) · v = ω × v + ∇2K (19)

and in the transport equation for the divergence of velocity,
Δ ≡ Ai,i :

∂〈Δ2〉
∂t

= −〈Δ∇ · l〉 − 〈Δ∇2K 〉

+
〈
Δ

(∇ p · ∇ρ

ρ2

)〉
+

〈
∇ ·

[∇ · τ

ρ

]〉
(20)

In incompressible turbulence, the Lamb vector and its
divergence have been intensely studied, e.g. since it is solely
responsible for the total force acting on a moving body or
due to the connection to the description of coherent structures
[28]. Negative values of∇·l are interpreted as spatially local-
ized motions that have accumulated the capacity to introduce
a time rate of change in momentum. On the contrary, positive
values represent motions with a depleted such capacity. The
divergence of the Lamb vector can be written as:

∇ · l = u · ∇ × ω − ω · ω, (21)

so that ∇ · l can be positive only when the flexion product,
F ≡ u · ∇ × ω is positive. Since the Lamb vector acts as
a vortex force, the Lamb vector divergence identifies inho-
mogeneities in the momentum transport surrounding a fluid
element, or a flux of energy, that propagates or concentrates
local energy curvature. In a region of flow where the flexion
product is positive, the enstrophy acts as a storagemechanism
and the flexion product behaves like a release mechanism of
the momentum flux and kinetic energy. In addition, the inter-
action between the flexion product and enstrophy gives rise to
an energy curvature interpretation and minimization process
for interactions occurring in many incompressible flows. In
compressible flows,while some interesting phenomena, such
as the connection with the Bernoulli equation, are lost, we
note the additional connection between ∇ · l and the produc-
tion of dilatational motions (see equation 20). In addition,
∇ · l plays a key role in the production of jet noise whenever
its mean is different than zero [29]. Compressible general-
izations for the force acting on a body using the Lamb vector
have also been attempted (e.g. [30]).

In both IT and post-shock turbulence, the flexion product
has both positive and negative values, but the PDF is skewed
to the right (Fig. 8). As the Mach number increases, the
magnitude of F also increases considerably. Perhaps more
interesting is the connection between the flexion product
and velocity divergence (Fig. 9). In IT, the two quantities
are uncorrelated, as reflected in the joint PDF. However,
in post-shock turbulence, the regions with the largest flex-
ion product values occur predominantly in the compression
regions (Δ < 0). Following the transport equation for the
square of the divergence, it is likely that the strongest com-
pression regions will be further amplified during the initial
stages of the evolution away from the shock. The energy
released from these regions should continue to enhance the
small scale activity, in addition to the decrease of the Kol-

123



Vorticity dynamics after the shock–turbulence interaction 249

Fig. 8 PDF of the flexion product

Fig. 9 Joint PDF of the flexion product and divergence of velocity a
IT and b post-shock turbulence with Ms = 10

mogorov microscale due to the direct interaction with the
shock.

3.4 Thermodynamic variables

One characteristic of the interaction with the shock is that,
even if only one of the three compressible modes is present

Fig. 10 PDF of cosine of the angle between the pressure and density
gradients

Fig. 11 PDF of cosines of the angles between∇ρ and the eigenvectors
of S: cosχ1, dotted lines, cosχ2, dashed lines, cosχ3, solid lines

in the upstream turbulence, all modes are generated by the
interaction. The upstream turbulence data used here are
quasi-vortical, with a small dilatational component of less
than 1% kinetic energy. In this case, the density and pres-
sure fluctuations in the upstream fields are correlated, while
the temperature fluctuations are smaller. Thus, the pres-
sure and density gradients are mostly aligned (Fig. 10).
However, as entropic fluctuations are generated through the
shock, this alignment weakens in post-shock turbulence. As
a result, the baroclinic contribution to the enstrophy equa-
tion increases, while the contribution to the square dilatation
equation decreases.

In addition, the shock interaction also changes the align-
ment between the density gradient and the eigenvectors of the
strain rate tensor (Fig. 11). In IT, the density gradient points
mostly in the direction of the most compressive (γ -) eigen-
vector, with no correlation with the other two eigenvectors.
This is similar to passive scalar alignment in compressive and
incompressible turbulent flows [21,22]. After the interaction
with the shock, the density gradient tends to align at a 90◦
angle with the direction of the α-eigenvector and the align-
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mentwith the γ -eigenvectorweakens. Interestingly, at higher
Ms values, as the acoustic field becomes stronger, ∇ρ starts
to have an angle different than zero with the γ -eigenvector.

4 Conclusions

Direct Numerical Simulations (DNS) of shock waves inter-
acting with turbulence are restricted to low Reynolds num-
bers due to the extremely large meshes required to resolve
both the turbulence and the shock. Experimental realizations
of this problem are also very challenging, due to problems
with controlling the shockwave and the small time and length
scales involved in the measurements especially close to the
shock front. However, recent high resolution DNS exten-
sively covering the parameter space show that, when there
is a large scale separation between the turbulence and the
shock width and the turbulence intensity is small, the inter-
action between a shock wave and isotropic turbulence (IT)
can be described by the Linear Interaction Approximation
(LIA). Such interaction conditions occur in many practical
applications.

In order to study the properties of high Reynolds number
post-shock turbulence, LIA was used to generate post-
shock fields starting from a forced compressible IT data-
base. This procedure was named Shock-LIA. The database
was generated using a 5123 mesh and a Taylor Reynolds
number, Reλ = 180, which is much larger than those
attained in previous shock–turbulence interaction studies.
Here, the case of quasi-vortical turbulence was consid-
ered. Since traditional LIA addresses second order moments
only, in order to calculate full flow fields, necessary for
the higher order moments, the detailed procedure to calcu-
late these fields was given. The main theme of the paper
is related to properties of the vorticity field, as a central
feature of turbulent flows, and various related quantities.
Most of the results presented are in terms of probability
density functions (PDFs) of various quantities, which can-
not be inferred from the traditional LIA formulas since
they require the knowledge of all higher order moments,
beyond the variance. The properties of these higher order
moments are one of the central open questions in turbulence
research.

First, using theDNSdatabase fromRef. [11], it was shown
that the vorticity variance from DNS converges to the LIA
results as the scale separation increases. The convergence
can be obtained even at low upstream Reynolds numbers;
however, the properties of the post-shock turbulence change
with the Reynolds number. Indeed, the PDF of the strain-
enstrophy angle, which changes significantly compared to
IT, shows a good match between the DNS and LIA results
using the corresponding IT database at Reλ = 30, but dif-
ferences compared to LIA results using the Reλ = 180 IT
database.

In general, the shock interaction significantly changes the
properties of upstream turbulence. Thus, the orientations of
vorticity and eigenvectors of the strain rate tensor point to a
local axisymmetric state, with a reduced vortex-stretching
mechanism on the time scale of the turbulence. In addi-
tion, the flexion product becomes inversely correlated to
the dilatation in the regions of positive Lamb vector diver-
gence. These changes point to a shock Mach number (Ms)
dependent slowing of the return to a fully developed state
and increased small scale activity as the turbulence evolves
away from the shock. On the other hand, the thermody-
namic quantities are also strongly affected by the interaction
with the shock. Both acoustic and entropic components are
generated even for upstream vortical turbulence and these
components propagate with different velocities. The specific
correlations between the thermodynamic quantities and the
orientations of their gradients depend on the relative strength
of these components. Thus, at high Ms values, the orienta-
tion between the density gradient and the eigenvectors of the
strain rate tensor is very different from that in IT.Again, these
are structural changes in post-shock turbulence expected to
have a significant effect on the evolution away from the
shock.

Finally, we would like to mention that, while shock-
resolved DNS remains the gold standard, the results from
Ref. [11] highlight the applicability of shock-captured
turbulence-resolved simulations and their importance as an
accurate tool for shock–turbulence interaction problems,
when the scale separation is large enough. However, due
to computational limitations, Shock-LIA still can access a
region of the parameter space not available to either tools
and provide an understanding of the properties of post-shock
turbulence in those regimes.
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