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Abstract

Density variations in fluid flows can arise due to acoustic or thermal fluctu-
ations, compositional changes during mixing of fluids with different molar
masses, or phase inhomogeneities. In particular, thermal and compositional
(with miscible fluids) density variations have many similarities, such as in
how the flow interacts with a shock wave. Two limiting cases have been
of particular interest: (a) the single-fluid non-Oberbeck–Boussinesq low–
Mach number approximation for flows with temperature variations, which
describes vertical convection, and (b) the incompressible limit of mixing
between miscible fluids with different molar masses, which describes the
Rayleigh–Taylor instability. The equations describing these cases are re-
markably similar, with some differences in the molecular transport terms.
In all cases, strong inertial effects lead to significant asymmetries of mixing,
turbulence, and the shape of mixing layers. In addition, density variations re-
quire special attention in turbulence models to avoid viscous contamination
of the large scales.
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1. INTRODUCTION

Flow systems with large density variations are ubiquitous in technology and nature. Sources of
variable-density (VD) effects include compressibility phenomena such as acoustic fluctuations
and shock waves, temperature variations due to differential heating or chemical/nuclear reactions,
mixing between fluids with different molar masses or phases, and phase transformations. At very
large scales, all astrophysical explosions, accretion disks, and mergers, as well as convection in
stars, involve turbulent flows with significant density variations. Detailed measurements of the
flow characteristics under the most extreme conditions are not possible; only observations that
are inherently limited in the timescales and phenomena they capture are available to inform nu-
merical and theoretical models. At the opposite end of length- and timescale ranges are manmade
implosions inside inertial confinement fusion (ICF) capsules at the National Ignition Facility. The
implosions are measured in nanoseconds, and the capsules are only about a millimeter in diameter.
While measurements are being performed for the flow within such capsules, the overlap of fluid
[e.g., Richtmyer–Meshkov (RM), Rayleigh–Taylor (RT), ablative], laser beam, and plasma insta-
bilities; phase changes; plasma andmagnetic effects; and kinetic effects makes it extremely difficult
to understand the flow.Between these limits, significant variations in fluid density are encountered
in, for example, high-speed flight; combustion; convection regions in oceans, the atmosphere, and
Earth’s mantle; and industrial flows. Such a large variety of applications may seem overwhelm-
ing and all but impossible to understand. However, starting from conservation equations, one can
identify canonical flows that exhibit aspects shared across applications. Designing canonical flows
has facilitated the development of laboratory-sized experiments that expose relevant phenomena
at widely different scales, such as in astrophysics or ICF (Prestridge 2018, Remington et al. 2019).
These canonical flows have been studied in some cases for more than a century and have developed
communities that have diverged as the fields grew.

The focus of this review is inertial density effects on turbulent flows, as produced by thermal
(entropic) and compositional variations. These VD effects span several canonical turbulent flows
in compressible flow regimes [e.g., RM instability (RMI)] and in low–Mach number (low-M) or
incompressible flow regimes [e.g., RT instability (RTI), shear-driven mixing layers, vertical con-
vection]. There are many similarities between thermal and compositional density variations, such
as in how the flow interacts with a shock wave. Two limiting cases are the low-M approxima-
tion for single-fluid flows with thermal variations and the incompressible limit of binary mixing
between different molar mass fluids, which are described by remarkably similar equations, with
only subtle differences in the molecular transport terms. The former has been used to study non-
Oberbeck–Boussinesq (NOB) effects in flows with the largest density variations at the boundaries
(e.g., vertical convection), while the latter has been used to study flows with the largest density
variations at an interior interface (e.g., RTI at large Atwood number A, where A = ρ2−ρ1

ρ2+ρ1
measures

the normalized density difference), with some overlapping studies of shear-driven mixing layers.
Due to the similarity of the governing equations, all of these flows share common features regard-
ing asymmetric turbulence stirring and entrainment, while differences in the molecular transport
may lead to changes in the dynamics of density gradients and higher-order quantities, affecting,
for example, the evolution of pure fluid regions. Along the way, some of the mathematical aspects
introduced by VD effects on the conservation equations are discussed. However, the goal is not
to provide a comprehensive review of any of the flows mentioned, but rather to emphasize the
shared VD effects. For particular details about each of these canonical flows, the reader is referred
below to appropriate recent reviews.

This review is organized as follows. Section 2 starts from the fully compressible multispecies
Navier–Stokes equations to first identify VD sources and the corresponding thermal (entropic)
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and compositional effects. This is followed by a discussion of shock–VD flow interaction pro-
gressing from small-amplitude perturbations described by the linear interaction approximation
(LIA) to shock propagation in a VDmedium, shock–VD turbulence interaction, and finally, RMI.
Section 3 discusses the derivation of the quasi-incompressible and incompressible limits of the
compressible Navier–Stokes equations for VD flows. The derivation encompasses both thermal
and compositional density variations to highlight their similarities and differences. This section
also discusses VD effects in triply periodic simulations, regularity considerations for the limiting
VD equations, and locality of the turbulence cascade in VD turbulence. Section 4 highlights man-
ifestations of inertial density effects in several canonical turbulent flows: temporal shear-driven
mixing layers, RTI, and thermal convection. The review ends with lists of summary points and
future issues.

2. THERMAL (ENTROPIC) AND COMPOSITIONAL DENSITY
VARIATIONS IN COMPRESSIBLE FLOWS

To isolate VD effects due to thermal (entropic) and compositional fluctuations from other sources,
we assume the fluid is well described by the compressible multicomponent Navier–Stokes equa-
tions. The similarity and differences between thermal and compositional VD effects are studied
in this section in the context of interaction with shock waves, and low-M limits are addressed in
the subsequent sections.

2.1. Compressible Navier–Stokes Equations

In vector form, the governing equations describing the conservation of mass, momentum, energy,
and species mass fractions for miscible materials are (Williams 1985)

∂

∂t
ρ + ∇ · (ρu) = 0, 1.

∂

∂t
(ρu) + ∇ · (ρuu) = −∇ · σ + ρ

∑
α

YαFα , 2.

∂

∂t
(ρe) + ∇ · (ρue) = −σ : (∇u) − ∇ · q + �̇ + ρ

∑
α

YαFα · Vα , 3.

∂

∂t
(ρYα ) + ∇ · (ρuYα ) = −∇ · (ρYαVα ) + ω̇α. 4.

The primary dependent variables in Equations 1–4 are the mixture density ρ, mass-averaged ve-
locity u, specific internal energy e, and species mass fractionsYα , with α = 1, . . . ,N and

∑
α Yα = 1.

The external body force,Fα , acting on species α is considered specified (not derived). Each species
has its own velocity, which differs from the mixture velocity by the diffusional velocity, Vα , with∑

α YαVα = 0, and �̇ and ω̇α are source terms due to chemical/nuclear reactions.
The molecular transport terms on the right-hand sides of Equations 1–4 represent transport of

mass (the diffusional velocities, Vα), momentum (the stress tensor, σ), and energy (the heat flux,
q). These quantities cannot, in general, be related to the primary variables, since the transport
properties involve higher moments of the velocity distribution function. Neglecting radiative and
Soret and Dufour effects, Chapman–Enskog theory leads to the following expressions for the
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transport terms (Williams 1985),

∇Xα =
∑

β

(
XαXβ

Dαβ

)
(Vβ − Vα ) + (Yα − Xα )

(∇ p
p

)
+ ρ

p

N∑
β=1

YαYβ (Fα − Fβ ), 5.

σ = pI − μ[∇u + (∇u)T ] +
(
2
3
μ − μb

)
∇ · uI, 6.

q = −λ∇T + ρ

N∑
α=1

hαYαVα , 7.

where Wα and Xα are respectively the molar mass and mole fraction of species α [Xα =
(Yα/Wα )/

∑N
β=1(Yβ/Wβ )], p and T are the pressure and temperature of the mixture, hα = ∂h

∂Yα
|p,T

is the enthalpy of species α,R is the universal gas constant, I is the unit second-order tensor, and
(∇u)T denotes the matrix transpose of the velocity gradient. The equations need to be supple-
mented by pressure, p = p(ρ,T ,Yα ), and energy, e = e(ρ,T ,Yα ), equations of state.

2.2. Shock/Variable-Density Flow Interaction

The small-perturbation limit is briefly discussed first in order to identify VD sources in multi-
component compressible fluid flows, followed by discussions of shock propagation through VD
media, shock interaction with isotropic VD turbulence, and finally, RMI.

2.2.1. Extended Kovasznay decomposition. For single-fluid flows with small density, veloc-
ity, pressure, and entropy variations around a background state, Kovasznay (1953) showed that the
linearized Euler equations can be decomposed into three physical modes: vorticity, entropic, and
acoustic. For multicomponent flows, there is also a compositional mode (Griffond 2005, Sagaut &
Cambon 2018; Y. Tian, F.A. Jaberi & D. Livescu, manuscript in review). To highlight the contri-
butions to the density variations from each of the modes, one can write the linearized continuity
equation around a uniform background state denoted by index “0” in a reference frame moving
with the mean velocity u0 in the form

	 ≡ ∇ · u = − 1
ρ0

∂ρ

∂t
= − 1

γ0p0
∂ p
∂t

+ 1
cp0

∂s
∂t

+
∑

α

Rα

R0

∂Yα

∂t
, 8.

for a mixture of perfect gases, obeying the equation of state p = ρRT , with R = ∑
α

R
Wα
Yα =∑

α RαYα . Here, ρ, p, s, u, and Yα represent small fluctuations. It can be seen that the density and
the dilatational part of the velocity have contributions from acoustic, entropic, and compositional
modes. In the absence of sources and molecular transport, the modes decouple and the associated
vorticity, entropy, and compositional disturbances are passively advected by the mean velocity,
while the acoustic mode disturbances travel at the speed of sound relative to the mean flow.

2.2.2. Linear interaction approximation. For small-amplitude perturbations, the mode de-
composition allows one to relate the perturbations downstream of the shock to those upstream
using the linearized Rankine–Hugoniot jump relations (Moore 1954, Ribner 1954). For single-
fluid flows, there have been numerous comparisons between experiments and simulations with
the LIA, as well as further extensions (Andreopoulos et al. 2000). Of particular interest has been
the interaction between a shock wave and isotropic turbulence. Ryu & Livescu (2014) showed
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that the direct numerical simulations (DNS) results converge to the LIA solutions when the ra-
tio of the shock thickness (δ) to the preshock Kolmogorov length scale (ηK) becomes small, even
at low Reynolds numbers. In this limit, there is a large separation of scale between δ and tur-
bulence scales, which also minimizes the interaction time and hence the role of viscous/diffusive
contributions. Replacing the actual shock interaction with the LIA relations can extend the reach
of DNS to arbitrarily high shock Mach number and much larger Taylor Reynolds number (Reλ)
than is otherwise computationally feasible, provided that the interaction parameters correspond to
the linear regime (Livescu & Ryu 2016, Quadros et al. 2016). Using shock-capturing turbulence-
resolving simulations, Tian et al. (2017) showed that the LIA predictions for the Reynolds stresses
can be approached (albeit at larger Reλ values than DNS calculations), provided that the scale
separation between numerical shock thickness (δn) and ηK is large enough. Both shock-resolving
and turbulence-resolving shock-capturing simulations have been used to study the postshock am-
plification of Reynolds stresses, vorticity variance, turbulence length scales, and terms in their
transport equations (e.g., Mahesh et al. 1995, 1997, Jamme et al. 2002, Larsson et al. 2013, and
references therein); passive scalar dynamics (Tian et al. 2017, Boukharfane et al. 2018); thermo-
dynamic fields due to the interaction (Sethuraman et al. 2018); and improvements in turbulence
modeling (Griffond et al. 2010, Schwarzkopf et al. 2016).

For a mixture of perfect gases, the linearized Rankine–Hugoniot jump conditions (e.g., Lee
et al. 1993,Mahesh et al. 1995) should be supplemented with jump conditions for the composition
variables, which simply become (Griffond 2005)

[[Yα0 ]] = 0, [[Yα]] = 0, 9.

showing that the composition wave is not changed through the shock wave. The resulting down-
stream perturbations can be written as solutions to the linear systemA · Zl = Bl, where the transfer
functionZl = (Zlv,Zls,Zla,Zlc,Zlx ) measures the relative amplitude of the created perturbations to
the incident perturbation. The first subscript denotes the kind of incident wave, and the second
the kind of created perturbation (v for vorticity, s for entropy, a for acoustic, c for composition,
and x for shock front deformation) (Griffond 2005). Any type of incident perturbation generates
all other types behind the shock; however, Equation 9 implies that Zcc equals 1. Therefore, the
corresponding cc entries can be removed from matrix A. The remaining matrix is the same as
the single-fluid matrix for the mixture (Griffond 2005, Griffond & Soulard 2012). Thus, in the
absence of viscous and diffusive effects, for small-amplitude perturbations, density fluctuations
generated by thermal (entropic) or compositional density variations produce identical effects on
vorticity and acoustic modes or shock deformation. Of course, the entropic and compositional
waves themselves respond differently to the interaction with the shock wave. For an upstream
multimode density field, the downstream fluctuations can be integrated to form closed Reynolds
stresses solutions, irrespective of the source of density fluctuations, thermal or compositional (de
Lira et al. 2011, Griffond & Soulard 2012). The similarities and differences between thermal and
compositional density fluctuations are further explored in the next sections.

2.2.3. Shock propagation in a variable-density medium. The analogy between flows with
thermal and compositional density variations interacting with shock waves can be extended to
larger A, provided that viscous and diffusive effects remain negligible. For a shock wave propagat-
ing through a nonuniform density medium, the strength and geometry of the shock wave, as well
as the medium itself, are modified through their interactions. However, assuming that the density
profile can be decomposed into a large number of uniform regions separated by weak discon-
tinuities, Chisnell (1955) and Whitham (1958) were able to develop an analytical model for the
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one-dimensional (1D) shock propagation.Using themethod of characteristics,Bird (1961) showed
that the rereflected waves are important for the shock propagation in a linearly decreasing density
field. The results are in good agreement with experimental studies (Hesselink & Sturtevant 1988)
for a weak shock propagation through a random medium. Soukhomlinov et al. (2002) further
examined the effects of temperature gradients on shock propagation, matching the results of Bird
(1961). For a fluctuating 1D density profile, the rereflected waves play an evenmore important role
(Tian et al. 2019b). Nevertheless, so long as there is a large-scale separation between the density
variations and δ, there is an equivalence between upstream thermal (entropic) and compositional
density fluctuations. Thus, for the Shu–Osher problem, where the density varies sinusoidally,
density and pressure variations behind the shock are identical for the two cases (Y.Tian, F.A. Jaberi
& D. Livescu, manuscript in review), while the temperature fluctuations themselves are different.

2.2.4. Shock/variable-density turbulence interaction. The current analytical models become
intractable for shock propagation through media with large 3D density variations. Numerical
results (Tian et al. 2019b; Y.Tian,F.A. Jaberi &D.Livescu,manuscript in review) have revealed the
complex role of the rereflected waves and also the nonlinear response to density field anisotropy.
When the upstream flow is turbulent, the presence of large density variations profoundly changes
the downstream turbulence structure.The canonical shock–isotropic turbulence interaction setup
can be extended to include thermal or compositional density variations in the upstream turbulence.
By adjusting the outflow pressure (Larsson & Lele 2009), one makes the problem quasi-stationary
in the reference framemoving with the nominal shock speed, representing a statistically stationary
version of RMI.

When a shock wave interacts with VD isotropic turbulence, turbulence amplification is much
higher and the reduction in turbulence length scales is more significant, due to the modifications
in the local shock strength (Tian et al. 2017). As turbulence evolves away from the shock, enhanced
turbulent stirring in turn increases molecular mixing. This results in a mixing asymmetry in the
postshock region (Figure 1). Turbulent statistics also acquire a differential distribution in regions
having different densities subsequent to the interaction with the shock.The variousmanifestations
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Figure 1

Scalar structure in variable-density turbulence interacting with a Mach 2 shock identified by the isosurface of heavy-fluid mole fraction
and colored by the instantaneous density fluctuations normalized by the mean density. The black plane represents the instantaneous
shock surface. Figure adapted with permission from Tian et al. (2017).
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High-density regions Density ~ postshock mean Low-density regions
ρ > (〈ρ〉 + 0.9ρrms) ρ ~ 〈ρ〉 ρ < (〈ρ〉 – 0.9ρrms)
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–1

0

1

2

3

4
a b c

Figure 2

Isocontour lines of the postshock (k0x ≈ 0.44, where k0 is the wave number corresponding to the peak of the incoming turbulence
kinetic energy spectrum) joint probability density function of the second and third invariants of the anisotropic part of the velocity
gradient tensor,Q∗ and R∗, respectively, in (a) high-density regions, (b) regions with density around the postshock mean value 〈ρ〉, and
(c) low-density regions. Figure adapted with permission from Tian et al. (2019a).

of these largely inertial effects (light-fluid regions respond faster to acceleration and changes in
the local strain than heavy-fluid regions) coupled with the corresponding modifications in scalar
(mass fraction or temperature) variance dissipation are shown below to be features of all canonical
flow examples discussed is this review.

Compared to the single-fluid case, density variations significantly change the turbulence struc-
ture and flow topology.Thus, in the postshock flow for themultifluid case, the correlation between
rotation and strain is weaker, while one observes a stronger symmetrization of the joint probability
density function (PDF), P (Q∗,R∗ ), of the second and third invariants of the anisotropic velocity
gradient tensor, as well as of the PDF of the vortex stretching contribution to the enstrophy equa-
tion (Tian et al. 2019a). A short distance after the shock, the light-fluid regions recover the 3D
turbulence structure, while the heavy-fluid regions remain quasi-2D due to different timescales
for the response to changes in the local strain. Thus, after conditioning P (Q∗,R∗ ) based on fluid
density, Figure 2 shows that the joint PDF is almost completely symmetrical in the heavy-fluid
regions, with a large portion of data in the third quadrant. In contrast, most of the light-fluid data
points have a distribution similar to that of isotropic turbulence.

Numerical simulations with small upstream thermal density variations matching those found
in boundary layers (Mahesh et al. 1997) are consistent with the enhanced turbulence ampli-
fication through the shock discussed above. While the shock–turbulence interaction has not
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been explored for flows with large thermal density variations, when the shock thickness is much
smaller than the density length scales, presumably the equivalence with compositional density
variations is carried over. Nevertheless, turbulence response downstream of the shock may be
different.

2.2.5. Richtmyer–Meshkov instability. RMI is a fundamental hydrodynamic flow instability
that occurs when a shock wave passes through a material interface between fluids of different
densities (Zabusky 1999; Brouillette 2002; Zhou 2017a,b). The instability is initiated by the
deposition of vorticity at the interface due to the misalignment between pressure and density
gradients across the shock wave and material interface. RMI plays an important role in the
dynamics of supernovae and other astrophysical explosions (Almgren et al. 2006a), mixing en-
hancement in supersonic/hypersonic combustion (Khokhlov et al. 1999), and ICF (Aglitskiy et al.
2014).

After the passage of the shock, the flow is essentially decaying incompressible VD turbu-
lence (Poggi et al. 1998, Wong et al. 2019). Therefore, the growth of the mixing region is
largely dependent on the characteristics of the initial perturbation (Thornber et al. 2010), and
hence a precise control of the initial conditions is required in experiments (Balakumar et al.
2012; Balasubramanian et al. 2012; Weber et al. 2013, 2014; Orlicz et al. 2015; Mohaghar et al.
2017; Reese et al. 2018). If the Reynolds number is sufficiently high, small-scale turbulent fea-
tures develop beyond the mixing transition when a further increase of the Reynolds number
(i.e., the range of scales) does not yield significant changes in the turbulence characteristics
(Dimotakis 2000, Cook et al. 2004). The transition to turbulence occurs faster if the mixing
layer is subjected to an additional shock wave interaction, i.e., reshock (e.g., Hill et al. 2006,
Lombardini et al. 2012, Tritschler et al. 2014b), which is relevant to the ICF application. Fur-
ther relevance to the ICF application is obtained using spherical interfaces (Lombardini et al.
2014a,b).

Due to the moving shock, the resolution requirements for shock-resolving DNS-like simula-
tions, with enough realizations for statistical convergence, are out of reach for today’s computers.
Similarly, experiments with controlled initial conditions and measurements of higher-order tur-
bulence statistics are extremely difficult.Therefore, as opposed to the stationary shock–turbulence
interaction problem, data regarding the higher-order turbulence structure are scarce. In addition,
similar to the classical turbulence decay problem, the decay law and subsequent mixing layer
growth are strongly dependent on the lowest frequencies in the turbulent kinetic energy (TKE)
spectrum (Tritschler et al. 2014a) and require extremely large cross-sections for a well-established
low–wave number spectrum. For finite layer widths, the growth of the layer width, h, is well
approximated by a power law of the form h− h0 = (t − t0)n (Weber et al. 2013), with the subscript
“0” indicating the virtual origin. When a reshock is present, h0 and t0 correspond to the layer
width and time at reshock, respectively (Wong et al. 2019). Values between 0.48 and 0.63 have
been reported for n in 2D (Thornber & Zhou 2015, Wong et al. 2019) and between 0.25 and
0.3 in 3D, with an intermediate stage where n is around 0.4 (Thornber et al. 2011, Tritschler
et al. 2014a, Wong et al. 2019). Similarly, the decay of TKE follows a power law of the form
TKE = (t − t0)−m (Tritschler et al. 2014a). Exponent m values around 0.5 in 2D and 10/7 in 3D
have been reported (Lombardini et al. 2012, Tritschler et al. 2014a,Wong et al. 2019), indicating
a Batchelor-type decay. In contrast, global statistics like mixedness (Youngs 1994),


 =
∫ 〈XH (1 − XH)〉 dx∫ 〈XH〉〈1 − XH〉 dx ,
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where XH is the mole fraction of the heavy fluid, asymptote to similar values (∼0.85) among
experiments (e.g., Tomkins et al. 2008;Weber et al. 2013, 2014) and simulations (e.g., Lombardini
et al. 2012, Tritschler et al. 2014a, Thornber et al. 2017,Wong et al. 2019). Other global statistics
to describe the mixing state have also been proposed that are more sensitive to the Atwood
number (Zhou et al. 2016).

The sign of the Atwood number A plays an important role in determining the mechanism
by which additional TKE is deposited after reshock. Thus, in the light–heavy cases, there is
more turbulent activity following the first expansion–wave interaction than occurs after the sec-
ondary reshocks in the heavy–light configuration (Lombardini et al. 2011). As the density ratio
increases, the mixing layer grows asymmetrically (Figure 3), with more elongated structures on
the light-fluid side (i.e., spikes) and more rounded structures on the heavy-fluid side (i.e., bubbles)
(Lombardini et al. 2011, Wong et al. 2019). At the same time, the layer center based on the 50%
heavy-fluid mole fraction moves off the initial centerline, based on the sign of A. This asymmetry
is present in all canonical VD flows surveyed here and is discussed in more detail below.

3. INCOMPRESSIBLE AND QUASI-INCOMPRESSIBLE LIMITS

A broad range of flows with large density variations occurs in low-M regimes, when the fluid
velocity is much less than the speed of sound. Such flows can be well described by the Navier–
Stokes equations after the acoustic waves are filtered out (Majda & Sethian 1985, Chenoweth &
Paolucci 1986, Day & Bell 2000). In this section, we discuss the derivation of these equations,
their general characteristics, triply periodic simulations, regularity considerations, and locality of
the turbulence cascade for VD turbulence.

3.1. Low–Mach Number Approximation for Flows with Thermal
and Compositional Variations

To keep the derivation general to include both thermal and compositional variations, we follow
Day & Bell (2000) and Almgren et al. (2006a) and start from rewriting the energy transport equa-
tion as a transport equation for the enthalpy, h = e+ p/ρ, i.e.,

ρ
Dh
Dt

= Dp
Dt

− ∇ · q + � + B+ Q̇, 10.

where D
Dt = ∂

∂t + u · ∇ is the material derivative and � = −σ : (∇u) and B = ρ
∑

α YαFα · Vα are
the viscous and buoyancy contributions, respectively. Then, after taking the material derivatives
of the pressure, p = p(ρ,T ,Yα ), and caloric, h = h(p,T ,Yα ), equations of state, one can find an
expression for the material derivative of the density. Given ∇ · u = − 1

ρ

Dρ

Dt , the velocity divergence
can then be written as

∇ · u =− 1
ρ pρ

{
Dp
Dt

[
1 − pT

ρcp

(
1 − ρhp

)] + pT
ρcp

[
ρ

∑
α

hα

DYα

Dt
+ ∇ · q − � − B − Q̇

]

−
∑

α

pα

DYα

Dt

}
, 11.

where the thermodynamic partial derivatives are denoted as pρ = ∂ p
∂ρ

|T ,Yα
, pT = ∂ p

∂T |ρ,Yα
, pα =

∂ p
∂Yα

|ρ,T , hp = ∂h
∂ p |T ,Yα

, cp = ∂h
∂T |p,Yα

, and hα = ∂h
∂Yα

|p,T , with cp the specific heat at constant pressure.
The material derivative of the mass fraction can be extracted from Equation 4.
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Miranda
code

6 ms2.5 ms

Reshock

2 ms0.5 ms

a

b

INCA
code

Sulfur hexafluoride mass fraction

0.05 0.75

Figure 3

Sulfur hexafluoride mass fraction evolution in Richtmyer–Meshkov instability with reshock for Atwood number A ≈ 0.68 from
(a) Miranda and (b) INCA codes. The contours range from 0.05 (white) to 0.75 (blue). Figure adapted with permission from Tritschler
et al. (2014a).

For low-M flows, the pressure can be expanded as p ≈ p0 + π , where π is the order of the
Mach number squared (π ∼ M2p0) (Majda & Sethian 1985). Then, p0 is the thermodynamic
component and π is the dynamic component appearing in the momentum equations. Since
large density variations can appear due to thermal or compositional changes without affecting
the background pressure, for such flows, density and temperature expansions in terms of M
are not justified. For domains large enough that background stratification cannot be neglected,
for example, in stellar interiors (Almgren et al. 2006a), p0 can retain time-independent spatial
variation in certain directions.However, in most other applications, p0 is approximated as spatially
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constant (Rehm & Baum 1978, Chenoweth & Paolucci 1986, McMurtry et al. 1986, Pember
et al. 1998, Nicoud 2000). After replacing Dp

Dt with
dp0
dt , Equation 11 gives the velocity divergence

for a general fluid in the low-M approximation. It includes both thermal effects, through the
divergence of the heat flux, ∇ · q, and compositional effects, through DYα

Dt and ∇ · q. Thus, in
general, nonzero divergence of velocity can be generated in the presence of background pressure
changes, heat conduction, viscous dissipation, differential buoyancy forces, heat release, reactions
between species with different molar masses, and mass diffusion.

Using the low-M approximation in the momentum equations results in

∂

∂t
(ρu) + ∇ · (ρuu) = −∇π + ∇ · τ + ρ

N∑
α=1

YαFα , 12.

while the continuity Equation 1 does not change compared to the fully compressible case. Here
τ is the viscous stress tensor.

Almgren et al. (2006a,b), Zingale et al. (2009, 2015), and Gilet et al. (2013) have used Equations
1, 4, and 10–12, with stellar equations of state, to calculate the flow in type Ia supernovae, convec-
tion in stars, and type I X-ray bursts using the MAESTRO code (Nonaka et al. 2010). For these
simulations, to close the system, the spatial variation of p0 is specified or dp0

dt is set to zero. In addi-
tion, viscous dissipation was neglected in Equation 10, as were the diffusive effects in Equation 4.

For a mixture of ideal gases, the equations of state in the VD low-M approximation are p0 =
ρRT and h = ∑

α Yαhα (T ).Thenwe have pT = ρR, pρ = RT , and hp = 0.ForFα = g, Equation 11
becomes

∇ · u =− 1
γ p0

dp0
dt

+ R
cpp0

[
−

∑
α

(ρYαVα ) · ∇hα + ∇ · (λ∇T ) + �

]

− 1
ρR

∑
α

∇ · (ρYαVαRα ) + 1
ρ

[
ρR
cpp0

Q̇+
∑

α

(
Rα

R
− hα

cpT

)
ω̇α

]
. 13.

Several authors have used various simplifications of the system of Equations 1, 4, 10, 12, and
13 to study heat release effects in low-speed flows (e.g., McMurtry et al. 1986, Givi 1989, Pember
et al. 1998, Day & Bell 2000). The effects of viscous dissipation have generally been neglected
in Equation 13. In most of these studies, the contribution from dp0

dt was set to zero. This is justi-
fied in an open domain, where it can be argued that the background pressure equilibrates to the
ambient pressure. For a closed system with adiabatic walls, McMurtry et al. (1986) calculated dp0

dt
by integrating Equation 13, without the mass diffusion and species source terms, as given by the
total heat release within the domain. Day & Bell (2000) considered the effects of heat conduction,
Fickian mass diffusion, and species source terms to calculate laminar diffusion flames with com-
plex chemistry. More recent applications of the equations to reacting flow calculations include
Safta et al. (2010), Motheau & Abraham (2016), and references therein.

Below, the low-M equations are further simplified for nonreacting flows, where the velocity
divergence is nonzero due to heat conduction or mass diffusion effects.

3.1.1. Low–Mach number approximation for single-fluid flows with temperature varia-
tions. For single-fluid flows without heat release, neglecting �, Equation 13 becomes

∇ · u = − 1
γ p0

dp0
dt

+ R
cpp0

∇ · (λ∇T ). 14.

www.annualreviews.org • Variable-Density Turbulence 319

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
0.

52
:3

09
-3

41
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

L
os

 A
la

m
os

 N
at

io
na

l L
ab

or
at

or
y 

- 
R

es
ea

rc
h 

L
ib

ra
ry

 (
L

A
N

L
) 

on
 0

3/
23

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



FL52CH13_Livescu ARjats.cls December 7, 2019 16:1

For a closed cavity with constant temperature walls, as encountered in thermal convection
problems (Chenoweth & Paolucci 1986, Wang et al. 2019), p0 can be determined by integrating
the equation of state,

p0 = RM0∫
V

1
T dV

, 15.

as the mass of the system,M0 = ∫
V ρ dV, is constant. In this case, the energy equation is retained

as

ρcp
DT
Dt

= dp0
dt

+ ∇ · (λ∇T ). 16.

When the material properties cp, λ, and μ retain their temperature dependence, the system of
Equations 1, 12, and 14–16, together with the equation of state p0 = ρRT , includes most of the
NOB effects (Wang et al. 2019), i.e., those effects neglected in the Oberbeck–Boussinesq (OB)
approximation (Rajagopal et al. 1996). Additional sources of NOB effects could be due to back-
ground stratification and compressibility effects. Unless the background stratification remains ap-
proximately constant (for example, in stably stratified flow problems), both of these effects require
the solution of the fully compressible flow equations. The high-A RTI discussed in Section 4.2
is an example of a case where the change in the background stratification prevents the use of the
single-fluid low-M approximation. For this flow, the incompressible limit discussed in Section 3.2
is a useful approximation.

In nondimensional form, Equations 1, 12, and 14–16 are

∂

∂t
ρ + ∇ · (ρu) = 0, 17.

∂

∂t
(ρu) + ∇ · (ρuu) = −∇π + 1

Re
∇ · τ + 1

Fr2
ρg, 18.

∇ · u = 1
cp p0

[(
� − cp

) dp0
dt

+ 1
RePr

∇ · (λ∇T )
]
, 19.

p0 = M0∫
V

1
T dV

, 20.

ρcp
DT
Dt

= �
dp0
dt

+ 1
RePr

∇ (λ∇T ), 21.

p0 = ρT , 22.

where dimensional reference scales for length (L), velocity (u∞), time (t∞ = L/u∞), density (ρ∞),
temperature (T∞), body force (g∞), specific heat at constant pressure [cp∞ = cp(T∞ ) = Rγ∞

γ∞−1 ], dy-
namic viscosity [μ∞ = μ(T∞ )], and heat conduction coefficient [λ∞ = λ(T∞ )] have been used
to nondimensionalize the equations. Then the background pressure is nondimensionalized by
Rρ∞T∞, the dynamic pressure by ρ∞u2∞, volume by L3, and the system mass by ρ∞L3, and the
nondimensional parameters appearing in Equations 17–22 are the Reynolds number (Re), Prandtl
number (Pr), Froude number (Fr), and �, defined by

Re = ρ∞u∞L
μ∞

, Pr = μ∞cp∞
λ∞

, Fr2 = u2∞
g∞L

, � = R
cp∞

= γ∞ − 1
γ∞

. 23.
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For simplicity, the same notations have been used for the nondimensional primary variables (ρ, u,
T , and p0) and dependent variables (length and time), as well as the body force, g. In deriving the
coefficient of dp0

dt in Equation 19, the dimensional ideal gas thermodynamic relation R− cp = − cp
γ

has been used. The normalized viscous stress tensor follows the Newtonian and Stokes assump-
tions, τ = μ[∇u + (∇u)T + 2

3∇ · uI].
In convection problems, it is useful to introduce the normalized temperature difference ε =

	T/(2T∞ ) in the nondimensional expressions, where 	T is the temperature difference between
the hot and cold boundaries. Then the velocity scale is chosen as

√
2εg∞L. For nonideal flu-

ids, the coefficient of volume expansion, β = − 1
ρ

∂ρ

∂T |p,Yα
= pT

ρ pρ
, also appears in the nondimen-

sional parameters, as inferred from Equation 11. For ideal gases, β equals 1
T . In this scaling, the

Froude number no longer appears in the equations. The factors 1/Re and 1/Fr2 are replaced by√
Pr/Ra = 1/

√
Gr and 1/(2ε ), respectively, in the momentum Equation 18, and 1/(Re Pr) is re-

placed by 1/
√
RaPr = 1/(Pr

√
Gr) in front of the conduction term in Equations 19 and 21. The

Rayleigh number is defined as

Ra = 2εT∞β∞ρ2
∞cp∞gL

3

μ∞λ∞
, 24.

and theGrashof number isGr = Ra/Pr. In this case, the Richardson number,Ri = Gr/Re2, defines
the importance of forced versus free convection.

The system of Equations 17–22 is overdetermined. In practice, either one uses only one of
Equations 17 and 21, with the remaining variable found from the Equation of State 22, or one
uses both Equations 17 and 21 for an additional numerical constraint (Majda & Sethian 1985,
Day & Bell 2000, Nicoud 2000). In thermal convection problems, usually cp equals 1, and the
dimensionless conduction and viscosity coefficients are given by Sutherland laws,

λ = T 1.5 1 + Sλ

T + Sλ

and μ = T 1.5 1 + Sμ

T + Sμ

, 25.

respectively, where the values of Sλ and Sμ depend on the fluid. The low-M Equations 17–22,
together with material property relations in Equation 25 [hereafter, the low-M NOB (LMNOB)
equations], have been used to estimate NOB effects in vertical convection (Section 4.3).

For periodic boundary conditions or bounded domains with adiabatic walls, if cp equals 1, inte-
gration of Equation 19 shows that dp0

dt is zero. The background pressure is also constant for open
boundaries. Then, the nondimensional temperature can be determined from the equation of state,
T = 1

ρ
. In this case, the divergence of velocity becomes simply

∇ · u = 1
RePr

∇2
(
1
ρ

)
. 26.

Equations 17, 18, and 26 have been used to calculate horizontal mixing in an external accel-
eration field (Gat et al. 2017) (Section 3.4) and shear-driven turbulence between two streams of
different temperatures at high A (Almagro et al. 2017) (Section 4.1).

3.2. Incompressible Limit of Miscible Multifluid Flows

So far, the background pressure, p0, has been assumed to be finite, even though it is large com-
pared to the dynamic pressure contribution. One can further consider the fully incompressible
case when the speed of sound, c, is infinite (i.e., c → ∞). Since the compressible to incompress-
ible limit is not generally unique (Livescu 2013), it is assumed that the incompressible limit is
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reached by changing the background thermodynamic conditions and that the fluid model re-
mains valid even for infinite c. For a mixture of ideal gases, this means that T is infinite, since c2

equals γRT , and from the equation of state, that p0 is infinite, since ρ is greater than zero. The
second condition implies that the flow fluctuations remain finite, so that the baro-diffusion term,
which is proportional to ∇ p/p0, vanishes in the multicomponent diffusion operator of Equation
5 and the first square parenthesis vanishes in the velocity divergence Equation 13. The same con-
dition implies that the temperature dependencies of the material properties γ , μ, λ, and D be-
come functions of the background temperature state only. They may still retain spatial variations
through density fluctuations, however. Furthermore, since the fluctuations within the flow are fi-
nite, the equation of state,P0/T = ρR, yields that ρR is uniform throughout the domain, so that we
have

ρ = 1∑
α

Y
ρα

, 27.

where the microdensities of the fluids, defined by ρα = Wα p
RT , are constant in space. Since finite fluc-

tuations cannot lead to infinitely large changes in p0, Equation 13 shows that dp0
dt is zero, which

implies that ρR and ρα are also constant in time. In terms of the thermal convection nondimen-
sionalization from Section 3.1.1, the importance of thermal conduction versus mass diffusion is
given by the scaled Richardson number,Ri† = GrSc

Re2Pr . For Ri
† � 1, heat conduction drops from the

expression for the divergence of velocity.
If the species equations contain reaction source terms, these terms generally do not vanish from

Equation 13. For nonreacting materials, the velocity divergence then becomes

∇ · u = − 1
ρR

∑
α

∇ · (ρYαVαRα ). 28.

Finally, to close the system, one needs to use Maxwell’s relations (Williams 1985) to solve
for the diffusion velocities. The derivation above can be generalized to nonideal fluids by using
Equation 11 and noticing that, under the same assumptions, c → ∞ leads to pρ → ∞, while pT
should remain finite. In practice, the values of p0 and T for which the flow is close to incompress-
ible differ from substance to substance. For example, the incompressible assumption is a good
approximation for mixing of water and brine at standard conditions. In this case, Equation 27 can
be derived by assuming that the microdensities of the fluids are constant, such that the volume
occupied by the mixture is equal to the volume occupied by the unmixed constituents at their
respective microdensities ( Joseph 1990, Cook & Dimotakis 2001, Livescu & Ristorcelli 2007),
without invoking the ideal-gas equation of state. Substituting this equation into the species trans-
port equation leads to Equation 28. The same relation is found from the energy equation (Livescu
2013), as required for consistency.

3.2.1. Binary case. If the diffusion coefficients are all the same or in the binary case, the diver-
gence of velocity reduces to∇ · u = −∇ · [D∇ (ln ρ )]. In nondimensional form,when the diffusion
coefficient is not a function of density, the velocity divergence becomes

∇ · u = − 1
ReSc

∇2(ln ρ ), 29.

where the Schmidt number is defined by Sc = μ∞
ρ∞D . The viscosity variation in Equation 18 is

no longer described by a Sutherland-type relation. To ensure a uniform Sc throughout the flow,
studies using these equations usually assume μ = ρν, with constant kinematic viscosity (e.g.,
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Cook & Dimotakis 2001, Livescu & Ristorcelli 2007). In general, however, for mixing between
incompressible fluids with different molar masses, μ is a weaker function of density. No study
has been performed with real fluid variations of μ and D, unlike the LMNOB equations used in
thermal convection.

The nondimensional equations describing the incompressible mixing between two fluids
with different molar masses, i.e., Equations 17, 18, and 29 [hereafter, the incompressible non-
Boussinesq mixing (INBM) equations], are remarkably similar to the LMNOB equations. If one
assumes D ∼ μ/ρ, with constant μ, then the INBM equations become the same as the LMNOB
equations with constant material properties. However, since the T and ρ variations of the mate-
rial properties are generally different, the distinction is maintained throughout this review. The
INBM equations have been used in periodic domains (Section 3.4) (Sandoval 1995; Livescu &
Ristorcelli 2007, 2008; Chung & Pullin 2010; D. Aslangil, D. Livescu & A. Banerjee, manuscript
in review), VD RTI (Section 4.2) (e.g., Cook & Dimotakis 2001; Cabot & Cook 2006; Livescu
et al. 2009, 2010, 2011), and several more complex flows, e.g., coupled RTI/Kelvin–Helmholtz
instability (Olson et al. 2011) and inclined RTI (Andrews et al. 2014). Both sets of equations have
been used for temporal shear-driven calculations (Section 4.1) (Almagro et al. 2017; Baltzer &
Livescu 2019; J.R. Baltzer & D. Livescu, manuscript in review).

3.3. Boussinesq Limit

For a buoyancy-driven flow, where density variations arise due to thermal fluctuations, the OB
approximation describes the thermomechanical response of linearly viscous fluids that can only
undergo isochoric motions in isothermal processes. Rajagopal et al. (1996) derived these equations
as a consistent third-order expansion using a small parameter that can be written as

√
Gr/Re2/3

using the notations from Section 3.1.1. Starting from the single-fluid low-M equations, the OB
approximation requires that the density variations appear in the momentum equations only in the
buoyancy term, that material properties be constant, that dissipation be neglected in the temper-
ature equation, that the continuity and temperature equations become identical scalar advection–
diffusion equations, and that the divergence of velocity be zero,

∂

∂t
ρ + u · ∇ρ = 1

Pe
∇2ρ, 30.

∂

∂t
u + u · ∇u = −∇π + 1

Re
∇2u + 1

Fr2
ρg, 31.

∇ · u = 0, 32.

where the Péclet number is Pe = RePr. The Boussinesq limit of the INBM equations is the same,
with Pe replaced by the mass transfer Péclet number Pem = ReSc.

To arrive at Equations 30–32 from the LMNOB or INBM equations, one requires that the
density variations be small enough (Livescu & Ristorcelli 2007). From the momentum equation
written in advection form, after division by density, this condition reads 1/ρ = 1/ρ∞(1 − ρ ′/ρ∞ +
· · ·) ≈ 1/ρ∞, which is a zero-order approximation in ρ ′ = ρ − ρ∞. The condition also ensures
that the material properties are constant. From the physical point of view, the largest temper-
ature variations that can be used with the OB approximation can be quite different for various
fluids. For example, at standard conditions, the maximum temperature difference for which the
OB approximation is applicable is 28.6 K for air, but only 1.25 K for water (Gray & Giorgini
1976).
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In the density equation, the Boussinesq diffusion term dominates for

|∇ρ|2 � ρ

2
|∇2ρ|, 33.

|∇ρ|2 � ρ|∇2ρ|, 34.

for the LMNOB and INBM equations, respectively. Both conditions can be violated if substantial
gradients develop in the density field, even at very low A. This subject is further explored in
Section 3.5.

By comparing Equations 26 and 29 with Equation 31, one can see that ∇ · u remains nonzero,
even if Equation 31 is assumed valid. Therefore, to obtain Equations 31 and 32, one needs to
further assume that Pe (or Pem) is large enough, so that the contributions from the dilatational
(nonzero divergence) velocity component to the convective term and the viscous stress tensor are
negligible in comparison to those of the solenoidal (zero divergence) part.The high–wave number
range, however, presents an additional complication, since the dilatational kinetic energy, as it is
set by density gradients, can become comparable to the solenoidal part (Livescu & Ristorcelli
2007).

An intermediate approximation to the LMNOB equations assumes that the background strat-
ification remains fixed and the density variations are small compared to the background density
gradient (Majda & Sethian 1985, Almgren et al. 2006a).While density variations may still be large
enough to generate NOB effects, this anelastic approximation is not explored here. Instead, the
reader is referred to the recent paper by Patel et al. (2016) and references therein for a discus-
sion of some of these effects when property variations are nonnegligible but density fluctuations
themselves are small.

3.4. Variable-Density Turbulence in a Triply Periodic Domain

The role of VD effects on the turbulence structure andmixing can be studied in greatest detail with
numerical simulations in triply periodic domains, as one can achieve high accuracy calculations
with large Reynolds number. Introduced by Batchelor et al. (1992) to investigate homogeneous
buoyancy-driven turbulence (HBDT) under the Boussinesq approximation, this approach was ex-
tended to non-Boussinesq (NB) density variations by Sandoval (1995),Livescu&Ristorcelli (2007,
2008), andD.Aslangil,D.Livescu &A.Banerjee (manuscript in review) while retaining the homo-
geneity of the turbulent fields. Chung& Pullin (2010) proposed a triply periodic, inhomogeneous,
but statistically stationary configuration of buoyancy-driven turbulence (SBDT) for a closer anal-
ogy with RTI. Inhomogeneous buoyancy-driven turbulence (IBDT) is another buoyancy-driven
flow in a periodic domain that considers parallel vertical streams of different density fluids, with
the mixing layer growing horizontally (Gat et al. 2017). The NB HBDT and SBDT studies have
used the INBM equations with constant mass diffusivity and μ = ρν, while the IBDT study has
used D = μ/ρ, for constant μ, which makes the equations equivalent to the LMNOB equations
with constant properties. In all cases, Sc equals 1. As discussed in Section 4.1, these differences are
likely to lead to only subtle changes for the lower-order statistics and are unlikely to qualitatively
affect the results, at least for the range of parameters studied.

With periodic boundary conditions, the Poisson equation for pressure can be solved up
to a constant gradient. By requiring that the time derivative of the mean velocity be non-
negative in the direction of gravity (which ensures an unstable configuration), one can max-
imize the growth rate of the vertical mass flux 〈ρu′ · g〉/〈ρ〉 by choosing 〈u〉 = 0, ∇〈p〉 =
1
V

( 1
Fr2 g − 〈v∇ p′〉 + 〈u′	〉 + 〈v∇ · τ〉), where primes denote fluctuations, i.e., u′ = u − 〈u〉, and
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v = ( 1
ρ
)′ and V = 〈 1

ρ
〉 are the fluctuating and mean specific volume, respectively (Livescu &

Ristorcelli 2007). These conditions are also approximately satisfied in the central region of the
RTI turbulent mixing layer (Livescu et al. 2009). Chung & Pullin (2010) used similar conditions
at the centerline plane, coupled with a nonzero mean density gradient and fringe layers at the top
and bottom boundaries, in order to sustain the stationarity of the flow. On the other hand, Gat
et al. (2017) chose ∇〈p〉 such that the mean vertical mass flux is constant, which ensures that the
mixing layer grows horizontally.

In HBDT, the two different-density fluids are initially segregated into large patches and start
to move in opposite directions due to the acceleration field, generating turbulence motions, which
in turn enhances mixing. Initially, the ratio of production (P) to dissipation (ε) of TKE is large
(P/ε � 1) and decays with time as the fluids mix. As a result, TKE first has a growth stage, reaches
a maximum for P/ε = 1, and then decays. The flow may show some similarities with RTI during
the growth stage and with late-time RMI during the decay stage. As shown by Batchelor et al.
(1992), due to the presence of buoyancy, the nonlinear effects cannot be neglected during the decay
stage, even at t → ∞ asA tends to zero.The buoyancy-mediated turbulence decay is very different
from classical turbulence decay. Depending on the infrared shape of the density spectrum,Reλ can
grow indefinitely or approach a constant, as TKE continues to decay while the turbulence length
scale increases faster (Batchelor et al. 1992; D. Aslangil, D. Livescu & A. Banerjee, manuscript in
review).

However, IBDT is a constant acceleration version of the classical shear-driven mixing layer
problem (which has constant mean velocity), as discussed in Section 4.1, and has similarities with
vertical convection in infinitely long domains, as discussed in Section 4.3. Since the mean density
and pressure gradients are perpendicular, the configuration also maximizes the baroclinic pro-
duction of vorticity. Thus, the mixing layer width, h, reaches a fast self-similar growth stage with
h ∼ t3.

As explained in the subsequent sections, all three points (see the sidebar titled Key Features of
VDTurbulent Flows) are consequences of differential fluid inertia; the first two points can be asso-
ciated with stirring and mixing, respectively, as defined by Villermaux (2019), while various asym-
metries of the mixing layers might result from a combination of differential entrainment, stirring,
and mixing. In addition, for P/ε � 1 (e.g., in HBDT, SBDT, and RTI), as ηK becomes smaller,
the dissipation scales remain anisotropic even as the flow develops an inertial range (Livescu &
Ristorcelli 2008, Livescu et al. 2009, Chung & Pullin 2010). In such strongly nonequilibrium con-
ditions, buoyancy production is still felt at the smallest scales, due to a leading-order cancelation
between nonlinear and viscous effects in the dissipation range.

These characteristics also appear in shock–isotropic VD turbulence interaction and RMI and
will be explored in more detail in the flow examples surveyed below. In particular, the asymmet-
ric behavior of the density PDF can be inferred from the density skewness (S = 〈ρ ′3〉/〈ρ ′2〉3/2)

KEY FEATURES OF VD TURBULENT FLOWS

As A becomes large, all VD canonical turbulent flows display several features. (a) Turbulence characteristics are
different in the light- and heavy-fluid regions, with more intense turbulence within the light-fluid regions. (b) Den-
sity and mole fraction PDFs become asymmetric, with the peak below the average value, and the pure light-fluid
regions mix faster than the pure heavy-fluid regions. (c) When present, mixing layers become asymmetric, with a
larger width on the light-fluid side and various neutral points moving off of the original centerline; the light-fluid
side is always rougher than the heavy-fluid side.
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equation, which can be derived from the continuity equation and divergence of velocity
(Equation 29). For the homogeneous configuration, this is (Livescu & Ristorcelli 2009, Livescu
et al. 2010)

∂

∂t
S = 3

〈∇ρ ′ · ∇ρ ′〉
Pem〈ρ ′2〉

(
S− 2

〈ρ ′∇ρ ′ · ∇ρ ′〉
〈ρ ′2〉1/2

)
. 35.

The quantity 〈ρ ′∇ρ ′ · ∇ρ ′〉 is weighted toward large squared–density gradient events occurring
in lower-than-average density regions so that S increases, even when S equals zero initially. This
can be seen from the transport equation for the density gradient squared (Livescu et al. 2010),
where the production term is proportional to −〈∇ρ · s · ∇ρ〉, where s is the strain rate tensor.
Thus, in the light-fluid regions, the density gradients are better aligned with the eigenvectors
of s, as the lower inertia allows the fluid to respond faster to changes in the local strain. In other
words, the light-fluid regions becomemore fragmented at higherA,molecular mixing is faster, and
density skewness becomes positive. For the LMNOB equations in a homogeneous configuration,
the skewness equation can be written as

∂

∂t
S = 3

〈(∇ρ ′ · ∇ρ ′ ) /ρ〉
Pe〈ρ ′2〉

[
S− 2

〈ρ ′ (∇ρ ′ · ∇ρ ′ ) /ρ〉
〈ρ ′2〉1/2

]
, 36.

showing a similar mechanism for positive skewness generation, although the details of the molec-
ular mixing may be different.

3.5. Regularity Considerations

As explained in Section 3.3, even when A is very small, it is not clear a priori that the density
gradients should remain small, or the flowmay develop regions where conditions of Equations 33
and 34 are violated (Rao et al. 2017). By defining an effective velocity equal to the solenoidal
velocity component,

v = u + Pe−1
m ∇ (ln ρ ) , with ∇ · v = 0 and ∇ × v = ∇ × u, 37.

the INBM continuity equation becomes an advection–diffusion equation,

∂

∂t
ρ + v · ∇ρ = 1

Pem
∇2ρ, 38.

formally the same as the Boussinesq approximation.However, the fact that v is actually an (explicit)
function of ρ makes Equation 38 less simple than it first appears. Nevertheless, this equation can
be used to make some qualitative assessments of the mixing dynamics. Following Rao et al. (2017),
consider a 1D horizontal section through a rightward-moving density wave at a snapshot in time.
In the frame of the advecting velocity u, the relevant component of v is greater on the back face
of the wave at any position (since ∇ρ > 0) than on the front face (where ∇ρ < 0). Thus, in the
advecting frame, Equation 38 implies that there is a natural tendency for the back of a wave to
catch up with the front, thus leading to a natural and inevitable steepening of ∇ρ.

A similar transformation for the LMNOB equations, v = u − Pe−1∇ ( 1
ρ
), with ∇ · v = 0 and

∇ × v = ∇ × u, leads to a more complicated continuity equation,

∂

∂t
ρ + v · ∇ρ = 1

Pe
1
ρ

∇2ρ, 39.

as the diffusion term remains nonlinear.Nevertheless, the same type of heuristicsmight be invoked
to show the tendency toward steepening of the density waves. However, due to the differences in
the magnitudes of ∇ (ln ρ ) and ∇ (1/ρ ), one might expect different diffusion layer shapes.
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While the density itself is bounded, Equations 38 and 39 show the importance of density gra-
dients to the rate of irreversible mixing within the flow. By taking advantage of the transformation
θ = ln ρ, which makes the INBM continuity equation linear in θ ,

∂

∂t
θ + u · ∇θ = 1

Pem
∇2θ , 40.

Rao et al. (2017) were able to write transport equations for higher-order moments of ∇θ ,

�m,θ =
(∫

V
|∇θ |2mdV

)1/2m

. 41.

Following the procedure proposed byDonzis et al. (2013),Gibbon et al. (2014), andGibbon (2015)
for higher-order moments of vorticity, �m,ω = (∫

V |ω|2mdV )1/2m, with ω = ∇ × u, in isotropic
turbulence, Rao et al. (2017) also found analytical bounds for the terms in the �m,θ transport
equation. Then, they evaluated these bounds using the low-A DNS data set of triply periodic
HBDT satisfying the INBM equations from the Johns Hopkins Turbulence databases (Livescu
et al. 2014). The results showed that nonlinear depletion is appreciably weaker in the density
gradient field compared to vorticity field. The fast growth of the density gradients leaves open
the possibility of blowup in finite time for large-enough Pem or small-enough Fr values, even
when A is nominally near the Boussinesq limit. Aslangil et al. (2017) and D. Aslangil, D. Livescu
& A. Banerjee (manuscript in review) extended the analysis to higher A and found that density
gradients are much larger in light-fluid regions compared to heavy-fluid regions, which also have
higher levels of turbulence fluctuations and mix faster. Thus, if a blowup occurs, it is in the light-
fluid regions.Of course, the loss of regularity would invalidate the incompressible assumption and
restrict the mathematical model to a certain region of the parameter space (Re, Sc, and Fr). Such
a result would be quite remarkable in the presence of viscous and diffusive effects. In the spirit of
Beale et al. (1984), one can write the transport equation for the curl of momentum per unit volume,
ω∗ = ∇ × (ρu), so that the baroclinic term does not appear in the equation. For the inviscid case,
the equation shows that the maximum norm of ω∗ is also controlled by the density gradients, in
addition to vortex stretching, displaying multiple paths for the breakdown of regularity.

3.6. Locality of the Turbulence Cascade in Variable-Density Turbulence

The development of an inertial range of scales and the subsequent mixing transition rely on the
viscous effects being restricted to a viscous range (Eyink 2005).However, for VD turbulence, such
scale decomposition is not as straightforward as in incompressible flows. In particular, it is possible
that certain quantities exhibit viscous effects at all scales, while others do not (Aluie 2013, Zhao
& Aluie 2018). Using a coarse-grained filtering defined by al (x) = ∫

dnrGl (r) a (x + r), where
G (r) is a normalized convolution kernel and Gl (r) = l−nGl (r/l ) is a dilated version of the kernel
having its main support over a region of diameter l , Aluie (2013) and Zhao&Aluie (2018) analyzed
the viscous contributions to scale l for three versions of the large-scale TKE (TKEl ): TKEF

l =
ρ l |ũl |2/2, TKEC

l = ρ l |ul |2/2, and TKEK
l = |(√ρu

)
l |2/2. The Favre-filtered velocity is defined by

ũl = (ρu)l/ρ l . The Favre filtering has been used extensively in large eddy simulations (LES) of
compressible and VD turbulence (e.g., Garnier et al. 2009), TKEC

l is written by analogy with the
incompressible case, and TKEK

l is constructed to yield a quadratic form.
As Figure 4 shows, only the Favre formulation has a vanishing viscous contribution at large

scales, as k tends to zero.This is consistent with current LES approaches.However, the proof given
by Zhao&Aluie (2018) also suggests that some of the terms in current RANS (Reynolds-averaged
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Figure 4

L1 norm of the viscous contributions, �i,diss
l , normalized by the maximum dissipation, to the turbulent kinetic energy (TKE) equation

filtered at scale l , using three different TKE definitions, as a function of the wave number k = Lz/l , where Lz is the vertical domain size.
The vertical line in each figure marks the viscous cut-off wave number, kd = Lz/ηK, where ηK is the Kolmogorov microscale. The
upper index i corresponds to TKE defined by TKEF

l = ρ l |ũl |2/2, TKEC
l = ρ l |ul |2/2; and TKEK

l = | (√ρu
)
l |2/2. For comparison, the

k2 variation is also shown. Data correspond to Rayleigh–Taylor instability turbulence at density ratios (a) 102, (b) 103, and (c) 104.
Figure adapted with permission from Zhao & Aluie (2018).

Navier–Stokes) modeling of Favre TKE, e.g., 〈ρ|u′′|2〉/2, may retain viscous contributions at all
scales, irrespective of the Reynolds number, if the density variations are large enough. Here, u′′

are the Favre velocity fluctuations. Corresponding spectral formulations may also have a similar
problem.This is an intriguing possibility that needs further study. A quadratic form of TKE that is
consistent with the inviscid scale decomposition is based on the fluctuating momentum, TKEm =
|ρu′′|2/〈ρ〉. Indeed, TKEm spectra show a reduced viscous range compared to the usual quadratic
formulations (i.e.,TKEC andTKEK) inHBDT (D.Aslangil,D.Livescu&A.Banerjee,manuscript
in review) and RMI turbulence (Wong et al. 2019).

4. LOW–MACH NUMBER AND INCOMPRESSIBLE VARIABLE-DENSITY
FLOW EXAMPLES

Here, numerical and experimental results concerning turbulence characteristics in several canoni-
cal flows are discussed.While the literature on each of the flows is vast, the discussion is restricted
to large thermal and compositional density effects (so that A � 0.1) and the reader is referred
to the appropriate reviews for other flow physics. Additional canonical VD turbulent flows in-
clude jets and wakes (Amielh et al. 1996, Chassaing et al. 2002, Gerashchenko & Prestridge 2015,
Charonko & Prestridge 2017) and shock–bubble interactions (Ranjan et al. 2011).

4.1. Temporal Variable-Density Shear-Driven Mixing Layers

Turbulence sustained by shear between streams of fluids is a fundamental phenomenon relevant
to a wide range of applications in combustion, industrial engineering, geophysical flows, and so
on (Givi 1989, Dimotakis 2005, O’Brien et al. 2014). Shear-driven mixing layers have historically
received a great deal of attention, but mainly for high-speed or reacting configurations, where
compressibility and heat release play a central role (Vreman et al. 1996, Freund et al. 2000,Miller
et al. 2001, Pantano & Sarkar 2002). Brown & Roshko (1974) experimentally studied a low-speed
spatially developing VDmixing layer and found reductions in the growth rates as large as 50% for
density ratios up to 7. The measurements were limited to mean density and streamwise velocity
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profiles and did not investigate the associated turbulence or mixing changes. Brown (1974) pro-
posed a formula for the growth rate variation with A based on the assumption that the temporal
growth rate (i.e., in a frame of reference moving with the mixing layer convection velocity, which
is closer to the high-density stream velocity) is independent of the density difference between
streams. Dimotakis (1984) refined the formula to account for asymmetric entrainment, and Gat
et al. (2017) further discussed the convective velocity in the context of their IBDT flow.

Most numerical simulations address the temporal case, due to the convenience of using peri-
odic boundary conditions in two directions and higher achievable Reynolds numbers, although the
spatially developing case, with direct experimental comparisons, has also been considered (Attili
& Bisetti 2012). The pioneering temporal simulations of Pantano & Sarkar (2002) included an
investigation of different freestream densities, albeit at moderately high speed (convective Mach
number ofMc = 0.7) within a broader study of compressible mixing layers. The simulations were
performed for a single fluid with thermal density variations. Overall, they found that increasing
the density difference between the streams substantially decreases the temporal thickness growth
rate defined in terms of momentum thickness, but the growth rate of the vorticity thickness ex-
periences a weaker reduction. The simulations revealed that the Reynolds shear stress changes
little in magnitude with increasing A but shifts to the light-fluid side. They also developed a
model characterizing the shift of the mean velocity profile to the light-fluid side and the asso-
ciated decrease in the momentum thickness growth rate. Ashurst & Kerstein (2005) used the 1D
turbulence stochastic simulation method to explore the VD effects in temporal and spatial mixing
layers.They successfully captured many of the effects observed by Pantano & Sarkar (2002).More
recently, Almagro et al. (2017) addressed the low-speed case of Pantano & Sarkar (2002) using the
constant-coefficient LMNOB equations, while J.R. Baltzer & D. Livescu (manuscript in review)
performed large-resolution DNS of temporal VD mixing layers using the INBM equations with
A up to 0.87, corresponding to a hydrogen–air system.

For the three VD configurations addressed by Pantano & Sarkar (2002), Almagro et al. (2017),
and J.R. Baltzer & D. Livescu (manuscript in review), the self-similar analysis remains the same.
Thus, the self-similar forms of the continuity and momentum equations are (Pantano & Sarkar
2002)

(Û2 − η)ρ̂ ′ + ρ̂Û ′
2 = 0, 42.

(Û2 − η)ρ̂Û ′
1 + (ρ̂R̂12)′ = 0, 43.

where the mean variables have been normalized using scalings suggested by the self-similar
analysis:

ρ̂ (η) = 〈ρ〉 (y, t )
ρ0

, Û1 (η) = Ũ1 (y, t )
	U

, Û2 (η) = Ũ1 (y, t )
dh/dt

, R̂12 (η) = R̃12 (y, t )
	Udh/dt

, 44.

where ρ0 is the initial centerline density, 	U is the difference between the freestream ve-
locities, the self-similarity variable is defined by η = y/h, the primes denote derivatives with
respect to η, the tilde denotes Favre averaging (i.e., Ũ1 = 〈ρU1〉/〈ρ〉), and R̃12 is the Favre-
averaged Reynolds shear stress. The coordinate system is chosen with 1, 2, and 3 as the stream-
wise, cross-stream (inhomogeneous), and spanwise (homogeneous) directions. The self-similar
growth rate dh/dt is constant, but decreases with A. Analytical and numerical analyses of the
self-similar equations (Pantano & Sarkar 2002; J.R. Baltzer & D. Livescu, manuscript in re-
view) have revealed that the layer becomes asymmetric and that the peaks and zero-crossing
points of various profiles move to the light-fluid side. Thus, Figure 5a shows the locations
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Figure 5

(a) Drifts of the locations where we have 〈ρ〉 = ρ0 (gray), Ũ ′
2 = 0 (blue), Ũ1 = 0 (red), and R̃′

12 = 0 (orange) as a function of A. (b) Profiles
of mean density, streamwise velocity, and enstrophy at A = 0.75. Abbreviations: A, Atwood number; η, self-similarity variable; h, mixing
layer width; R̃′

12, derivative of the Favre-averaged Reynolds stress; 〈ρ〉, average density; ρ0, initial centerline density; 	U , magnitude of
the difference between freestream velocities; Ũ1, Favre-averaged streamwise velocity; Ũ ′

2, derivative of the Favre-averaged spanwise
velocity. Figure adapted from J.R. Baltzer & D. Livescu (manuscript in review).

of the points Ũ1 = 0, Ũ ′
2 = 0, and R̃′

12 = 0, denoted hereafter by η1, η2, and η12, respectively, as a
function of A. For large-A values, these locations drift significantly away from the centerline, with
η12 < η1 < η2 < 0, as the larger inertia of the heavy fluid breaks the entrainment symmetry in the
central regions of the layer. While the neutral density point (i.e., the location 〈ρ〉 = ρ0) does not
move much from the centerline at higherA, the mean density profile also becomes asymmetric. As
indicated by Figure 5b, the profile becomes steeper on the heavy-fluid side and shallower on the
light-fluid side. In addition, the density PDF becomes skewed,withmore pure heavy fluid reaching
the centerline compared to pure light fluid (Baltzer & Livescu 2019). This is also consistent with
experimental data (Koochesfahani & Dimotakis 1986). Furthermore, turbulence itself becomes
more intense on the light-fluid side. For example, most enstrophy is located below the center-
line (Figure 5b). As a result, the density field is significantly rougher (more fragmented) on the
light-fluid side (Figure 6). All these features are qualitatively similar among the three shear-driven
configurations compared here and are consistent with all other VD flows discussed in this review.

4.1.1. Contrasting thermal and compositional density variations. While temporal mixing
layer results show many qualitatively similar features among the fully compressible layer with
thermal density variations, the LMNOB case (with constant molecular coefficients), and the
INBM case (with μ = ρν), Baltzer & Livescu (2019) have made a direct comparison between
the latter two cases. As expected, the mean density and velocity profiles match closely during
the self-similar growth, with some differences in the shifts discussed above (Table 1). With the
same dynamic viscosity variation, the vertical velocity peak moves to lighter-fluid regions in the
LMNOB case.However, when the dynamic viscosity is constant (as in the simulations of Almagro
et al. 2017), the LMNOB profile shifts become closer to the variable-viscosity INBM shifts. All
higher-order statistics display similar qualitative features, but some quantitative differences. For
example, density PDFs present a more pronounced asymmetry for the LMNOB configurations.
It is not known how these differences change with Pe or Pem values.
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ba

Heavy-fluid stream Light-fluid stream

Figure 6

Density isosurfaces near the heavy-fluid (a) and light-fluid (b) streams from a temporal mixing layer direct numerical simulation with
Atwood number A = 0.75. Figure adapted from J.R. Baltzer & D. Livescu (manuscript in review).

4.2. Rayleigh–Taylor Instability with Miscible Incompressible Fluids

Classical RTI (Chandrasekhar 1981, Sharp 1984, Youngs 1984) arises at the interface between
two different density fluids in the presence of a constant acceleration pointing opposite to the
density gradient. Small perturbations of the initial interface grow, interact nonlinearly, and lead
to turbulence. Compared to its classical formulation, in most practical cases, RTI manifests itself
as an extremely complex process. The complexity arises due to an intertwined manifold of fac-
tors, among which are the density difference, compressibility, temperature distribution, viscosity,
surface tension and other interfacial phenomena (for the immiscible case), mass diffusion (for the
miscible case), heat diffusion, geometrical and finite boundary effects, specific plasma and mag-
netic field properties, and so on. As such, flows featuring RTI-type growth of instabilities can be
found in several important natural phenomena and applications, for example, in supernova ex-
plosions and neutron stars; the solar corona; Earth’s oceans, atmosphere, and mantle; quantum
plasma; combustion; ICF; sonoluminescence; industrial coating with thin liquid films, etc. [e.g.,
see Cabot & Cook (2006); Livescu (2013); Swisher et al. (2015); Boffetta &Mazzino (2017); Zhou
(2017a,b); Remington et al. (2019); and references therein].

For single-fluid flows with significant thermal density differences, the temperature is finite and
the hydrostatic balance in themomentum equations results in large pressure variations.Therefore,
as the instability develops, the background pressure cannot be assumed uniform or constant in time
and the use of the LMNOB equations is not justified for large A. Thus, for this configuration,
NB effects require fully compressible treatments. Results concerning the Boussinesq limit were
summarized by Boffetta &Mazzino (2017). The role of strong background stratification has been
discussed byGauthier (2017).Nevertheless,NB effects can be isolated from compressibility effects

Table 1 y/h values for INBM and LMNOB shear-driven turbulence with Atwood number of 0.75

Equations type ηρ (〈ρ〉 = ρ0) η2 (Ũ2 peak) η1 (Ũ1 = 0) η12 (R̃12 peak)
INBM with μ = ρν 0.07 −0.36 −0.43 −0.55
INBM with constant μ 0.07 −0.27 −0.44 −0.54
LMNOB with μ = ρν 0.08 −0.31 −0.44 −0.54
LMNOB with constant μ 0.07 −0.37 −0.45 −0.53

Here h is defined based on 10% and 90% of the mean velocity profile. Table adapted with permission from Baltzer & Livescu (2019).

www.annualreviews.org • Variable-Density Turbulence 331

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
0.

52
:3

09
-3

41
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

L
os

 A
la

m
os

 N
at

io
na

l L
ab

or
at

or
y 

- 
R

es
ea

rc
h 

L
ib

ra
ry

 (
L

A
N

L
) 

on
 0

3/
23

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



FL52CH13_Livescu ARjats.cls December 7, 2019 16:1

using the INBM equations, for a configuration where the density variations arise from fluids with
different molar masses.

RTI with quasi-incompressible miscible fluids and NB effects has been addressed both experi-
mentally, by Banerjee et al. (2010) for A up to 0.6 and Akula & Ranjan (2016) for A up to 0.73, and
numerically by Cook & Dimotakis (2001), Cabot & Cook (2006), and Livescu et al. (2009, 2010)
for A = 0.5; by Livescu et al. (2011) and Livescu (2013) for A up to 0.9; and by Cabot & Zhou
(2013) forA up to 0.8. Larger A values have been addressed in experiments using immiscible fluids
[e.g., A up to 0.96 (Dimonte & Schneider 2000)] and under-resolved simulations with numerical
stabilization (e.g., Dimonte et al. 2004, Youngs 2013, and references therein).However, the differ-
ences between immiscible and miscible cases, as well as numerical versus physical diffusion effects
on RTI turbulence, are still open questions.

The self-similar solution to the RTI problem is represented by a quadratic law for the mixing
layer growth (Ristorcelli & Clark 2004),

h = αgt2 + 2
(
αAgh0

)1/2 + h0. 45.

The value of the growth rate coefficient α has been central for much of the RTI research (Dimonte
et al. 2004, Youngs 2013) and is still subject to active debate (Youngs 2017). There is also some
inconsistency in the literature about including the linear term in the growth formula, which can
lead to large differences at early times (Cabot & Cook 2006). The connection between α and the
very-low-frequency components of the initial perturbation (e.g., Ramaprabhu et al. 2005, Livescu
et al. 2011, Youngs 2013, Roberts & Jacobs 2016) makes the problem challenging to address both
experimentally, where the control of the initial perturbation is notoriously difficult, and numeri-
cally, since it would require extremely large resolutions—recent advances in experimental setups
(Roberts & Jacobs 2016) and computational power notwithstanding. Current results seem to in-
dicate that, if the initial perturbation spectrum contains only high–wave number components,
relatively low values for the growth coefficient obtain, i.e., α ∼ 0.025–0.03 (Livescu et al. 2010,
Youngs 2013). However, with a spectrum of the type E(K ) ∼ k−3, which is significantly weighted
toward the low–wave number region,much larger values are obtained,α ∼ 0.06–0.1 (Livescu et al.
2011, Youngs 2013), typical to the experimental range (Banerjee & Andrews 2006). Similarly, the
mixedness 
 asymptotes to around 0.8 when only high–wave number components are present
in the initial perturbation, while the initial perturbation spectrum of k−3 leads to lower values
of around 0.7 (Youngs 2013). The mixing layer becomes strongly asymmetric as A increases, with
hs/hb ∼ [(1 + A)/(1 − A)]n, where values of n in the range 0.23–0.33 have been reported (Dimonte
& Schneider 2000, Youngs 2013). This asymmetry is largely due to the increase in the growth rate
on the spike side. More details about these values can be found in the recent review by Zhou
(2017a,b).

In principle, the single-mode perturbation may be relevant to this problem, although a diverse
class of models assumes a qualitatively different growth formula than Equation 45, with con-
stant asymptotic velocity. There is indication, however, that the layer reaccelerates at later times
(Ramaprabhu et al. 2006) and may, in fact, grow quadratically at sufficiently high Reynolds num-
ber (Wei & Livescu 2012). In this case, single-mode RTI may represent an upper bound for the
multimode case, consistent with the faster growth seen for the initial perturbation spectrum con-
centrated at small wave numbers. Nevertheless, even the largest α values reported experimentally
at moderate A are still much smaller than the free-fall value of 0.5, indicating significant energy
transfer to the horizontal motions, as required for the development of turbulence. Indeed, the
normal Reynolds stress anisotropy seems to vary little with A and across the layer, with b33 ≈ 0.3
(so that the vertical component has about the same kinetic energy as the sum of the horizontal
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components) (Livescu et al. 2010). In principle, the theoretical limit as A approaches unity is
α = 0.5 (see above references and the recent reviews by Zhou 2017a,b). However, it is not clear if
this limit is achievable or if the mathematical model (INBM equations or even the fully compress-
ible equations) becomes inadequate at some A < 1, since the velocities quickly become large.

There is a proliferation of theoretical models for the spectral scaling and dynamics of low-A
RTI turbulence owing to the variety of possible dynamical regimes (Boffetta & Mazzino 2017);
however, it is not clear how these models can be extended to the NB case, especially if an inviscid
scale decomposition criterion is required (see Section 3.6).

From the point of view of the VD effects, current simulations and experimental results with
finite A values are consistent with those described throughout this review: (a) The RTI mixing
layer becomes asymmetric, rougher and faster growing on the light-fluid side (showing so-called
spikes), and smoother and slower growing on the heavy-fluid side (showing so-called bubbles)
(this is qualitatively similar with RMI and shear-driven mixing layers); (b) turbulence intensities
are larger in light-fluid regions than heavy-fluid regions; and (c) mixing is asymmetric, with pure
heavy fluid reaching larger depths from the layer edge than pure light fluid.

4.3. Thermal Convection

Convection driven by temperature differences is ubiquitous in nature, e.g., geophysical flows, the
interiors of stars, and industrial engineering. The study of thermal convection has been an ac-
tive field of research for over a century. Several important model problems include: Rayleigh–
Bénard (RB) convection (Lohse & Xia 2010), where a cavity is heated from below and cooled
from above; horizontal convection (Hughes & Griffiths 2008), where the heating occurs at the
same level, for example, on the bottom surface; and vertical convection or differentially heated
cavities (DHC) (e.g., Paolucci & Chenoweth 1989, Fusegi et al. 1990, Wang et al. 2019), where
the cavity is heated/cooled from the sides. The literature is rich with variations of these basic
problems such as changes in the aspect ratios, open cavities, and the additions of rotation, plasma
and magnetic effects, radiation, etc.

In the typical RB problem, due to the background stratification, NOB effects are usually con-
sidered in the anelastic approximation for the continuity equation, with additional approximations
for the momentum equations within the boundary layers (e.g., Ahlers et al. 2007). While the re-
sulting Atwood numbers are small (generallyA < 0.1 for gases andA ≈ 0 for liquids), the viscosity
and heat conduction variations with temperature are large enough to produce a top-down statis-
tical symmetry breaking in the temperature drops across the boundary layers and a drifting of the
mean temperature off of the center. The effects of density and material properties variations can
be qualitatively separated by comparing experimental results using liquids and gases (Ahlers et al.
2006, 2007). Thus, for liquids, where density is quasi-constant, the larger bottom boundary layer
induces a larger center temperature. For gases, the associated decrease in density and volumetric
expansion leads to a faster decrease in temperature away from the wall and, thus, a reduced center
temperature.

Larger temperature differences (and A values) have been studied in vertical convection. The
flow is characterized by two boundary layers near the heated and cooled vertical sides and by two
intrusion layers near the horizontal walls, which complete a recirculation pattern. The net energy
surplus transferred upward by both boundary layers is balanced by heat conduction through the
main body of the cavity. Wang et al. (2019) performed 2D simulations with the LMNOB equa-
tions, nominally for air, up toA = 0.6. In this case,NOB effects break the left–right antisymmetry,
with the thermal and viscous boundary layers thicker near the hot plate and thinner near the cold
plate and a larger center temperature compared to the OB limit. These results are qualitatively
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different than those obtained for RB convection, where the center temperature is reduced for
gases in the presence of NOB effects. Thus, due to different inertia of the light- and heavy-fluid
streams, the differential entrainment in DHCmoves the neutral density point (i.e., where the den-
sity is equal to the average of the light- and heavy-fluid stream), as well as the neutral temperature
point, to the heavy-fluid side. This is qualitatively similar to shear-driven turbulence (Section 4.1)
and IBDT turbulence results discussed in Section 3.4. Recent results (e.g.,Wang et al. 2019) have
seemed to indicate that the overall integrated quantities (e.g., Nusselt number) are not affected by
NOB effects after the onset of stationarity. It would be interesting to see if this result changes in
3D for fully turbulent flows. For example, as the Ra value for the transition to turbulence may de-
pend onA, the Nusselt scaling may change as well. From the point of view of turbulence structure,
it is likely that the VD effects highlighted earlier, with more intense turbulence in the light-fluid
regions and different molecular mixing characteristics of the pure light-fluid and heavy-fluid re-
gions, would be maintained for this flow as well. Again, it would be interesting to study if these
local changes affect any of the global parameters of the flow.

SUMMARY POINTS

1. Density variations due to thermal and compositional fluctuations produce similar effects
as the flow interacts with a shockwave or the shock propagates through a variable-density
(VD) medium.

2. The equations describing the single-fluid low–Mach number approximation for flows
with thermal variations and the incompressible limit of binary mixing of fluids with dif-
ferent molar masses are remarkably similar, with some differences in the transport terms.

3. Strong inertial effects associated with density variations lead to significant asymmetries
in turbulence stirring and entrainment, affecting the growth of mixing and boundary
layers, while subtle differences in the transport formulations change the dynamics of
the density gradients and molecular mixing. The effects are shared by VD turbulence
evolution away from a shock wave, Richtmyer–Meshkov instability (RMI), Rayleigh–
Taylor instability, shear-driven mixing layers, and vertical convection.

4. Density variations may change the regularity properties of the underlying incompress-
ible Navier–Stokes equations.

5. In the presence of strong VD effects, the kinetic energy spectrum needs to be formulated
consistent with the inviscid-scale decomposition criterion to avoid viscous contamina-
tion at large scales.

FUTURE ISSUES

1. VD effects, as well as similarities and differences between thermal and compositional
density variations, need to be explored at higher Péclet number (Pe) and mass diffusion
Péclet number, Pem. In particular, what is the interplay between stirring and molecular
mixing as Pe and Pem tend to infinity?

2. Experiments with miscible materials and large density ratios are needed to further ex-
plore the physics of VD turbulence as well as the validity of the LMNOB (low–Mach
number, non-Oberbeck–Boussinesq) and INBM (incompressible non-Boussinesq mix-
ing) approximations.
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3. Experiments with tighter control of the initial conditions as well as measurements of
higher-order turbulence statistics are desired to produce more accurate scaling laws for
the light-fluid and heavy-fluid sides of mixing layers, and to better inform themodels and
explore VD effects for flows or regimes where DNS remains out of reach, for example,
RMI.

4. Owing to the similarity of the equations describing flowswith thermal and compositional
density variations, cross-fertilization of ideas might bring new insights and research di-
rections, e.g., with respect to the role of material properties or transition to turbulence
in RTI and of layer asymmetries and scalings in vertical convection.

5. The mathematical validity of a set of conservation equations may not be guaranteed
by its physical derivation. In particular, large gradients may develop due to nonlinear
interactions, violating small parameter expansions. Such issues could be explored using
accurate simulations with more general physical descriptions.

6. Turbulence models need to be explored that are formulated to be consistent with the
inviscid scale decomposition criterion.
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