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The linearized Navier–Stokes equations for a system of superposed immiscible compressible ideal
fluids are analyzed. The results of the analysis reconcile the stabilizing and destabilizing effects of
compressibility reported in the literature. It is shown that the growth raten obtained for an inviscid,
compressible flow in an infinite domain is bounded by the growth rates obtained for the
corresponding incompressible flows with uniform and exponentially varying density. As the
equilibrium pressure at the interfacep` increases~less compressible flow!, n increases towards the
uniform density result, while as the ratio of specific heatsg increases~less compressible fluid!, n
decreases towards the exponentially varying density incompressible flow result. This remains valid
in the presence of surface tension or for viscous fluids and the validity of the results is also discussed
for finite size domains. The critical wavenumber imposed by the presence of surface tension is
unaffected by compressibility. However, the results show that the surface tension modifies the
sensitivity of the growth rate to a differential change ing for the lower and upper fluids. For the
viscous case, the linearized equations are solved numerically for different values ofp` andg. It is
found that the largest differences compared with the incompressible cases are obtained at small
Atwood numbers. The most unstable mode for the compressible case is also bounded by the most
unstable modes corresponding to the two limiting incompressible cases. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1630800#

I. INTRODUCTION

The Rayleigh–Taylor instability, which occurs due to the
gravitational instability of a heavy fluid overlying a lighter
fluid,1,2 is of fundamental importance in a multitude of ap-
plications ranging from the turbulent mixing in inertial con-
finement fusion3,4 to astrophysical phenomena.5,6 Small per-
turbations of the interface between the two fluids grow to
large amplitudes. At early times, for small enough initial per-
turbations, the flow can be described by the linearized equa-
tions and the amplitude grows exponentially. Later, the inter-
face evolves into bubbles of lighter fluid and spikes of
heavier fluid penetrating the opposed fluid. If the initial in-
terface is randomly perturbed then bubbles and spikes of
different sizes are generated. Mathematically, the Rayleigh–
Taylor instability is an ill-posed problem and the dependence
on initial conditions is still an interesting question.7

The theory for the linear stage for incompressible fluids
agrees well with the experiments.2,8 In the absence of surface
tension and viscosity, the growth rate increases indefinitely
with the wavenumber. This trend is changed by the presence
of viscosity, in which case the growth rate has a peak value
and decreases towards zero for large wavenumbers. On the
other hand, the presence of surface tension stabilizes pertur-
bations with the wavenumber larger than a critical value.

The role of compressibility on the development of the
Rayleigh–Taylor instability between inviscid fluids has been

studied by several authors,7,9–16however, its effect compared
with the incompressible case is still under debate. The earlier
studies of the linear stage dealing with ideal fluids9,10 intro-
duced simplifying assumptions and are strictly valid only
when g51. Bernstein and Book12 and Turner16 removed
these assumptions and studied the effects of compressibility
as a function ofg. They found that these effects are more
important at small wavenumbers and the rate of growth in-
creases asg decreases. They concluded that compressibility
has a destabilizing effect. The same conclusion is obtained
for a multilayer system by Yang and Zhang14 by comparing
the compressible growth rate with that corresponding to an
incompressible system obtained asg→`. The increase in the
growth rate asg decreases can be also explained using the
energy principle, as a special case of the comparison theorem
in the calculus of variations.18

On the other hand, Sharp7 finds a stabilizing effect of
compressibility. Moreover, numerical results for late time
growth seem to indicate thata ~the constant of proportional-
ity in the quadratic law for the rate of growth! increases with
the speed of sound,17 so that compressibility would have a
stabilizing effect. Baker11 found both stabilizing and destabi-
lizing effects of compressibility in the linear regime, how-
ever, his results were based on previously derived formulas
using different assumptions than ideal gas. The role of com-
pressibility on the instability growth is thus not yet settled.
Moreover, to the best of our knowledge no study of the ef-
fects of compressibility in the linear regime for viscous fluids
has been performed. Additionally, there is no systematica!Electronic mail: livescu@lanl.gov
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study of the effects of surface tension and finite size domain
in the compressible case.

In this paper we resolve the apparent contradiction be-
tween the stabilizing and destabilizing character of com-
pressibility for ideal fluids. We show that compressibility can
be characterized by two parameters,g and the speed of
sound, with opposing influence on the instability growth.
Moreover, asg or the speed of sound~varied by changing the
equilibrium pressurep` at the interface while keeping the
interface equilibrium density constant! increase tò , the lim-
iting incompressible flows~and the bases of comparison! are
different. The compressible growth rate is bounded by the
growth rates obtained for these two incompressible flows
which have exponentially varying and constant density, re-
spectively.

A physical explanation for the decrease in the growth
rate asp` decreases can be formulated based on the influ-
ence ofp` on the local Atwood number. As the interface
develops, the heavier fluid reaches regions of larger and
larger densities of the lighter fluid while the lighter fluid
reaches regions of smaller densities of the heavier fluid. The
local Atwood number in these regions away from the initial
position of the interface depends onp` , since the equilib-
rium density profile depends onp` . Using the equilibrium
density provided below, it can be shown that the local At-
wood number is lower for the points on the interface above
the initial position, while it is higher below, compared to a
system at higherp` ~less compressible!. However, the de-
crease inp` leads to a larger change in the local Atwood
number above the initial position of the interface. The overall
effect would be a decrease in the average Atwood number,
thus offering an intuitive argument for the decrease of the
growth rate with decreasingp` . Nevertheless this argument
might break for small domain sizes and the validity of the
results for finite size domains is discussed. The influence of
surface tension and viscosity on the growth rate are also
considered.

II. LINEARIZED EQUATIONS

The case of two superposed compressible ideal fluids
separated by an interface atx150 is considered. The fluids
are subject to a constant gravitational accelerationg
5(2g,0,0). For each fluid, the motion is governed by the
continuity, momentum transport, and energy transport equa-
tions
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wherer is the density,ui the velocity inxi direction,p the
pressure,e the specific internal energy, andT the tempera-
ture. The viscous stress is assumed Newtonian,t i j

5m(]ui /]xj1]uj /]xi2(2/3)(]uk /]xk)d i j ), and the kine-

matic viscosity,m, and thermal conduction coefficient,l, are
considered constant. Equations~1!–~3! should be supple-
mented with equations of state for the pressure and internal
energy. For each fluid, the specific heats are assumed con-
stant,p5RrT ande5cvT, whereR is the gas constant and
cv5R/(g21) is the specific energy at constant volume.
With these assumptionse5p/r(g21) and the energy equa-
tion becomes
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A. Zeroth-order equations

The two fluids are assumed initially at rest and the pri-
mary variables are written as small perturbations around the
equilibrium~‘‘0’’ ! state, withu[0. Then the governing equa-
tions reduce to
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Moreover, the zeroth-order variables are assumed to be in
steady state, so that]p0 /]t50 andT0 andp0 are continuous
across the interface. For infinite domain or finite size domain
in x1 direction with adiabatic walls, the energy equation
yields T05constant. Consequently, the equilibrium state is
given by
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where p` is the unperturbed pressure at the interface (x1

50) andm51, 2 denotes the material 1 or 2, with material
2 chosen to be above material 1.

B. First-order equations

The interface between the two fluids is perturbed with an
x2 andx3 dependent perturbation. The location of the inter-
face is described by the functionxs(x1 ,x2 ,x3 ,t), with
]xs /]t5u1 . Moreover, a surface tension is added at the in-
terface between the two fluids. The first order linearized
equations are obtained as
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where D5]uj /]xj is the dilatation andD denotes]/]x1 .
Equations~11!–~15! should be supplemented by boundary
conditions and jump conditions across the interface. These
conditions will be discussed at length in the next sections.

By examining Eqs.~11!–~15! it should be noted that in
the absence of heat diffusion, the limit of incompressible
flow ~D50! can be obtained either by lettingg→` ~as con-
sidered by the previous authors! or by letting p`→` ~note
that since the equilibrium density at the interface should not
be affected by the change in pressure, the equation of state
impliesT0→` in this case!. In the latter case the equilibrium
density becomesr05constant, while in the former the expo-
nential variation is still allowed. Therefore, the incompress-
ible limit ~and the base of comparison for the rate of growth!
is different in the two cases. In the next sectionsg andp` are
considered as independent parameters, both affecting the
compressibility of the flow. The inviscid, infinite domain and
no surface tension case will be examined first. Then the in-
fluence of finite size domain, surface tension and viscosity
on the results obtained will be investigated. The nonzero heat
diffusivity case was also considered, but the results were
very close to the nondiffusive case and are not presented
here.

III. INVISCID CASE

In general, the linearized equations do not admit analyti-
cal solutions. However, it is possible to obtain an analytical
solution in the absence of viscosity and heat diffusion. Fol-
lowing the usual approach~e.g., Ref. 2!, we seek solutions
whose dependence onx2 , x3 , and time have the form

exp~ i~k2x21k3x3!1nt!, ~16!

wherek2 , k3 , andn are constants. For solutions having this
dependence, Eqs.~11!–~15! with m50, l50, become
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where D5Du11 i(k2u21k3u3) and k25k2
21k3

2. After
eliminating p, D, u2 , and u3 from the above equations, an
equation foru1 is obtained as
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wherec5Ag(p0 /r0) is the speed of sound. The jump con-
dition at the interface can be obtained by integrating Eq.~22!
over an infinitesimal element ofx1 which includes the inter-
face
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whered f 5 f 12 f 2 , with f 15 f (xs10), f 25 f (xs20), is
the jump of a quantityf across the interface. The subscripts
denotes the value which a quantity, continuous at the inter-
face, takes atx15xs .

On each side of the interface,c2 and Dr0 /r0

52g/RT0 are constant, so that Eq.~22! becomes
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with the solution of the form u1m
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Formula ~25! for l1,2m
was also obtained by Amala.15 The

coefficientsAm and Bm can be determined to a multiplying
constant from the conditions thatu1 vanishes at the rigid
boundaries located atx152 l 1 andx15 l 2 and that it is con-
tinuous over the interface. After replacingu1 in the jump
condition ~23!, a dispersion relation can be obtained as
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where the nondimensional quantities are defined asn̄25n2/kg, M5g(r11r2)/kp` , T̄s5Tsk
2/g(r11r2), Lm5klm , l̄1,2m

5l1,2m
/k5amM /26A11(1/gm)n̄2amM1@(gm21)/gm#(amM /n̄2)1am

2 M2/4, F15exp(l̄11
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L1), and F2

5exp(2l̄12
L2)2exp(2l̄22

L2). The densitiesr15p` /R1T0 andr25p` /R2T0 are the values ofr0 on the two sides of the
interface andam5rm /(r11r2).

Relation~26! represents a generalization of the dispersion relations obtained by previous authors. It includes the effect of
a finite size domain and surface tension, and makes no isentropic assumption. ForL1 , L2→` the dispersion relation becomes
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As explained above, the incompressible flow limit
~D50! can be obtained either by lettingp`→` or g→`. As
p`→`, the flow approaches incompressible flow with con-
stant density, for which the nondimensional rate of growth is
given by
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which for infinite domain becomesn8 i
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2 On
the other hand, asg→`, the equilibrium flow has still expo-
nentially varying density, with the dispersion relation
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where l i
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2 M2/4 and Fm
i

are defined usingl i
1,2m

. The parameterM is related to the
exponent in the formula for the unperturbed densityr0m

5rm exp(2Mamkx1). For infinite domain and no surface ten-
sion Eq. ~29! reduces to the formula derived by Bernstein
and Book12
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2
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2 asM→0.

In the dispersion formula for the compressible case@Eq.
~26!# the decrease inp` is equivalent to an increase inM at
g constant. Thus, for the compressible case,M represents a
measure of the compressibility effects on the rate of growth.
On the other hand,M is proportional to the ratio between the
wavelength of the initial perturbation and the density expo-
nential change length scale. For small values ofM, this
lengthscale is much larger than the wavelength of the initial
perturbation, and the rate of growth approaches the incom-
pressible, constant density result.

For infinite domain, an approximate relation forn̄2,
valid to orderO(M ) for small values ofM is
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For g15g251 the relation derived by Plesset and
Prosperetti10 is recovered. In general, forg1 , g2>1, it can
be shown that relation~31! implies n̄2,n8 i

2 for any combi-
nation of parameters, with the constraintr2.r1 . Moreover,
Fig. 1 shows thatn̄2 decreases asp` decreases. It should be
noted that the same effects of decreasingp` on the nondi-
mensional growth rate can be obtained either by increasingg
or decreasingk, with all other parameters kept constant. In
other words, compressibility effects are more important at
larger values ofg and lower wavenumbers, which is sup-
ported by the numerical solutions of the dispersion relation
presented in Fig. 1.

For largeM and no surface tension, it follows from the
dispersion relation that

FIG. 1. Nondimensional rate of growth as function of 1/M5kp` /g(r1

1r2) for different values ofg1 andg2 .
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A further reduction in the rate of growth can be obtained by
increasing the adiabatic exponents. At the limit, wheng1 ,
g2→`, the nondimensional rate of growth becomes

n̄2'
1

M

~a22a1!2

2
, ~33!

which is the same as that obtained from formula~30! for
large M by Bernstein and Book12 and Turner.16 In general,
for finite values ofM it can be shown12,16 that increasing the
ratio of specific heats leads to a decrease in the rate of
growth, also supported by Fig. 1. However, the rate of
growth has different sensitivities to the change ofg1 andg2 .
Thus, as Fig. 1 shows, the change in the ratio of specific
heats of the lower fluid leads to a larger change ofn. There-
fore, the rate of growth is more sensitive to the change in
compressibility of the lower fluid. Moreover, as Fig. 1 indi-
cates, these results are also sensitive to the value of the At-
wood number. For large values of the Atwood number the
results obtained for the compressible cases show little sensi-
tivity to changes in the ratios of specific heats and the rate of
growth obtained for the compressible case is close to the
incompressible variable density result. Nevertheless, at small
Atwood numbers and for largeM, the values ofg1 and g2

become important in determining the rate of growth. In ad-
dition, the relative difference between the growth rates ob-
tained for the two limiting incompressible flows increases as
the Atwood number decreases, so that compressibility effects
are larger at small Atwood numbers.

In conclusion, the instability growth rate for a compress-
ible flow ~n! in the inviscid, infinite domain and no surface
tension case is bounded by the growth rates of the corre-
sponding incompressible flows obtained for uniform (ni8)
and exponentially varying density (ni9), so thatni9,n,ni8 .
As p` increases~so that the flow becomes less compress-
ible!, n increases towardsni8 , while as g increases~so
that the fluid becomes less compressible!, n decreases
towardni9 .

A. Influence of finite size domain

For the case in which the domain is bounded by rigid
boundaries located atx52 l 1 and x5 l 2 , the growth rates
obtained for constant density incompressible flow and in-
compressible flow with exponentially varying density are
given by Eqs.~28! and ~29!, respectively. Figure 2~a! pre-
sents the growth rate as a function of the nondimensional
parameterM for different domain sizes. For domain sizes not
very small compared to the wavelength of the perturbation,
the nondimensional growth rate is still bounded byn̄i8 andn̄i9
and the rate of growth decreases as the domain size de-

creases. However, similar to the incompressible case, the de-
crease inn̄ is less significant whenL1 is decreased. There-
fore, for L1,L2 the growth rate varies more whenp` is
changed, so it is more sensitive to the change in compress-
ibility.

For the extreme case whenL2!1 ~domain size small
compared to the wavelength of the initial perturbation! and
g1'1 it is possible, as Fig. 2~b! shows, that the compress-
ible growth rate becomes larger than the constant density
incompressible growth rate forM smaller than a critical
value. Numerical solutions of the dispersion relation~26! for
a large range of parameters indicate that the curven̄2 can
intersect only once the linen̄25n8 i

2. Therefore, an analytical
condition for the existence of the overshoot can be found by
letting M→0 ~in which case the dispersion relation simpli-
fies considerably! and imposingn̄2.n8 i

2. After some algebra
one obtains

FIG. 2. Finite size effect on the nondimensional rate of growth.~a! No
symbols curves represent the compressible case withg15g251.4, open
symbols the corresponding constant density incompressible case and closed
symbols the corresponding variable density incompressible case.~b! L1

50.1, L250.05. All cases have At50.5.
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whereFm5Lm coth2 Lm2cothLm2Lm varies from 0 to21
asLm increases from 0 tò . Consistent with the numerical
results, condition~34! can be fulfilled only for small values
of the domain size of the upper fluid and ratio of specific
heats close to 1 for the lower fluid.

B. Influence of surface tension

The presence of surface tension tends to inhibit the
growth of the instability. Moreover, for the incompressible
case there is a critical wavenumberkc5@(r22r1)g/T#1/2,2

so that the arrangement is stable fork.kc . By imposingn
50 in the dispersion relation~26! it can be seen that the
critical wavenumber remains the same as in the incompress-
ible case. However, forTsÞ0, the wavenumber appears as
an explicit parameter in the dispersion relation~26! so the
variations ofp` and k are no longer equivalent. Neverthe-
less, at eachk, the nondimensional compressible rate of
growth obtained for infinite domain is still bounded byn8 i

2

and n9 i
2, as Fig. 3 shows. However, the lower limit is ap-

proached differently asg1 or g2 increase tò . Thus, the
variation in the compressibility of the lower fluid is more
important at lower wavenumbers, while the variation in the
compressibility of the upper fluid is more important at higher
wavenumbers.

IV. EFFECT OF VISCOSITY

Consider the case of two viscous fluids, bounded by two
rigid surfaces atx52 l 1 andx5 l 2 . Following the previous
procedure, the linearized equations can be reduced to a single
fourth order ordinary differential equation inu1 of the form

A4D4u11A3D3u11A2D2u11A1Du11A0u150, ~35!

where the coefficientsAi are given in the Appendix for the
compressible case and the two incompressible limiting cases.
However, only for the uniform density incompressible case
this equation has constant coefficients and an easily derived
analytical solution. The boundary conditions for Eq.~35! are
ui50 at x52 l 1 and x5 l 2 , ui and tangential viscous
stresses continuous at the interface, and a jump condition
found from the integration of the governing equation over
the interface. For the compressible case, the condition that
tangential velocities vanish at the rigid boundary can be writ-
ten asD2Du150 at x52 l 1 andx5 l 2 , while the continu-
ity of u2 and u3 at the interface leads to the continuity of
D2Du1 . The divergence of the velocity fluctuations is
given by

D5B3D3u11B2D2u11B1Du11B0u1 , ~36!

with the coefficientsBi given in the Appendix. The continu-
ity of the tangential viscous stress over the interface can be
written as

d~m@DD2D2u12k2u1# !50. ~37!

An expression forDD in terms of the derivatives ofu1 is
provided in the Appendix. The jump condition at the inter-
face can be found by eliminatingp, u2 , and u3 from the
momentum equation and integrating the resulting equation
over an infinitesimal element ofx1 which includes the inter-
face

dF S 2r1
m

n
D2D ~D2Du1!G1

k2

n
d~mDu1!

52
k2

n2
@g~r22r1!2k2Ts#us

2
2k2

n
~m22m1!~D2Du1!s . ~38!

For D50 condition~38! reduces to the condition derived for
the incompressible case in Ref. 2. In the Appendix an expres-
sion for D2D is provided. Sinceu1 can be found only to a
multiplying constant, the boundary conditions are supple-
mented with the specification ofu1 or one of its derivatives
at one point inside the domain. Then Eq.~35! together with
the boundary conditions described above form a closed set of
equations from whichu1 on each side of the interface and
the rate of growthn can be determined. For all cases consid-
ered l 1 and l 2 are large compared to the wavelength of the
initial perturbation so the configuration is close to the infinite
domain case. Equation~35! was integrated on each side of
the domain using a fourth order Runge–Kutta scheme. In
order to determinen andu1 from the matching conditions at
the interface, a multidimensional secant method~Broyden’s
method! was employed.

Figure 4 presents numerical solutions of the viscous lin-
earized equations for different Atwood numbers. Consistent
with the previous results, the compressible rate of growth is
bounded by the incompressible rates of growth obtained for
uniform density and exponentially varying density cases.

FIG. 3. Compressibility influence on the nondimensional rate of growth in
the presence of surface tension, forTs /g(r11r2)50.78 m2. All compress-
ible cases haveg(r11r2)/p`54 m21 except the open symbol case for
which g(r11r2)/p`50.4 m21.
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Moreover, its behavior is similar to the well known incom-
pressible constant density result. It has a peak at some criti-
cal wavenumber and decreases towards zero as the wave-
number becomes large. However, the location of the peak is
different compared to the incompressible case, with the high-
est difference at small Atwood numbers. Here we should
note a qualitative difference between the results obtained for
the constant density incompressible case and those obtained
for the compressible and variable density incompressible
cases. At small Atwood numbers, the critical wavenumber
decreases with Atwood number for the constant density in-
compressible case, while it increases for the other two cases.
Moreover, as shown in the previous sections, the largest dif-
ferences in the inviscid rate of growth compared to the con-
stant density incompressible case are obtained at small wave-
numbers and small Atwood numbers. It is expected then that,
for the viscous case at small Atwood numbers, the relative
difference between the rate of growth obtained for the com-
pressible and incompressible cases considered will be larg-
est, also confirmed by Figs. 4~a! and 4~b!. Although this
difference should become very small asM approaches zero,
Fig. 4~b! shows that, for small Atwood numbers, it persists at
smaller values ofM.

V. CONCLUSIONS

The effects of compressibility on the growth rate of
Rayleigh–Taylor instability between two immiscible ideal
fluids are examined in the linear regime. The results distin-

guish between the stabilizing and destabilizing character of
compressibility. For infinite domains, the growth raten ob-
tained for the compressible case is bounded by the growth
rates obtained for the corresponding incompressible flows
with constant and exponentially varying density, and this re-
sult is not affected by the presence of surface tension or
viscosity. For ideal gases with zero heat diffusivity, the lim-
iting incompressible flow~defined by]ui /]xi50) can be
attained either by increasing the ratio of specific heats,g, or
the speed of sound~varied by changing the equilibrium pres-
sure at the interface at constant equilibrium density at the
interface!. The equilibrium density distribution for the limit-
ing incompressible flow is different in the two cases. More-
over, the two parameters have opposing influence on the rate
of growth. As the speed of sound is increased, the rate of
growth increases towards the value obtained for the corre-
sponding constant density incompressible flow, while asg
increases,n decreases towards the value obtained for the
corresponding incompressible flow with exponentially vary-
ing density. The presence of heat diffusion was also consid-
ered, but the results were very close to those obtained for the
nondiffusive case and were not presented here.

The equilibrium density for a compressible flow varies
exponentially withx1 and depends onp` . Therefore, the
local Atwood number changes as the interface moves away
from the original position. Compared to a flow with a higher
value of p` ~less compressible!, the local Atwood number
decreases for the points on the interface situated above the
initial position, while it increases for the points on the inter-
face situated below the initial position. However, the change
in the local Atwood number is larger above the initial posi-
tion of the interface, so that the overall effect would be a
decrease of the average local Atwood number. This offers an
intuitive argument for the decrease of the growth rate asp`

decreases. Moreover, this argument suggests that the bubble
velocity decreases, while the spike velocity increases for
more compressible flows. On the other hand, asg decreases
the fluids are more compressible, however the equilibrium
density and pressure do not change. Therefore, as the heavier
fluid moves towards regions of higher pressures, its volume
decreases and the volume change is larger for more com-
pressible fluids, so that the spike velocity decreases. Simi-
larly, for more compressible fluids the bubble velocity in-
creases. If the two fluids have different values forg, it is
shown that the growth rate is more sensitive to the change in
the ratio of the specific heats of the lower fluid. However, at
large Atwood numbers the rate of growth is little influenced
by the values ofg1 andg2 andp` becomes the main com-
pressibility parameter. In addition, it is shown that compress-
ibility effects are more important at small Atwood numbers.

For domains bounded by rigid surfaces, the compressible
growth rate is still bounded by the two incompressible
growth rates described above, except for the extreme case
when the domain size of the upper fluid is small compared to
the wavelength of the initial perturbation andg'1 for the
lower fluid. In this case, the compressible growth rate can
become larger than the growth rate obtained for the corre-
sponding constant density incompressible flow for values of
the compressibility parameterM5(g(r11r2))/kp` smaller

FIG. 4. Growth rate dependency on the wavenumber for viscous fluids.~a!
The compressible and incompressible variable density cases haveM50.1.
~b! At50.1, compressible and variable density incompressible cases showed
with thick lines correspond toM50.1 and with thin lines toM50.01.
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than a critical value. An analytical condition for the existence
of this overshoot is provided. In general, the results show
that the compressible growth rate varies more when the rigid
boundary of the lower fluid is closer to the interface than the
rigid boundary of the upper fluid, so that it is more sensitive
to the change in compressibility.

The presence of surface tension tends to inhibit the
growth rate of the instability and for the incompressible case
there is a critical wavenumber above which the configuration
becomes stable. It is shown that the value of this critical
wavenumber is not affected by compressibility. For wave-
numbers below this critical value the general result presented
above remains valid. However, the presence of surface ten-
sion modifies the sensitivity of the growth rate to a differen-
tial change in the value ofg for the two fluids. At smaller
wavenumbers, the change ing for the lower fluid is more
important for the variation ofn, while the opposite holds true
at higher wavenumbers.

Numerical solutions of the linearized equations show
that for viscous compressible fluids, the growth rate behaves
in a manner analogous to the incompressible growth rate. It
has a most unstable wavenumber and decreases towards zero
at larger wavenumbers. Moreover, both the growth rate and
the most unstable mode are bounded by the values obtained
for the corresponding constant and variable density incom-
pressible flows. For the constant density incompressible flow
it is known that the most unstable mode moves to small
wavenumbers as the Atwood number is decreased. The invis-
cid results presented in this paper show that the effects of
compressibility are more important at small wavenumbers
and small Atwood numbers. Consistent with these results, it
is found that for viscous fluids compressibility becomes
more important at small Atwood numbers. For small enough
Atwood numbers, the difference between the compressible
and incompressible growth rates will remain sizable at larger
values of the equilibrium pressure.

An interesting question raised by the results presented in
this paper is if they remain valid in the nonlinear regime for
single and/or multimode initial perturbation. Our preliminary
numerical results seem to indicate a similar influence ofp`

and g on the growth rate~and on the spike and bubble ve-
locities! to that found in the linear regime. Moreover, even
for large values of the equilibrium pressure so that the early
time results are close to the incompressible flow results, the
late time spike and bubble velocities become different than
in the incompressible case. Another interesting question is
about the range of the amplitudes of the perturbation for
which the growth rate agrees with the linear theory predic-
tion. Again, our preliminary numerical results seem to indi-
cate that the range of validity of the linear assumption re-
mains approximately the same as in the incompressible case.
These results will be published elsewhere.

This study was concerned with the effects of compress-
ibility on the instability growth between immiscible fluids
with uniform equilibrium temperature. It does not cover
many of the configurations of practical interest, for example
the presence of an equilibrium temperature gradient, a more
general equation of state or diffuse interfaces, which might
be important in certain applications.3,19 However this study

offers a systematic approach for examining the effects of
compressibility which could represent a starting point for
analyzing different or more complex configurations.
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APPENDIX: EQUATIONS FOR THE VISCOUS CASE

Following the usual procedure for the incompressible,
constant density case, the variables are nondimensionalized
using 1/n05(g2/n`)21/3 as time scale and 1/k0

5(g/n`
2 )21/3 as lengthscale. The compressibility parameter

M is defined byM5g(r11r2)/k0p` . For simplicity the
kinematic viscous coefficient is considered continuous over
the interface, so thatm1 /r15m2 /r2 , with m1 and m2 con-
stant on each side of the interface. The value of the kinematic
viscous coefficient at the interface is denoted byn` .

The scaled equations foru1 and D on each side of the
interface can be written as

A4D4u11A3D3u11A2D2u11A1Du11A0u150, ~A1!

b1D5B3D3u11B2D2u11B1Du11B0 , ~A2!

where the coefficients~with the indexm denoting the side of
the interface suppressed for simplicity! are given by

A45B3b1b2 , ~A3!

A35~DB31B2!b1b22B3v, ~A4!

A25~DB21B1!b1b21exp~aMx!b1
22B2v, ~A5!

A15~DB11B0!b1b22
b1

2

n
2B1v, ~A6!

A05DB0b1b22~n1k2 exp~aMx!!b1
22B0v, ~A7!

B35
exp~aMx!

b2
S g1

4

3
b3D , ~A8!

B252
aM exp~aMx!

b2
3 Fg2S 2g2

4

3Db3G , ~A9!

B152
n

b2
2 Fa2M2 exp~aMx!

n S g212
1

3
b3D

1b2S g1
4

3
b3D S 11

k2

n
exp~aMx! D G , ~A10!

B052
anM

b2
2 Fb3S g212

1

3
b3D

1~2g21!aMk2 exp~aMx!1
Mk2b2

an2 G , ~A11!
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DB35
ga2M2n exp~2aMx!

b2
2

, ~A12!

DB25
a3m3n exp~2aMx!

3b2
3 S 7g232

6g24

3
b3D ,

~A13!

DB15
aMn

b2
3 Fa3m3 exp~2aMx!S 3g222

1

3
b3D

1b3
2b2S 1

3
2g

k2

aMn2D 1b2
3G , ~A14!

DB05
a2M2n

b2
3 Fa2M2 exp~2aMx!

n
~g21!2S g212

1

3
b3D2~2g21!aMk2 exp~2aMx!S g2

1

3
b3D1

k2

aMn2
b2

3G ,

~A15!

b15
n

b2
2 Fa2M2 exp~aMx!

n
~g21!S g212

1

3
b3D2b2

2S 11g
Mk2

an2
1

4k2

3n
exp~aMx!D G , ~A16!

b25g1 1
3b3 , ~A17!

b35aMn exp~aMx!. ~A18!

The equation forDD can be written as

DD5
aMn

b2
Fg21

n
D2exp~aMx!D2u11

1

n
Du11~n1k2 exp~aMx!!u1G , ~A19!

while the equation forD2D is

D2D5
aMn

b2
FaM ~g21!

nb2
S g212

1

3
b3DD2exp~aMx!D3u11S 1

n
2

~2g21!M exp~aMx!

b2
DD2u1

1S aM

nb2
S g212

1

3
b3D1n1k2 exp~aMx! DDu11S aMn

b2
S g212

1

3
b3D1

~2g21!aMk2 exp~aMx!

nb2
Du1G .

~A20!

For g→` or p`→` (M→0), Eqs. ~A2!, ~A19!, and
~A20! yield D50, DD50, andD2D50, so the incompress-
ible case is recovered. In the caseg5` the equation foru1

simplifies to

D4u12~n exp~2aMx!12k2!D2u1

1naM exp~2aMx!Du1

1S n exp~2aMx!1
aM

n
exp~2aMx!1k2D k2u150.

~A21!

If, furthermore, M→0 in Eq. ~A21!, then the well-
known equation for uniform density incompressible fluid de-
rived in Ref. 2 is obtained. The same equation can be ob-
tained by lettingp`→` (M→0) directly in Eq.~A1!.
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