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The structure of homogeneous turbulent shear flow is studied using data generated by direct
numerical simulations~DNS! and a linear analysis for both compressible and incompressible cases.
At large values of the mean shear rate, the rapid distortion theory~RDT! limit is approached.
Analytical solutions are found for the inviscid compressible RDT equations at long times. The RDT
equations are also solved numerically for both inviscid and viscous cases. The RDT solutions,
confirmed by the DNS results, show that the even order transverse derivative moments of the
dilatational and solenoidal velocity fields are anisotropic, with the dilatational motions more
anisotropic than their solenoidal counterparts. The results obtained for the incompressible case are
similar to those obtained for the solenoidal motions in the compressible case. The DNS results also
indicate an increase in the anisotropy of the even order transverse derivative moments with the order
of the moment, in agreement with the RDT predictions. Although the anisotropy decreases with
Reynolds number, it is likely that for higher even order moments it will persist at large values of the
Reynolds number, in contrast with the postulate of local isotropy. The RDT solutions also predict
that the normalized odd order transverse derivative moments of the solenoidal velocity for the
compressible case and of the velocity for the incompressible case should approach a constant
different than zero at large times. This prediction is supported by the DNS data. For higher odd order
normalized moments, the RDT analysis suggests that the anisotropy may persist at large values of
the Reynolds number, in agreement with the existent experimental data. The amplification of the
dilatational kinetic energy in the direction of the mean shear and the anisotropy of the dilatational
dissipation tensor found in the DNS results are also consistent with the RDT analysis. ©2004
American Institute of Physics.@DOI: 10.1063/1.1760771#

I. INTRODUCTION

Most turbulent flows are anisotropic at large scales. Ho-
mogeneous shear flow represents one of the simplest aniso-
tropic flows and its study can reveal important aspects of the
structure and production of the turbulent fluctuations. The
high Reynolds number experiment of Shen and Warhaft1 in-
dicates that the higher odd order moments of the velocity
derivatives may not be consistent with the postulate of local
isotropy, which requires that the normalized odd order trans-
verse derivative moments approach zero at large Reynolds
numbers. This finding has important consequences, since this
postulate has been central for turbulence theories and
models.2 Although direct numerical simulations~DNS! at
high Reynolds numbers are not feasible yet, persistent an-
isotropy in the skewness of velocity derivatives has been
observed earlier in the numerical results of Pumir,3 also con-
firmed by Schumacher.4

The assumption of local isotropy also requires relations
between the even order transverse derivative moments,
which should satisfy^(]u1 /]x2)2n&5^(]u1 /]x3)2n&, and

similar relations foru2 and u3 . There is experimental evi-
dence that the second order transverse derivative moments
are not isotropic, especially when the mean rate of strain is
significant.5,6 Nevertheless, the anisotropy of the higher even
order transverse moments of the velocity derivatives has not
been examined. In this study we point out a lack of isotropy
of the even order transverse derivative moments in homoge-
neous shear flow for both incompressible and compressible
cases with increased anisotropy for higher order moments.
We also show that the small scale dilatational motions are
more anisotropic than their solenoidal counterparts, so that
the anisotropy increases for the compressible case. More-
over, the anisotropy of the even order transverse derivative
moments found in the DNS results is predicted by the rapid
distortion theory~RDT! solutions. As the Reynolds number
increases, the anisotropy among the transverse derivative
moments is expected to decrease. Since it is shown that the
anisotropy increases with the order of the moment, some
anisotropy may persist for higher order moments at large
values of the Reynolds number. In addition, it is shown that
the linear analysis predicts that the normalized odd order
transverse derivative moments ofu1 should approach a con-
stant different than zero at large times, in agreement with the

a!Electronic mail: livescu@lanl.gov
b!Electronic mail: madnia@eng.buffalo.edu

PHYSICS OF FLUIDS VOLUME 16, NUMBER 8 AUGUST 2004

28641070-6631/2004/16(8)/2864/13/$22.00 © 2004 American Institute of Physics

Downloaded 02 Jul 2004 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.1760771


DNS data. The RDT results suggest a persistent anisotropy
of the higher odd order normalized transverse derivative mo-
ments at large Reynolds number, in agreement with the ex-
perimental findings.1

There are numerous experimental investigations of in-
compressible homogeneous shear flow,1,7–9however, no such
study exists for the compressible case. Compressibility ef-
fects in turbulent flows are important in many practical ap-
plications ranging from combustion processes, to high speed
aerodynamics, and to astrophysical phenomena. Although
compressible turbulence has been the subject of intense re-
search in the last 50 years, much less is known in compari-
son with incompressible turbulence.10 In order to isolate the
volume changes of the fluid elements, the velocity field is
usually decomposed into a solenoidal~divergence free! part
and a dilatational part. For homogeneous flows this decom-
position is unique up to an additive constant, which can be
taken to be zero without the loss of generality. Such decom-
position in spectral space has been exploited by rapid distor-
tion theories in studies of shock–turbulence interaction and
homogeneous turbulence subject to bulk compression or uni-
form mean shear.11

For the RDT equations of incompressible homogeneous
shear flow, analytical solutions in wave-number space are
known for the velocity field in both viscous and inviscid
cases.12 The integration of these solutions over the wave-
number space can yield predictions for various quantities in
real space. In general, only for very early and long times the
integrals can be evaluated analytically. Long time solutions
for the velocity variances and shear stress are obtained by
Moffatt13 and Rogers.14 The early time evolution of the flow
is correctly captured by the RDT equations since the non-
normal amplification mechanism is linear in time.15,16 How-
ever, due to the neglecting of the nonlinear terms and thus
the energy cascade to small scales, the RDT predictions can
become eventually very different than those of the full non-
linear equations. Nevertheless, for the incompressible case,
the RDT equations correctly capture the behavior of various
correlations coefficients in the fully developed flow field.14

For the case of compressible homogeneous shear flow in
the RDT limit no analytical solutions are known. Simone
et al.17 performed RDT simulations of homogeneous shear
flow and showed that the role of the distortion Mach number,
Md , on the time variation of the turbulent kinetic energy is
consistent with that found in the DNS results. They also
identified different time regimes in which the various contri-
butions to the terms in the RDT equations in spectral space
change qualitatively, which might be the reason for the dif-
ference in the early and long time influence ofMd on the
kinetic energy growth. However, in the absence of analytical
solutions, it is difficult to predict how each wave number will
affect the result of the integration over the wave-number
space. For example, for the incompressible case, Rogers14

shows that at long times most of the contribution to the ve-
locity variances and shear stress comes from a very narrow
region in wave-number space, which shrinks in time.

The DNS results for compressible homogeneous shear
flow of Blaisdell et al.18 and Livescuet al.19 reveal that the
explicit dilatational effects tend to occur predominantly in

the direction of the shear. Livescu and Madnia20 examined
the anisotropies of the solenoidal and dilatational motions for
different values of the Reynolds and turbulent Mach numbers
and found higher levels of anisotropy for the normal compo-
nents of the dilatational dissipation tensor compared with
those of the normal components of the solenoidal dissipation
tensor. By examining the energy transfer leading to the an-
isotropy of the dilatational motions, Livescuet al.19 showed
that the nonlinear terms in the transport equation for the
kinetic energy components do not have a significant contri-
bution. This suggests that a linear mechanism might be re-
sponsible for the amplification of the dilatational motions in
the direction of the shear.

The present study thus aims:~i! to point out a lack of
isotropy of the even order transverse derivative moments for
both compressible and incompressible cases and show that
this anisotropy is due to a linear mechanism,~ii ! to examine
the ability of the linearized equations to predict the persistent
anisotropy of the normalized odd order transverse derivative
moments found in the experimental data, and~iii ! to clarify if
the amplification of the dilatational kinetic energy and dila-
tational dissipation in the direction of the shear are also due
to a linear mechanism. Moreover, the different levels of an-
isotropy of the small scale dilatational and solenoidal mo-
tions for the compressible case is also discussed. Addition-
ally, analytical solutions are presented for the RDT equations
of compressible homogeneous turbulent shear flow.

The paper is organized as follows. Section II describes
the governing equations and their linearization in the RDT
limit. The numerical methodology for solving the full non-
linear and the RDT equations with the parameters for the
cases considered is presented in Sec. III. Section IV contains
an analysis of the RDT equations for compressible homoge-
neous shear flow. The inviscid RDT equations are solved
analytically in the incompressible limit (Mt0

S→0) and
pressure-released limit (Mt0

S→`). For finite values of
Mt0

S and large times, analytical solutions are presented for
the Fourier modes of pressure and velocity components. In
Sec. V the analytical and numerical solutions of the RDT
equations are compared with the DNS results. It is shown
that the amplification of the dilatational kinetic energy in the
direction of the shear and the anisotropy of the normal com-
ponents of the dilatational dissipation tensor are captured by
the RDT equations. Also in this section, the anisotropy of the
even and odd order transverse derivative moments of the
solenoidal and dilatational velocity fields for the compress-
ible case and of the velocity field for the incompressible case
are studied using DNS results and shown to be predicted by
the RDT analysis. Summary and conclusions are given in
Sec. VI.

II. GOVERNING EQUATIONS

The conservation equations which provide the math-
ematical model of the problem are the continuity, Navier–
Stokes, and energy transport equations. For a compressible
homogeneous shear flow~for which the mean, Favre aver-
aged, velocity is given byũ15Sx2 with S constant,ũ250,
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and ũ350) after Rogallo’s transformation of coordinates21

xi85Bi j xj , these equations, in their nondimensional form,

become19,22

r ,t1~ruj9! ,kBk j50, ~1!

~rui9! ,t52ru29Sd i12~rui9uj9! ,kBk j2p,kBki

1F S t i j8 1
m

Re0
~Sd i1d j 21Sd i2d j 1! D G

,k

Bk j , ~2!

~rf! ,t5S~t128 2ru19u29!2~ruj9f! ,kBk j

2~puj9! ,kBk j1~t i j8 ui9! ,kBk j

1
1

~g21!M0
2 Re0 Pr

~mT,lBl j ! ,kBk j . ~3!

The stress tensor ist i j8 5(2m/Re0)(sij821
3D8dij), where si j8

5 1
2(ui ,k9 Bk j1uj ,k9 Bki) is the strain rate tensor, andD8

5ui ,k9 Bki is the dilatation of the velocity fluctuations. The
primary transport variables are the densityr, velocity fluc-
tuations~with respect to Favre average! in the xi direction
ui9 , and modified total energyf[@p/r(g21)#1 1

2ui9ui9 ,
where p is the instantaneous pressure and the ratio of the
specific heatsg51.4. The coordinate transformation matrix
has constant diagonal componentsBii 5b i and the only off-
diagonal nonzero component isB1252b1 St.

The thermodynamic variables are related through the
equation of state,p5rT/gM0

2, and the nondimensional vis-
cosity is modeled by assuming a power lawm5Tn, with n
50.7. The reference scales used to nondimensionalize the
governing equations are the initial rms velocity fluctuations
(u05Aui09 ui09 ), initial mean temperature (T0), initial mean
density (r0), and a reference length scale (l 0). Conse-
quently, the nondimensional parameters in Eqs.~1!–~3! are
the computational Reynolds number, Re05r0u0l0 /m0, the
Prandtl number, Pr5m0cp /k0 , and the reference Mach num-
ber, M05u0 /AgRT0, whereR is the gas constant andcp is
the specific heat at constant pressure. The reference viscosity,
m0 , and thermal diffusivity,k0 , are assumed to be propor-
tional to T0

n .
For the incompressible case, the energy equation is

eliminated, the continuity equation is replaced by the incom-
pressibility constraint, and the molecular viscosity is con-
stant. The governing equations become

uj ,k8 Bk j50, ~4!

ui ,t8 52u28Sd i12~ui8uj8! ,kBk j2p,kBki1t i j ,k8 Bk j , ~5!

whereui8 are the velocity fluctuations andt i j8 51/Re0(ui,k8 Bkj

1uj,k8 Bki).
The linearized nondimensional transport equations for

density,r8, velocity, ui9 , and pressure,p8, fluctuations in a
compressible homogeneous turbulent flow are derived by
Kovasznay.23 For the case of a homogeneous turbulent shear
flow these equations correspond to the RDT limit, which
assumes large values for the mean shear rateS. In the mov-
ing coordinate system defined above, the linearized equa-
tions become

r ,t852^r&D8, ~6!

ui ,t9 52
1

^r&
p,k8 Bki2Su29d i1

1
2^m&

^r&Re0
S si j8 2

1

3
D8d i j D

,k

Bk j , ~7!

p,t852g^p&D81
4^m&~g21!

Re0
Ss128 1

^m&

M0
2 Re0 Pr

^T&

3S p, j j8

^p&
2

r , j j8

^r& D . ~8!

While the average density is constant in time for homo-
geneous shear flow, the linearized equation for the mean
pressure is

^p& ,t5
^m&~g21!

Re0
S2, ~9!

with the right-hand side of the equation given by the viscous
dissipation of the mean flow.

Although in general the linearized equations form a
coupled system of equations, for the inviscid case they can
be decoupled~note that in this case the mean pressure be-
comes constant!. Thus, an equation for the dilatation can be
obtained by taking the divergence of Eq.~7!,

D ,t852
1

^r&
p, jk8 Bji Bki22Su2,k9 Bk1 . ~10!

This equation is used to eliminate the dilatation from Eq.~8!.
Finally, after eliminatingu29 with the use of Eq.~7!, an equa-
tion for the pressure fluctuations is obtained,

p,ttt8

c0
2

5p,t jk8 Bji Bki24Sp, jk8 Bj 1Bk2 , ~11!

wherec0 is the initial value of the mean speed of soundc
5(^gp&/^r&)1/2 ~which for the inviscid case becomes con-
stant!. Equation~11! is a third order linear differential equa-
tion in time, with variable coefficients. ForS50 ~decaying
isotropic turbulence! Eq. ~11! leads to a wave-like equation,
with bounded solutions. ForSÞ0, the timet can be nondi-
mensionalized by 1/S, so thath[St. Furthermore, after ap-
plying the Fourier transform, Eq.~11! yields

p̂,hhh52
c0

2

S2
~k2p̂,h24k1k2p̂!, ~12!

where the wave numberkj is related to the wave numberk̂i

in the moving coordinate system bykj5Bi j k̂i and k2

5kjkj . The notations used in the present paper for the wave
numbers in the fixed and moving coordinate systems are the
opposite of the notations used by Rogers.14 Due to the time
variation of k2 , Eq. ~12! does not have an easily derived
analytical solution except in the casek150 and for very
early and long times~h'0 and h→`!. Nevertheless, it
should be noted that, although for the full nonlinear equa-
tions the initial turbulent Mach number,Mt0

5(2K0)1/2/c0 ,

2866 Phys. Fluids, Vol. 16, No. 8, August 2004 D. Livescu and C. K. Madnia

Downloaded 02 Jul 2004 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



and S are independent parameters, they appear together in
Eq. ~12!, sincec0

2/S252K0 /^r&/(Mt0
S)251/(Mt0

S)2 ~note
that the initial value of the turbulent kinetic energy isK0

50.5 and ^r&51!. Moreover, if the distortion Mach
number,17 Md5SL/c, is introduced, thenc0

2/S25L0
2/Md0

2 ,

whereMd0
is the initial value of the distortion Mach number

and L0 is the initial value of the integral scaleL
5(2K)3/2/e. Similar equations, depending onc0

2/S2, h, the
wave number, and initial conditions can be found for the
Fourier modes of dilatation, density fluctuations, and veloc-
ity components. In order to complete the analysis, the initial
conditions for Eq.~12! are considered. These relations can be
rearranged to isolate the parameter (Mt0

S) by making the
transformationp̂85Mt0

p̂,

p̂8uh505Mt0
p̂0 , ~13!

p̂,h8 uh5052
2K0

^r&Mt0
S

d̂0 , ~14!

p̂,hh8 uh505S 2
k82

~Mt0
S!2

~Mt0
p̂0!1

2k18

Mt0
S

iû20D 2K0

^r&
,

~15!

whereki8 is the initial value of the wave number in the fixed
coordinate system (ki85 k̂i), k825ki8ki8 , i5A21, and d̂0

and û20
are the initial values of the Fourier modes of the

dilatation and velocity fluctuations in thex2 direction, re-
spectively. It can be seen that, if the initial value of the pres-
sure mode scales with 1/Mt0

for constant (Mt0
S), then p̂8

depends on (Mt0
S) andh only. This condition is fulfilled if

the pressure fluctuations are initialized with zero or from a
Poisson equation, which is the case with most DNS studies
of homogeneous turbulent shear flow. Note that to first order
the Poisson equation becomes

Mt0
p̂52i^r&~Mt0

S!
k1

k2
û2 . ~16!

In this case, from the inviscid momentum equations and Eq.
~10! for the dilatation it yields, after replacingt with h, that
ûi and D̂ depend only on (Mt0

S). Moreover, if the initial
values of the density fluctuations are set to zero,Sr̂ will also
be a function of (Mt0

S), wave number, andh only.
As a result, for the initializations usually used in the

DNS of homogeneous turbulent shear flow, the inviscid lin-
earized theory predicts the existence of only one compress-
ibility parameter (Mt0

S), for the properly scaled variables.
However, the addition of either the nonlinear or the viscous
terms prevents the governing equations to be written in terms
of only one compressibility parameter. Therefore, for moder-
ate values ofS or Reynolds number, two independent com-
pressibility parameters can be defined. Nevertheless, as
pointed out by Simoneet al.,17 changes inMd0

at constant
Mt0

are more important to the growth of turbulent kinetic
energy than changes inMt0

at constantMd0
.

III. NUMERICAL SOLUTION PROCEDURE

A. DNS methodology

Equations~1!–~3! are solved using the Fourier pseu-
dospectral method with Rogallo’s remeshing technique.21

Details can be found in Livescuet al.19 All simulations are
performed within a box containing 2563 points. The compu-
tational domain is twice as long in the streamwise direction
as in the cross-stream and spanwise directions so thatb1

50.5,b251.0, andb351.0. The initial velocity is a random
solenoidal field with unity rms and the spectrum given by
E(k)5k4/k0v

5 exp(22k2/k0v
2 ) with k0v510. The initial pres-

sure fluctuations are evaluated from a Poisson equation, the
initial density field is uniform, and the initial value of the
mean pressure is calculated from the mean equation of state.
The numerical method, mesh size, and initial conditions for
pressure and velocity fields are the same for the incompress-
ible case.

Several cases, 1–5, are considered at different values of
the mean shear rate. For each case two simulations, one com-
pressible and one incompressible, are performed. Table I pre-
sents the relevant information for each of the cases consid-
ered. The initial nondimensional shear rate is defined asS0*
52KS/e. For the compressible cases, the distortion Mach
numberMd0

is also listed. Cases 1–5 have the initial value
of the Taylor Reynolds number Rel0

521 and it increases to
Rel;100 at the end of the simulations. Additionally, one
more case~case 6! is considered with Rel0

550, and all the
other parameters as those of case 2. In the next sections, the
compressible simulations corresponding to cases 1–6 are la-
beled C1–C6, and the incompressible cases are labeled I1–
I6. All simulations were monitored to ensure that the integral
scales remain small compared to the box size and the Kol-
mogorov microscale is larger than the grid size. The com-
pressible runs were also repeated with initial turbulent Mach
numbers ranging fromMt0

50.1 to Mt0
50.6 and all the re-

sults presented in the next sections remained qualitatively
unchanged.

Based on the magnitude of the shear rate, a simple scal-
ing argument can be used to characterize the relative impor-
tance of the nonlinear term in the momentum equations com-
pared to the linear term arising from the presence of the
nonzero mean velocity gradient. Thus, as shown in Ref. 24,
the nonlinear term is negligible whenS1* /Rel1

@1/8 and

dominates whenS1* /Rel1
!0.35, where S1* 5u82S/e and

Rel1
5u82/(nA^u1,1

2 &), with u85A^u1
2&. Figure 1 shows the

TABLE I. Parameters for the DNS cases.

Case Rel0
S0* Md0

a

1 21 4.86 1.46
2 21 7.29 2.19
3 21 9.71 2.91
4 21 14.6 4.37
5 21 21.9 6.56
6 50 17.4 5.22

aValues corresponding to the compressible cases. All compressible cases
haveMt0

50.3.
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time evolution ofS1* /Rel1
for the compressible cases consid-

ered. The results obtained for the incompressible cases are
close. The initial range of variation covers the region in
which both the linear and nonlinear terms in the momentum
equations are important, with case C1, with lowest shear, for
which the nonlinear effects dominate and case C5, with high-
est shear, for which the linear term becomes more important.
After a development time the results obtained for the cases
with different values of the mean shear rate become close,
while retaining the dependence on the initial Reynolds num-

ber. For all cases, the late time values ofS1* /Rel1
are in the

region where the nonlinear effects dominate, based on the
scaling arguments given in Ref. 24.

B. RDT methodology

The unknowns in Eqs.~6!–~8! are transformed into17

f̂ 1~k,h!5
k1û32k3û1

m
, ~17!

f̂ 2~k,h!5~k1û11k3û3!
k2

mk
2

m

k
û2 , ~18!

f̂ 3~k,h!5
k1û11k2û21k3û3

k
5

D̂

ik
, ~19!

f̂ 4~k,h!5 ip̂, ~20!

f̂ 5~k,h!5 ir̂, ~21!

where m5Ak1
21k3

2. f̂ 1 is the component of the velocity
along the perpendicular on the plane defined by the wave-
number vector and thek2 direction. f̂ 2 is the component
along thek2 direction so thatf̂ 1 and f̂ 2 form the solenoidal
velocity andf̂ 3 is the projection of the velocity on the wave-
number vector and corresponds to the dilatational part of the
velocity. Additionally, since the equations are linear, a matrix
exponentiation method can be used by lettingf̂ i(k,h)
5gi j (k,h) f̂ j (k,0), with gi j (k,0)5d i j .

The resulting system for the unknownsgi j becomes

g1 j ,h52
k3

k
g2 j1

k2k3

mk
g3 j2

^m&
Re0^r&S

k2g1 j , ~22!

g2 j ,h5
k1k2

k2
g2 j2

k1

m
g3 j2

^m&
Re0^r&S

k2g2 j , ~23!

g3 j ,h52
k1m

k2
g2 j2

k1k2

kk2
g3 j2

k

^r&S
2

4

3

^m&
Re0^r&S

k2g3 j , ~24!

g4 j ,h5
g^p&

S
kg3 j1

2^m&
Re0

~g21!S 2
k1k3

m
g1 j1

k1k2
2

km
g2 j12

k1k3

k
g3 j D 2

^m&

Mt0
2 Re0 PrS

k2S g4 j

^p&
2

g5 j

^r& D , ~25!

g5 j ,h5
^r&
S

kg3 j , ~26!

where j 51,5. The system~22!–~26! is transformed into
spherical coordinates by settingk185k8 cosa, k28
5k8 sina sinf, and k385k8 sina cosf. Cases with ~101
36023204! grid points for the coordinates (k8,a,f) are
considered. The discretization is nonuniform, allowing for
more grid points near the linea5f5p/2. This is necessary,
as explained in the next section, in order to correctly capture

a local peak of some of the unknowns, which gives an im-
portant contribution to their integral over the wave-number
space. A fourth-order Runge–Kutta scheme is employed for
the time advancement. The equations are also solved for the

incompressible case~which is recovered by lettingf̂ 350). It
should be noted that the system~22!–~26! is independent of
the initial spectra, so that it is solved only once for a particu-

FIG. 1. Time evolution ofS1* /Rel1
.
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lar set of parameters. Furthermore, when integrating over the
wave-number space only the initial power spectra are re-
quired, and not the phase information.

The linearized Eqs.~22!–~26! are solved for different
values ofS0* ranging from 7.24 to 362. For all compressible
casesMt0

50.3, so that the range inS0* corresponds to 2.2
,Md0

,109. This range extends from a low shear case in
which the nonlinear effects in the corresponding DNS case
are important to cases with very high shear. The initial ve-
locity power spectrum is the same as in the DNS simulations
described earlier. For the compressible case, for each value
of (Mt0

S) four types of initial conditions, labeled L1–L4,
are considered~Table II!. For cases L1 and L3 the pressure
fluctuations are initialized from a Poisson equation, while for
cases with L2 initial conditions they are set to zero. The
initial velocity field is solenoidal for cases L1 and L2 while
x05Kd0 /K050.1 for cases L3 and L4, whereKd0 is the
initial dilatational kinetic energy. For cases with L4 initial
conditions the strong form of the acoustic equilibrium is
considered,17 so that there is an equipartition of energy be-
tween the potential and kinetic energies of the dilatational
component at each wave number. Therefore the initial
pressure power spectrum is given byEp(k8)
5Ag^p&u t50^r0&Ed(k8), whereEd is the initial power spec-
trum of the dilatational velocity. For each case, both the in-
viscid and viscous equations are solved. The types of initial
conditions considered are not exhaustive for the initial con-
ditions used in DNS of compressible turbulence~e.g., see
Refs. 25 and 26 for decaying isotropic turbulence!. However,
they were chosen such that the role of a nonzero initial dila-
tational field can be isolated. In the next sections, the nu-
merical solutions of the RDT equations are compared with
the DNS results and with the analytical predictions.

IV. ANALYTICAL RESULTS

By examining Eq.~12! for the pressure mode three cases
can be identified based on the values of 1/(Mt0

S)2.

A. ‘‘Pressure-released’’ limit †1Õ„Mt 0
S…

2\0‡

This case corresponds to values of the distortion Mach
number approaching infinity. After integrating Eq.~12!, a
quadratic dependence onh is obtained. However, when the
initial conditions ~13!–~15! simplified for large (Mt0

S) are
applied, the solution is obtained asp̂5 p̂uh50 . Since the
pressure mode is multiplied by the factor 1/(Mt0

S) in the
transport equations for the velocity modes, it can be dropped
from these equations. Therefore the equations for the veloc-
ity modes become

û1,h52û2 , û2,h50, û3,h50 ~27!

with the solutionsû15û2uh50h1û1uh50 , û25û2uh50 , and
û35û3uh50 . After integrating over the wave-number space,
it is obtained that the kinetic energy inx1 direction increases
quadratically, while it remains constant in the other two di-
rections. This case corresponds to the ‘‘pressure-released’’
limit discussed by Cambonet al.27 and Simoneet al.17

B. Incompressible case †1Õ„Mt 0
S…

2\`‡

Since S is assumed large in the RDT limit, as
1/(Mt0

S)2→` it yields Mt0
→0, so that the incompressible

case is recovered. The transport equation for the pressure
mode becomes

k2p̂,h24k1k2p̂50. ~28!

The solution is straightforward and can be written as

p̂5 p̂uh50

k84

k4
, ~29!

with p̂uh5052iS(k18/k82)û2uh50 . In order to find the pres-
sure variance from Eq.~29!, the integration over the wave-
number space should be performed numerically. Analytical
expressions can be obtained to approximate the time behav-
ior of the pressure variance only forh→0 ~early time! and
h→` ~long time!. In both cases the integration is conve-
niently done in spherical coordinates. The procedure is simi-
lar to that used by Townsend12 and Rogers14 to find the time
dependence of velocity and scalar one point statistics in in-
compressible turbulent shear flow. After the transformation
k185k8 cosa, k285k8 sina sinf, k385k8 sina cosf, anddk8
5k82 sina da df dk8, for isotropic initial conditions@so that
uû2uh50u25@E(k8)/4pk82#@(k18

21k38
2)/k82# with E(k8) the

initial velocity power spectrum#, the pressure spectrum func-
tion becomes

Fp~k8!5
E~k8!

4pk82

3
4S2 cos2 a~cos2 a1sin2 a cos2 f!

k82~122h cosa sina sinf1h2 cos2 a!4
,

~30!

and the pressure variance can be found from

^p82&~h!5
~2p!3

V E
2`

`

Fp dki8 . ~31!

For small values ofh ~early time! the integrand can be
expanded in a Taylor series inh, which can be integrated
analytically. It yields

^p82&
q

5
4

15
1

8

105
h21¯, ~32!

whereq54S2*@E(k8)/k82#dk8. In terms of the initial value
of the pressure variance the dependence is^p82&/^p08

2&51
1 2

7h
21¯ .

TABLE II. Initial conditions for the linearized equations.

Type of initial conditions p̂uh50 x0

L1 Poisson equation 0
L2 0 0
L3 Poisson equation 0.1
L4 Acoustic equilibrium 0.1
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As explained by Rogers,14 the long time behavior cannot
be obtained using the same procedure, since expanding
aroundh5` yields a result which is not uniformly valid
over the entire domain. This can be easily seen by evaluating
p̂ for k2851, k3850, andk1851/h, which for h→` yields

lim
h→`

p̂~k1851/h,h!5`. ~33!

Therefore a significant contribution to the integral of the
pressure spectrum over the wave number space comes from a
narrow region neark1850 which decreases in size ash in-
creases. Following Rogers,14 the asymptotic behavior can be
found by dividing the domain into two regions, an inner
region located aroundhk185O(1) ~which corresponds to
a5p/2! and an outer region consisting of the rest of the
domain covered by 0<a<p and 0<f<2p. In the inner re-
gion, arounda5p/2 and f5p/2, Fp(k8)k82 sina has a
peak. The magnitude of the peak and the extent ina andf
over which it occurs can be found by writinga5p/22ea

andf5p/22ef and expanding the sin and cos functions in
the expression for the pressure spectrum. It yields that
Fp(k8)k82 sina is of order h4 for ea51/h6O(1/h2) and
ef5O(1/h), so that the peak occurs over a region of extent
O(1/h2) in a and O(1/h) in f. This indicates a linear in-
crease for the pressure variance. The correct behavior can be
obtained by combining the results from the inner and outer
regions. The result obtained remains^p82&/^p08

2&;h, also
supported by the results of the numerical integration.

C. 1Õ„Mt 0
S…

2 finite

In this case the transport equation for the pressure mode
@Eq. ~12!# remains third order, and does not have an easily
derived analytical solution. However, some limiting cases
can be found. First, it should be observed thatp̂ approaches
zero aski8→` so that only finite values ofki8 are of interest.
Then for small values ofh the equation reduces to an equa-
tion with constant coefficients which can be easily solved.
However, since the roots of the characteristic polynomial are
dependent on the parameter (Mt0

S), the analytical computa-
tions involving the integration of the solution over the wave-
number space are cumbersome. Nevertheless, the solution
was verified numerically and it agrees reasonably well with
the full numerical solution of the RDT equations.

As h→`, unlike in the incompressible case, the behavior
of the Fourier modes in the outer region (k18h@1) is very
important for the integration over the wave-number space. It
is shown above that for the incompressible case the contri-
bution from the inner region yields a linear increase for the
pressure variance. However, as the parameter 1/(Mt0

S)2 de-
creases, the peak of the pressure mode occurring in the inner
region decreases its magnitude~Fig. 2! and the contribution
from this region to the pressure variance yields a less than
linear increase in time. This contribution to the pressure vari-
ance is negligible at long times since it is shown below that
the contribution from the outer region leads to a linear in-
crease in the pressure variance.

In the outer regionk18h→` for h→` and Eq.~12! be-
comes

p̂,hhh52
2K0k18

2

^r&~Mt0
S!2

~h2p̂,h14h p̂!. ~34!

The solution of Eq.~34! can be written asp̂5f1p̂uh50

1f2p̂,huh501f3p̂,hhuh50 , with f i given by the formulas

f151F2S @1#,F1

2
,
3

4G ,2 1

4
z2D , ~35!

f25J21/4~z!~z/2!3/42GS 3

4D S Mt0
S

k18
D 1/2S ^r&

2K0
D 1/4

, ~36!

f35J1/4~z!~z/2!3/4GS 1

4D Mt0
S

2k18
S ^r&
2K0

D 1/2

, ~37!

where 1F2 and Jn represent a generalized hypergeometric
function and the Bessel function of the first kind of ordern,
respectively, G is the gamma function and z
5(k18h

2/Mt0
S)AK0/2^r&. For large values of the nondimen-

sional time h, using the asymptotic expansions for these
functions given in Ref. 28, it is obtained that

f1'2~z/2!1/4sinS z2
3p

8 DGS 3

4D , ~38!

FIG. 2. Compressibility effects on thek18 variation of the pressure mode.
Inviscid case,h510, k251, k350, with initial conditions p̂uh5051,
p̂,huh5050, and p̂,hhuh5050. ~a! Incompressible,~b! compressible,Mt0

S
50.01, and~c! compressible,Mt0

S51.
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f2'~z/2!1/4cosS z2
p

8 D2GS 3

4D S Mt0
S

pk18
D 1/2S ^r&

2K0
D 1/4

,

~39!

f3'~z/2!1/4cosS z2
3p

8 DGS 1

4D Mt0
S

2Apk18
S ^r&
2K0

D 1/2

. ~40!

These expressions indicate that the Fourier mode of the pres-
sure oscillates in time and the amplitude of the oscillations
increases asAh. In order to find the pressure variance, the
integration over the wave-number space can be performed
using the Riemann–Lebesgue theorem,*a

bf (k8)eik8h dk8
→0 as h→` provided that *a

bu f (k8)udk8 exists. Since
sin2 a5(12cos 2a)/2 and cos2 a5(11cos 2a)/2, the integra-
tion yields a linear increase in time for the pressure variance.
This is consistent with the numerical solutions of the linear-
ized inviscid equations presented in Fig. 3.

Similar to the pressure variance, it can be shown that for
finite values of 1/(Mt0

S)2, most of the contribution to the
dilatation variance and kinetic energy inx2 direction, K2 ,
comes from the outer region. From the solution obtained for
the pressure mode, approximations for the asymptotic behav-
ior of the dilatation andu2 velocity modes in the outer region
can be derived using the following equations:

D̂52
~Mt0

S!

2K0
p̂,h8 , ~41!

û25
iD̂,h

2k1
2

ik2p̂8

2^r&~Mt0
S!k1

. ~42!

The relations obtained areD̂5f1Dp̂8uh501f2Dp̂,h8 uh50

1f3Dp̂,hh8 uh50 and û25f1u2p̂8uh501f2u2p̂,h8 uh50

1f3u2p̂,hh8 uh50 with f iD andf iu2 given by

f1D'~z/2!3/4cosS z2
3p

8 DGS 3

4D S k18
2Mt0

2 S2

2^r&K0
3 D 1/4

, ~43!

f2D'~z/2!3/4sinS z2
p

8 DGS 3

4D Mt0
S

A2pK0

, ~44!

f3D'~z/2!3/4sinS z2
3p

8 DGS 1

4D 1

4 S Mt0
3 S3

pk18
D 1/2

3S ^r&

8K0
5D 1/4

, ~45!

f1u2' i~z/2!1/4cosS z2
3p

8 DGS 3

4D k18

2^r&Mt0
S

, ~46!

f2u2' i~z/2!1/4sinS z2
p

8 DGS 3

4D S k18

pMt0
SD 1/2 1

2K0
, ~47!

f3u2' i~z/2!1/4sinS z2
3p

8 DGS 1

4D 1

4 S 1

2p^r&K0
D 1/2

.

~48!

Again, using the Riemann–Lebesgue theorem, Eqs.
~43!–~48! can be integrated over the wave-number space to
yield an h3 increase in time for the dilatation variance,
^D82&, and a linear increase for̂u2

2&. This represents an
important difference compared to the incompressible case,
where it is known that for large times theu2 velocity vari-
ance decreases in time as ln~4h!/~4h!.14 It is shown below
that the increase in time in the compressible case is due to
the dilatational component.

In the incompressible case, the influence from the inner
region to ^u1

2& and ^u3
2& is significant and at large times

^u1
2&'2 ln 2h and ^u3

2&'p2/8 lnh2C.14 For the compress-
ible case, after using the approximationk2'2hk18 , the
transport equations forû1 and û3 can be solved analytically
and for large values ofh,

û1;û1uh501
d1

Ah
sinS k18h

2

Mt0
S
A K0

2^r&
1d2D , ~49!

û3;û3uh501
e1

Ah
sinS k18h

2

Mt0
S
A K0

2^r&
1e2D , ~50!

with the coefficientsdi andei depending on (Mt0
S) and the

wave number. Therefore, in the outer region, for large times,
û1 andû3 become constant. Numerical solutions of the RDT
equations indicate that the contributions from the inner re-
gion to ^u1

2& and^u3
2& remain dominant for the compressible

case andK1 and K3 increase in time, as shown in Fig. 4.
However, as the compressibility parameterMt0

S increases,
these contributions decrease their importance resulting in a
reduced rate of increase of the turbulent kinetic energy inx1

and x3 directions. This explains the ‘‘stabilizing’’ effect of
compressibility on the evolution of the turbulent kinetic en-
ergy found in the RDT study of Simoneet al.17

From the solution corresponding to the Fourier mode of
the dilatation, the dilatational parts of the velocity modes can
be obtained asûi d

52 iki /k2D̂. Numerical solutions of the
RDT equations indicate that the inner region has a negligible
contribution to the variances of the dilatational velocity com-
ponents. In the outer region, for large values ofh, the time
variation of the dilatational parts of the velocity modes can
be derived from formulas~43!–~45! as

FIG. 3. Numerical solution of the inviscid RDT equations for the pressure
variance forMt0

S54.6 ~thin lines! andMt0
S531 ~thick lines! and different

initial conditions. For clarity the results obtained forMt0
S54.6 are magni-

fied 5 times.
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û1d
;

c11

Ah
sinS k18h

2

Mt0
S
A K0

2^r&
1c12D , ~51!

û2d
;c21Ah sinS k18h

2

Mt0
S
A K0

2^r&
1c22D , ~52!

û3d
;

c31

Ah
sinS k18h

2

Mt0
S
A K0

2^r&
1c23D , ~53!

where the constantsci j depend on (Mt0
S) and the wave

number.

V. COMPARISON WITH DNS

Although the early time response of the flow to the pres-
ence of the shear is correctly captured by the linearized equa-
tions, the long time evolution of the flow can become very
different than that obtained from the full nonlinear equations.
However, there are quantities which follow the RDT predic-
tions even at long times. This is the case with various corre-
lation coefficients~e.g., the Reynolds stress correlation coef-
ficient! in the incompressible case.14 For the compressible
case, the effect of compressibility on the evolution of the
turbulent kinetic energy is correctly captured by the linear-
ized equations.17

It is shown below that other characteristics of the dilata-
tional field are captured by the linearized equations. In par-
ticular, it is shown that the amplification of the dilatational
kinetic energy in the direction of the shear and the anisotropy
of the normal components of the dilatational dissipation rate
tensor are captured by the RDT equations. Furthermore,
DNS results show that the transverse even order derivative
moments of the velocity field in both compressible and in-
compressible cases are anisotropic and the anisotropy in-
creases with the order of the moment. Thus, the anisotropy of
the higher order moments may persist at large values of the
Reynolds number, in contrast with the local isotropy
principle.29 Moreover, the DNS results indicate that the odd
order normalizedx2 derivative moments ofu1 approach a
constant different than zero at large times. These results can
also be explained using the RDT solutions.

A. Dilatational kinetic energy and dissipation
anisotropy

By comparing formulas~51!–~53! with solutions ob-
tained for the velocity modes, it can be seen that at long
timesû1'û1s

, û2'û2d
, andû3'û3s

. It is obtained that most
of the dilatational kinetic energy resides in the direction of
the mean velocity gradient, consistent with the numerical
solution of the linearized Eqs.~6!–~8! @Fig. 5~a!#. The addi-
tion of the viscous terms decreases the dominance ofK2d

component compared to the other two components, as can be
seen in Fig. 5~b!. A further decrease of the relative magni-
tude ofK2d

is obtained in the fully nonlinear case@Fig. 5~c!#.
Nevertheless, as Fig. 5~c! shows, the dilatational kinetic en-
ergy in the direction of the mean velocity gradient obtained
in DNS is larger than in the other two directions, in agree-
ment with the previous studies.18,19,30The above analysis in-
dicates that the amplification of the dilatational kinetic en-
ergy in the direction of the mean shear can be explained by
linear effects.

Previous numerical simulations of compressible homo-
geneous shear flow18–20 indicate that the dilatational dissipa-
tion rate tensor behaves very differently than its solenoidal
counterpart. Thus, the dilatational dissipation rate is ampli-
fied in the direction of the mean shear. This behavior was
previously attributed to the formation of shocklets aligned
preferentially in x2 direction. Livescu and Madnia20 per-
formed simulations at different values of the turbulent Mach

FIG. 4. Compressibility effect on the kinetic energy inx1 andx3 directions.
Inviscid case, with L1 initial conditions.

FIG. 5. Time evolution of the normalized dilatational kinetic energy com-
ponents forMt0

S51.53, 3.1, and 4.6.~a! Inviscid RDT, ~b! viscous RDT,
and ~c! DNS. The curves correspond to cases C2, C4, and C5.
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number and obtained no significant decrease in the anisot-
ropy of the dilatational dissipation rate tensor in low turbu-
lent Mach number simulations. Therefore, the amplification
of the dilatational dissipation rate in the direction of the
mean shear is not associated with the presence of shocklets.
This conclusion is also obtained in Ref. 31. Figure 6 shows
that e22d

becomes more important compared toe11d
ande33d

asMt0
S, which is proportional to the distortion Mach num-

ber, increases. After multiplying the solutions for the dilata-
tional velocity modes@Eqs.~51!–~53!# by iki and performing
the integration over the wave-number space, it can be seen
that in the RDT limit ^(]u2d

/]x2)(]u2d
/]x2)& becomes

much larger than̂(]u1d
/]x1)(]u1d

/]x1)& and ^(]u3d
/]x3)

3(]u3d
/]x3)&. Numerical solutions of the RDT equations in

both inviscid and viscous cases confirm this result. There-
fore, the anisotropy of the normal components of the dilata-
tional dissipation rate tensor can be associated with a linear
mechanism.

B. Higher order derivative moments

In the outer regionk2 increases continuously, while it is
very small in the inner region~wherek18h'k28). Using the
solutions provided in the preceding section for the solenoidal
and dilatational components of the velocities, it can be
shown that after the multiplication byk2 , the contribution
from the outer region becomes dominant at long times.
Therefore, thex2 derivatives of the velocity components be-
come much larger than the derivatives in the other two di-
rections. As a result, all the even order derivative statistics
involving x2 derivatives become amplified and this effect is
more pronounced for higher order statistics. Figure 7 com-
pares moments of the transverse derivatives,^(]u1d

/]xj )
n&

wherej 52, 3 andn52, 4, and 6, of the dilatational velocity
in thex1 direction. It can be seen that, as the distortion Mach
number increases and the RDT limit is approached, the mo-
ments containingx2 derivatives become much larger than the
correspondingx3 derivative statistics. Moreover, in agree-
ment with the RDT predictions, this anisotropy is strongly
amplified for higher order moments. This again suggests that
the small scale anisotropy of the dilatational motions found

in the DNS results is produced by a linear mechanism. On
the other hand, the results presented show that the higher
order transverse moments are increasingly more anisotropic
as the order of the moment increases. Thus, even if the an-
isotropy decreases with Reynolds number, some degree of
anisotropy will persist for higher order transverse derivative
moments at large values of the Reynolds number.

Although the inner region has a significant contribution
to the one-point statistics of the solenoidal velocity compo-
nents inx1 andx3 directions, this contribution becomes neg-
ligible for the statistics involvingx2 derivatives. As ex-
plained above, in the outer regionû1s

and û3s
become

constant at large times so that after the multiplication withk2

they increase linearly. Therefore, the outer region yields a
quadratic increase in time for̂(]u1s

/]x2)(]u1s
/]x2)& and

^(]u3s
/]x2)(]u3s

/]x2)&. The contribution from the inner re-
gion does not increase after the multiplication withk2 and
the inner region yields a less than quadratic increase for the
above quantities. Similar results are obtained for higher order
moments. Thus, similar to the dilatational velocities, in the
RDT limit the even order transverse derivatives of the sole-
noidal velocities inx1 andx3 directions are anisotropic and
become even more anisotropic as the order of the statistics
increases. Figure 8 confirms that this effect is also present in
the DNS results for the derivative moments ofu1s

and simi-
lar results are obtained for the derivative moments ofu3s

.

FIG. 6. Time variation of the diagonal components of the dilatational dis-
sipation rate tensor forMt0

S51.53, 3.1, and 4.6, corresponding to cases C2,
C4, and C5.

FIG. 7. Even order transverse derivative moments of the dilatational veloc-
ity in x1 direction, Mny

d 5^(]u1d
/]x2)n&/(^(]u1d

/]x2)n&1^(]u1d
/]x3)n&)

and Mnz
d 5^(]u1d

/]x3)n&/(^(]u1d
/]x2)n&1^(]u1d

/]x3)n&). ~a! n52, ~b!

n54, and~c! n56.
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A comparison between Figs. 7 and 8 indicates that the
transverse solenoidal derivative moments are less anisotropic
than their dilatational counterparts. Again, it can be shown
that this is also in agreement with the RDT predictions. Thus,
sinceû1s

becomes constant in the outer region, it yields that
k2û1s

;h and ^(]u1s
/]x2)2&;h2. However, thex3 deriva-

tive retains influence mostly from the inner region and
^(]u1s

/]x3)2&;h. On the other handû1d
retains influence

mostly from the outer region. The Riemann–Lebesgue theo-
rem can be used to integrate formula~51! multiplied by k2

and k3 to obtain for the dilatational component that
^(]u1d

/]x2)2&;h and ^(]u1d
/]x3)2&;1/h. Similar results

are obtained for higher order statistics. Therefore, in the RDT
limit, the even order transverse derivatives of theu1d are
more anisotropic than their solenoidal counterparts for large
but finite values ofh ~Fig. 9!. Similar results are obtained for
the velocity in thex3 direction.

Using the same analysis as above, it can be shown that
the odd order moments of thex2 derivatives ofu1s

also have
most of the contributions from the outer regions. Thus, after
the multiplication with k2

n'(2hk18)
n, the solution in the

outer region becomes much larger than that obtained in the
inner region ash→`. Note thatuu1s

u increases in time as
h1/2 in the inner region and the multiplication byk2 does not

increase this rate. Since in the outer regionû1s
becomes con-

stant at large times, it yields that the moment of ordern
increases in time ashn, and, therefore, the normalized odd
order moments,̂ (]u1s

/]x2)n&/@^(]u1s
/]x2)2&#n/2, with n

odd, should approach a constant different than zero at large
times. As Fig. 10 shows, this prediction is in general agree-
ment with the DNS data. The same analysis cannot be used
for u3s

. It was shown that in the outer regionû3s
approaches

its initial value. Therefore, after multiplication byk2
n

'(2hk18)
n the odd order moments of thex2 derivative,

would approach values proportional to those of the initial
odd order moments of thex1 derivative. However, for iso-
tropic initial conditions, these values are zero. This is con-
sistent with the overall symmetry of the problem, which re-
quires that the odd orderx1 and x2 moments of theu3

velocity remain zero at all times.
For the incompressible case, complete analytical solu-

tions are known for the velocity field.12,14Although most of
the contributions to the velocity variances inx1 and x3 di-
rections come from the inner region, it is easy to show that
the statistics involvingx2 derivatives have contributions
mostly from the outer region, where at large timesk2

'2hk18 . Moreover, the behavior of the velocity modes in
the outer region is similar to that obtained above for the
solenoidal velocity modes. Consequently, in the RDT limit
the transverse even order moments of the velocity deriva-
tives are anisotropic, and the anisotropy increases for higher
order moments. Similar to the solenoidal moments for the

FIG. 8. Even order transverse derivative moments of the solenoidal velocity
in x1 direction, Mny

s 5^(]u1s
/]x2)n&/(^(]u1s

/]x2)n&1^(]u1s
/]x3)n&). n

52 ~no symbols!, n54 ~open symbols!, andn56 ~closed symbols!.

FIG. 9. RDT results for the second order transverse derivatives ofu1s
and

u1d
. L1 initial conditions,Mt0

S51.53.

FIG. 10. Odd order normalized transverse derivative moments of the sole-
noidal velocity inx1 direction,Sny5^(]u1s

/]x2)n&/(^(]u1s
/]x2)2&)n/2. ~a!

n53, ~b! n55.
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compressible case and consistent with the RDT predictions,
the incompressible DNS results presented in Fig. 11 show an
increase in the anisotropy for higher order transverse deriva-
tives moments ofu1 . Similar results are obtained foru3 .
Therefore, it is expected that for higher order moments the
anisotropy will persist at large Reynolds numbers.

In addition, similar to the solenoidal velocity for the
compressible case, the RDT solutions for the incompressible
case predict that the odd order normalizedx2 derivative mo-
ments ofu1 andu3 should approach a constant different than
zero at large times. The DNS results are similar to those
shown in Fig. 10 for the solenoidal velocity field in the com-
pressible case and support the RDT prediction. As explained
above, as the Reynolds number increases the small scales
become more energetic and the flow departs from the RDT
limit ~see also Fig. 1!. For very large values of the Reynolds
number, the postulate of local isotropy requires that the odd
order transverse derivative moments should approach zero.
However, since the linear effects lead to ahn increase in
time for the x2 derivative moments, for higher order mo-
ments the linear contribution may become dominant at long
times even at large values of the Reynolds number. There-
fore, the higher order normalized transversex2 derivative
moments could have persistent nonzero values at large Rey-
nolds numbers. The present numerical simulations do not
have a large enough Reynolds number to examine this hy-
pothesis, however the analysis presented is consistent with

the experimental results of Shen and Warhaft.1 At high Rey-
nolds numbers, the experimental results indicate that lower
odd order moments of]u1 /]x2 become small as the Rey-
nolds number increases. However, this tendency is not ob-
served for higher order moments. As suggested by Schuma-
cheret al.,24 the small-scale intermittency might play a role
on the observed behavior of the higher order moments. Nev-
ertheless, the persistent anisotropy of the higher odd order
normalized derivative moments found experimentally is in
agreement with the present linear analysis.

VI. SUMMARY AND CONCLUSIONS

The structure of homogeneous turbulent shear flow is
studied using data generated by DNS and an RDT analysis
for both compressible and incompressible cases. For the
compressible case, simulations with different initial values of
the distortion Mach number,Md , and Reynolds number are
considered. Incompressible simulations are performed with
the same initial pressure and velocity fields as for the com-
pressible simulations.

Previous DNS studies18–20 indicate that there is an an-
isotropy among the dilatational kinetic energy components.
Moreover, the results of Livescuet al.19 suggest that the en-
ergy transfer through the nonlinear terms in the transport
equations forKi d

is not responsible for this behavior. In order
to verify that the anisotropy of the dilatational kinetic energy
components can be explained by linear effects, the linearized
equations are considered. The RDT equations are solved nu-
merically, for both the inviscid and viscous cases, for a large
range of distortion Mach numbers and different types of ini-
tial conditions. The RDT results are consistent with the DNS
findings for the development of the dilatational field.

Furthermore, for large times, analytical solutions are
found for the inviscid linearized equations in Fourier space.
The integration of these solutions over the wave-number
space can predict the behavior of various statistics in real
space. It is shown that the solutions for the pressure, dilata-
tion and dilatational velocities of the Fourier modes for finite
values ofk18 oscillate in time and the amplitudes of oscilla-
tions increase. The analytical relations indicate that the mag-
nitude of the Fourier mode of the dilatational velocity in the
direction of the mean shear becomes much larger than in the
other two directions.

It is known that for incompressible homogeneous turbu-
lent shear flow in the RDT limit most of the contributions to
the velocity variances come from a narrow region in the
wave-number space situated neark1850.14 A similar trend is
found for the pressure variance. However, it is shown that
the contribution from this region to the statistics of the ve-
locity field involving x2 derivatives for both compressible
and incompressible cases and to all the statistics of the dila-
tational velocities becomes negligible at long times. For fi-
nite values ofk18 , the wave number in the direction of the
mean shear increases continuously in time. Therefore, the
derivatives in this direction become much larger than in the
other two directions. As a result, in the RDT limit the even
order transverse derivative moments of both the dilatational
and solenoidal velocity fields for the compressible case and

FIG. 11. Even order transverse derivative moments of the velocity inx1

direction, incompressible case. Mny5^(]u1 /]x2)n&/(^(]u1 /]x2)n&
1^(]u1 /]x3)n&) and Mnz5^(]u1 /]x3)n&/(^(]u1 /]x2)n&1^(]u1 /]x3)n&).
~a! n52, ~b! n54, and~c! n56.
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the even order transverse derivative moments of the velocity
field for the incompressible case are anisotropic. Moreover,
the anisotropy becomes amplified for higher order moments.
The RDT analytical solutions also predict that the small di-
latational scales are more anisotropic than their solenoidal
counterparts, in agreement with the DNS results. Since the
x2 derivatives of the velocity field retain influence mostly
from the region where the wave number in thex2 direction
increases in time, it is shown that in the RDT limit the odd
order normalizedx2 derivative moments ofu1 for the incom-
pressible case andu1s

for the compressible case should ap-
proach a constant different than zero at large times. This
prediction is consistent with the DNS results.

As the Reynolds number increases the small scales be-
come more energetic and for constant mean distortion the
flow departs the RDT limit. Therefore, it is expected that,
consistent with the postulate of local isotropy, the anisotropy
of the small scales should decrease at large values of the
Reynolds number, i.e., the odd order normalizedx2 deriva-
tive moments approach zero and the even order transverse
moments become isotropic. However, it is argued that, since
in the RDT limit the odd order moments increase in time as
hn, wheren is the order of the moment, for higher order
moments the linear contribution may be important even at
large values of the Reynolds number. Thus, the RDT analysis
suggests a persistent anisotropy of the higher odd order nor-
malized derivative moments. In addition, since the anisot-
ropy of the even order transverse derivative moments in-
creases with the order of the moment, it is expected that
persistent anisotropy levels in the transverse higher even or-
der derivative moments will be found at large values of the
Reynolds number. Although high Reynolds number results
will not be available from DNS in the near future, they are
within the reach of experiments and these predictions can be
verified using experimental data.
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