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The linearized Navier—Stokes equations for a system of superposed immiscible compressible ideal
fluids are analyzed. The results of the analysis reconcile the stabilizing and destabilizing effects of
compressibility reported in the literature. It is shown that the growthnatietained for an inviscid,
compressible flow in an infinite domain is bounded by the growth rates obtained for the
corresponding incompressible flows with uniform and exponentially varying density. As the
equilibrium pressure at the interfape increasegless compressible flown increases towards the
uniform density result, while as the ratio of specific hegtisicreasegless compressible fluidn
decreases towards the exponentially varying density incompressible flow result. This remains valid
in the presence of surface tension or for viscous fluids and the validity of the results is also discussed
for finite size domains. The critical wavenumber imposed by the presence of surface tension is
unaffected by compressibility. However, the results show that the surface tension modifies the
sensitivity of the growth rate to a differential changeyiror the lower and upper fluids. For the
viscous case, the linearized equations are solved numerically for different valpgesaofl y. It is

found that the largest differences compared with the incompressible cases are obtained at small
Atwood numbers. The most unstable mode for the compressible case is also bounded by the most
unstable modes corresponding to the two limiting incompressible case200® American
Institute of Physics.[DOI: 10.1063/1.1630800

I. INTRODUCTION studied by several authof$; ®however, its effect compared
with the incompressible case is still under debate. The earlier
The Rayleigh—Taylor instability, which occurs due to the studies of the linear stage dealing with ideal fldithintro-
gravitational instability of a heavy fluid overlying a lighter duced simplifying assumptions and are strictly valid only
fluid,* is of fundamental importance in a multitude of ap- when y=1. Bernstein and Bod& and Turnet® removed
plications rangir)lg from the turbulent mixing in inertial con- these assumptions and studied the effects of compressibility
finement fusioft* to astrophysical phenomeftd Small per-  as a function ofy. They found that these effects are more
turbations of the interface between the two fluids grow toimportant at small wavenumbers and the rate of growth in-
large amplitudes. At early times, for small enough initial per-creases ay decreases. They concluded that compressibility
turbations, the flow can be described by the linearized equaias a destabilizing effect. The same conclusion is obtained
tions and the amplitude grows exponentially. Later, the interfor a multilayer system by Yang and Zhdfigpy comparing
face evolves into bubbles of lighter fluid and spikes ofthe compressible growth rate with that corresponding to an
heaV|er f|UId penetratlng the Opposed f|UId. If the |n|t|a| In- incompressib'e System Obtained%oc_ The increase in the
terface is randomly perturbed then bubbles and spikes Qfrowth rate asy decreases can be also explained using the
different sizes are generated. Mathematically, the Rayleighenergy principle, as a special case of the comparison theorem
Taylor instability is an ill-posed problem and the dependencgn the calculus of variation®
on initial conditions is still an interesting questién. On the other hand, Shdrfinds a stabilizing effect of
The theory for the linear stage for incompressible fluidscompressibility. Moreover, numerical results for late time
agrees well with the experimerftS.n the absence of surface growth seem to indicate that (the constant of proportional-
tension and viscosity, the growth rate increases |ndef|n|tely[y in the quadratic law for the rate of growtncreases with
with' the \(vav_enumber. This trend is changed by the presengge speed of sountd, so that compressibility would have a
of viscosity, in which case the growth rate has a peak valugiapjlizing effect. Bakét found both stabilizing and destabi-
and decreases towards zero for large wavenumbers. On thiging effects of compressibility in the linear regime, how-
other hand, the presence of surface tension stabilizes pertysyer his results were based on previously derived formulas
bations with the Wavenum_b_e_r larger than a critical value. using different assumptions than ideal gas. The role of com-
The role of compressibility on the development of the y assipility on the instability growth is thus not yet settled.
Rayleigh—Taylor instability between inviscid fluids has beeny;oreover. to the best of our knowledge no study of the ef-
fects of compressibility in the linear regime for viscous fluids
dElectronic mail: livescu@lanl.gov has been performed. Additionally, there is no systematic
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study of the effects of surface tension and finite size domaimatic viscosity,u, and thermal conduction coefficient, are
in the compressible case. considered constant. Equatiofif)—(3) should be supple-

In this paper we resolve the apparent contradiction bemented with equations of state for the pressure and internal
tween the stabilizing and destabilizing character of com-energy. For each fluid, the specific heats are assumed con-
pressibility for ideal fluids. We show that compressibility canstant,p=RpT ande=c,T, whereR is the gas constant and
be characterized by two parametens,and the speed of c,=R/(y—1) is the specific energy at constant volume.
sound, with opposing influence on the instability growth.With these assumptiores=p/p(y—1) and the energy equa-
Moreover, asy or the speed of soun@aried by changing the tion becomes
equilibrium pressure,, at the interface while keeping the

interface equilibrium density constarimcrease tae, the lim- P yp%— U ﬁﬂy— 1)r 9y
iting incompressible flowsand the bases of comparigaare ot X Kox, Ko,
different. The compressible growth rate is bounded by the
. . ) J aT
growth rates obtained for these two incompressible flows +(y=1)—|N—]. (4)
which have exponentially varying and constant density, re- IX Xk
spectively.

A physical explanation for the decrease in the growthA. Zeroth-order equations
rate asp., decreases can be formulated based on the influ-
ence ofp, on the local Atwood number. As the interface
develops, the heavier fluid reaches regions of larger an AT o S :
larger densities of the lighter fluid while the lighter fluid SauiPrium (‘0" ) state, withu=0. Then the governing equa-

. " . . tions reduce to
reaches regions of smaller densities of the heavier fluid. The
local Atwood number in these regions away from the initial apo

The two fluids are assumed initially at rest and the pri-
qary variables are written as small perturbations around the

position of the interface depends @g, since the equilib- ot )
rium density profile depends gm.. Using the equilibrium

density provided below, it can be shown that the local At- ;5 o IPo

wood number is lower for the points on the interface above I —po9, rYae WZO’ (6)
the initial position, while it is higher below, compared to a 1 2 3

system at highep., (less compressible However, the de- 9Po P aTo

crease inp,, leads to a larger change in the local Atwood W:(Y_ 1)(9_)(1()\&71)' W

number above the initial position of the interface. The overall

effect would be a decrease in the average Atwood numbefyoreover, the zeroth-order variables are assumed to be in
thus offering an intuitive argument for the decrease of thesteady state, so thap,/dt=0 andT, andp, are continuous
growth rate with decreasing... Nevertheless this argument across the interface. For infinite domain or finite size domain
might break for small domain sizes and the validity of thejn x, direction with adiabatic walls, the energy equation

results for finite size domains is discussed. The influence ofjelds T,=constant. Consequently, the equilibrium state is
surface tension and viscosity on the growth rate are alsgjven by

considered.

Pe g
Pom=15 T €XP — 5= X1/, 8
RmTO RmTO
Il. LINEARIZED EQUATIONS
The case of two superposed compressible ideal fluids _ _ 9
. ) : : Pom= P €X X1 ] 9
separated by an interface xat=0 is considered. The fluids RmTo
are subject to a constant gravitational acceleratign
—(—g,0,0). For each fluid, the motion is governed by the ~ To=constant, (10

continuity, momentum transport, and energy transport equasyere p., is the unperturbed pressure at the interfage (

tions =0) andm=1, 2 denotes the material 1 or 2, with material
ap  dpuy 0 L 2 chosen to be above material 1.
ot axe @ . .

B. First-order equations

Ipui | Ipuit =— P ﬂ—pg@l, 2) The interface between the two fluids is perturbed with an
Jt Xk IXi - X X, andxs dependent perturbation. The location of the inter-
(?pe+ peu, auk+ oy . p oT ; facci is described by the ffunctioms(xl,_)(2,xd3c,it)d witrr]] _
i . paxk Tjkaxk x| N o) (3)  axs/at=u;. Moreover, a surface tension is added at the in-

terface between the two fluids. The first order linearized
wherep is the densityy; the velocity inx; direction,p the  equations are obtained as
pressureg the specific internal energy, arfidthe tempera-
ture. The viscous stress is assumed Newtoniay, ap
‘ —+ + =
= w(au; /9%, + au; 1%, — (213) (9uy /%) &), and the kine- ot TPoA+UIDPo=0, (1)
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M__p A i N 2 DA =-D K2T.8 e 18
po —~ —Dp—pg M&Xj % Uj|—3zm ponu;=—Dp—gp s0(Xq Xs)na (18
(92XS (92XS ponuz= —ikap, (19
+ —
Es: TS( IXydXy  IXgdXg A(x1=x9), (12 _

ponuz=—iksp, (20

Uy ap d [ du, auj) 2 A
e by — | —+ |- — np=—ypoA+u , 21
PO 5t ax, P axj(axj %y 3% axy’ (13 P= 7 YPoA T U1P0d @

where A=Du;+i(koup,+ksuz) and k?=k3+k3. After

Po%: _ 5_D+Mi(% %) _ EM% (14) eliminatingp, A, u,, andus from the above equations, an
at dxz T OXj\ 0% dX3] 37 dXg equation foru, is obtained as
®_ A—uyDpy+ (y—1) — [ 2 15 D g/c’ D Pt
ot~ YPoA—UiDpot(y )axk %) (15 1D\ po 552 POT 2c? + pouy
where A=gu;/dx; is the dilatation andD denotesd/dx; . k2 k’g>  u, gDpo

Equations(11)—(15) should be supplemented by boundary + ﬁTsﬁ(Xl_Xs)ul_
conditions and jump conditions across the interface. These
conditions will be discussed at length in the next sections. =0, (22

By examining Eqs(11)—(15) it should be noted that in wherec=\7(po/po) is the speed of sound. The jump con-

the abs_ence of heat diﬁusior), the limit _Of incompressibleision at the interface can be obtained by integrating (28)
ﬂ.OW (4=0) can be qbtamed either by |eFtIng—>oo (as con- over an infinitesimal element of; which includes the inter-
sidered by the previous authprmsr by letting p.,— (note

that since the equilibrium density at the interface should not

be affected by the change in pressure, the equation of state g/c?
implies To— in this casg In the latter case the equilibrium Usd| p0k2+—r12/c2 n
density becomepy= constant, while in the former the expo-

nential variation is still allowed. Therefore, the incompress- =0, (23

ible limit (and the base of comparison for the rate of grgwth

is different in the two cases. In the next sectigrandp,. are  Where 5f=f, —f_, with f, =f(xs+0), f_=f(xs—0), is
considered as independent parameters, both affecting tfiBe jump of a quantity across the interface. The subscrspt
compressibility of the flow. The inviscid, infinite domain and denotes the value which a quantity, continuous at the inter-
no surface tension case will be examined first. Then the inface, takes ak;=Xs.

fluence of finite size domain, surface tension and viscosity On each side of the interfacec?® and Dpy/pg

on the results obtained will be investigated. The nonzero heat —9/RT, are constant, so that E(R2) becomes

diffusivity case was also considered, but the results were

po— Uy
n%c? k?+n?/c? n?

R LIN L %5
p0k2+n2/02 n2 s¥s Snz pO

2 21,2

very close to the nondiffusive case and are not presented D?u, —y—ngul _ k2+n_+M u, =0,
here. mocz m c2 n%c2, m

(24)
. INVISCID CASE with the solution of the form u; =Aqexphy X))

In general, the linearized equations do not admit analyti-+BmnexpQ, x;), where

cal solutions. However, it is possible to obtain an analytical 5 5 >
solution in the absence of viscosity and heat diffusion. Fol- _ Y_rng+k \/1+ n N (ym—1)g Ymd
lowing the usual approacte.g., Ref. 2, we seek solutions L2m 2c2 k22, nc2, ak2ch’
whose dependence o3, x5, and time have the form (25)

Formula(25) for \;, was also obtained by Amald.The

coefficientsA,, and B, can be determined to a multiplying
wherek,, ks, andn are constants. For solutions having this constant from the conditions that, vanishes at the rigid

exp(i(kox,+kaxg) +nt), (16)

dependence, Eg$l1)—(15) with ©=0, A=0, become boundaries located a; = —1, andx,=1, and that it is con-
tinuous over the interface. After replacing in the jump
np=—poA—u;Dpy, (170  condition(23), a dispersion relation can be obtained as

N2=F1F,[ a,y(y1+N°May) — a1 y1( v+ N°May) = T( v+ n?May) (v, +n?May) /[ ay y1( v+ n°May)

X[\, €XpNg,L1) =N, @Xp(Np, L 1) IF o= apya(yi + NP Mag)[ Ny, exp(— Ay, Lo) = ho, €Xp(— Ay, L) IF 4], (26)
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where the nondimensional quantities are defined%asn?/kg, M =g(py+ p2)/Kp.., Te= Tk?/g(p1+p2), Lm=Klm, E,%
=12, [k=amM2+ 1+ (Uym)n*amM +[(ym— 1)/ yml(@mM/n?) + apM?/4, Fi=expQy Li) —exploLs), and Fy
=exp(—)\lsz)—exp(—)\zsz). The densitiep=p../R; Ty and p,=p../R,T are the values op, on the two sides of the
interface andy,,= p.,/(p1+ p2)-

Relation(26) represents a generalization of the dispersion relations obtained by previous authors. It includes the effect of
a finite size domain and surface tension, and makes no isentropic assumptian, Egr— the dispersion relation becomes

ayya(y1+n?Mag) —agy1( v, +n°May) — Ts(?’l"'n May)(y,+n? Maz)

n?= (27
ayy1(yo+n? MaZ))\l —apyy(y,+n? Ma’l))\Z

As explained above, the incompressible flow limit a; i a?  a?
(A=0) can be obtained either by letting,—~ or y—~. As n2~ ’2 1+M||—— —) ajay— ?(—+ —)
p.—, the flow approaches incompressible flow with con- 72 LR
sti\allg';]dbensny, for which the nondimensional rate of growth is Mana ( 1 - i) M( yi—1 o y,—1 az”
g Y . e Y1 72 2 Y1 ! Y2 2
—2 ag—ay—Ts M [ y,—1 -1
n'c= , 28 - Y1 2, Y2 2
! aq COtf(Ll)-f- ay COt}’(Lz) ( ) 2 ( Y1 a1+ Vo sz) ' (31)
which for infinite domain becomes’ 2= a,— a;— T2 On
the other hand, ag—, the equilibrium flow has still expo-
nentially varying density, with the dispersion relation For y;=v,=1 the relation derived by Plesset and
o Prosperettf is recovered. In general, foy;, y,=1, it can
N"2=FF [ ap—ay— T/ be shown that relatio31) implies n?<n’? for any combi-

nation of parameters, with the constraint>p,. Moreover,

N N N N i
[aa[N1, exp(h'y L1) —Np, exp(Ns Ly) TR, Fig. 1 shows thah? decreases s, decreases. It should be

_az[ﬁl exp(—ﬁl L,) noted that the same effects of decreagingon the nondi-
2 2 mensional growth rate can be obtained either by increasing
— N, exp(— N L) JF1]FYFS, (299  or decreasing, with all other parameters kept constant. In

other words, compressibility effects are more important at
where )\il%zamM/Zi \/1+amM/n”i2+aﬁ1M 2/4 and F! . larger values ofg and lower wavenumbers, which is sup-
are definéd using?l ). The parameteM is related to the ported by the numerical solutions of the dispersion relation
exponent in the formula for the unperturbed dens;iar/n presented in Fig. 1.

oo . For largeM and no surface tension, it follows from the
= pm eXP(—Maykxy). For infinite domain and no surface ten- di . lation that
sion EQ.(29) reduces to the formula derived by Bernstein ISpersion refation tha

and BooRk?
n"2=—Maja,+ M%aiad+(a,—a;)? (30
l T T T T
and |t is easy to show that"?<n’? for M>0 and n"? l ! [ — poonstan
....... Y= 1=
2 asM—0. 0.8 o Y1=1vvz=10
In the dispersion formula for the compressible cgse. 72 N . 7,510, 1,21
(26)] the decrease ip., is equivalent to an increase M at 0.6 4 — |- N
. 2 i At=0.5
y constant. Thus, for the compressible caderepresents a  p/kg
measure of the compressibility effects on the rate of growth. 0.4
On the other hand\l is proportional to the ratio between the it
wavelength of the initial perturbation and the density expo- 0.2 =/
nential change length scale. For small valuesMf this
lengthscale is much larger than the wavelength of the initial 0

perturbation, and the rate of growth approaches the incom
pressible, constant density result.

_For infinite domain, an apprOXimat_e relation for, FIG. 1. Nondimensional rate of growth as function oM kp../g(p,
valid to orderO(M) for small values oM is +p,) for different values ofy; and y,.
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ﬁ2~i (az_al)z . (32)

v2—1 y1i—1 s 5 Y1Y2— 2712y, +2
ajan| ay + ay + ajtas5+2 aqay
Y2 Y1 Y172

A further reduction in the rate of growth can be obtained bycreases. However, similar to the incompressible case, the de-

increasing the adiabatic exponents. At the limit, whgn  crease im is less significant whel, is decreased. There-

¥2—, the nondimensional rate of growth becomes fore, for L;<L, the growth rate varies more whem, is
changed, so it is more sensitive to the change in compress-
ibility.

(33 For the extreme case whdn,<1 (domain size small
compared to the wavelength of the initial perturbatiand

which is the same as that obtained from form(®) for ~ v1~1 it is possible, as Fig.(B) shows, that the compress-
large M by Bernstein and Bodk and Turnet® In general, ible growth rate becomes larger than the constant density
for finite values ofM it can be showtt*®that increasing the incompressible growth rate foM smaller than a critical
ratio of specific heats leads to a decrease in the rate ofalue. Numerical solutions of the dispersion relat{@f) for
growth, also supported by Fig. 1. However, the rate ofa large range of parameters indicate that the curve&an
growth has different sensitivities to the changeyefandy,. intersect only once the ling?=n’2. Therefore, an analytical
Thus, as Fig. 1 shows, the change in the ratio of specifi¢ongition for the existence of the overshoot can be found by
heats of the lower fluid leads to a larger change.ofhere- letting M—0 (in which case the dispersion relation simpli-

fore, the rate of growth is more sensitive to the_chan_ge_l ies considerablyand imposing_12>ﬁi2. After some algebra
compressibility of the lower fluid. Moreover, as Fig. 1 indi- ne obtains

cates, these results are also sensitive to the value of the A
wood number. For large values of the Atwood number the

results obtained for the compressible cases show little sensi-
tivity to changes in the ratios of specific heats and the rate of
growth obtained for the compressible case is close to the
incompressible variable density result. Nevertheless, at small

1 (az—ay)?
n2~ —

M 2 '

Atwood numbers and for larg®l, the values ofy; and vy, 0.5
become important in determining the rate of growth. In ad- 04
dition, the relative difference between the growth rates ob- 5
tained for the two limiting incompressible flows increases as n'/kg 0.3
the Atwood number decreases, so that compressibility effects 0.2
are larger at small Atwood numbers.

In conclusion, the instability growth rate for a compress- 0.1
ible flow (n) in the inviscid, infinite domain and no surface

tension case is bounded by the growth rates of the corre-
sponding incompressible flows obtained for uniformy )
and exponentially varying density{), so thatn/<n<n; .

As p.. increasegso that the flow becomes less compress- 0.04 — ; ; —
ible), n increases toward®/, while as y increases(so B ®) |
that the fluid becomes less compressible decreases 0.03 L=
towardn;’. B o
0.02 [/ —
A. Influence of finite size domain n/kg 37: ——  #, constant
1,‘.’:: ....... =1, 1= -
For the case in which the domain is bounded by rigid 0.01 }_ - yEhyp=10 |
boundaries located at=—1; andx=1,, the growth rates ;| L
obtained for constant density incompressible flow and in- ] o ’I'”'I h : ’711 '
compressible flow with exponentially varying density are 0001 02 03 04 05

given by EQs.(28) and (29), respectively. Figure (2) pre- M.
sents the growth rate as a function of the nondimensional
parameteM for different domain sizes. For domain sizes not FIG. 2. Finite size effect on the nondimensional rate of growéh.No

. _symbols curves represent the compressible case wjthy,=1.4, open
very small compared to the Wavelength of the perturb":"tlo%ymbols the corresponding constant density incompressible case and closed

the nondimensional growth rate is still boundedrt{)pndnf’ symbols the corresponding variable density incompressible ¢asd.;
and the rate of growth decreases as the domain size de-0.1,L,=0.05. All cases have At0.5.
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«a, cothL1+ a, cothL -1 a2 0.5 T T T{ - pg=constant
: 2 2| =12(D1+At+ 2(1’16!2 o L"\_\ ““““ 1,=1,1,=1
2 Y1 n’; 04 . B R
’ e RS P =1, %,=10
a; ap cothL,+cothL, yo—1 a3 o °G — W
X — :(1)2 0.3 — :: “,A.\g\ 1
Y1 V2] aa cothL1+ ay COthLz Y2 n ’i2 nz/kg L KRN i
02 IR
At ( Dps g ) 0 (34) ": E
— | —®,+— >0,
2\7n ! Y2 2
where ® =L, cotl? L,—cothL,—L, varies from 0 to—1

aslL,, increases from 0 tec. Consistent with the numerical
results, condition(34) can be fulfilled only for small values
of the domain size of the upper fluid and ratio of specific
heats close to 1 for the lower fluid.

FIG. 3. Compressibility influence on the nondimensional rate of growth in
the presence of surface tension, Tar/g(p,+ p,) =0.78 nf. All compress-
ible cases have(p;+p,)/p.=4 m ! except the open symbol case for
B. Influence of surface tension which g(p1+ p,)/p=0.4m L.

The presence of surface tension tends to inhibit the

growth of the instability. Moreover, for the incompressible yith the coefficients; given in the Appendix. The continu-

; it — 1/2 2 . . . .
case there is a critical wavenumber=[(p2—p1)9/T]™, ity of the tangential viscous stress over the interface can be
so that the arrangement is stable kork;. By imposingn  \yritten as

=0 in the dispersion relatio26) it can be seen that the 5 )
critical wavenumber remains the same as in the incompress- S(u[DA—D%u;—ku,])=0. (37)

ible case. However, folfs#0, the wavenumber appears as An expression folDA in terms of the derivatives afi; is

an explicit parameter in the dispersion relati@®) so the  provided in the Appendix. The jump condition at the inter-
variations ofp.. andk are no longer equivalent. Neverthe- face can be found by eliminating, u,, andus from the
less, at eactk, the nondimensional compressible rate of momentum equation and integrating the resulting equation
growth obtained for infinite domain is still bounded by?  over an infinitesimal element of;, which includes the inter-

andn”?, as Fig. 3 shows. However, the lower limit is ap- face

proached differently ag; or vy, increase tox. Thus, the

2
variation in the compressibility of the lower fluid is more (_p+ ﬁD2>(A—Du1) + k—&(,uDul)
important at lower wavenumbers, while the variation in the n n
compressibility of the upper fluid is more important at higher K2
wavenumbers. =— ?[g(PZ_Pl)_kZTs]us
2k?
IV. EFFECT OF VISCOSITY - T(“Z_f“l)(A_ Duy)s. (38

Consider the case of two viscous fluids, bounded by twg-, , g condition(38) reduces to the condition derived for

rigid surfaces a§<= __Il andx= |_2' Following the previous_ e incompressible case in Ref. 2. In the Appendix an expres-
procedure, the linearized equations can be reduced to a sin &N for D2A is provided. Sincau, can be found only to a

fourth order ordinary differential equation in, of the form multiplying constant, the boundary conditions are supple-
A,D%u;+A;D3u;+A,D?%u;+A;Dus+Aqu;=0, (35  mented with the specification af, or one of its derivatives

-~ . . . at one point inside the domain. Then E85) together with

where the coeficients; are given in the Appendix for the the boundary conditions described above form a closed set of

compressible case and the two incompressible limiting Case%’quations from whichu, on each side of the interface and

ngever, .only for the uniform dgpsﬂy mcompreSS{bIe CaShe rate of growthn can be determined. For all cases consid-
this equation has constant coefficients and an easily derived

. : I eredl, andl, are large compared to the wavelength of the
analytical solution. The boundary conditions for E85) are . ... 1 2 ° 9 b S gth ot U
. ; initial perturbation so the configuration is close to the infinite
ui=0 at x=-1; and x=1,, u; and tangential viscous

. ) . ~._ domain case. Equatio was integrated on each side of
stresses continuous at the interface, and a jump conditio q (85 9

found from the integration of the governing equation over{F]e domain using a fourth order Runge-Kutta scheme. In
9 9 g eq rder to determin@ andu, from the matching conditions at

the interface. For the compressible case, the condition th;#I . - . )
. o ) . .. the interface, a multidimensional secant mettiBdoyden’s
tangential velocities vanish at the rigid boundary can be writ-

ten asA—Du;=0 atx=—1, andx=1,, while the continu- method was employed.

. . . Figure 4 presents numerical solutions of the viscous lin-
ity of u, andus at the interface leads to the continuity of . : . .

: . : . earized equations for different Atwood numbers. Consistent
A—Du,. The divergence of the velocity fluctuations is

ven b with the previous results, the compressible rate of growth is
9 y bounded by the incompressible rates of growth obtained for
A=B3D3%u;+B,D?u;+B;Du;+Byuy, (36)  uniform density and exponentially varying density cases.
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guish between the stabilizing and destabilizing character of
compressibility. For infinite domains, the growth rateb-

0.4 - — tained for the compressible case is bounded by the growth
rates obtained for the corresponding incompressible flows
T 0.3 with constant and exponentially varying density, and this re-
n(gn,) 02 sult is not affected by the presence of surface tension or
il viscosity. For ideal gases with zero heat diffusivity, the lim-
0.1 iting incompressible flow(defined bydu;/dx;=0) can be
3 attained either by increasing the ratio of specific hegtar
0 the speed of soun@aried by changing the equilibrium pres-
sure at the interface at constant equilibrium density at the
interface. The equilibrium density distribution for the limit-
ing incompressible flow is different in the two cases. More-
0.1 . — over, the two parameters have opposing influence on the rate
G Ey—— of growth. As the speed of sound is increased, the rate of
0.08=/ 0O |- A =14 ] growth increases towards the value obtained for the corre-
";' — W sponding constant density incompressible flow, whileyas
- increasesn decreases towards the value obtained for the
(gn,) X corresponding incompressible flow with exponentially vary-
0.04 i TR ing density. The presence of heat diffusion was also consid-
0.02 e ered, but the results were very close to those obtained for the

nondiffusive case and were not presented here.

The equilibrium density for a compressible flow varies
exponentially withx,; and depends omp.,. Therefore, the
local Atwood number changes as the interface moves away

F1G. 4. Growth rate d g " ber for vi e from the original position. Compared to a flow with a higher

. 4. Growth rate dependency on the wavenumber for viscous s. .

The compressible and incompressible variable density caseshhav@ 1. value of P (Iess compressm]eth_e local AtV,VOOd number

(b) At=0.1, compressible and variable density incompressible cases showddecreases for the points on the interface situated above the

with thick lines correspond tM =0.1 and with thin lines td=0.01. initial position, while it increases for the points on the inter-
face situated below the initial position. However, the change

M its behavior is similar to th Il Kk . in the local Atwood number is larger above the initial posi-
oreover, Its behavior IS similar to the well known Incom- tion of the interface, so that the overall effect would be a

pressible constant density result. It has a peak at some CrltHecrease of the average local Atwood number. This offers an
cal wavenumber and decreases towards zero as the waw

ber b | H the locati f th K iHtuitive argument for the decrease of the growth rat@as
numboer becomes farge. Fowever, the location of the peak I3, o550, Moreover, this argument suggests that the bubble
different compared to the incompressible case, with the hig velocity decreases, while the spike velocity increases for

est difference at small Atwood numbers. Here we shoul ore compressible flows. On the other handyatecreases
note a qualitative difference between the results obtained fo[rth fluids are more combressible however ’the equilibrium

the constant density incompressible case and those obtaina nsity and pressure do not change. Therefore, as the heavier

tgséze Af:togqn?;ﬁszlt\t:\lzozngu;abr:aargleth?aegfilfiﬁz;ln\fv%r:/]g;i?bbekrﬁUid moves towards regions of higher pressures, its volume
) ' decreases and the volume change is larger for more com-

decreaseg with Atwooq ngmber for the constant density in; ressible fluids, so that the spike velocity decreases. Simi-
compressible case, while it increases for the other two case%rly for more compressible fluids the bubble velocity in-
Moreover, as shown in the previous sections, the largest di(’:rea'ses If the two fluids have different values forit is
ferences n the inviscid rate of growth compared to the CONshown that the growth rate is more sensitive to the change in
stant density incompressible case are obtained at small WaViie ratio of the specific heats of the lower fluid. However, at
numbers and small Atwood numbers. It is expected then tha} §

for the Vi ‘ Il Atwood b h lati arge Atwood numbers the rate of growth is little influenced
dq;f e V'S(;)OL,['S cas?ha srtna ¢ WO(:h nkl;tm. erds,f ::Ahre a 'V%y the values ofy; and vy, andp., becomes the main com-
fierence between the rate of growth obtained for the comy ressibility parameter. In addition, it is shown that compress-

pressible and incompressible cases considered will be lar hility effects are more important at small Atwood numbers.

gi}’ also cohnfirlrgebd by Figs.(a) and” I;Eb)' AIthouhgh this For domains bounded by rigid surfaces, the compressible
fierence should become very smaltidsapproaches zero, growth rate is still bounded by the two incompressible

Fig. 4(b) shows that, for small Atwood numbers, it persists atgrowth rates described above, except for the extreme case

smaller values oM. when the domain size of the upper fluid is small compared to
the wavelength of the initial perturbation ane=1 for the
lower fluid. In this case, the compressible growth rate can
The effects of compressibility on the growth rate of become larger than the growth rate obtained for the corre-
Rayleigh—Taylor instability between two immiscible ideal sponding constant density incompressible flow for values of
fluids are examined in the linear regime. The results distinthe compressibility paramet®f = (g(p1+ p»))/kp.. smaller

V. CONCLUSIONS
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than a critical value. An analytical condition for the existenceoffers a systematic approach for examining the effects of
of this overshoot is provided. In general, the results showcompressibility which could represent a starting point for
that the compressible growth rate varies more when the rigidnalyzing different or more complex configurations.
boundary of the lower fluid is closer to the interface than the

rigid boundary of the upper fluid, so that it is more sensitiveACKNOWLEDGMENTS
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numbers below this critical value the general result presented

above remains valid. However, the presence of surface ternkppeNDIX: EQUATIONS FOR THE VISCOUS CASE

sion modifies the sensitivity of the growth rate to a differen-

tial change in the value of for the two fluids. At smaller Following the usual procedure for the incompressible,

wavenumbers, the change infor the lower fluid is more constant density case, the variables are nondimensionalized

important for the variation of, while the opposite holds true USINg _ 1ho=(g%v..)"** as time scale and Hy

at higher wavenumbers. =(g/v2)~*"® as lengthscale. The compressibility parameter
Numerical solutions of the linearized equations showM is defined byM=g(p;+ p,)/Kop-.. For simplicity the

that for viscous compressible fluids, the growth rate behavelkinematic viscous coefficient is considered continuous over

in a manner analogous to the incompressible growth rate. e interface, so that,/p1=u2/py, with py and u, con-

has a most unstable wavenumber and decreases towards ZéF@nt on each side of the interface. The value of the kinematic

at larger wavenumbers. Moreover, both the growth rate andiscous coefficient at the interface is denoted:by.

the most unstable mode are bounded by the values obtained The scaled equations far; andA on each side of the

for the corresponding constant and variable density incominterface can be written as

pressible flows. For the constant density incompressible flow

it is known that the most unstable mode moves to small

wavenumbers as the Atwood number is decreased. The invis-

cid results presented in this paper show that the effects of B81A=B3D%u;+B,D?u;+B;Du;+ B, (A2)

compressibility are more important at small wavenumber§yhere the coefficientévith the indexm denoting the side of

_and small Atwood n_umbers. C_on5|stent Wlth_ th_ese results, ifhe interface suppressed for simpligiggre given by

is found that for viscous fluids compressibility becomes

A,D%u;+AzD3u;+A,D%u;+ A Duy+Agu =0, (A1)

more important at small Atwood numbers. For small enough ~ A4=B3B182, (A3)
Atwqod number.s, the difference b_etween_ th(_a compressible As=(DBs+B,) B18,— Bsw, (A%)
and incompressible growth rates will remain sizable at larger
values of the equilibrium pressure. A,=(DB,+B;)B:82+ exp(aMx),Bi— Brw, (A5)
An interesting question raised by the results presented in 2
this paper is if they remain valid in the nonlinear regime for _ _ P
single and/or multimode initial perturbation. Our preliminary A1=(DB1+Bo) 1~ 7= Bae, (A8)
numerical results seem to indicate a similar influence.of 2
and y on the growth ratéand on the spike and bubble ve- Ao=DBoB1B;~ (N+K*explaMx))B1~Bow, (A7)
locities) to that found in the linear regime. Moreover, even explaMXx) 4
for large values of the equilibrium pressure so that the early B3:,B—( r+ §,33), (A8)
time results are close to the incompressible flow results, the 2
late time spike and bubble velocities become different than aM explaMX) 4
in the incompressible case. Another interesting question is Bo=————F—— 7—(27— §) ,33}, (A9)
about the range of the amplitudes of the perturbation for B2
which the growth rate agrees with the linear theory predic- n [ a®M2exp aMx) 1
tion. Again, our preliminary numerical results seem to indi- ~ By=——|—————| y—1— —/33)
cate that the range of validity of the linear assumption re- B3 n 3
mains approximately the same as in the incompressible case. 4 K2
These results will be published elsewhere. +Ba| vt 383 1+ —expaM x)) : (A10)
This study was concerned with the effects of compress- n
ibility on the instability growth between immiscible fluids anM 1
with uniform equilibrium temperature. It does not cover Bo=—— ﬂ3(y—l—§ﬁ3)
many of the configurations of practical interest, for example 2
the presence of an equilibrium temperature gradient, a more )
. . ) : . Mk28,
general equation of state or diffuse interfaces, which might +(2y—1)aMK2 explaMx) + 1 (A11)
be important in certain applicatiofs? However this study an?
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ya?M?n exp(2aMx) aMn|[ 1
DB;= . , (A12) DBy =~ | a®m® exp2aMx)| 3y—2~ 2 B
B2 B2
a®m®n exp(2aMx) 6y—4
DBZZ 3B3 ( 7_3_ 3 B3)u 5 ( 1 k2 3 ( )
2 + ——y— , Al4
(A13) PP\ 377 2
|
OB a®M?n| a®M? exp(2aMx) - 2 1) oM K2 ext 2aeM 1 k>
T g n (y=D v 383~ (2y=1)aMk“exp2aMx)| y— 3 B3 +m :
(A15)
_ n | &®M?exp(aMx) L L 1 o 14 k2+4k2 " ALS
ﬁl_ﬁ_% — Y (r=Dl»y 3P3| B2 Ly 3y SXAaMx) ||, (A16)
Bo=7v+3Bs, (AL7)
Bz=aMnexpaMx). (A18)
The equation foDA can be written as
aMn| y— 1
=3 TA—exp(aMx)D2u1+ﬁDu1+(n+k2exp(aMx))ul, (A19)
2
while the equation foD?A is
aMn al\/l(y—l)( 1 ) (2y—=1)M eXF(aMX))
D?A= —1— = B3| A—expaMx)D3u + | —— D?u
2, ng, Y 383 o )D7u | o 2, 1
+(aM< L 13 4 K2 explaM ))D . aMn( L 1 )+(2y—1)a|v|k2exp(a|v|x)>
— | y—1-= n expaMx) |Duy+| ——| y—1—= Uy .
ns, Y 3P3 1 B, Y 33 nB, 1
(A20)
|
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