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The structure of homogeneous turbulent shear flow is studied using data generated by direct
numerical simulation$DNS) and a linear analysis for both compressible and incompressible cases.
At large values of the mean shear rate, the rapid distortion thé®BT) limit is approached.
Analytical solutions are found for the inviscid compressible RDT equations at long times. The RDT
equations are also solved numerically for both inviscid and viscous cases. The RDT solutions,
confirmed by the DNS results, show that the even order transverse derivative moments of the
dilatational and solenoidal velocity fields are anisotropic, with the dilatational motions more
anisotropic than their solenoidal counterparts. The results obtained for the incompressible case are
similar to those obtained for the solenoidal motions in the compressible case. The DNS results also
indicate an increase in the anisotropy of the even order transverse derivative moments with the order
of the moment, in agreement with the RDT predictions. Although the anisotropy decreases with
Reynolds number, it is likely that for higher even order moments it will persist at large values of the
Reynolds number, in contrast with the postulate of local isotropy. The RDT solutions also predict
that the normalized odd order transverse derivative moments of the solenoidal velocity for the
compressible case and of the velocity for the incompressible case should approach a constant
different than zero at large times. This prediction is supported by the DNS data. For higher odd order
normalized moments, the RDT analysis suggests that the anisotropy may persist at large values of
the Reynolds number, in agreement with the existent experimental data. The amplification of the
dilatational kinetic energy in the direction of the mean shear and the anisotropy of the dilatational
dissipation tensor found in the DNS results are also consistent with the RDT analys004®©
American Institute of Physics[DOI: 10.1063/1.1760771

I. INTRODUCTION similar relations foru, andu;. There is experimental evi-

Most turbulent flows are anisotropic at large scales. Hodence that the second order transverse derivative moments

mogeneous shear flow represents one of the simplest anisB® _n_Ot |sot6rop|c, especially wheq the mean rate.of strain is
tropic flows and its study can reveal important aspects of tnglgnificant>® Nevertheless, the anisotropy of the higher even
structure and production of the turbulent fluctuations. ThePrder transverse moments of the velocity derivatives has not
high Reynolds number experiment of Shen and Wathiast been examined. In this study we p0|_nt out a lack (_)f isotropy
dicates that the higher odd order moments of the velocit)Pf the even order transverse derivative moments in homoge-
derivatives may not be consistent with the postulate of local®0us shear flow for both incompressible and compressible
isotropy, which requires that the normalized odd order transcases with increased anisotropy for higher order moments.
verse derivative moments approach zero at |arge Reyno]dé/e also show that the small scale dilatational motions are
numbers. This finding has important consequences, since thigore anisotropic than their solenoidal counterparts, so that
postulate has been central for turbulence theories anthe anisotropy increases for the compressible case. More-
models? Although direct numerical simulation€DNS) at  over, the anisotropy of the even order transverse derivative
high Reynolds numbers are not feasible yet, persistent anmoments found in the DNS results is predicted by the rapid
isotropy in the skewness of velocity derivatives has beerlistortion theory(RDT) solutions. As the Reynolds number
observed earlier in the numerical results of Putdilso con-  increases, the anisotropy among the transverse derivative
firmed by Schumachér. moments is expected to decrease. Since it is shown that the
The assumption of local isotropy also requires relationsanisotropy increases with the order of the moment, some
between the even order transverse derivative momentgnisotropy may persist for higher order moments at large
which should satisfy((du,/dx,)?")=((du,/dx3)?"), and values of the Reynolds number. In addition, it is shown that
the linear analysis predicts that the normalized odd order
aElectronic mail: livescu@lanl.gov transverse derivative moments wf should approach a con-
YElectronic mail: madnia@eng.buffalo.edu stant different than zero at large times, in agreement with the
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DNS data. The RDT results suggest a persistent anisotroppe direction of the shear. Livescu and Madfiaxamined
of the higher odd order normalized transverse derivative mothe anisotropies of the solenoidal and dilatational motions for
ments at large Reynolds number, in agreement with the exdifferent values of the Reynolds and turbulent Mach numbers
perimental findingg. and found higher levels of anisotropy for the normal compo-
There are numerous experimental investigations of innents of the dilatational dissipation tensor compared with
compressible homogeneous shear fld@’ however, no such  those of the normal components of the solenoidal dissipation
study exists for the compressible case. Compressibility eftensor. By examining the energy transfer leading to the an-
fects in turbulent flows are important in many practical ap-isotropy of the dilatational motions, Livesat al® showed
plications ranging from combustion processes, to high speethat the nonlinear terms in the transport equation for the
aerodynamics, and to astrophysical phenomena. Althougkinetic energy components do not have a significant contri-
compressible turbulence has been the subject of intense rbution. This suggests that a linear mechanism might be re-
search in the last 50 years, much less is known in comparisponsible for the amplification of the dilatational motions in
son with incompressible turbulent®In order to isolate the the direction of the shear.
volume changes of the fluid elements, the velocity field is  The present study thus aimg) to point out a lack of
usually decomposed into a solenoiddivergence freepart  isotropy of the even order transverse derivative moments for
and a dilatational part. For homogeneous flows this decomboth compressible and incompressible cases and show that
position is unique up to an additive constant, which can béhis anisotropy is due to a linear mechanisin, to examine
taken to be zero without the loss of generality. Such decomthe ability of the linearized equations to predict the persistent
position in spectral space has been exploited by rapid distognisotropy of the normalized odd order transverse derivative
tion theories in studies of shock—turbulence interaction andnoments found in the experimental data, &ifid to clarify if
homogeneous turbulence subject to bulk compression or unthe amplification of the dilatational kinetic energy and dila-
form mean sheadt: tational dissipation in the direction of the shear are also due
For the RDT equations of incompressible homogeneou#o a linear mechanism. Moreover, the different levels of an-
shear flow, analytical solutions in wave-number space arésotropy of the small scale dilatational and solenoidal mo-
known for the velocity field in both viscous and inviscid tions for the compressible case is also discussed. Addition-
cases? The integration of these solutions over the wave-ally, analytical solutions are presented for the RDT equations
number space can yield predictions for various quantities irof compressible homogeneous turbulent shear flow.
real space. In general, only for very early and long times the  The paper is organized as follows. Section Il describes
integrals can be evaluated analytically. Long time solutionghe governing equations and their linearization in the RDT
for the velocity variances and shear stress are obtained dimit. The numerical methodology for solving the full non-
Moffatt'® and Rogers? The early time evolution of the flow linear and the RDT equations with the parameters for the
is correctly captured by the RDT equations since the noncases considered is presented in Sec. Ill. Section IV contains
normal amplification mechanism is linear in tife!® How-  an analysis of the RDT equations for compressible homoge-
ever, due to the neglecting of the nonlinear terms and thuseous shear flow. The inviscid RDT equations are solved
the energy cascade to small scales, the RDT predictions camnalytically in the incompressible limitM, S—0) and
become eventually very different than those of the full non-pressure-released |imit|\/(t03—>oo)_ For finite values of

linear equations. Nevertheless, for the incompressible casgy, s and large times, analytical solutions are presented for
the RDT equations correctly capture the behavior of Varioushe Eourier modes of pressure and velocity components. In
correlations coefficients in the fully developed flow figfd. .. v/ the analytical and numerical solutions of the RDT

For the_ case of comp_ressmle homogeneous shea_r flow I@quations are compared with the DNS results. It is shown
the %DT limit no analytu_:al SO.IUt'OnS are known. Slmonethat the amplification of the dilatational kinetic energy in the
etal.” performed RDT simulations O.f homogeneous shealyirection of the shear and the anisotropy of the normal com-
flow and showed that the role of the distortion Mach numberponents of the dilatational dissipation tensor are captured by

Ma, on the time variation Of. the turbulent kinetic energy is i, ppT equations. Also in this section, the anisotropy of the
consistent with that found in the DNS results. They also

identified diff . ) i which th : >~even and odd order transverse derivative moments of the
\dentified different time regimes in which the various contri- ¢416n6i4a| and dilatational velocity fields for the compress-
butions to the terms in the RDT equations in spectral spac

o . . Cfhle case and of the velocity field for the incompressible case
change qualitatively, which might be the reason for the dlf'are studied using DNS results and shown to be predicted by
ference in the early and long time influence Mf; on the

S ) __the RDT analysis. Summary and conclusions are given in
kinetic energy growth. However, in the absence of analytica ec. VI

solutions, it is difficult to predict how each wave number will

affect the result of the integration over the wave-number

space. For example, for the incompressible case, chﬁ‘gers“ GOVERNING EQUATIONS

shows that at long times most of the contribution to the ve-

locity variances and shear stress comes from a very narrow The conservation equations which provide the math-

region in wave-number space, which shrinks in time. ematical model of the problem are the continuity, Navier—
The DNS results for compressible homogeneous shedtokes, and energy transport equations. For a compressible

flow of Blaisdell et al!® and Livescuet al® reveal that the homogeneous shear flo(for which the mean, Favre aver-

explicit dilatational effects tend to occur predominantly in aged, velocity is given by, =Sx, with S constantu,=0,
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andT;=0) after Rogallo’s transformation of coordinates pi=—(p)A’, (6)
xi =BjjX;, these equations, in their nondimensional form, '
becomég’zz ” 1 ’ "’
Ui,t:_mp,kBki_Suﬁil
p.i+(pui) By;=0, )
( //) //85 ( " //) B B 2<M> (S A,5) B (7)
u’) (= — puySé; ui'u i 2 ij Kj 1
pU;) 1=~ pUzo0i1—(p kBkj ™ P kB <p>RQ) 37 ‘i B i
M
+ Ti,j+_(85i15'2+85i25'1)” Byj, (2 Au)(y—1) (1)
Re ! ! ! =— A"+ ————Sg,+ ——(T
(p) 1=S(71,— puiu3) —(puj @) By;
(pJJ pJJ) ®)
_(pu )kBkJ+(TI] I)kBkJ p) (p)
1 While the average density is constant in time for homo-
o (uT,Byj) kB (3)  geneous shear flow, the linearized equation for the mean
_ 2 1P1j) kPkj \
(y=DMoRe Pr pressure is
The stress tensor isj, —(2,u,/Reb)(§’j A’é) Wheres (W) (y—1)
2(u{’kBkJJruJ Bii) |s the strain rate tensor, and’ (p )t—— (9)
=u By is the dilatation of the velocity fluctuations. The R&

primary transport variables are the densityvelocity fluc-  with the right-hand side of the equation given by the viscous
tuations(with respect to Favre averagi the x; direction  dissipation of the mean flow.

ui’, and modified total energys=[p/p(y—1)]+3uiuf, Although in general the linearized equations form a

where p is the instantaneous pressure and the ratio of theoupled system of equations, for the inviscid case they can
specific heatsy=1.4. The coordinate transformation matrix be decouplednote that in this case the mean pressure be-
has constant diagonal componeBts= 3; and the only off-  comes constaptThus, an equation for the dilatation can be

diagonal nonzero componentg,= — 3, St. obtained by taking the divergence of E@),

The thermodynamic variables are related through the
equation of statep=pT/yM S, and the nondimensional vis- Al =— i ' BiiBy—2SU,B (10)
cosity is modeled by assuming a power law=T", with n ! (p) "I “ Kok

=0.7. The refergnce scales _u_sgd 0 nond|men5|onal|z_e thfanis equation is used to eliminate the dilatation from ).
governing equations are the initial rms velocity fluctuatlonsFinally after eliminatingu’, with the use of Eq(7), an equa-
] 2 ’

T e
(Uo= VUjoUio), initial mean temperatureTp), initial mean i, for the pressure fluctuations is obtained,
density (pg), and a reference length scalé))( Conse-

guently, the nondimensional parameters in E43—(3) are Pt
the computational Reynolds number, Reoulo/uo, the —5 = PjkBjiBki—4SpP[«Bj1Bi2, (11)
Prandtl number, Pr uqc,/ kg, and the reference Mach num- Co

ber,Mo=uq/yRTy, whereR is the gas constant arw} is  wherec, is the initial value of the mean speed of sound
the specific heat at constant pressure. The reference viscosity,(( yp)/({p))*/2 (which for the inviscid case becomes con-
o, and thermal diffusivity«,, are assumed to be propor- stanj. Equation(11) is a third order linear differential equa-
tional to Tg. tion in time, with variable coefficients. F@8=0 (decaying
For the incompressible case, the energy equation igotropic turbulenceEq. (11) leads to a wave-like equation,
eliminated, the continuity equation is replaced by the incomwith bounded solutions. Fd8+ 0, the timet can be nondi-
pressibility constraint, and the molecular viscosity is con-mensionalized by B, so thatz=St. Furthermore, after ap-

stant. The governing equations become plying the Fourier transform, Eq11) yields
uj By;j=0, (4) i c2 . X
) ) o ) P.yyn= — = (K°P,,—4kikap), (12
Ui = —U3S6i1— (Ui Uj) ikByj— P kBiit 7ij kB » (5) &

whereu; are the velocity fluctuations and, =1/Re(u/B;  where the wave numbdy; is related to the wave numbéy
+uj”kBki). in the moving coordlnate system bl = B;; k and k2

The linearized nondimensional transport equations for=kjk;. The notations used in the present paper for the wave
density,p’, velocity, ui’, and pressurep’, fluctuations in a numbers in the fixed and moving coordinate systems are the
compressible homogeneous turbulent flow are derived bgpposite of the notations used by Rog¥t8ue to the time
Kovasznay? For the case of a homogeneous turbulent sheavariation of k,, Eq. (12) does not have an easily derived
flow these equations correspond to the RDT limit, whichanalytical solution except in the casg=0 and for very
assumes large values for the mean shear3ate the mov- early and long times(7~0 and n—~). Nevertheless, it
ing coordinate system defined above, the linearized equahould be noted that, although for the full nonlinear equa-
tions become tions the initial turbulent Mach numbel, =(2Ko)"%/co,
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and S are independent parameters, they appear together IBLE I. Parameters for the DNS cases.
Eq. (12), sincecd/S’=2Ko/(p)/ (M S)*=1/(M S)* (note

L . . Case R?o St Mdoa
that the initial value of the turbulent kinetic energy Ks
=0.5 and {p)=1). Moreover, if the distortion Mach ; ;1 i-gg ;-‘l‘g
TN o 21021 2712 . .
number,” Mq=Sl/c, is introduced, thercg/S*=Lg/Mg,, 3 o1 o7 o1
whereM do is the initial value of the distortion Mach number 4 21 14.6 4.37
; i ; 5 21 21.9 6.56
and Ly is the initial value of the integral scald 6 0 174 i

=(2K)*? e. Similar equations, depending @3/S?, 7, the
wave number, and initial conditions can be found for the®values corresponding to the compressible cases. All compressible cases
Fourier modes of dilatation, density fluctuations, and veloc-haveM, =0.3.

ity components. In order to complete the analysis, the initial
conditions for Eq(12) are considered. These relations can be
rearranged to isolate the parametMtgs) by making the Ill. NUMERICAL SOLUTION PROCEDURE

transformatiorp’ =M p, A. DNS methodology
-, A Equations(1)—(3) are solved using the Fourier pseu-
P |,7:0—Mt0p0, 13 dospectral method with Rogallo’s remeshing technitue.
» Details can be found in Livescet al!® All simulations are
o 0 A erformed within a box containing 23@oints. The compu-
p,,]|7,=o=—<p>TtSdo, a P g 250 P
0

tational domain is twice as long in the streamwise direction
as in the cross-stream and spanwise directions soghat

. K'2 R 2k 2K, =0.5,8,=1.0, andB3=1.0. The initial velocity is a random
P yln=0=| — ———— (M Po) + iUz | 7+ solenoidal field with unity rms and the spectrum given by
(M;S) My, S ) {p) E(K) =k*/k3, exp(—2k2/KkZ,) with ko, =10. The initial pres-

(15 sure fluctuations are evaluated from a Poisson equation, the
initial density field is uniform, and the initial value of the

. b 2L i [ ~ mean pressure is calculated from the mean equation of state.
coordinate systemi{ =ki), k"*=kik, i=y—1, anddy The numerical method, mesh size, and initial conditions for

a_nd uz_o are the |n|t|§1I values C_’f the_ Founer_mo@es of the pressure and velocity fields are the same for the incompress-
dilatation and velocity fluctuations in the, direction, re- e case.

spectively. It can be seen that, if the initial value of thg Pres-  seyeral cases, 1-5, are considered at different values of
sure mode scales with M for constant ¥ S), thenp’  he mean shear rate. For each case two simulations, one com-
depends onMl, S) and 7 only. This condition is fulfilled if  pressible and one incompressible, are performed. Table | pre-
the pressure fluctuations are initialized with zero or from asents the relevant information for each of the cases consid-
Poisson equation, which is the case with most DNS studiesred. The initial nondimensional shear rate is define&pas

of homogeneous turbulent shear flow. Note that to first order=2KS/e. For the compressible cases, the distortion Mach

wherek{ is the initial value of the wave number in the fixed

the Poisson equation becomes numberMg_ is also listed. Cases 1-5 have the initial value
of the Taylor Reynolds number Re=21 and it increases to
. Ky . _ . . "
Mtop=2|<P>(MtOS)—U2- (16) Re ~100 at the e.nd of t_he S|mu[at|ons._Add|t|onally, one
k more casdcase 6 is considered with R%—SO, and all the

. L i other parameters as those of case 2. In the next sections, the
In this case, from the inviscid momentum equations and Eqgompressible simulations corresponding to cases 1-6 are la-

(10) for the dilatation it yields, after replacingwith 7, that  pejeq c1-C6, and the incompressible cases are labeled 11—
u; and A depend only on M S). Moreover, if the initial |5 All simulations were monitored to ensure that the integral
values of the density fluctuations are set to z&owill also  scales remain small compared to the box size and the Kol-
be a function of W S), wave number, and; only. mogorov microscale is larger than the grid size. The com-
As a result, for the initializations usually used in the pressible runs were also repeated with initial turbulent Mach
DNS of homogeneous turbulent shear flow, the inviscid lin-numbers ranging fronM, =0.1 to M, =0.6 and all the re-
earized theory predicts the existence of only one compressiults presented in the next sections remained qualitatively
ibility parameter M, S), for the properly scaled variables. unchanged.
However, the addition of either the nonlinear or the viscous Based on the magnitude of the shear rate, a simple scal-
terms prevents the governing equations to be written in termig argument can be used to characterize the relative impor-
of only one compressibility parameter. Therefore, for modertance of the nonlinear term in the momentum equations com-
ate values ofS or Reynolds number, two independent com-pared to the linear term arising from the presence of the
pressibility parameters can be defined. Nevertheless, awnzero mean velocity gradient. Thus, as shown in Ref. 24,
pointed out by Simonet al,'” changes inv d, at constant the nonlinear term is negligible Wheﬁf/qu>1/8 and
M., are more important to the growth of turbulent kinetic dominates whenS;{/Re, <0.35, where Sf=u'2S/e and

energy than changes M, at constanMg_. ReA1=u’2/(u\/<u21,J}), with u’=\/(u21>. Figure 1 shows the
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0.4 . . T . T . B. RDT methodology
[ case Cl ] The unknowns in Eqg6)—(8) are transformed intd
03" — caseC2 _
’ ‘-\ ---- caseC3
L —-- case C4 4 R k a —k |:|
S . case C5 _ K37 KUy
S 1/Re}~1 02— ‘\\ \'\‘\ —e case C6 | fl(k! 7]) m ) (17)
fo(k iy + kgtiy) ~2— 18
2(K, m)=(kquy + 3U3)m_FU2- (18
0 R R U IR R
0 i 2 1 20 . Kylip+ Kol kslls A
FIG. 1. Time evolution ofS}/Re, .
fa(k, 7)=ip, (20)
time evolution ofS}/Re,_for the compressible cases consid- - .
! f5(k177):|p! (21)

ered. The results obtained for the incompressible cases are
close. The initial range of variation covers the region in .
which both the linear and nonlinear terms in the momentunwhere m=\k3+k2. f, is the component of the velocity
equations are important, with case C1, with lowest shear, foalong the perpendicular on the plane defined by the wave-
which the nonlinear effects dominate and case C5, with highaumber vector and thé;, direction. f, is the component
est shear, for which the linear term becomes more importanilong thek, direction so thaf; andf, form the solenoidal
After a development time the results obtained for the casegelocity andf; is the projection of the velocity on the wave-
with different values of the mean shear rate become closgyumber vector and corresponds to the dilatational part of the
while retaining the dependence on the initial Reynolds numvelocity. Additionally, since the equations are linear, a matrix
ber. For all cases, the late time vaIuesSﬁ{ifiReAl are in the  exponentiation method can be used by lettihgk, )
region where the nonlinear effects dominate, based on the gj;(k, ) f;(k,0), with g;;(k,0)=&j; .

scaling arguments given in Ref. 24. The resulting system for the unknowgg becomes

01j,,=— %92# kriklj 03— R;’L(L;Skzglj , (22)
gzj,n:%gzj_ %QBj_ %;Skzgzj : (23
gSj,n:%kgsj , (26)

where j=1,5. The system22)—(26) is transformed into
spherical coordinates by settingk; =k’ cosa, k;

a local peak of some of the unknowns, which gives an im-
portant contribution to their integral over the wave-number
=k’ sinasing, and k;=k’ sinacos¢. Cases with(101  space. A fourth-order Runge—Kutta scheme is employed for
X602%x204) grid points for the coordinatesk{,«,¢) are the time advancement. The equations are also solved for the
considered. The discretization is nonuniform, allowing forincompressible casgvhich is recovered by Iettin§3=0). It
more grid points near the line=¢=x/2. This is necessary, should be noted that the systd@?)—(26) is independent of

as explained in the next section, in order to correctly capturéhe initial spectra, so that it is solved only once for a particu-
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TABLE II. Initial conditions for the linearized equations. al’n: _ 027 azyn: 0, 0317]: 0 27
Type of initial conditions Ply-o Xo  with the solutionsliy = Uy, -7+ 01| ,—0, Uy=03],-0, and
L1 Poisson equation 0 G3=ﬁ3|,,:o. After integrating over the wave-number space,
L2 0 0 it is obtained that the kinetic energy x3 direction increases
L3 Poisson equation 0.1  quadratically, while it remains constant in the other two di-
L4 Acoustic equilibrium 0.1

rections. This case corresponds to the “pressure-released”
limit discussed by Camboet al?” and Simoneet al’

lar set of parameters. Furthermore, when integrating over thB. Incompressible case [1I(MIOS)2—>oo]

wave-number space only the initial power spectra are re- . . . -
quired, and not the phase information. Since S is assumed large in the RDT limit, as

The linearized Eqs(22)—(26) are solved for different 1/(Mth) — ityields M, —0, so that th_e incompressible
values ofS% ranging from 7.24 to 362. For all compressible case is recovered. The transport equation for the pressure
casesM; =0.3, so that the range i} corresponds to 2.2 mode becomes
<Md0< 109. This range extends from a low shear case in sz),ﬂ—4klk2f)=0. (29

which the nonlinear effects in the corresponding DNS case

are important to cases with very high shear. The initial ve-he solution is straightforward and can be written as

locity power spectrum is the same as in the DNS simulations K4
described earlier. For the compressible case, for each value FA):FA)|7;=0—41 (29
of (MtOS) four types of initial conditions, labeled L1-L4, k

are consideredTable I)). For cases L1 and L3 the pressure it Pl 0=2iS(k1/k’2)02| o. In order to find the pres-
n= n=0-

fluctuations are initialized from a Poisson equation, while forg e variance from Eq29), the integration over the wave-
cases with L2 initial conditions they are set to zero. The, ;mper space should be performed numerically. Analytical
initial velocity field is solenoidal for cases L1 and L2 while expressions can be obtained to approximate the time behav-
Xo=Kqo/Ko=0.1 for cases L3 and L4, whet&qo is the o of the pressure variance only far—0 (early time and
initial dilatational kinetic energy. For cases with L4 initial n—o (long time. In both cases the integration is conve-
conditions Ehe strong form of the acoustic equilibrium is ety done in spherical coordinates. The procedure is simi-
considered,’ so that there is an equipartition of energy be-|5r (g that used by Townseffdand Roger¥ to find the time
tween the potential and kinetic energies of the dilatationaljenendence of velocity and scalar one point statistics in in-
component at each wave number. Therefore the, initiakympressible turbulent shear flow. After the transformation
pressure power ,spectrum 1S given byE,(k’) k1=K’ cosa, ky=k’ sinasing, k;=k’ sinacos¢, anddk’
=V¥(P)li=o{po)Ea(k’), whereEy is the initial power spec-  _'2gjn o da de dK’, for isotropic initial conditiongso that
trum of the dilatational velocity. For each case, both the me:PZl 0|2=[E(k’)/47rk’2][(k12+kéz)/k’z] with E(k’) the

. . . . o e n=
viscid and viscous equations are solved. The types of initigjyjtia| velocity power spectruf the pressure spectrum func-
conditions considered are not exhaustive for the initial consjon becomes
ditions used in DNS of compressible turbulen@eg., see
Refs. 25 and 26 for decaying isotropic turbulend¢owever, E(k")
they were chosen such that the role of a nonzero initial dila- ~ Pp(k’) = K2
tational field can be isolated. In the next sections, the nu- .
merical solutions of the RDT equations are compared with 45 co2 a(cof a+sir a cof ¢)
the DNS results and with the analytical predictions.

k'2(1— 27 cosa sina sing+ 5? cof a)*’
IV. ANALYTICAL RESULTS (30)

By examining Eq(12) for the pressure mode three casesand the pressure variance can be found from
can be identified based on the values oﬂ\d,/éS)z.

) (2m)3 (= ,
B 2= [ wak. (31
A. “Pressure-released” limit  [1/(M, S)*—0] -

This case corresponds to values of the distortion Mach ~ For small values ofy (early timg the integrand can be
number approaching infinity. After integrating E¢L2), a  expanded in a Taylor series i, which can be integrated
quadratic dependence opis obtained. However, when the analytically. It yields
initial conditions (13)—(15) simplified for large MIOS) are ('? 4 8
applied, the solution is obtained @s=p|,-o. Since the ==t 1—()57;24—---, (32
pressure mode is multiplied by the factor M/&)S) in the q
transport equations for the velocity modes, it can be droppedhereq=4S?[[E(k’)/k’2]dk’. In terms of the initial value
from these equations. Therefore the equations for the velowf the pressure variance the dependencépi€)/(py?) =1
ity modes become + 22+,
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As explained by Roger¥,the long time behavior cannot 10000 T . . .
be obtained using the same procedure, since expanding i @ 7
- . . . . 8000 — ]
around n=< yields a result which is not uniformly valid L 4
over the entire domain. This can be easily seen by evaluating 6000 — -

p for k,=1, k3= ki=1 hich for »p—co yiel
p for k=1, k3=0, andk; =1/, which for »—x yields 4000

lim p(k|=1/7,7)=c. (33

n—°

2000

0

Therefore a significant contribution to the integral of the 4000

pressure spectrum over the wave number space comes from &
narrow region neak; =0 which decreases in size asin- 2000
creases. Following Roget$the asymptotic behavior can be

found by dividing the domain into two regions, an inner 0
region located aroundyk;=0(1) (which corresponds to
a=m/2) and an outer region consisting of the rest of the
domain covered by €a<m and O<¢=<2m. In the inner re- 4000
gion, arounda=m/2 and ¢=1/2, (I)p(k’)k’zsina has a
peak. The magnitude of the peak and the extert and ¢
over which it occurs can be found by writing= 7/2— €,

and ¢=m/2— €, and expanding the sin and cos functions in
the expression for the pressure spectrum. It yields that
®,(k')k’?sina is of order »* for €,=1/7+0(1/%%) and
€,=0(1/7), so that the peak occurs over a region of extent
O(1/%?) in @ andO(1/7) in ¢. This indicates a linear in-
crease for the pressure variance. The correct behavior can be ’ Tk
obtained by combining the results from the inner and outer

regions. The result obtained remaifys’2)/(p,%)~ 7, also  FIG. 2. Compressibility effects on thi] variation of the pressure mode.

supported by the results of the numerical integration. Inviscid case, =10, kp=1, k;=0, with initial conditions p|,-o=1,
P ,l,—0=0, andp .|, o=0. (@ Incompressible(b) compressibleM; S

=0.01, and(c) compressibleMtOS: 1.

®) —

-2000

C. ]J(M[OS)2 finite

In this case the transport equation for the pressure mode
[Eqg. (12)] remains third order, and does not have an easily '
derived analytical solution. However, some limiting cases . 2Kok; 28 4 »
can be found. First, it should be observed thapproaches P.7mn™ (MM, 5)2(7’ Py +47D). (34)
zero ask{ — so that only finite values df/ are of interest. 0
Then for small values ofy the equation reduces to an equa-
tion with constant coefficients which can be easily solved.
However, since the roots of the characteristic polynomial are
dependent on the parametéd (S), the analytical computa-
tions involving the integration of the solution over the wave- $1=1F
number space are cumbersome. Nevertheless, the solution
was verified numerically and it agrees reasonably well with M. S| M2 va
the full numerical solution of the RDT equations. by=1 (é)(§/2)3’421“<§) to (@) (36)

As 57—, unlike in the incompressible case, the behavior 2o 4 kj 2Kqo)
of the Fourier modes in the outer regiok; >1) is very
important for the integration over the wave-number space. It 1\ M, S
is shown above that for the incompressible case the contri- — g | o7

. . e in ssible $s=Jud O)(L12) r( 4) :
bution from the inner region yields a linear increase for the 2k}
pressure variance. However, as the parametewl%&)2 de-
creases, the peak of the pressure mode occurring in the innéfhere 1F2 and J, represent a generalized hypergeometric
region decreases its magnitutfig. 2 and the contribution functlon_ and the B_essel function of the first I_<|nd of order
from this region to the pressure variance yields a less thaféSpectively, I' is the gamma function and{
linear increase in time. This contribution to the pressure vari= (K1 7°IM; S)VKo/2(p). For large values of the nondimen-
ance is negligible at long times since it is shown below thasional time 7, using the asymptotic expansions for these
the contribution from the outer region leads to a linear in-functions given in Ref. 28, it is obtained that
crease in the pressure variance.

In the outer regiork; — for 7— and Eq.(12) be-
comes

The solution of Eq(34) can be written ap= ¢1p|,—o
2Pyl =0t P3Pyl =0, With ¢; given by the formulas

13 _1e
(1152~ 24 39

1/2

(o)

2K, (37

. 3 3
¢1~—(g/2)1’4sm( - ?)F(Z), (38)
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15

<p’2>Mo2 1

FIG. 3. Numerical solution of the inviscid RDT equations for the pressure
variance fon\/ItOS:4.6(thin lines andMIOS: 31 (thick lines and different
initial conditions. For clarity the results obtained MOS=4.6 are magni-

fied 5 times.

m 3 M'[oS . (p) v
wemtareod - glar(3) | ) (o]
(39)
3T 1 S <p> 1/2
seetiaod o= a2 ) o

These expressions indicate that the Fourier mode of the pres-
sure oscillates in time and the amplitude of the oscillation
increases as/7. In order to find the pressure variance, the
integration over the wave-number space can be perform

using the Riemann—Lebesgue theoref®f(k’)e 7 dk’

—0 as 7—o provided that [2f(k’)|dk’ exists. Since
sir? a=(1—cos 2v)/2 and co$a=(1+cos 2)/2, the integra-
tion yields a linear increase in time for the pressure variance. . dy
This is consistent with the numerical solutions of the linear-

ized inviscid equations presented in Fig. 3.

Similar to the pressure variance, it can be shown that for
finite values of 1/(\/ItOS)2, most of the contribution to the

dilatation variance and kinetic energy ¥3 direction, K,,

Small scale structure of homogeneous turbulent shear flow 2871
1/2

g 5 37| (L] 2 M¢S®

Paa~=(112)sin| =g || gl | —
<p> | 45

8K0

~i(¢12)Y 3 r 3) i 46
¢1u2~|(§ ) co g 8 4 2<p>MtOS, ( )

’ 1/2
; 14 (3 1 1
h2u2~i1(L12)""sin Z—g r 2\ a8 2k (47)
0
1 1 1/2
(4 4 27T<P>Ko)

Again, using the Riemann-—Lebesgue theorem, Egs.
(43)—(48) can be integrated over the wave-number space to
yield an 7° increase in time for the dilatation variance,
(A'?), and a linear increase fau3). This represents an
important difference compared to the incompressible case,
where it is known that for large times the velocity vari-
ance decreases in time ag4m)/(47).* It is shown below
that the increase in time in the compressible case is due to
the dilatational component.

In the |ncompreSS|bIe case, the influence from the inner

sreglon to (u3) and <u3> is significant and at large times

ud)~2 In 27 and (uj)~ w2/8In »—C.* For the compress-
ible case, after using the approximatidg~ — nk;, the
transport equations far, andl; can be solved analytically
Uy~ Uy| ot —=sinl ——=

and for large values of,
kin® [ Ko
17 [0 g,
\/; M, S 2(p)

N e, [k K
Uy~ Ul o+ \/_s (MMSVT;S)JFeZ)’ (50)

: (49

comes from the outer region. From the solution obtained fowith the coefficientsl; ande; depending oni!; S) and the
the pressure mode, approximations for the asymptotic behawave number. Therefore, in the outer region, for large times,
ior of the dilatation andi, velocity modes in the outer region {, andl; become constant. Numerical solutions of the RDT

can be derived using the following equations:

. (MS)
A== Pl (41)
_ A, ik2p’

u,= (42)

2k 2(p)(M S)ky

The relations obtained are\= #1aP' | =0t P2aD), | =
+ 3P 7,77|7, 0 and U= 1,20’ |—0t B2u2P 7,|7; 0
+ Pauod Lynln=0 With iy and ¢;,, given by

34 3 ki MtOSZ H
P1a=(L12) 005(5—?)F(Z> 2(p—>K8 , (43
S
Gaa= (112 sin| {2 |T 3) WS (44)
4) 27K,

equations indicate that the contributions from the inner re-
gion to(u3) and(u3) remain dominant for the compressible
case anK; and Kj increase in time, as shown in Fig. 4.
However, as the compressibility paramelf S increases,
these contributions decrease their importance resulting in a
reduced rate of increase of the turbulent kinetic energy in
and x5 directions. This explains the “stabilizing” effect of
compressibility on the evolution of the turbulent kinetic en-
ergy found in the RDT study of Simoret al’

From the solution corresponding to the Fourier mode of
the dilatation, the dilatational parts of the velocity modes can
be obtained aaElidz—iki/kZA. Numerical solutions of the
RDT equations indicate that the inner region has a negligible
contribution to the variances of the dilatational velocity com-
ponents. In the outer region, for large valuesypfthe time
variation of the dilatational parts of the velocity modes can
be derived from formulag43)—(45) as
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FIG. 4. Compressibility effect on the kinetic energyxipandx; directions.
Inviscid case, with L1 initial conditions.

U ~&sin 17 \/—KO +c
Yoy (M S V2(p)
“ . ki’]Z Ko
u2d~021\/;sm(ws m‘f‘czz , (52
0

om-zZITIC R i T B
S IO A0 N e ANt .
(51) A NSV -z

' 2 0
o Ca [k [Ko ) 53 0 5 10 15 20
3d~ T VIS 5/ -\ 23/ St
\/; MtOS 2(p)
FIG. 5. Time evolution of the normalized dilatational kinetic energy com-
where the ConStantsiJ depend on I(/ltos) and the wave ponents forM S=1.53, 3.1, and 4.6(@ Inviscid RDT, (b) viscous RDT,
number. and(c) DNS. The curves correspond to cases C2, C4, and C5.

V. COMPARISON WITH DNS
A. Dilatational kinetic energy and dissipation
Although the early time response of the flow to the pres-anisotropy
ence of the shear is correctly captured by the linearized equa- By comparing formulas(51)—(53) with solutions ob-

tions, the long time evolution of the flow can become VerY ined for the velocity modes. it can be seen that at lon
different than that obtained from the full nonlinear equations, y ’ 9

However, there are quantities which follow the RDT predic-t'mesuléuls’. u2~u?d, a.ndugwuss. It _'S obFamed that most
tions even at long times. This is the case with various corre®f the dilatational kinetic energy resides in the direction of
lation coefficientse.g., the Reynolds stress correlation coef-N€ mean velocity gradient, consistent with the numerical
ficient) in the incompressible cagé.For the compressible Solution of the linearized Eq¢6)—(8) [Fig. S@)]. The addi-
case, the effect of compressibility on the evolution of thelion of the viscous terms decreases the dominanck Qf
turbulent kinetic energy is correctly captured by the linear-component compared to the other two components, as can be
ized equations’ seen in Fig. B). A further decrease of the relative magni-
It is shown below that other characteristics of the dilata-tude ofK,_ is obtained in the fully nonlinear ca$ig. 5(c)].
tional field are captured by the linearized equations. In parNevertheless, as Fig(& shows, the dilatational kinetic en-
ticular, it is shown that the amplification of the dilatational ergy in the direction of the mean velocity gradient obtained
kinetic energy in the direction of the shear and the anisotropyn DNS is larger than in the other two directions, in agree-
of the normal components of the dilatational dissipation rateanent with the previous studi¢&!%3°The above analysis in-
tensor are captured by the RDT equations. Furthermoralicates that the amplification of the dilatational kinetic en-
DNS results show that the transverse even order derivativergy in the direction of the mean shear can be explained by
moments of the velocity field in both compressible and in-linear effects.
compressible cases are anisotropic and the anisotropy in- Previous numerical simulations of compressible homo-
creases with the order of the moment. Thus, the anisotropy afeneous shear fldf?°indicate that the dilatational dissipa-
the higher order moments may persist at large values of théon rate tensor behaves very differently than its solenoidal
Reynolds number, in contrast with the local isotropycounterpart. Thus, the dilatational dissipation rate is ampli-
principle?® Moreover, the DNS results indicate that the oddfied in the direction of the mean shear. This behavior was
order normalizedx, derivative moments ofi; approach a previously attributed to the formation of shocklets aligned
constant different than zero at large times. These results cgreferentially inx, direction. Livescu and Madma per-
also be explained using the RDT solutions. formed simulations at different values of the turbulent Mach
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FIG. 6. Time variation of the diagonal components of the dilatational dis- :
sipation rate tensor dehUS: 1.53, 3.1, and 4.6, corresponding to cases C2, § : —
C4, and C5.

..........................................

number and obtained no significant decrease in the anisot-
ropy of the dilatational dissipation rate tensor in low turbu- ]
lent Mach number simulations. Therefore, the amplification T
of the dilatational dissipation rate in the direction of the TR -
mean shear is not associated with the presence of shocklets. 0.2 |y -
This conclusion is also obtained in Ref. 31. Figure 6 shows "
that €22, becomes more important comparedegqd and €33,
asM, S, which is proportional to the distortion Mach num-

ber, increases. After multiplying the solutions for the dilata-FIG. 7. Even order transverse derivative moments of the dilatational veloc-
tional velocity mode$Eqgs.(51)—(53)] by ik; and performing ity in x; direction, M, =((auy, /9x5)")/ ({(duy,/9%5)") +((dus, 1 3%3)"))

the integration over the wave-number space, it can be seed Mu,=((dus,/9xs)")/({(aus, /%)™ +((dur,/3x5)"). (@ n=2, (b)
that in the RDT limit ((du,,/dX;)(dup,/dx;)) becomes =4 and(c) n=6.

much larger tharzi(auld/axl)(auld/&x1)> and((&u3d/ax3)
x(augd/&xg)). Numerical solutions of the RDT equations in

both inviscid and viscous cases confirm this result. Therein the DNS results is produced by a linear mechanism. On
fore, the anisotropy of the normal components of the dilatathe other hand, the results presented show that the higher
tional dissipation rate tensor can be associated with a lineairder transverse moments are increasingly more anisotropic
mechanism. as the order of the moment increases. Thus, even if the an-
isotropy decreases with Reynolds number, some degree of
anisotropy will persist for higher order transverse derivative
moments at large values of the Reynolds number.

Although the inner region has a significant contribution

very small in the inner regiowherek; n~kj3). Using the X o . X
solutions provided in the preceding section for the solenoidaﬁ0 the 'one-pomt St.at'St!CS of the soleno@al velocity compo-
nents inx, andxs directions, this contribution becomes neg-

and dilatational components of the velocities, it can beIi ible for the statistics involvingx, derivatives. As ex-
shown that after the multiplication bk,, the contribution gik ) 9z T
plained above, in the outer regiom; and Us_ become

from the outer region becomes dominant at long times: . S T )
Therefore, thex, derivatives of the velocity components be- constant at large times so that after the multiplication with
come much larger than the derivatives in the other two dith€y increase linearly. Therefore, the outer region yields a
rections. As a result, all the even order derivative statisticduadratic increase in time fdi(duy /dx)(duy_/dx;)) and
involving x, derivatives become amplified and this effect is ((dUz_/9Xz) (duz_/9Xz)). The contribution from the inner re-
more pronounced for higher order statistics. Figure 7 comgion does not increase after the multiplication with and
pares moments of the transverse derivativ{ééuld/axj)% the inner region yields a less than quadratic increase for the
wherej=2, 3 andn=2, 4, and 6, of the dilatational velocity above quantities. Similar results are obtained for higher order
in thex, direction. It can be seen that, as the distortion Machmoments. Thus, similar to the dilatational velocities, in the
number increases and the RDT limit is approached, the mdRDT limit the even order transverse derivatives of the sole-
ments containing, derivatives become much larger than the noidal velocities inx; andx; directions are anisotropic and
correspondingx derivative statistics. Moreover, in agree- become even more anisotropic as the order of the statistics
ment with the RDT predictions, this anisotropy is strongly increases. Figure 8 confirms that this effect is also present in
amplified for higher order moments. This again suggests thghe DNS results for the derivative momentswaf and simi-

the small scale anisotropy of the dilatational motions foundar results are obtained for the derivative momentﬂgf

B. Higher order derivative moments

In the outer regiork, increases continuously, while it is
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FIG. 8. Even order transverse derivative moments of the solenoidal velocity
in x; direction, Mﬁy=((0u15/axz)”)/(<(auls/3x2)”)+((&u15/&x3)")). n
=2 (no symbol$, n=4 (open symbols andn=6 (closed symbols 30 |

A comparison between Figs. 7 and 8 indicates that the ¢

. . . . 20—
transverse solenoidal derivative moments are less anisotropic >

than their dilatational counterparts. Again, it can be shown i e et o

that trlis is also in agreement with the RDT predictions. Thus, 10 —;" /\,,——’v" = p—— —

sinceu;_becomes constant in the outer region, it yields that |7/ ---- case CS §

kpliy_~ 7 and((duy_/dxz)?)~ n?. However, thex; deriva- o Vo l s melCG | .

tive retains influence mostly from the inner region and 0 5 10 15 20

((&ulslax3)2>~n. On the other handilld retains influence St

mostly from the outer region. The Riemann—Lebesgue theoriG. 10. Odd order normalized transverse derivative moments of the sole-

rem can be used to integrate formu&l) multiplied by k,  noidal velocity inx, direction, S,,=((duy_/x2)")/({(dus_/x2)*))". (@)

and k; to obtain for the dilatational component that n=3,(b)n=5.

((9uy,/9x2)?)~n and((duy /9x3)®)~1/n. Similar results

are obtained for higher order statlstlcs. Therefore, in the Rml—ncrease this rate. Since in the outer regignbecomes con-

limit, the even order transverse derivatives of g are | ) it vields that th s ¢ ord

more anisotropic than their solenoidal counterparts for Iargétant at arge tlmes,n It yields that the moment of oraer
increases in time ag", and, therefore, the normalized odd

but finite values ofy (Fig. 9). Similar results are obtained for
7 (Fig. 9 order moments,((&uls/axz)”>/[<(aulsl§x2)2}]”’2, with n

the velocity in thexs direction. :
Using the same analysis as above, it can be shown th&dd, should approach a constant different than zero at large

the odd order moments of the derivatives ofu, also have times. As Fig. 10 shows, this prediction is in general agree-
° ent with the DNS data. The same analysis cannot be used

most of the contributions from the outer regions. Thus, afte . >
the multiplication with ki~ (— k)", the solution in the (0" Us - Itwas shown that in the outer region_approaches
outer region becomes much larger than that obtained in thts initial nvalue. Therefore, after multiplication b3

inner region asy—. Note that|u, | increases in time as ~(— 7Kky)" the odd order moments of the, derivative,

7+2in the inner region and the multiplication ty does not would approach values proportional to those of the initial
odd order moments of the; derivative. However, for iso-

tropic initial conditions, these values are zero. This is con-
sistent with the overall symmetry of the problem, which re-
-~ 8 quires that the odd ordex; and x, moments of theus

' — velocity remain zero at all times.

09—/

_," . For the incompressible case, complete analytical solu-
08 — tions are known for the velocity fieftf:** Although most of

L g the contributions to the velocity variances»p and x5 di-
07 — My| _ rections come from the inner region, it is easy to show that

L - M| the statistics involvingx, derivatives have contributions
0.6 - mostly from the outer region, where at large timks

L 4 ~ — nk; . Moreover, the behavior of the velocity modes in
05 ; | ! | . | L the outer region is similar to that obtained above for the

0 10 20 30 40 solenoidal velocity modes. Consequently, in the RDT limit

St the transverse even order moments of the velocity deriva-

tives are anisotropic, and the anisotropy increases for higher

FIG. 9. RDT results for the second order transverse derivativeqSMnd
order moments. Similar to the solenoidal moments for the

Ug,. L1 initial conditions,MtOS= 1.53.
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FIG. 11. Even order transverse derivative moments of the velocity, in
case. My, =((duy /dxp) ") ({(duy /9%5)")
+{(9uy/9x3)") and My, =((duy/dx3)") ({(duy /3x)") +{(du1/Ix3)")).

direction, incompressible

(@ n=2, (b) n=4, and(c) n=6.
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the experimental results of Shen and Warhat.high Rey-
nolds numbers, the experimental results indicate that lower
odd order moments ofu,/dx, become small as the Rey-
nolds number increases. However, this tendency is not ob-
served for higher order moments. As suggested by Schuma-
cheret al,?* the small-scale intermittency might play a role
on the observed behavior of the higher order moments. Nev-
ertheless, the persistent anisotropy of the higher odd order
normalized derivative moments found experimentally is in
agreement with the present linear analysis.

VI. SUMMARY AND CONCLUSIONS

The structure of homogeneous turbulent shear flow is
studied using data generated by DNS and an RDT analysis
for both compressible and incompressible cases. For the
compressible case, simulations with different initial values of
the distortion Mach numbeM 4, and Reynolds number are
considered. Incompressible simulations are performed with
the same initial pressure and velocity fields as for the com-
pressible simulations.

Previous DNS studié& % indicate that there is an an-
isotropy among the dilatational kinetic energy components.
Moreover, the results of Livescet al!® suggest that the en-
ergy transfer through the nonlinear terms in the transport
equations foKid is not responsible for this behavior. In order

to verify that the anisotropy of the dilatational kinetic energy
components can be explained by linear effects, the linearized
equations are considered. The RDT equations are solved nu-
merically, for both the inviscid and viscous cases, for a large
range of distortion Mach numbers and different types of ini-
tial conditions. The RDT results are consistent with the DNS

compressible case and consistent with the RDT predictiongindings for the development of the dilatational field.
the incompressible DNS results presented in Fig. 11 show an Furthermore, for large times, analytical solutions are
increase in the anisotropy for higher order transverse derivadound for the inviscid linearized equations in Fourier space.

tives moments ofu;. Similar results are obtained far;.

The integration of these solutions over the wave-number

Therefore, it is expected that for higher order moments thepace can predict the behavior of various statistics in real
anisotropy will persist at large Reynolds numbers.
In addition, similar to the solenoidal velocity for the tion and dilatational velocities of the Fourier modes for finite

space. It is shown that the solutions for the pressure, dilata-

compressible case, the RDT solutions for the incompressiblealues ofk; oscillate in time and the amplitudes of oscilla-
case predict that the odd order normalizedderivative mo-  tions increase. The analytical relations indicate that the mag-
ments ofu; andu; should approach a constant different thannitude of the Fourier mode of the dilatational velocity in the
zero at large times. The DNS results are similar to thosalirection of the mean shear becomes much larger than in the
shown in Fig. 10 for the solenoidal velocity field in the com- other two directions.

pressible case and support the RDT prediction. As explained It is known that for incompressible homogeneous turbu-
above, as the Reynolds number increases the small scalkst shear flow in the RDT limit most of the contributions to
become more energetic and the flow departs from the RDThe velocity variances come from a narrow region in the
limit (see also Fig. )l For very large values of the Reynolds wave-number space situated n&r=0.* A similar trend is
number, the postulate of local isotropy requires that the oddound for the pressure variance. However, it is shown that
order transverse derivative moments should approach zerthe contribution from this region to the statistics of the ve-
However, since the linear effects lead tors8 increase in locity field involving x, derivatives for both compressible
time for the x, derivative moments, for higher order mo- and incompressible cases and to all the statistics of the dila-
ments the linear contribution may become dominant at londgational velocities becomes negligible at long times. For fi-
times even at large values of the Reynolds number. Theraiite values ofk;, the wave number in the direction of the
fore, the higher order normalized transversederivative  mean shear increases continuously in time. Therefore, the
moments could have persistent nonzero values at large Reyerivatives in this direction become much larger than in the
nolds numbers. The present numerical simulations do nadther two directions. As a result, in the RDT limit the even
have a large enough Reynolds number to examine this hyerder transverse derivative moments of both the dilatational
pothesis, however the analysis presented is consistent widnd solenoidal velocity fields for the compressible case and
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