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Regression-Based Projection for Learning Mori--Zwanzig Operators\ast 
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Abstract. We propose to adopt statistical regression as the projection operator to enable data-driven learning
of the operators in the Mori--Zwanzig formalism. We present a principled method to extract the
Markov and memory operators for any regression models. We show that the choice of linear regression
results in a recently proposed data-driven learning algorithm based on Mori's projection operator,
which is a higher-order approximate Koopman learning method. We show that more expressive non-
linear regression models naturally fill in the gap between the highly idealized and computationally
efficient Mori's projection operator and the most optimal yet computationally infeasible Zwanzig's
projection operator. We performed numerical experiments and extracted the operators for an array
of regression-based projections, including linear, polynomial, spline, and neural network--based re-
gressions, showing a progressive improvement as the complexity of the regression model increased.
Our proposition provides a general framework to extract memory-dependent corrections and can be
readily applied to an array of data-driven learning methods for stationary dynamical systems in the
literature.
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1. Introduction. More than half a century ago, Mori [33] and Zwanzig [54] developed a
mathematically exact formalism for constructing reduced-order models for dynamical systems
in nonequilibrium statistical mechanics. In this context, the typical degrees of the freedom
of a system are of the order of Avogadros number. In contrast to tracking the dynamics of
each degree of freedom, reduced-order models (also referred to as the coarse-grained models in
the context of statistical physics) are developed to describe the dynamics of a relatively small
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2891

number of variables of interest.1 In the jargon of model coarse-graining, this set of dynamic
variables is referred to as the ``resolved"" variables, and the remaining degrees of freedom in the
system are referred to as the ``unresolved"" ones. Reduced-order models are particularly useful
in describing the emergent phenomena at the mesoscopic or macroscopic scales. They are also
more computationally efficient to simulate (in comparison to simulating the full system) and
thus play an essential role in bridging multiscale models.

The key difficulty in constructing reduced-order models is the closure problem: one must
quantify the effect of the unresolved variables before self-contained evolutionary equations of
the resolved variables can be prescribed. To solve the closure problem, Mori and Zwanzig
adopted an elegant approach which uses functional projections. Formally, a prespecified pro-
jection operator is used to map any function which depends on both resolved and unresolved
variables to a function that only depends on the resolved variables. As the latter does not
depend on the unresolved information, one can then prescribe a set of evolutionary equations
for the resolved variables. The dynamical system in terms of only the projected functions is
of course only an approximation of the true dynamics. The Mori--Zwanzig (MZ) formalism
further quantifies the error of the approximation and derives how the error would propagate
into the future by the dynamics. The central result of the MZ formalism is the generalized
Langevin equation (GLE), which stipulates that the evolutionary equations of the resolved
variables depend not only on their instantaneous values but also on their history. As a math-
ematically exact formula, the memory dependence, which depends critically on the choice of
the resolved variables and the projection operator, quantifies the interactions between the
resolved and unresolved degrees of freedom.

Theoretically speaking, there are infinitely many choices of the projection operators. In
the literature, the commonly chosen projections include (1) Mori's linear projection [33], (2)
the finite-rank projection operator [6], which is Mori's projection with a set of orthonormal
basis functions, (3) projection by assigning unresolved variables to zero [38, 39, 40, 41], and
(4) Zwanzig's nonlinear version of projection [6, 54]. It is generally difficult to derive analytic
expressions for the MZ formalism. Several recent studies [24, 29, 31, 32, 34, 37, 49] have
established that with Mori's linear projection operator, it is possible to adopt a data-driven
approach to learn the MZ operators using the time series of the resolved dynamics. In addition,
it was shown [24] that these methods provide higher-order and memory-dependent corrections
to existing data-driven learning of the approximate Koopman operators [43, 44, 45, 52].

In spite of being a consistent theoretical framework to the approximate Koopman learning,
Mori's projection operator is greatly limited by its linear nature. That is, after the projection,
all functions must be expressed as linear combinations of a set of a priori specified resolved
variables. The quality of the prediction thus solely depends on the choice of the resolved
variables. To the authors' best knowledge, there is no principled way to select an optimal set
of resolved variables for general dynamical systems. With a nonoptimal choice, the difference
between the projected dynamics and the true dynamics can be unsatisfactorily large [24].

1The term ``reduced-order models"" could mean different things in different contexts. We adhere to the
definition that originated from nonequilibrium statistical mechanics, in which the formalism was established.
With this definition, ``reduced-order models"" is interchangeable with the terms ``partially observed"" and ``un-
derresolved"" dynamical systems.
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2892 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

The same problem also manifests itself in the approximate Koopman learning framework
[52]. Furthermore, Mori's projection operator is not compatible with many nonlinear closure
schemes [10, 30]. Neither can we generalize the Mori's restrictive linear projection operator
to those data-driven learning methods based on modern machine learning [5, 22, 27, 51], with
which one relies on the neural networks to identify the nonlinear relationship between the
input (what we know at the present) and the output (what we want to predict in the future).

At the other end of the spectrum is the Zwanzig's construct [6, 54], which uses conditional
expectation as a projection operator. Although the conditional expectation is the optimal
choice of the projection operator [6], in practice, it is challenging to estimate the conditional
expectations with a finite set of data, especially for high-dimensional systems that are not
fully resolved.

To address the aforementioned difficulties, we propose two novel ideas that enable data-
driven learning for the MZ operators. First, we propose a concept that any regression analysis
can be treated as the projection operator in the MZ formalism. Regression analysis is a
statistical procedure to estimate the relationship between the dependent and independent
variables. Such a relationship is determined by minimization of a prescribed error (risk)
function, quantifying the discrepancy between model prediction and data. In our context of
dynamical systems, the dependent variables would be those variables that we wish to predict
in the future, and the independent variables would be those variables that we have already
observed in the past. Second, we identify that the generalized fluctuation-dissipation (GFD)
relationship, a self-consistent condition that relates the MZ memory kernels and the error
of the memory-dependent dynamics, should be used to learn the memory kernels recursively.
Building upon this concept, we have developed a systematic approach for learning MZ memory
kernels, using snapshots of resolved variables. The resulting procedure is surprisingly simple,
principled, and intuitive, despite a complicated operator-algebraic derivation. It is important
to note that the memory kernels depend on the choice of the projection operator in the MZ
formalism. As such, our procedure delivers memory kernels that are specific to the choice
of regression model. We will demonstrate that with a linear regression model, the learned
memory kernels converge nicely to the outcome of our recently proposed data-driven learning
for Mori's projector [24]. Moreover, we will elaborate on how seemingly similar regression
models can be associated with distinct projection operators, and how differentiating such
a nuance could pave the way to enable learning the MZ memory kernels for reduced-order
models with nonlinear closure schemes.

Before the technical presentation, it may be beneficial to provide a high-level characteriza-
tion that contrasts our proposition to other statistical and machine-learning models motivated
by Mori and Zwanzig's memory-dependent formulation. By doing so, we hope to provide a
broader perspective on our work and the contributions it makes to the field. The key idea
to differentiate our work from other models lies in the fact that MZ formalism is memory-
dependent, but not all memory-dependent formulation is MZ. In our opinion, the memory
kernels in MZ formalism are special because they satisfy the self-consistent GFD. As such,
it would be a logical fallacy to call any memory-dependent dynamics an MZ model without
enforcing GFD in the model structure, or without checking the GFD after learning. Unfortu-
nately, many existing models fell into this logical fallacy. For example, [28] directly jumped
from the MZ formalism to the recurrent neural network with long short term memory (RNN-
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2893

LSTM), claiming that the MZ memory can be learned by black-box RNN-LSTM without
enforcing or checking the GFD. The same gap exists in [15] between the mathematical analy-
sis based on MZ formalism and the computational RNN-LSTM architecture. Although GFD
was used as an argument to adopt finite-memory length truncation, it is not explicitly enforced
or checked that the (trained) LSTM memory satisfies the GFD. With evidence presented by
[28] and [15], we cannot rule out that the RNN-LSTM learns other memory-dependent dy-
namics, for example, time delay embedding with which one augments the current state by
the past history. Relevant data-driven delay embedded models include [14], which uses kernel
methods, and [23], which uses Wiener projection and that employs infinitely long past his-
tory. Both delay-embedding studies aim to bypass quantification of the MZ memory kernel,
as they argued that optimal delay embedding would result in vanishing MZ memories. A
memory-dependent time-series analysis method termed NARMAX (nonlinear autoregressive
moving average model with exogenous inputs [7]) also argues that its memory-dependence
formulation resembles the MZ formalism without establishing the GFD. However, it is later
established in [23] that the memory-dependent formulation NARMAX is an approximation of
the Wiener projection, which has zero MZ memory. In contrast to these proposed methods,
which postulate a memory-dependence in the statistical learning model without enforcing the
GFD, our proposed approach has GFD built in. In fact, GFD is so critical that it turned out
to be the key equation to establish our proposed recursive procedure. To our best knowledge,
such a procedure does not exist in the literature.

To support the claim that our proposition can be applied to a wide range of data-driven
models parametrized by regression, we will present numerical experiments on various nonlinear
regression models, including polynomial and ridge regression, fully connected neural networks
(FCNN), and convolutional neural networks (CNN). It is not our intention to show that
these simple regression models outperform existing data-driven and regression-based models.
Rather, we would like to use these simple examples to illustrate the mechanism of the proposed
procedure, the learned MZ (with enforced GFD) memories, and how including the memory
contribution can improve the predictions. We reemphasize that our proposition is not limited
to these simple regression models. With the identification of a regression analysis as the MZ
projection operator, our proposed procedure can be applied to a wide array of data-driven
models parametrized by regression (e.g., [5, 22, 27, 42, 51]) for quantifying their MZ memory
kernels and for improving their predictions. Consequently, our proposition has the potential
to significantly broaden the practical scope of the MZ formalism.

2. Background and terminology.

2.1. Full dynamical systems. Following the notation in [24], we consider an autonomous
and deterministic dynamical system in \BbbR D following a continuous-time evolutionary equation

d

dt
\bfitphi (t) =\bfR (\bfitphi (t)) ,(2.1)

where \bfitphi is the state in the phase space \BbbR D and \bfR :\BbbR D\rightarrow \BbbR D is the vector field of the system.
We will assume that the system has a unique \bfitphi (t) \forall t\geq 0. We will denote the solution of (2.1)
with the initial condition \bfitphi 0 \in \BbbR D by \bfitphi (t;\bfitphi 0). We will use the standard notation and denote
scalars by symbols in the normal font and vectors by symbols in bold.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2894 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

2.2. Observables. In reduced-order modeling, we aim to prescribe the evolutionary equa-
tions for M < D real-valued functions of the state variable \bfitphi , gi : \BbbR D \rightarrow \BbbR , i = 1 . . .M . We
exclusively consider real-valued functions, but the theory can be straightforwardly generalized
to complex-valued functions. We refer to these functions as the observables. In other con-
texts, such as material science or statistical mechanics, observables can also be referred to as
descriptors, coarse-grained variables, or dynamic variables. We refer to an ``observation"" at
time t as applying the set of observables to the system's state \bfitphi (t;\bfitphi 0), that is, a real-valued
array \{ gi (\bfitphi (t;\bfitphi 0))\} 

M
i=1. We remark that one can define an observable \pi i to extract the ith

component of the state \bfitphi at time t (that is, \pi i (\bfitphi (t;\bfitphi 0)) = \bfitphi i (t;\bfitphi 0) [23]). In general, ob-
servables g must be square integrable functions of the full state \bfitphi against some distribution;
see section 2.5. We will use \bfg (resp., \bfg (\bfitphi )) to denote a vectorized observable [g1, g2, . . . gM ]T

(resp., observations, [g1 (\bfitphi ) , g2 (\bfitphi ) , . . . gM (\bfitphi )]T ).

2.3. Discrete-time snapshot data. Throughout this study, we assume that the full system
has been simulated and observed at discrete times, and the observations form a data set for
learning the MZ operators. Specifically, we rely on samples drawn from a chosen initial
distribution \mu (see section 2.5) to collect the statistics of the unresolved information. The

full system is prepared at N \gg 1 independently and identically sampled \bfitphi 
[i]
0 \sim \mu , i= 1 . . .N .

The system is then simulated and the values of the observations are registered at uniformly
distributed discrete times k\Delta , k= 0 . . .K - 1. We refer to these observations as the snapshots.
Without loss of generality, we assume \Delta = 1 by choosing an appropriate unit of time, unless
it is specified otherwise. The full discrete-time observations thus form an N \times M \times K data

matrix \bfD whose (i, j, k)-entry is gj(\bfitphi (k  - 1;\bfitphi 
[i]
0 )). For those systems which have natural

or physical invariant measure, it is desirable to bypass sampling from a prespecified initial
distribution and use the long-time statistics instead. In this case, we generate a single but
long trajectory from a randomly selected initial condition \bfitphi \mathrm{r}

0. After the initial transient time
tc, we make K+N observations for every \Delta = 1. We use these K+N observations to inform
the statistics of the invariant measure. The assumptions underlying the sufficiency of using
K + N observations are described below. The data matrix \bfD in this case is defined as an
N \times M \times K matrix whose (i, j, k)-entry is gj (\bfitphi (tc + i+ k - 1;\bfitphi \mathrm{r}

0)).

2.4. Discrete-time dynamical systems. To match to the discrete-time snapshot data, we
rewrite the evolutionary equation (2.1) into a discrete-time form:

\bfitphi (t+ 1) =\bfF (\bfitphi (t)) ,(2.2)

where \bfF : \BbbR D \rightarrow \BbbR D is the flow map. We assume that the map exists and is unique for any
finite time t \in \BbbZ \geq 0. Our formulation is readily applicable to those generically discrete-time
dynamical systems, in which we begin with the discrete-time formulation (2.2) instead of (2.1).

2.5. A chosen distribution and square integrable functions. We assume that the number
of samples N is sufficiently large to capture the statistics of the time-dependent distribution
induced by the deterministic dynamics from the initial distribution \mu , i.e., the solution of the
generalized Liouville equation [13] corresponding to (2.1):

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2895

\partial 

\partial t
\rho (\bfitphi , t) = - 

N\sum 
i=1

\partial 

\partial \bfitphi i

[\bfR i (\bfitphi )\rho (\bfitphi , t)] with the initial data \rho (\bfitphi ,0) = \mu (\bfitphi ) ,(2.3)

where \mu (\bfitphi ) is the probability density function of the measure \mu , assuming the measure \mu is
dominated by the Lebesgue measure in the state space \BbbR D so \mu (d\bfitphi ) = \mu (\bfitphi )d\bfitphi . When using
the single trajectory to sample the ergodic distribution, we assume that N is sufficiently large
such that the collected N+K samples faithfully capture the statistics of the ergodic measure,
i.e., the stationary solution \rho \ast of (2.3) satisfying

0 =

N\sum 
i=1

\partial 

\partial \bfitphi i

[\bfR i (\bfitphi )\rho \ast (\bfitphi )] .(2.4)

In both cases, we assume that each of the observables, gi, is a square integrable function against
the induced measure. That is, if one chooses to learn from a time-dependent distribution
(equation (2.3)),

\int 
\BbbR D \rho (\bfitphi , t)g

2
i (\bfitphi )d\bfitphi <\infty for 0 \leq t \leq (K  - 1)\Delta , or if one chooses to learn

from a stationary distribution (equation (2.4)),
\int 
\BbbR D \rho \ast (\bfitphi )g

2
i (\bfitphi )d\bfitphi <\infty .

2.6. The projection operator. Suppose all the M resolved observables are independent;
we shall need another D  - M independent unresolved observables to uniquely specify the
system's state. Denote these unresolved observables, which are also real-valued functions of
the system's state \bfitphi , by uj : \bfR 

D \rightarrow \BbbR , j = 1 . . .D  - M . Importantly, observations of these
unresolved variables, uj (\bfitphi ), are not accessible. Consider a real-valued function of the full state

expressed in both the resolved and unresolved observations, h(\{ gi(\bfitphi )\} Mi=1,\{ uj (\bfitphi )\} 
D - M
j=1 ). A

projection operator \scrP is an operator mapping h to another real-valued function (\scrP h) :\BbbR D\rightarrow 
\BbbR which only depends on the resolved observations. MZ formalism utilizes this projection
operator and decomposes any function h(\{ gi (\bfitphi )\} Mi=1 ,\{ uj (\bfitphi )\} 

D - M
j=1 ) into (\scrP h) (\{ gi(\bfitphi )\} Mi=1) +

h\bot (\{ gi(\bfitphi )\} Mi=1,\{ uj(\bfitphi )\} 
D - M
j=1 ), where h\bot := h - \scrP h. Note that the domain of (\scrP h) is still both

the resolved and unresolved observations, except that the function does not explicitly depend
on the unresolved uj (\bfitphi ). A projection operator \scrP must satisfy the property \scrP 2 =\scrP , so that
for any h, \scrP nh=\scrP h, n\in \BbbN . Such a property is critical in the derivation of the MZ formalism
[55].

2.7. Discrete-time Mori--Zwanzig formalism. Following the derivations in [8, 23, 24, 49],
the discrete-time MZ formalism prescribes the exact evolutionary equations of the observa-
tions, that for any initial condition \bfitphi 0 \in \BbbR D,

\bfg n+1 (\bfitphi 0) =\bfOmega (0) (\bfg n (\bfitphi 0)) +

n\sum 
\ell =1

\bfOmega (\ell ) (\bfg n - \ell (\bfitphi 0)) +\bfW n (\bfitphi 0) .(2.5)

Here, \bfg n :\BbbR D\rightarrow \BbbR M is an M \times 1 vector function of the initial state \bfitphi 0 such that

\bfg n (\bfitphi 0)\triangleq \bfg (\bfitphi (n;\bfitphi 0))\equiv \bfg (\bfF n (\bfitphi 0)) ,(2.6)

noting that \bfg 0 \equiv \bfg . In other words, denote the finite-time (\Delta ) Koopman operator [20] by \scrK ,
\bfg n := \scrK n\bfg . For clarity, we write each component of this vector function as \bfg n,i := \scrK ngi if

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2896 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

needed. Note that \bfg 0,i = \bfg i. Equation (2.5), referred to as the GLE, is the central result of
the MZ formalism. It states that the vectorized observation at time n+ 1, \bfg (\bfitphi (n+ 1;\bfitphi 0)),
can be decomposed into three parts: (1) a Markovian function \bfOmega (0) : \BbbR M \rightarrow \BbbR M mapping
the observations at time n to an M \times 1 vector, (2) a series of functions \bfOmega (\ell ) : \BbbR M \rightarrow \BbbR M ,
\ell = 1,2, . . ., mapping past observations with a lag \ell to M \times 1 vectors, and (3) the orthogonal
dynamics that consist of observables \bfW n :\BbbR D\rightarrow \BbbR M , n= 0,1 . . ., mapping any initial state \bfitphi 0

to anM\times 1 vector. Interested reader can find a detailed discussion and physical interpretation
of the GLE (2.5) in [24].

Because the GLE (2.5) holds true for every initial condition \bfitphi 0, we can drop the function
evaluation at \bfitphi 0 part and write succinctly an equation for the observables

\bfg n+1 =

n\sum 
\ell =0

\bfOmega (\ell )\bfg n - \ell +\bfW n.(2.7)

In writing so, we overload \bfOmega (\ell ), which are functions in (2.5), to denote operators in (2.7).
That is, in (2.7), \bfOmega (\ell ) are functional operators mapping an M \times 1 vector function, each of
whose component is an L2

\bigl( 
\BbbR D, \mu 

\bigr) 
-function, to another M \times 1 vector function, each of whose

component is an L2
\bigl( 
\BbbR D, \mu 

\bigr) 
-function again. We thus refer to \bfOmega (\ell ) as the ``MZ operators."" We

will adopt the slightly abused notation that the same symbol \bfOmega (\ell ) is used to denote both the
functions in equations of observations (such as (2.5)) and operators in equations of observables
(such as (2.7)).

The operators \bfOmega (\ell ) and \bfW n depend on the choice of the projection operator \scrP , the choice
of the vectorized observable \bfg , and the finite-time (\Delta ) Koopman operator \scrK [8, 23]:

\bfOmega (n) :=\scrP \scrK [(1 - \scrP )\scrK ]n ,(2.8)

\bfW n := [(1 - \scrP )\scrK ]n+1 \bfg (2.9)

with n \in \BbbZ \geq 0. Because \scrP \bfW n = 0 (from the fact \scrP 2 = \scrP ), \bfW n is often referred to as the
orthogonal dynamics. From these definitions, it is straightforward to identify the following
equation, which relates the memory operators to the orthogonal dynamics:

\bfOmega (n)\bfg \equiv \scrP \scrK \bfW n - 1\forall n\in \BbbN .(2.10)

The meaning of the above equation is more transparent when we apply the operators to any
state \bfitphi 0 \in \BbbR D,

\bfOmega (n) (\bfg (\bfitphi 0))\equiv \scrP \scrK \bfW n - 1 (\bfitphi 0)\equiv \scrP ((\bfW n - 1 \circ \bfF ) (\bfitphi 0))\forall n\in \BbbN ,(2.11)

in which we applied the definition of the Koopman operator \scrK and used \circ to denote function
composition. The above equation is the GFD relation. Below, we will demonstrate that the
GFD enables data-driven learning of the operators \bfOmega (\ell )'s.

2.8. Regression. Here, we provide a short description of the regression analysis. In re-
gression analysis, the goal is to identify an optimal model f as a function of the independent
variables \bfx for predicting the dependent variables \bfy . We first focus on a scalar variable y,
which can be one of the many components of a vector \bfy . The model f is defined as a family

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2897

of functions f(\bfx ;\bfittheta ) of the independent variables \bfx , parametrized by an array of parameters
\bfittheta . The assumption of the (homoscedastic) regression model is that, in the most general form,
there exists a random variable \varepsilon such that the dependent variable Y can be expressed as

Y (\bfx ) = f (\bfx ;\bfittheta \ast ) + \varepsilon .(2.12)

Here, we use the standard capital notation to denote a random variable Y . Given a list of
paired realizations \{ \bfx [i], y[i]\} Ni=1, the best-fit parameter \bfittheta \ast minimizes the differences between
the model prediction f (\bfx ;\bfittheta ) and the dependent variable Y . The best-fit parameter \bfittheta \ast is solved
by minimizing a negative log-likelihood function that depends on the noise distribution. For
example, for normally distributed \varepsilon , the negative log-likelihood function is proportional to the
mean squared error (MSE), so the best-fit parameter is the minimizer

\bfittheta \ast := argmin
\bfittheta 

1

N

N\sum 
i=1

\Bigl( 
y[i]  - f

\Bigl( 
\bfx [i];\bfittheta 

\Bigr) \Bigr) 2
.(2.13)

When the dependent variables are vectors, that is, \bfy is P > 1 dimensional, the cost function
can be chosen as the sum of the MSE of M independent regressions:

\bfittheta \ast := argmin
\bfittheta 

1

N

N\sum 
i=1

P\sum 
j=1

\Bigl( 
y
[i]
j  - fj

\Bigl( 
\bfx [i];\bfittheta 

\Bigr) \Bigr) 2
.(2.14)

The above equation comes with three assumptions about the noise model. First, in each
component j of the P -dimensional \bfy , the noise \varepsilon j is normally distributed. Second, the noise
\varepsilon j is independently and identically distributed in each of the dimensions. Third, the noise is
homoscedastic, which means that the variance does not depend on the independent variable
\bfx . We remark that with a different noise model (e.g., correlated or heteroscedastic noise),
the cost function can take a different form. Nevertheless, our method does not depend on the
specific form of the cost function, i.e., it is not necessary to use MSE. Thus, in the analysis
below, we express a general cost function by

C

\biggl( 
\bfittheta ;
\Bigl\{ 
\bfx [i],\bfy [i]

\Bigr\} N

i=1

\biggr) 
,(2.15)

so the best-fit parameters \bfittheta \ast are obtained by solving a general optimization problem:

\bfittheta \ast := argmin
\bfittheta 

C

\biggl( 
\bfittheta ;
\Bigl\{ 
\bfx [i],\bfy [i]

\Bigr\} N

i=1

\biggr) 
.(2.16)

2.9. Regression-based projection operators. Using the notation defined above, we treat
the observations at the time s \geq 0 as the independent variables and the evaluations of any
real-valued function h :\BbbR D\rightarrow \BbbR of the full state \bfitphi (t;\bfitphi 0) at a later time t > s as the dependent
variable. The samples of the dependent and the independent variables are generated from the

fully resolved simulation, whose initial condition \bfitphi 
[i]
0 is sampled from the distribution \mu . Note

that the time-dependent full states \bfitphi (s;\bfitphi 
[i]
0 ) and \bfitphi (t;\bfitphi 

[i]
0 ) are neither resolved nor accessed,

but the observables \bfg s(\bfitphi 
[i]
0 ) := \bfg (\bfitphi (s;\bfitphi 

[i]
0 )) and ht(\bfitphi 

[i]
0 ) := h(\bfitphi (t;\bfitphi 

[i]
0 )) are measured and
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2898 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

registered as we simulate the dynamics. We use the samples to regress ht(\bfitphi 
[i]
0 ) on \bfg s(\bfitphi 

[i]
0 )

using a family of functions f(\bfg s(\bfitphi 
[i]
0 );\bfittheta ) by minimizing a chosen cost function:

\bfittheta \ast := argmin
\theta 

C

\biggl( 
\bfittheta ;
\Bigl\{ 
\bfg s

\Bigl( 
\bfitphi 
[i]
0

\Bigr) 
, ht

\Bigl( 
\bfitphi 
[i]
0

\Bigr) \Bigr\} N

i=1

\biggr) 
.(2.17)

The best fit f (\cdot ;\bfittheta \ast ) : \BbbR M \rightarrow \BbbR is now a function that depends on only the resolved initial
observations at time s, \bfg s (\bfitphi 0). It is clear that another regression of f(\bfg s (\bfitphi 0) ;\bfittheta \ast ) on the
independent variables \bfg s (\bfitphi 0) results in f(\cdot ;\bfittheta \ast ) again. As such, regression is a projection of
ht to f (\bfg s (\bfitphi 0) ;\bfittheta \ast ):

(\scrP ht) (\bfg s (\bfitphi 0)) = f (\bfg s (\bfitphi 0) ;\bfittheta \ast ) .(2.18)

In summary, with the choice of using regression for projection, applying \scrP to any function ht of
the full-system state \bfitphi results in the best-fit parametric function f (\cdot ;\bfittheta \ast ) of the reduced-order
observations \bfg s (\bfitphi 0). With a cost function such as (2.14), a straightforward generalization
can be made to those vector functions \bfh t : \BbbR D \rightarrow \BbbR P that (\scrP \bfh t) (\cdot ) = \bff (\cdot ;\bfittheta \ast ), where \bff is a
parametric family of \BbbR M \rightarrow \BbbR P functions. We remark that the regression-based projection
operator may no longer be the projection operators commonly adopted in existing MZ mod-
els, e.g., Mori's, finite-rank, and Zwanzig's projection operators. In addition, the projection
operator defined by the regression analysis may no longer be an orthogonal projection, with
respect to the typical inner product defined in L2-spaces.

3. Theoretical results.

3.1. Learning Mori--Zwanzig operators with regression-based projection using snapshot
data. We now use the snapshot data matrix \bfD to learn the MZ operators \bfOmega (n) and orthogonal
dynamics \bfW n, n\in \BbbZ \geq 0. As will be seen below, this can be achieved by iteratively performing
a regression problem as a projection, quantifying the residuals as the orthogonal dynamics,
and utilizing the GFD to define the next-order regression problem. We begin with setting
n= 0; the GLE (2.5) with the expression (2.8) states

\bfg 1 (\bfitphi 0) =\scrP \scrK (\bfg (\bfitphi 0)) +\bfW 0 (\bfitphi 0) =\scrP [\bfg 1 (\bfitphi 0)] +\bfW 0 (\bfitphi 0)(3.1)

for any initial state \bfitphi 0. We used the definition of the Koopman operator \scrK (\bfg (\bfitphi 0)) =
\bfg 1 (\bfitphi 0) := \bfg (\bfitphi (1;\bfitphi 0)), which are the observations made at one time step ahead of the initial
condition \bfitphi 0. These observations can be accessed in the snapshot data matrix: they are sim-
ply \bfD (\cdot , \cdot ,2). So can the \bfg (\bfitphi 0), which are \bfD (\cdot , \cdot ,1). The regression-based \scrP now projects \bfg 1
to an optimal function of \bfg (\bfitphi 0), by regressing \bfD (\cdot , \cdot ,2) on \bfD (\cdot , \cdot ,1). For example, using the
MSE cost function (2.14), we solve the following optimization problem for projection:

C(0) (\bfittheta ;\bfD ) :=
1

N

N\sum 
i=1

M\sum 
j=1

\Bigl[ 
\bfD (i, j,2) - \bff j

\Bigl( 
\{ \bfD (i, k,1)\} Mk=1 ;\bfittheta 

\Bigr) \Bigr] 2
,(3.2a)

\bfittheta 
(0)
\ast := argmin

\theta 
C(0) (\bfittheta ;\bfD ) ,(3.2b)

\bfOmega (0) (\cdot ) = \bff 
\Bigl( 
\cdot ;\bfittheta (0)

\ast 

\Bigr) 
,(3.2c)
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2899

where \bff (\cdot ;\bfittheta ) : \BbbR M \rightarrow \BbbR M is a family of regressional functions defined by the user. Here, the
superscript (0) is used to denote the cost function (C(0)) and the solution of the parameters
(\bfittheta (0)) of the 0th-order regression analysis. Once the best-fit model is solved, the orthogonal
dynamics \bfW 0 is identified as the residual of the regression problem from (3.1). That is, for

the ith sample initial condition \bfitphi 
[i]
0 , the jth component of the orthogonal dynamics at time

0 is

(\bfW 0)j

\Bigl( 
\bfitphi 
[i]
0

\Bigr) 
=
\Bigl[ 
\bfg 1

\Bigl( 
\bfitphi 
[i]
0

\Bigr) 
 - \scrP 

\Bigl( 
\bfg 1

\Bigl( 
\bfitphi 
[i]
0

\Bigr) \Bigr) \Bigr] 
j

=\bfD (i, j,2) - \bff j

\Bigl( 
\{ \bfD (i, k,1)\} Mk=1 ;\bfittheta 

(0)
\ast 

\Bigr) 
.(3.3)

We now use mathematical induction to show that we can extract \bfOmega (n+1) and samples of
\bfW n+1, given \bfOmega (\ell ), \ell = 0 . . . n, and the snapshot data matrix \bfD . We first use GLE (2.7) to
express \bfW n in terms of \bfOmega (\ell ) and \bfg n - \ell :

\bfW n = \bfg n+1  - 
n\sum 

\ell =0

\bfOmega (\ell ) (\bfg n - \ell ) .(3.4)

Then, we use the GFD, (2.11), to construct \bfOmega (n+1):

\bfOmega (n+1) (\bfg ) =\scrP \scrK \bfW n =\scrP 

\Biggl[ 
\scrK \bfg n+1  - \scrK 

n\sum 
\ell =0

\bfOmega (\ell ) (\bfg n - \ell )

\Biggr] 

=\scrP 

\Biggl( 
\bfg n+2  - 

n\sum 
\ell =0

\bfOmega (\ell ) (\bfg n - \ell +1)

\Biggr) 
.(3.5)

We evaluate the above function on an initial state \bfitphi 0 and use the definition (2.6) to obtain

\bfOmega (n+1) (\bfg (\bfitphi 0)) =\scrP 

\Biggl( 
\bfg (\bfitphi (n+ 2;\bfitphi 0)) - 

n\sum 
\ell =0

\bfOmega (\ell ) (\bfg (\bfitphi (n - \ell + 1;\bfitphi 0)))

\Biggr) 
.(3.6)

In the right-hand side of this expression, \bfOmega (\ell ), \ell = 0 . . . n, is the given best-fit parametric

functions \bff (\cdot ;\bfittheta (\ell )
\ast ). Note that for a particular initial sample \bfitphi [i], all the observations in the

above equation are registered in the data matrix \bfD .

\bfg 
\Bigl( 
\bfitphi 
[i]
0

\Bigr) 
=\bfD (i, \cdot ,1) ,(3.7a)

\bfg 
\Bigl( 
\bfitphi 
\Bigl( 
n+ 2;\bfitphi 

[i]
0

\Bigr) \Bigr) 
=\bfD (i, \cdot , n+ 3) ,(3.7b)

\bfg 
\Bigl( 
\bfitphi 
\Bigl( 
n - \ell + 1;\bfitphi 

[i]
0

\Bigr) \Bigr) 
=\bfD (i, \cdot , n - \ell + 2) .(3.7c)

Similar to (3.2), we now apply the projection operator \scrP , which is a regression on the corre-
sponding variables:
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2900 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

\bfy 
[i]
j,n+1 :=\bfD (i, j, n+ 3) - 

n\sum 
\ell =0

\bff j

\Bigl( 
\{ \bfD (i, k,n - \ell + 2)\} Mk=1 ;\bfittheta 

(\ell )
\ast 

\Bigr) 
,(3.8a)

C(n+1) (\bfittheta ;\bfD ) :=
1

N

N\sum 
i=1

M\sum 
j=1

\Bigl[ 
\bfy 
[i]
j,n+1  - \bff j

\Bigl( 
\{ \bfD (i, k,1)\} Mk=1 ;\bfittheta 

\Bigr) \Bigr] 2
,(3.8b)

\bfittheta 
(n+1)
\ast := argmin

\bfittheta 
C(n+1) (\bfittheta ;\bfD ) ,(3.8c)

\bfOmega (n+1) \equiv \bff 
\Bigl( 
\cdot ;\bfittheta (n+1)

\ast 

\Bigr) 
.(3.8d)

Again, the superscript (n + 1) here denotes the cost function (C(n+1)), best-fit parameters

\bfittheta 
(n+1)
\ast , and best-fit parametric functions \bff (\cdot ;\bfittheta (n+1)

\ast ) of this (n+1)th-order regression analysis.

By induction, the above procedure iteratively extracts \bfOmega (n)(\cdot ) = \bff (\cdot ;\bfittheta (n)
\ast ), n = 0 . . .K  - 2

(in total, K  - 1 operators), using the snapshot data matrix \bfD . Note that the family of
regressional functions \bff is kept the same for all \ell to ensure a consistent projection operator
\scrP . Notably, both the orthogonality \scrP \bfitW n = 0 and the GFD \bfOmega (n+1) (\bfg ) =\scrP \scrK \bfW n are built in
by construction. We summarize the procedure in Algorithm 3.1.

The above procedure iteratively learns the operators \bfOmega (\ell ) in the GLE (2.7). The GLE is
a particular form of memory-dependent dynamics, which is specific to the choices of the ob-
servables \bfg and projection operator \scrP . There are other forms of memory-dependent dynamics

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone Extracting the regression-based MZ operators. \bfI \bfn \bfp \bfu \bft : A set of observables
\bfg : \BbbR D \rightarrow \BbbR M ; the data matrix \bfD of the snapshots of the observations (see section 2.3); a
family of regressional functions \bff (\cdot ; ) : \BbbR M \rightarrow \BbbR M parametrized by fitting parameters \bfittheta ; the
cost function of the regression analysis, C(\bfittheta ;\{ \bfy [i],\bfx [i]\} Ni=1) (see section 2.8). \bfO \bfu \bft \bfp \bfu \bft : The
Markov operator \bfOmega (0) : \BbbR M \rightarrow \BbbR M ; memory operators \bfOmega (n) : \BbbR M \rightarrow \BbbR M , n \in \{ 1,2, . . .K  - 2\} ;
orthogonal dynamics \bfW n, n\in \{ 1,2, . . .K  - 3\} .

\bfx 
[i]
j \leftarrow \bfD (i, j,1)

\bfy 
[i]
j,0\leftarrow \bfD (i, j,2)

\bfittheta 
(0)
\ast \leftarrow argmin\bfittheta C

\biggl( 
\bfittheta ;
\Bigl\{ 
\bfy 
[i]
0 ,\bfx 

[i]
\Bigr\} N

i=1

\biggr) 
\bfOmega (0) (\cdot )\leftarrow \bff 

\Bigl( 
\cdot ;\bfittheta (0)

\ast 

\Bigr) 
\bff \bfo \bfr n in \{ 1, . . .K  - 2\} \bfd \bfo 
\bfy 
[i]
j,n\leftarrow \bfD (i, j, n+ 2) - 

\sum n - 1
\ell =0 \bff j

\Bigl( 
\{ \bfD (i, k,n - \ell + 1)\} Mk=1 ;\bfittheta 

(\ell )
\ast 

\Bigr) 
\bfW 

[i]
n - 1\leftarrow \bfy 

[i]
n

\bfittheta 
(n)
\ast \leftarrow argmin\bfittheta C

\biggl( 
\bfittheta ;
\Bigl\{ 
\bfy 
[i]
n ,\bfx [i]

\Bigr\} N

i=1

\biggr) 
\bfOmega (n) (\cdot )\leftarrow \bff 

\Bigl( 
\cdot ;\bfittheta (n)

\ast 

\Bigr) 
\bfe \bfn \bfd \bff \bfo \bfr 

Output \bfOmega (n) and \bfW n
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2901

which do not rely on an a priori selected projection operator, for example, the Hankel-DMD
method [3]. Numerical comparison of these methods and a detailed discussion will be provided
below in sections 4.2 and 5.

3.2. Making predictions and modeling orthogonal dynamics. Our goal is to iteratively
use GLE (2.5) to make multistep predictions for the resolved observables, once the operators
\bfOmega (\ell )'s are learned. For prediction, it is convenient to shift the time index and write the ``present
time"" as t= 0, assuming the system initiated from \bfitphi  - T at t= - T in the past (T \in \BbbZ \geq 0). We
assume that the present and a finite number of past times, \bfg  - \ell 

\bigl( 
\bfitphi  - T

\bigr) 
, \ell = 0,1, . . .H  - 1\leq T ,

are given. We will make predictions for the resolved variables at a future horizon t = k \geq 1,
\bfg k
\bigl( 
\bfitphi  - T

\bigr) 
. To achieve this, we first use a truncated GLE to predict \bfg 1:

\bfg 1
\bigl( 
\bfitphi  - T

\bigr) 
=

H - 1\sum 
\ell =0

\bfOmega (\ell )
\bigl( 
\bfg  - \ell 

\bigl( 
\bfitphi  - T

\bigr) \bigr) 
+\bfW T

\bigl( 
\bfitphi  - T

\bigr) 
.(3.9)

This is a truncated GLE because only a finite length of the history is provided; terms
\bfOmega (\ell )

\bigl( 
\bfg  - \ell 

\bigl( 
\bfitphi  - T

\bigr) \bigr) 
, \ell =H . . .T , are neglected. We show below with numerical evidence that this

truncation is justifiable. Once \bfg 1
\bigl( 
\bfitphi  - T

\bigr) 
is obtained, we accumulate the predicted \bfg 1

\bigl( 
\bfitphi  - T

\bigr) 
into the series of observations, \bfg  - \ell 

\bigl( 
\bfitphi  - T

\bigr) 
, \ell =  - 1,0,1 . . .H  - 1, and use this accumulated

series to make prediction of \bfg 2
\bigl( 
\bfitphi  - T

\bigr) 
using the truncated GLE (3.9) again:

\bfg 2
\bigl( 
\bfitphi  - T

\bigr) 
=

H - 1\sum 
\ell =0

\bfOmega (\ell )
\bigl( 
\bfg 1 - \ell 

\bigl( 
\bfitphi  - T

\bigr) \bigr) 
+\bfW T+1

\bigl( 
\bfitphi  - T

\bigr) 
.(3.10)

The procedure continues until the desired horizon m\geq 1 is reached. Note that this procedure
only needs the first H operators \bfOmega (\ell ), \ell = 0 . . .H  - 1. Clearly, the orthogonal dynamics
\bfW n, n= T . . . T +m - 1, are needed in the procedure. Recall that the orthogonal dynamics
encode the information in the unresolved space (equation (2.9)), so they cannot be obtained by
data-driven approaches. We must then rely on modeling. However, modeling the orthogonal
dynamics is challenging: it is equivalent to modeling all the D  - M unresolved degrees of
freedom. In addition, the modeling is specific to the full dynamical system, the choice of the
resolved observables, and the choice of the projection operator.

A best-case scenario is that the resolved observables are reasonably selected, and an ex-
pressive enough regression model is chosen. With a sufficiently long history length H, this
leads to negligible orthogonal dynamics, i.e., the residuals of the regression analysis are small
enough to be negligible. In the numerical experiments below, we assume this best-case sce-
nario and proceed with a trivial zero-noise model \bfW n = 0, n \geq T , although finite residuals
are observed in the experiments. Prediction with \bfW n = 0, n \geq T , can be conceived as the
conditional mean with respect to the distribution of underresolved dynamics (\bfW n, n \geq T ).
We remark that Price et al. [40] also attacked the same problem using an operator algebraic
expansion (of time t) to approximate the memory kernel, which is different from our purely
data-driven approach. In addition, the GFD (2.11) is guaranteed in our method, but not
guaranteed in the t-expansion approximates.

We also tested the standard way of fitting the residual\bfW n as independent and multivariate
Gaussian distribution (independent between different time indices, and multivariate in the M
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2902 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

observables). The results are qualitatively similar but noisier, because the predictions are
based on randomly generated samples of the distribution. As the results with the Gaussian
noise model are similar but less ``clean,"" we will not present them in this article.

3.3. Linear and nonlinear regression--based projections. We now elaborate a critical idea
that distinguishes the subtle differences between two regression-based projections that appear
nearly identical. We will refer to the first technique as ``linear regression-based projection""
and the second as ``nonlinear regression-based projection,"" as we currently lack more pre-
cise terminology. Although the regression analyses for these two methods are highly similar,
drastic differences exist in the procedures utilized to apply the trained models for making
predictions: the resulting reduced-order models are always linear dynamical systems with the
first technique but can be nonlinear dynamical systems with the second approach. Conse-
quently, the learned models can even produce qualitatively distinct long-time behaviors, as
will be seen in the next section.

To illustrate this idea, we employ a one-dimensional toy model: \.\phi =  - \phi 2 + \phi for some
initial distribution \phi (0)\sim \mu (d\phi ). We chose \mu = 0.5+Beta(2,2) for this example. We generate
N = 105 trajectories in the time window t \in [0,3] and record snapshots every \Delta = 0.05 (each
trajectory contains K = 61 snapshots, including the initial condition). Ten randomly selected
trajectories are visualized in Figure 1(a). We will use the generated trajectories to perform
two regression analyses, which we will later use for long-term predictions by the truncated
GLE (2.5). For simplicity, we will only use the Markov term for making the predictions. This
can be achieved by setting \bfW n = 0 for n \in \BbbZ \geq 0 = 0 during the prediction phase. Therefore,
we will use the following equation recursively to make a multistep prediction:

\bfg m+1(\bfitphi 0) =\bfOmega (0) (\bfg m(\bfitphi 0))\equiv [(\scrP \scrK )m \bfg ] (\phi 0) .(3.11)

We would like to emphasize that the concept highlighted in this section is generalizable to
systems that include MZ memory. We focus on only the Markov transitions for clarity of
presentation.

The first projection is in line with the approximate Koopman learning [44, 52] and data-
driven learning of MZ operators with Mori's projection [24]. We will refer to this method as the
linear regression--based projection. With this method, one first specifies a set of basis functions;

Figure 1. Learning the toy model \.\phi =  - \phi 2 + \phi . (a) Ten trajectories of the dynamics form randomly
(\sim 0.5 + Beta(2,2)) generated initial conditions. (b) The error of the prediction of the two regression-based
projection operators.
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2903

we consider polynomial functions up to the quadratic order, \bfg (\bfitphi ) = [g1(\phi ), g2(\phi ), g3(\phi )]
T with

g1(\phi ) := 1, g2(\phi ) =: \phi , and g3(\phi ) =: \phi 2. The data matrix \bfD , whose entries are Di,j,k =

[\phi (k - 1;\phi 
[i]
0 )]j - 1, is thus 105\times 3\times 61. With this method, a regression on the three nonlinear

basis functions is used as the projection operator. The linear regression model aims to identify
the approximate Koopman operator \bfitkappa \in \BbbR 3\times 3 that minimizes the MSE:

\bfitkappa 
(0)
\ast := argmin

\bfitkappa 

1

N

N\sum 
i=1

3\sum 
j=1

60\sum 
k=1

\Biggl( 
Di,j,k+1  - 

3\sum 
\ell =1

\bfitkappa j,\ell Di,\ell ,k

\Biggr) 2

,(3.12)

where \bfitkappa j,\ell is the (j, \ell )-component of \bfitkappa . The cost function involves all three functional bases,
and there are 3 \times 3 parameters in the regression analysis. Note that the three functional
bases are treated as independent variables, although knowing g2(\phi ) := \phi informs the others
for arbitrary \phi . Our numerical experiment showed that

\bfitkappa 
(0)
\ast =

\left[  +1.000 +0.000  - 0.000
+0.002 +1.044  - 0.046
 - 0.082 +0.265 +0.816

\right]  .(3.13)

With the learned \bfitkappa \ast , we now make an n-step prediction into the future, provided a current

state \phi 0. The nonlinear function evaluation of the initial state is \bfg 0 (\phi 0) =
\bigl[ 
\phi 00, \phi 

1
0, \phi 

2
0

\bigr] T
; here,

the subscript of \bfg represents that the nonlinear functional bases are at time step 0. Because

\scrP \scrK \bfg =\bfitkappa 
(0)
\ast \cdot \bfg in this regression model, it is straightforward to propagate the functional bases

m-steps, m\geq 1, into the future to make predictions:

\bfg (\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d})
m (\phi 0) =

\Bigl( \Bigl( 
\bfitkappa 
(0)
\ast 

\Bigr) m
\cdot \bfg 0
\Bigr) 
(\phi 0) ,(3.14)

that is, directly applying m times the linear transformation \bfitkappa \ast to the initial functional bases.
Note that this method provides a closed dynamical system of the resolved observables (g0, g1,
and g2). Furthermore, the evolutionary equation of the resolved observables is linear. Thus,
we can conceive the method as a linear closure scheme. Such a procedure for making multistep
predictions is natural and commonly adopted in the Koopman framework [2, 27, 52, 53]. The
procedure has a drawback: because the prediction of the evolution of the functional bases is
linear, the nonlinear moment information is not preserved. For example, the predicted second
moment of the system after m> 0 steps is not necessarily the squared predicted first moment:\Bigl[ 

\bfg (\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d})
m (\phi 0)

\Bigr] 
3
=

3\sum 
\ell =1

\Bigl( \Bigl( 
\bfitkappa 
(0)
\ast 

\Bigr) m\Bigr) 
3,\ell 
g\ell (\phi 0)\underbrace{}  \underbrace{}  

\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d} \mathrm{m}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}

(3.15)

\not =

\Biggl[ 
3\sum 

\ell =1

\Bigl( \Bigl( 
\bfitkappa 
(0)
\ast 

\Bigr) m\Bigr) 
2,\ell 
g\ell (\phi 0)

\Biggr] 2
\underbrace{}  \underbrace{}  
\mathrm{S}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{d} \mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d} fi\mathrm{r}\mathrm{s}\mathrm{t} \mathrm{m}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}

=
\Bigl[ 
\bfg (\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d})
m (\phi 0)

\Bigr] 2
2
.

The above equation (3.14) only uses the learned Markov kernel for making predictions.
When we use T MZ memory terms to make a prediction (see section 3.2),
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2904 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

\bfg 
(\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d})
n+1

\bigl( 
\bfitphi  - T

\bigr) 
=

T\sum 
\ell =0

\bfitkappa 
(\ell )
\ast \cdot \~\bfg n - \ell 

\bigl( 
\bfitphi  - T

\bigr) 
, n= 0,1, . . . ,(3.16a)

\~\bfg k =

\Biggl\{ 
\bfg k if k= - T, - T + 1, . . . - 1,0 (Given history),

\bfg 
(\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d})
k else.

(3.16b)

That is, the predicted values are recursively used as imputation when making more than one
step of predictions. Because of the linear nature of the projection operator, predictions based
on (3.16) are linear in \{ \bfg k\} 0k= - T . Below, we shall refer to those predictions based on (3.14)
as linear projection without memory and (3.16) as linear projection with memory.

The second method, which we call the nonlinear regression--based projection, is more com-
monly adopted in modeling. The idea is to use a regression model on a set of independent
observables we care about. For those observables which can be determined by (possibly non-
linear) transformation of the independent observables, the explicit form of the transformations
is used in the regression model. After learning, one predicts the evolution of the independent
observables, using those explicit forms of transformation. With our toy example, there is only
one independent observable \bfg = [g(\phi )]T = [\phi ]T . As such, the data matrix \bfD , with entries

Di,1,k = \phi (k  - 1;\phi 
[i]
0 ), is 105 \times 1 \times 61. To match the order of the first method, we consider

a second-order polynomial regression as the projection operator. The family of parametric
functions is f\bfittheta (\phi ) = f\alpha ,\beta ,\gamma (\phi ) := \alpha + \beta \phi + \gamma \phi 2 with three fitting parameters \theta = (\alpha ,\beta , \gamma ).
Note that the constant 1 and the \phi 2 are expressed explicitly as transformation of \phi . We aim
to identify the optimal parameters minimizing the MSE of the one-step prediction

\bfittheta \ast := argmin
\bfittheta 

1

N

N\sum 
i=1

60\sum 
k=1

[Di,1,k+1  - f\bfittheta (Di,1,k;\theta )]
2 .(3.17)

The above optimization problem, (3.17), is a subproblem of (3.12). As such, the solution
of (3.17) is identically the second row of the solution (equation (3.13)): \alpha \ast = \kappa \ast 1,1 \approx 0.002,
\beta \ast = \kappa \ast 1,2 \approx 1.044, and \gamma \ast = \kappa \ast 1,3 \approx  - 0.046. Despite an identical optimization solution, the
prediction based on this nonlinear regression model is distinct from the first method (equation

(3.14)) because \bfOmega (0) (g) =\scrP \scrK g= \alpha 
(0)
\ast + \beta 

(0)
\ast g+ \gamma 

(0)
\ast g2 now:

\bfg (\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d})
m (\phi 0) = f\bfittheta (0)

\ast 

\Bigl( 
. . .
\Bigl( 
f\bfittheta (0)

\ast 
(\bfg 0 (\bfitphi 0))

\Bigr) \Bigr) 
\underbrace{}  \underbrace{}  

m \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}

.(3.18)

Such a recursive composition of a nonlinear mapping is more in line with most modeling
for nonlinear dynamical systems: we assume a structure of the vector field, and after fitting
the free parameters, the best-fit model is treated as a nonlinear dynamical system (versus a
linear system of an augmented set of nonlinear functional bases, (3.14)). Nonlinear systems
identification methods, such as sparse identification of nonlinear dynamics (SINDy [5, 12, 17]),
also follow the recursive equation (3.18) in the prediction phase. Note that this method also
provides a closed dynamical system of the resolved observables, but in this case there is only
one resolved observable, g (\phi ) = \phi , yielding a nonlinear evolutionary equation of \phi . Below, we
refer to this method as a nonlinear closure scheme.
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2905

Analogous to (3.14), (3.18) only uses the learned Markov model for making predictions.
To make a prediction with T MZ memory terms,

\bfg 
(\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d})
n+1

\bigl( 
\bfitphi  - T

\bigr) 
=

T\sum 
\ell =0

\bff \theta (\ell )
\ast 

\bigl( 
\~\bfg n - \ell 

\bigl( 
\bfitphi  - T

\bigr) \bigr) 
, n= 0,1, . . . ,(3.19a)

\~\bfg k =

\Biggl\{ 
\bfg k if k= - T, - T + 1, . . . - 1,0 (Given history),

\bfg 
(\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d})
k else.

(3.19b)

Similar to (3.16), predicted values are recursively used as imputation when making more than
one step of predictions. With the linear nature of the projection operator, predictions based
on (3.16) are no longer linear in \{ \bfg k\} 0k= - T . Below, we shall refer to those predictions based
on (3.18) as nonlinear projection without memory and (3.19) as nonlinear projection with
memory.

To illustrate the difference between these two closure schemes, we used the learned \bfitkappa 
(0)
\ast 

and (\alpha 
(0)
\ast , \beta 

(0)
\ast , \gamma 

(0)
\ast ) to predict the dynamics of the toy model every \Delta = 0.05 up to t = 3.0,

using linear projection without memory (equation (3.14)) and nonlinear projection without
memory (equation (3.18)). In this demonstration, we set the initial condition of the test
trajectory at \phi (0) = 1.4. The error of the prediction to the true dynamics is illustrated in
Figure 1(b), which shows that the nonlinear closure scheme performed better than the linear
one. In the next section, we will see that predictions based on the linear closure scheme could
even lose important qualitative features of the fully resolved dynamics.

The nonlinear projection is a better formulation for accommodating data-driven models
with neural networks, even in the context of approximate Koopman learning [44, 52] and
data-driving learning of MZ operators with Mori's projection [24]. For these problems, the
set of observables have to be specified a priori. Because the identification of the optimal
basis functions remains an open problem, several recently proposed methods leverage neural
networks for learning better observables [22, 27, 51]. However, neural networks are nonlinear
functions of their parameters, so the joint learning problem (i.e., simultaneously learning the
functional basis and the approximate Koopman operator), often with additional nonlinear
regularizers, is not a linear regression problem. Consequently, we cannot categorize the neural
network--based approach as a simple Mori's projection, for which our proposed algorithms [24]
can extract the MZ memory kernels. A projection defined by the nonlinear projection is the
most natural and accurate mathematical framework to describe these neural network--based
learning methods. By identifying ``training a neural network"" as a projection, the algorithm
described in section 3.1 prescribes a principled way to extract the memory kernels of these
neural network--based learning methods.

3.4. A special case: Linear regression. We now show that the special choice of linear
projection results in the discrete-time algorithm we proposed in [24]. For any observation
\bfg (\bfitphi 0), linear regression postulates that the parametric form of \bff is a linear superposition of
the independent variables:

\bff (\bfg (\bfitphi 0) ;\bfitkappa ) :=\bfitkappa \cdot \bfg (\bfitphi 0) .(3.20)
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2906 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

Generally, we include the constant function that maps any \bfitphi to 1 in the vectorized observable
\bfg to account for the biased term in linear regression analysis. Here, the parameter \bfittheta is the list
of entries of the M \times M matrix \bfitkappa . The best fit of a linear regression is analytically tractable.
Define the N \times M data matrix \bfX at time k  - 1 whose entries are \bfX i,j (k - 1) := \bfD (i, j, k).
The solution of (3.2) is

\bfitkappa 
(0)
\ast =\bfC (1) \cdot \bfC  - 1 (0) ,(3.21)

where \bfC (k) := \bfX T (k) \cdot \bfX (0) is the empirical k-lag correlation matrix of the observations.
Equation (3.21) is precisely the extracted Markov term in [24], and the approximate Koopman
operator [44, 45, 52]. As for the higher orders, (3.8a) can be expressed as

\bfy n+1 :=\bfX (n+ 2) - 
n\sum 

\ell =0

\bfitkappa 
(\ell )
\ast \cdot \bfX (n - \ell + 1) ,(3.22)

leading to the solution of the minimization problem (3.8b)--(3.8d),

\bfitbeta 
(n+1)
\ast =

\Biggl[ 
\bfC (n+ 2) - 

n\sum 
\ell =0

\bfitkappa 
(\ell )
\ast \cdot \bfC (n - \ell + 1)

\Biggr] 
\cdot \bfC  - 1 (0) ,(3.23)

which is exactly the formula derived from the GLE with Mori's projection operator [24].
Thus, the linear regression--based projection with memory is equivalent to Mori's and the
finite-rank projection. In addition, the Markov transition kernel with the linear regression--
based projection is the approximate Koopman operator learned by EDMD [24, 52]. As such,
linear projection without memory is equivalent to the approximate Koopman analysis such
as DMD [44] and EDMD [52], and the linear projection with memory is equivalent to our
proposed data-driven learning with Mori's projection [24].

4. Numerical experiments.

4.1. An illustrative example: The Van der Pol oscillator. We now use the Van der Pol
oscillator as an example to illustrate the regression-based learning of MZ operators in action.
The Van der Pol oscillator is a two-dimensional nonlinear system, which follows

d

dt
\varphi (t) = \mu 

\biggl( 
\varphi  - \varphi 3

3

\biggr) 
 - \psi ,(4.1a)

d

dt
\psi (t) =

1

\mu 
\varphi .(4.1b)

We chose \mu = 1 in this illustrative example. The Van der Pol oscillator has a globally stable
limit cycle, which is a one-dimensional manifold embedded in the \bfitphi = (\varphi ,\psi )-state space, as
shown in Figure 2(a). For illustrative purposes, we considered a single observable g (\bfitphi )\triangleq \varphi as
the resolved dynamic variable. We used the lsoda integrator in scipy.integrate.solve ivp

to numerically simulate the two-dimensional system from an arbitrarily chosen initial state
\bfitphi 0 = (0,1) and a relaxation time tc = 100 for the system to relax to the limit cycle, whose
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2907

period is roughly 6.663. We chose 50 initial conditions evenly sampled over one period; these
initial conditions are also visualized in Figure 2(a). Then, we collected snapshot data set \bfD 
by measuring \varphi (t) from t= 0 to t= 20 every \Delta = 0.5 from each of the initial conditions; two
of the trajectories are shown in Figure 2(b). We used the MSE as the cost function for the
regression models below. In Figures 2(c)--(g), we show how Mori's projection operator (i.e.,
linear projection) is applied to the snapshot data set \bfD . In Figure 2(c), the paired samples are
simply x=\bfD (\cdot ,1,1) and y=\bfD (\cdot ,1,2). That is, the x's are the observed \varphi at the time t= 0,
and the y(0)'s are the observed \varphi one step ahead at the time t=\Delta . Because the system is not
fully resolved, there can be two possible y's for most of the measured x on the stable limit
cycle (see Figure 2(a)). Approximate Koopman and Mori's projector on a single observable
is equivalent to a linear regression using f(x;\theta ) = \theta x to fit the data. The best-fit line is the

projected model, \theta 
(0)
\ast x. The slope of the best-fit model, \theta 

(0)
\ast , is the approximate Koopman

operator [44, 45, 52] and equivalently the 1 \times 1 Markov transition matrix in the context of

data-driven MZ formalism [24]. After the first regression is made, the learned model \theta 
(0)
\ast is

used to predict the system from t = \Delta to 2\Delta , and the residual \bfD (\cdot ,1,3)  - \theta (0)\ast \bfD (\cdot ,1,2) is
assigned to y(1). The next linear regression on the independent variable, which remains as
x=\bfD (\cdot ,1,1), is performed (Figure 2(d)), and the slope of the best-fit line is the first discrete-
time 1 \times 1 memory kernel [24]. The process repeats, and in Figures 2(e)--(g), we showed
the 5th, 10th, and 30th linear regression. In Figures 2(h)--(l), we used fifth-order nonlinear
polynomial regression instead. As expected, the more expressive polynomial regression led to
smaller errors than that of the linear regression.

Figures 2(m)--(o) show the predictions of the learned models. First, we simulated the
full system (4.1) from a different initial condition \bfitphi 0 = (1,0) until t = tc = 100 for relaxing
the system to the stable limit cycle. Then, we measured \varphi (t + tc;\bfitphi 0) every \Delta = 0.5 until
t = 260 as the ground-truth of the dynamics. We considered three learned models that are
more expressive than a single linear observable (\phi ), referred to as (1) linear projection with
memory (order 1): two polynomial functions as the observables, \bfg (\bfitphi ) \triangleq [1,\varphi ]T , predicted
by (3.16); (2) linear projection with memory (order 5): six lowest-order polynomial functions

as the observables, \bfg (\bfitphi ) \triangleq 
\bigl[ 
1,\varphi ,\varphi 2, . . .\varphi 5

\bigr] T
), predicted by (3.16); (3) nonlinear projection

with memory (order 5): six lowest-order polynomial functions as the observables, \bfg (\bfitphi ) \triangleq \bigl[ 
1,\varphi ,\varphi 2, . . .\varphi 5

\bigr] T
), predicted by (3.19). Given the snapshots in t \in (100,120), we used (3.16)

or (3.19) to predict the dynamics at t \geq 120. Figures 2(m) and (n) show that the error
due to the negligence of the orthogonal dynamics accumulates and eventually destabilizes the
prediction in Mori's projection formalism. In contrast, Figure 2(o) shows that the nonlinear
regression--based projection operator can reasonably approximate the true dynamics for a
longer predictive horizon, using only the resolved snapshots.

We remark that this example was deliberately constructed as a minimal example. Our
intention is to use a simple system and its transparent visualizations (Figure 2) to illustrate
the iterative learning of the MZ operators in action.

4.1.1. Lorenz (1963) system. Our second example is the Lorenz (1963) model [25], which
is a three-dimensional system,
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2
(o) Provided history Ground truth Nonlinear projection with memory, order 5

Figure 2. The Van der Pol oscillator. (a) The phase portraits of the full system, the stable limit cycle,
and the initial samples of the data matrix \bfD (\cdot ,1,1). (b) Snapshot samples along two trajectories, \bfD (1,1, \cdot )
and \bfD (26,1, \cdot ). (c)--(g) Linear regression with a single observable, f(x;\theta ) := \theta x. (h)--(l) Nonlinear polynomial
regression with a single observable, f(x;\bfittheta ) :=

\sum 5
i=0 \theta ix

i. (m)--(o) Prediction by (m) linear projection with

memory (equation (3.16)) on \bfg (\bfitphi ) \triangleq [1,\varphi ]T ; (n) linear projection with memory (equation (3.16)) on \bfg (\bfitphi ) \triangleq 
[1,\varphi , . . .\varphi 5]T ; and (o) nonlinear projection with memory (equation (3.16)) on \bfg (\bfitphi )\triangleq [1,\varphi , . . .\varphi 5]T .
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2909

d

dt
\varphi (t) = \sigma (\psi  - \varphi ) ,(4.2a)

d

dt
\psi (t) =\varphi (\rho  - \chi ) - \psi ,(4.2b)

d

dt
\chi (t) =\varphi \psi  - \beta \chi .(4.2c)

We adopted the original model parameter values that Lorenz chose, (\sigma ,\rho ,\beta ) = (10,28,8/3).
Note that the full phase-space state \bfitphi is [\varphi ,\psi ,\chi ]. We again considered the ``reduced-order
model"" as the \varphi (t) alone. A long trajectory with an arbitrarily selected initial condition
\bfitphi \mathrm{t}\mathrm{r}
0 = (0.01,1,10) was generated using scipy.integrate.solve ivp for data-driven learning.

We discarded the initial transient before t= tc = 1000, and collected 106 snapshots of \varphi every
\Delta = 0.01 until t = tc + 104, as the samples on the strange attractor. A test trajectory was
generated from a different initial condition \bfitphi \mathrm{t}\mathrm{e}

0 = (0,1,2), and also with tc = 1000. Again, we
used the MSE as the cost function for the regression models.

We considered five projection operators and compared their performance, ordered by the
complexity (expressiveness) of the statistical model below. First, we again considered the
order-1 linear projection operator, i.e., linear regression on the vectorized observable defined
by \bfg (\bfitphi ) = [1,\varphi ]T . We will refer to this as the Mori (order-1). Without the memory effects,
such a projection operator corresponds to the DMD analysis [44, 45]. Next, we considered
the order-5 linear projection operator but on five polynomial basis functions, that is, linear

regression on the vectorized observable which maps the full state \bfitphi to
\bigl[ 
1,\varphi ,\varphi 2 . . .\varphi 5

\bigr] T
. We

will refer to this as the Mori (order-5). Without the memory, such a projection operator
corresponds to an EDMD analysis [52]. The third projection operator we considered is an
order-5 nonlinear projection defined as the fifth-order polynomial regression on \varphi . We will
refer to this as the polynomial regression (order-5). Next, we considered a nonlinear projection
operator defined by a cubic (degree = 3) spline regression with 10 knots (including boundary
knots), evenly distributed between 1.5 times of the minimum and maximum of the collected
\varphi samples. After the spline features are generated, we performed a ridge regression with the
L2-regularization parameter set at \lambda = 10. Finally, we considered a simple neural network
as the nonlinear projection operator. The architecture of the neural networks is two fully
connected feed-forward layers, each of which contains five artificial neurons, and a third linear
layer with only one neuron. In this study, we always chose the hyperbolic tangent function as
the activation function of the artificial neurons.

We used the measured snapshots to learn the operators \bfOmega (\ell ) for each of the selected pro-
jection operators. Figure 3(a) shows the magnitude of the summary residual, defined as the
averaged MSE of the best \ell th regression model on the test trajectory. Recall that \ell is the index
of the memory terms (cf. (2.5)). Thus, we plotted the summary residual as a function of the
physical time of the memory length (\ell \Delta ) in Figure 3(a). In addition, for linear projections,
the full optimization problem is the sum of the MSE of all the observables, in contrast to
only the MSE of \varphi in those nonlinear projections. To make a consistent comparison, we only
quantified and reported the MSE of the component \varphi for linear projections in the figure. It is
observed that with the increased complexity of the regression model, the residual with mem-
ory contribution can decrease significantly, from order-1 linear projection (\approx 2\times 10 - 1) to the
expressive neural network (\approx 2\times 10 - 2). Note that without the memory contribution (\ell = 0),
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Figure 3. The Lorenz (1963) system. (a) The squared L2-norm of the validation residual as the memory
length increases. (b) The squared L2-norm contribution at different memory length. The threshold is set at 10 - 7

for determining the memory length. Note that in these visualizations, Mori (5) and nonlinear (5) are identical.
The memory length is in the physical time unit, i.e., memory length 1 corresponds to 100 discrete-time steps
(\Delta =0.01).

the magnitudes of the summary residual are indistinguishable; the significant improvement
comes only with a finite-time memory contribution, \approx 2.0. This observation justified the ad-
vantage of Mori and Zwanzig's memory-dependent formulation, especially for more expressive
models.

To investigate the contribution of the memory effects, we plotted the L2-norm of the
memory contribution in (2.5) (\Omega (\ell )

\bigl( 
\bfitphi 
\bigl( 
k\Delta + tc;\bfitphi 

\mathrm{t}\mathrm{e}
0

\bigr) \bigr) 
, k = 0,1, . . .K +N) averaged over the

collected snapshots of the test trajectory. That is, we chose each snapshot along the long
trajectory as a sample of the initial condition, and computed the memory contribution \ell 
steps into the future. For order-1 linear projection operators, we only quantified the memory
contributions to \varphi , i.e., [\bfOmega (\ell ) \cdot \bfitphi 

\bigl( 
k\Delta + tc;\bfitphi 

\mathrm{t}\mathrm{e}
0

\bigr) 
]2 (note that the first component is the constant

function 1). Figure 3(b) shows the memory contribution with various projection operators.
We observed that memory contributions decayed as the memory index \ell increased, regardless
of the regression method. This observation suggests that a finite length (H) of the memory
is sufficient, as the contribution of past history after a certain timescale would be small and
negligible. As a result, in the following analysis, we chose a finite memory contribution by
thresholding the squared L2-norm of the memory contribution at 10 - 7. The corresponding
memory lengths are H = 235 snapshots for order-1 linear projection; H = 469 snapshots
for order-5 linear projection; H = 469 snapshots for order-5 polynomial regression; H = 469
snapshots for spline regression; H = 469 snapshots for the neural network. We note that
the number of discrete-time memories is much higher than what would have been needed
for time-embedding techniques, such as Takens delay embedding [48]. This provides the
numerical evidence that the MZ memory is not the same memory contribution in the Takens
delay-embedding technique, a point that we will elaborate in section 5.

After the memory kernels (\bfOmega (\ell )) are learned, we turned our attention to the prediction of
the learned models. We took the past history of the reduced-order variable \varphi (1000\leq t\leq 1050)
and use (3.9) to make predictions for t > 1050, assuming the orthogonal dynamics\bfW n = 0. For
comparison, we also made a prediction from memoryless models, that is, setting \bfOmega (\ell \geq 1) = 0.
Note that the order-1 and order-5 linear without memory corresponds to DMD [44] and EDMD
[52], respectively.
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2911

Figure 4 shows the predicted trajectories by the learned models, using (3.16) for linear
projections and (3.19) for nonlinear projections. For all the methods, we found that the
memoryless models failed to capture the characteristics of the resolved dynamics other than
the long-time mean. For order-1 and order-5 linear projections, a similar behavior of relaxation
to the mean was observed. This should not be a surprise: as detailed in our recent work [24],
linear projections without the unresolved orthogonal dynamics is functionally identical to using
the two-time correlation functions as the propagators for prediction. The two-time correlation

t
20

10

0

10

20
(a) Ground truth Mori (order-1) Mori (order-1) w/o memory

t
20

10

0

10

20
(b) Mori (order-5) Mori (order-5) w/o memory

t
20

10

0

10

20
(c) Polynomial regression (order-5) Polynomial regression (order-5) w/o memory

t
20

10

0

10

20
(d) Ridge and spline regression Ridge and spline regression w/o memory

115 120 125 130 135
t

20

10

0

10

20
(e) NN NN w/o memory

Figure 4. The Lorenz (1963) system. The predicted trajectories for the learned models based on (a) Mori
(1) projection operator, (b) Mori (5) projection operator, (c) a projection by fifth-order polynomial regression
on \varphi , (d) a projection by ridge and spline regression, and (e) a projection by a neural network .
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2912 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

function \bfC i,j(t) decays to 0 because the chaotic dynamics decorrelates at a large lag t\gg 1.
Consequently, linear projections also made predictions that converge to the mean behavior
in the long-time limit. They were able to predict the mean because a constant function 1,
which can capture the constant bias, was included in the set of observables. Notably, linear
projections with the memory kernels learned to predict a transient oscillation which crudely
characterized the short-time dynamics of the Lorenz (1963) model. The drawback of the
steady long-time prediction was significantly improved when we used nonlinear projection.
The fifth-order polynomial regression showed a much better prediction in a short horizon, and
an oscillation between the two wings of the Lorenz butterfly. Notably, the oscillation is not
chaotic as it is in the fully resolved system. The prediction based on the spline regression,
which is an intermediate model between the nonlinear polynomial regression and the neural
network--based regression models, began to exhibit chaotic behaviors in the long-time limit.
Finally, the prediction of the one-dimensional reduced-order model based on a neural network
was qualitatively similar to the chaotic dynamics of the fully resolved Lorenz (1963) model.

To quantify the performance of the predictions, we first collected the long-time statistics
by evolving (3.9) for 150,000 steps. We plotted the distributions of the collected trajectories
based on the learned models in Figure 5; such empirical distributions would be the stationary
distribution if the process is ergodic. Clearly, linear projections showed an almost \delta -like
distribution at \varphi = 0 because their predictions converged to the mean in a finite timescale.
All the predictions based on nonlinear projections reasonably approximated the empirical
distribution of \varphi . We observed that the neural network outperformed the spline regression,
which outperformed the plain fifth-order polynomial regression.

We further quantified the prediction error by the following metrics. First, we computed
the squared L2-error of the prediction to the actual dynamics of \varphi (t). The initial condition
and the histories were uniformly sampled along a long trajectory of the actual dynamics. We
collected 25,000 samples and computed the MSE as a function of the predictive horizon in
Figure 6(a). Within a short horizon, predictions by the nonlinear projections were better than
linear projections. The errors of the nonlinear projections eventually grew larger at a finite
predictive horizon (t\approx 0.3). We remark that this should be considered not as a drawback but
as an advantage: beyond this timescale, linear projection predicted the mean of the chaotic
dynamics, but nonlinear projection predicted oscillatory solutions. In terms of the MSE,
predicting only the mean would have a smaller error. As such, we also computed the Kullback--
Leibler divergence from the predictive distribution (approximated by the histogram of the
samples from of the reduced-order models) to the ground-truth distribution (approximated
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Figure 5. Long-time statistics of the MZ model predictions of the Lorenz (1963) model.
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Figure 6. Error of the reduced-order models on the Lorenz (1963) system. (a) The MSE of the prediction
as a function of the predictive horizon; (b) the Kullback--Leibler divergence of the empirical distribution from
the model predicted distribution as a function of the predictive horizon.

0.0 0.5 1.0 1.5 2.0
Predictive horizon

40

20

0

20

40

Er
ro

r p
er

 p
re

di
ct

io
n

Mori (order-1)(a)

0.0 0.5 1.0 1.5 2.0
Predictive horizon

40

20

0

20

40

Mori (order-5)(b)

0.0 0.5 1.0 1.5 2.0
Predictive horizon

40

20

0

20

40

Polynomial 
 regression (order-5)(c)

0.0 0.5 1.0 1.5 2.0
Predictive horizon

40

20

0

20

40

Ridge and spline 
 regression(d)

0.0 0.5 1.0 1.5 2.0
Predictive horizon

40

20

0

20

40

NN(e)

Figure 7. The Lorenz (1963) system. (a)--(e) The deviation of 50 predicted trajectories using the learned
models.

by the histogram of the samples from the actual dynamics), as shown in Figure 6(b). With
this metric, we observed that the reduced-order models based on the nonlinear projection
operators captured the time-dependent distribution of \varphi much better than the reduced-order
models based on linear projection operators.

We conclude this section by discussing the potential pitfalls of a regression-based nonlinear
projection operator. Mainly, the stability of the learned models is not always guaranteed. We
observed that the learned reduced model, provided some initial histories, can blow up in finite
time. In Figure 7, we plot the deviation of the prediction from the actual dynamics. For each
of the reduced-order models, we plotted 50 deviations, whose initial condition and histories
were sampled on a long ground-truth trajectory. We observed that the prediction for the plain
fifth-order polynomial regression could explode in finite time. The spline regression, which
predicts constants outside the boundary knots, seemed to alleviate the problem. However,
when the prediction goes beyond the data distribution, the spline regression can also be
``trapped"" locally and induce high-frequency oscillations. Interestingly, we did not observe
these pathologies in the neural network.

4.2. Kuramoto--Sivashinsky equation. Our third example is the Kuramto--Sivashinsky
equation, which was developed in the 1970s for modeling instability of flame propagation
[21, 46, 47]. Specifically, in this study, we considered the one-dimensional Kuramto--Sivashinsky
(partial differential) equation
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0 =
\partial 

\partial t
u (x, t) +

\partial 2

\partial x2
u (x, t) +

\partial 4

\partial x4
u (x, t) + u (x, t)

\partial 

\partial x
u (x, t) ,(4.3a)

for all time t \geq 0 on a bounded domain x \in [0,L], given initial data u (x,0) = u0 (x). A
periodic boundary condition was imposed, u (t,0) = u (t,L) \forall t. We chose L = 16\pi and
uniformly discretized the space into N = 128 points. We used the pseudospectral fourth-order
exponential time-derivative Runge--Kutta (ETDRK4) algorithm [18] with 2/3-dealiasing [23]
to solve the spatially discretized system. The time step for the explicit ETDRK4 algorithm
was set as 10 - 3, and we collect the snapshots every 103 steps (so \Delta = 1). For the training
data, we followed [18] and set u\mathrm{t}\mathrm{r}0 (x) = cos(2\pi x/L) [1 + sin(2\pi x/L)], and for the test data,
u\mathrm{t}\mathrm{e}0 (x) = sin(2\pi x/L) [1 + cos(2\pi x/L)]. Both the training and the validation sets were simulated
to t= tc + 105, and we discarded the transient trajectories before tc = 5\times 102. For reference,
the Lyapunov time of the system is \approx 12.56 [11]. We still chose MSE as the cost function for
the regression models.

We considered a fourfold reduced-order model by only observing the variable u every
four discretized spatial grids. That is, u (t, x4i)i, where i = 0,1, . . .31 is the grid index. We
augmented the reduced-order data set by two operations: (1) shifting : we used samples
collected on different subgrids, u (t, x4i+j), j = 0,1,2,3; and (2) reordering : we imposed the
C1 symmetry of the system, i.e., u

\bigl( 
t, x\mathrm{m}\mathrm{o}\mathrm{d}(4(i+k)+j,32)

\bigr) 
, k= 0,1, . . .31.

We also adopted and integrated the delay-embedding technique into some of the regression-
based models. With the delay embedding, the input of the regression analysis is augmented
to include a finite number, E \in \BbbZ \geq 0, of the current and past snapshots [3, 27]. As noted
in the discussion in our previous study [24], the history dependence in the delay-embedding
technique is not the memory effect in the MZ formalism. We will provide a more detailed
discussion later. For the rest of this article, we refer to the former as ``delay embedding""
and the latter as ``(MZ) memory effect,"" ``(MZ) memory correction,"" or simply ``memory""
in the figures. Our major aim for the analysis is to compare the performance of the models
with delay embedding and without MZ memory correction to those models with MZ memory
correction but without delay embedding.

We considered the following regression-based models and compared their performance.
The first model is the linear Mori projection operator. Our preliminary analysis showed
that a direct application of either data-driven Koopman [44] or Mori's [24] on the snapshot
observations \{ u (\cdot , x4i)\} 31i=0 performed poorly (data not reported). Thus, we adopted the delay-
embedding technique [3, 27] to augment the basis functions for learning the MZ kernels based
on Mori's projection operator (i.e., linear projection with memory). The model will be referred
to as the ``Mori+DEm"" model. Specifically, we use the past E snapshots to augment the input
vector (which lives in \BbbR 32E). For Mori's projection operator, we chose a long embedding
E = 10. We remark that the lowest-order result of the Mori's projection operator (i.e.,
without the higher-order memory corrections, \bfOmega (\ell ), \ell \geq 1, in (2.5)) is functionally identical
to the Hankel-DMD [3], which is a method solely based on delay embedding. The second
regression-based model was chosen to be an FCNN. The architecture of the neural network
was two fully connected layers, each of which contained 32 artificial neurons, and a third linear
layer with 32 outputs. The third regression-based projection operator was a CNN. CNNs are
translationally invariant; such inductive bias is considered as beneficial for systems like the
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2915

Kuramto--Sivashinsky equation, which are invariant under translations. The architecture of
the CNN was two one-dimensional convolutional layers with five channels and kernel size of
11. The circular padding was implemented to impose the periodic boundary condition. As
the fourth projection operator, we adopted the delay-embedding technique and used E = 4
past snapshots as the input for a CNN model. In practice, the past E snapshots were stacked
in the channel dimension of the input tensor of CNN. The architecture of the delay-embedded
CNN model is identical to the one without delay embedding. This model will be referred to
as the ``CNN+DEm"" model.

We used the snapshots collected along the long trajectory with the initial condition u\mathrm{t}\mathrm{r}0 to
learn the MZ kernels \bfOmega (\ell ) for each regression-based projection operator. For linear projection
operators and for FCNN, we applied both shifting and reordering data augmentation to impose
the symmetries. For CNNs, we applied only the shifting data augmentation. We sampled
from the generated test trajectory to perform error analyses of the learned regression-based
MZ kernels.

As a baseline reference for comparison, we performed reduced-order simulations. In these
simulations, the reduced-order snapshots (\{ ut,x4i

\} 31i=0) were treated as the full state of the
Kuramto--Sivashinsky equation discretized on 32 spatially discretized grids (versus 128 of the
ground-truth data-generation process). Each of the snapshots was evolved forward in time
directly by the ETDRK4 integrator.

In Figure 8, we visualize the predictive trajectories and errors from the learned models,
each with \ell \leq 10 MZ memory kernels. We chose H = 10 and used the truncated GLE (3.9) for
making the predictions, again with the assumption \bfW n = 0. Figures 8(b) and (c) show the
spatiotemporal evolution of the reduced-order simulation. Qualitatively speaking, we observe
that the reduced trajectory deviated from the ``ground-truth"" at a prediction horizon \approx 20,
but it is capable of reproducing dynamical features that are visually indistinguishable. Mori's
projected model with E = 10 delay embedding ( Figure 8(d), (e)) quickly converged to the
mean of the dynamics, as we expected. The FCNN model deviated from the ground-truth
trajectory sooner than the reduced simulation did, but it also reproduced similar dynamical
features; see Figure 8(f), (g). Predictions from both CNN models deviated later than the
reduced simulation did (Figure 8(h)--(k)). The E = 4 delayed-embedded CNN (Figure 8(j),
(k)) did not significantly improve the plain CNN (Figure 8(h), (i)).

Quantitative error analysis of the regression models were performed with 15,000 trajec-
tories uniformly sampled on the generated test trajectory. Figure 9(a) shows the normalized
residual of the one-step prediction, defined as the MSE of the \ell th-order MZ model, normalized
by that of the Markovian model (i.e., only \bfOmega (0)). The absolute error values are presented in
the inset of Figure 9(a). For all the regression models, including the MZ memory reduced the
prediction error. We observed that the MZ memory effects can be captured with less than
10 memory kernels, justifying our choice of H = 10 for the predictive model. The plain CNN
model without delay embedding showed the highest percentage improvement by including the
MZ memory. The delay-embedded CNN model had a slightly smaller percentage improvement
in comparison to that of the plain CNN model, although it has smaller absolute magnitude
of MSE. The smaller absolute error of the E = 4 delay-embedded model is expected, as it is
a more expressive model due to its larger input space, allowing coupling the delayed observ-
ables. Surprisingly, the plain CNN with H = 4 MZ contribution has a smaller absolute error
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Figure 8. Regression-based MZ learning of Kuramoto--Sivashinsky equation. (a) Ground-truth reduced-order
observation. (b), (d), (f), (h), (j) Predicted trajectories using reduced-order simulation and four regression-based
MZ models, and (c), (e), (g), (i), (k) error of the predicted trajectories. The x- and y-axes of panels (b)--(k)
are identical to those in panel (a).

than the E = 4 delay-embedded CNN (inset of Figure 9(a)); see the discussion section for
a detailed discussion. The FCNN model exhibited a much larger magnitude of error, and a
smaller improvement from MZ memory contributions. Finally, as we expected, the linear Mori
projection operator with delay embedding had a very poor performance in one-step prediction.

We next focused on predictions at a further horizon. We set the furthest prediction horizon
at t= 100, which is approximately 8 Lyapunov time. In Figure 9(b), we compare the MSE as
a function of the predictive horizon. It was observed that including the MZ memory improved
the multistep predictions. Similar to the Lorenz '63 system, at short prediction horizon
(\lesssim 20), models with a nonlinear projection operator performed much better than the linear
Mori's model. Among the nonlinear models, the FCNN model had worse predictions than the
reduced simulation, and both CNN models outperformed the reduced simulation. Comparing
both CNN models, the delay-embedded CNN models performed better than the plain CNN
at one-step prediction, as established in Figure 9(a). However, the CNN model overtook
the time-embedding CNN model and became the best model---in the metric of the MSE---
among all the considered models before the prediction horizon exceeded 55. As illustrated
with the Lorenz (1963) model, the MSE is a less meaningful metric for the long-horizon
predictions. As a second metric to quantify model performances, we used the Kullback--
Leibler divergence from the regression model predicted marginal distribution (u on a single
grid) to that of the ground-truth (test trajectory) distribution. Because of the translational
symmetry, we accumulated all the measured u (t, x4i) , i = 0 . . .31, at different horizons for
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Figure 9. MZ learning of Kuramoto--Sivashinsky system with regression-based projection operator. (a) The
MSE of the learned models as a function of memory length. (b) The mean squared prediction error over
different prediction horizon. The Lyapunov time for chosen domain size L = 16\pi is approximately 12.56.
(c) The Kullback--Leibler divergence of the marginal (u(t, x4i) \forall i = 0 . . .31) ground-truth distribution from the
predicted distribution as a function of prediction horizon. (d) The power spectrum of different models at a
prediction horizon 100.

computing the empirical one-dimensional distributions of u. Figure 9(c) shows the computed
Kullback--Leibler divergence from the predicted distributions at different prediction horizons.
Finally, we compared the power spectra at the prediction horizon 100; Figure 10 also shows
the spectrograms of the models with a single sampled initial condition. With these metrics,
we concluded that the CNN models, with the MZ memory, performed much better than all
other models and the reduced simulations over a long prediction horizon. Again, the presented
evidence illustrates the advantage of nonlinear projection at predicting statistical properties
of the dynamical system at a longer prediction horizon, despite the fact that samplewise, the
predicted trajectories deviate from the ground-truth trajectories.

The long-time marginal distribution of the regression-based models and the reduced sim-
ulation is shown in Figure 11. The empirical distributions were computed by accumulating
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Figure 10. Projection-based MZ learning of Kuramoto--Sivashinsky system. (a) Ground-truth spectrum of
the coarse-grained trajectory. (b), (d), (f), (h), (j) Predicted spectrum using reduced-order simulation and four
regression-based MZ models, and (c), (e), (g), (i), (k) error of the predicted spectrum.
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Figure 11. Projection-based MZ learning of Kuramoto--Sivashinsky system. (a)--(e) PDFs of long-time
predicted trajectories (horizon = 10,000) for five regression-based MZ models.

measured u on each grid along long predicted trajectories (15,000 steps). The initial condi-
tions of all the models, as well as the reduced simulation, were all set as u\mathrm{t}\mathrm{e}0 . Mori's projection
with delay embedding showed almost \delta -like distribution at the mean as expected, while the
nonlinear models were capable of reproducing the stationary marginal distribution similar to
the ground-truth. Among the nonlinear models, the distributions from both CNN models
almost perfectly aligned with that of the test trajectory, while the FCNN model missed some
finer details around the mean.

5. Discussion and conclusion. The central proposition of this article is to adopt the
regression analysis to define the projection operator in the MZ formalism to enable data-
driven learning of the operators. Given a set of sampled pairs of dependent and independent
variables, a regression analysis identifies an optimal parametric function of the independent
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2919

variables, such that the residuals are minimized in some norm, prescribed by the noise model.
In the context of dynamical systems, the dependent variables are the future observations,
and the independent variables are the present ones. When the system is not fully resolved,
the future observations cannot always be uniquely determined by the present ones due to
missing information of the unresolved degrees of freedom. Consequently, future observations
can be multivalued functions of the present ones in underresolved systems. A regression
projects such multivalued functions to single-valued functions, constrained by the data. It is a
projection operator because an additional regression analysis on the samples drawn from the
best-fit model results in the best-fit model, satisfying the definition of a projection operator
\^\scrP : \^\scrP 2 = \^\scrP .

To identify regression analysis as a projection operator is not a novel idea; it is an es-
tablished concept in statistics. For example, see [9] for linear regression as an orthogonal
projection and [36] for regularized regression in terms of the reproducing kernel Hilbert space.
The notion of decomposing the samples of the dependent variables into a regressional and an
orthogonal component [1] even went back to Kolmogorov in the 1940s [19]. The major concep-
tional contribution of this manuscript is the proposition to adopt a regression analysis as the
projection operator in the Mori--Zwanzig formalism. This is a novel concept which, to our best
knowledge, does not exist in the current literature. Then, we used the GFD relationship, a key
self-consistent condition in the MZ formalism, to recursively extract the memory kernels. Our
novel approach enforces the GFD, which is neither enforced nor checked in existing methods
[28, 14] motivated by the MZ formalism. In doing so, we are able to directly extract the MZ
memory operators computationally, without modeling them with additional assumptions.

We showed that the special choice of adopting linear regression models results in our pre-
viously proposed data-driven learning algorithm for the MZ formalism with Mori's projection
operator [24]. Thus, the proposed regression-based projection operator is a generalization
of our previous proposition. Our proposed procedure to extract the MZ memory kernels is
readily applicable to a large set of data-driven learning methods for dynamical systems in the
literature because they can be cast into the form of (2.15)--(2.18). For example, approximate
Koopman methods with neural network--based learning of the functional bases with ridge and
sparsity-induced regularizations [22, 27, 51], and sparse identification of nonlinear dynamics
[5, 17]. We remark that these data-driven learning methods often implicitly assume that the
system is fully resolved without missing information. Should it be the case and should the
regression model be expressive enough, our procedure would lead to a perfect Markov model
\bfOmega (0) that leaves zero residuals. Our interest, as well as the setup of the MZ formalism, is
on partially resolved dynamical systems. In general, when a system is not fully resolved and
when there exists interaction between the resolved and unresolved dynamics, MZ memory
kernels and orthogonal dynamics naturally emerge.

Regression-based MZ methods can fill in the gap between the existing Mori's and Zwanzig's
projection operators, which can be respectively considered as the simplest and the most opti-
mal projection operator [8]. Our proposition significantly broadens the applicability of the MZ
formalism, because the complexity of the regression model can be gradationally adjusted be-
tween these two extremes. Ranked by the complexity of the regression analysis, we examined
and presented the linear projection with [24] and without [44, 52] memory, and various regres-
sion techniques such as polynomial regression, spline regression with ridge regularization, and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

3/
23

 to
 1

92
.1

2.
18

4.
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2920 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

the more modern and expressive neural network architectures such as FCNN and CNN for
performing nonlinear projection, with or without memory. With a finite snapshot data set, it
may not be computationally feasible to learn the operators with the most optimal Zwanzig's
projection operator, because it requires estimating the conditional expectation functions (e.g.,
f(X) := \BbbE [Y | X]). A finite set of data may not be sufficient to cover all possible condition
X, let alone the large amount of samples of Y needed for estimating the expectation value.
Instead, regression analysis identifies the best fit among a family of functions to approximate
the conditional expectation function. When the family of functions is expressive enough to
include the conditional expectation function, our regression-based MZ would converge to the
Zwanzig's projection operator in the infinite-data limit. As neural networks are universal
function approximators [35], we hypothesize that the MZ formalism with the optimal Zwanzig
projection operator can be reasonably realized by a neural network--based regression. Indeed,
in our numerical experiments, we observed the superiority of those regression models based
on neural networks.

Mathematically, the presented method learns the operators \bfOmega (\ell ), which map square in-
tegrable functions to square integrable functions, in (2.7). Computationally, this is made
possible by using the regressional functions to model the functions \bfOmega (\ell ) in (2.5), given snap-
shots of the observations \bfg (\bfitphi (t)), where the state is sampled from the induced distribution
\bfitphi (t) = \bfitphi (t;\bfitphi 0), \bfitphi 0 \sim \mu . It should be noted that (machine) learning of functional operators
is not a new idea. For example, Lu et al. [26] recently laid out a general machine learning
architecture (DeepONet) for learning nonlinear functional operators, relying on a universal
approximation theorem proved in the 1990s [50]. Another example is the approximate Koop-
man learning methods [44, 45, 52], with which one aims to learn the (approximate) Koopman
operator, linearly mapping functions to functions. With these methods, samples of function
evaluations must be provided for supervised learning of the operators. Where the functions
are evaluated---where the ``sensors"" are in the language of [26]---requires human inputs. With
regard to our aim of learning dynamical systems, analogously, we also need to specify the
initial distribution \mu . What is different from the general DeepONet [26] is that we can rely on
the dynamics to naturally propagate the specified initial distribution to a future time \bfitphi (t;\bfitphi 0),
with which the samples of the observations can be generated for supervised learning---in our
case, a general regression problem.

We have been framing the above discussions in terms of data-driven learning methods.
In fact, our original desire for developing data-driven MZ methods with nonlinear projection
operators emerged from modeling reduced-order dynamical systems. Devising closure schemes
is not only necessary but also critical in these modeling endeavors, especially for multiscale
models. Based on our knowledge, there are very few closure schemes which resemble the
linear projection operators (i.e., approximate Koopman [44, 52] and Mori [24]), with which
one predicts the evolution of a set of observables by linear superposition of the same set of
observables. More often, one adopts the nonlinear projection scheme defined in section 3.3
and iteratively applies the learned nonlinear map (i.e., (3.18)) to make multistep predictions.
By formally defining a regression (or more generally, data-driven parametrization) as the
projection operator in the MZ formalism, Algorithm 3.1 provides a principled way to extract
the MZ memory for a wide class of data-driven modeling and systems identification problems.
Unless the residuals are all zero, the extracted memory contributions must be considered to
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REGRESSION-BASED MORI--ZWANZIG LEARNING 2921

account for the error due to the unresolved dynamics. Including the MZ memory in prediction
reduces the error in prediction, as we observed in multiple examples provided in section 4.

In this article, we are primarily interested in the quality of multistep predictions of the
learned models. We showed that although linear regression models outperformed nonlinear
ones at the far horizon, it is only because the linear models predicted the mean of the dynam-
ics. Because linear models fully ignore higher-order statistical properties of the dynamical
systems, we are not confident that such ``coarse-grained dynamical systems"" are the proper
way forward for making predictions. Although such a problem for linear projection operators
does not exist when a set of observables linearly spanned an invariant Koopman space, it is
extremely difficult to identify the invariant Koopman space in practice. It is our perspective
that developing methods based on nonlinear projections (see section 3.3) is the way forward
for predictive coarse-grained models. We do remark that methods based on linear projection
operators are ideal for estimating the Koopman eigenvalues and eigenfunctions, and the glob-
ally convex learning problem is easier, provided a set of linearly independent observables. We
should also remark that nonlinear regression is not always advantageous in making predic-
tions. As we witnessed in the Lorenz (1963) model, although a learned nonlinear regression
model could improve predictive accuracy within a finite horizon, sometimes these nonlinear
closure methods lose long-term stability (Figure 6). Such a pathology is model- and horizon-
dependent and, interestingly, not observed when we used neural network--based regression.
Enforcing numerical stability in the process of learning merits further investigation and may
be a fruitful direction in the future.

With the Kuramoto--Sivashinsky model, we also compared the delay embedding and the
memory effect of the MZ formalism. Our motivation was to provide clarification on pervasive
confusion between these two memory-dependent theories. Such confusion emerged from a
false presumption that all memory-dependent theories are equivalent. Here, we elaborate the
differences between these two approaches.

Because the memory effect in MZ formalism is due to the interaction between the resolved
and unresolved dynamics, the memory kernels and the orthogonal dynamics must satisfy the
stringent GFD relation (equation (2.11)), which depends on the choice of the resolved observ-
ables and the projection operator. Guided by the GFD (2.11), learning MZ operators can be
decomposed into an H smaller regression (optimization) problem in M dimensions. Notably,
the MZ memory contribution is always a linear sum of memory kernels evaluated at each
past snapshot (equation (2.5)). The formalism excludes coupling between the observations
made at different times, for example, \bfg n1

\times \bfg n2
, with n1 \not = n2. This is because the projection

operator \scrP is applied at each time by construction. The functional space that \scrP is projected
into is those regressional functions f (\cdot ;\theta ), which always only depend on M reduced-order
observables evaluated at a specific time.

On the contrary, for delay embedding, the domain of the functions is augmented to in-
clude E past snapshots of M reduced-order observables. The learning is a global regression
(optimization) problem in an M \times E-dimensional functional space. The motivation of delay
embedding is that the past history may contain useful information for inferring the unresolved
dynamics. Because such an augmented functional space (M \times E) is larger than the fixed (M)
operational space in the MZ formalism, delay embedding can be considered as a more expres-
sive regression model. Let us denote the past E snapshots of the observables \bfg 0, - 1... - E+1 by a
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2922 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

flattened vector \bfg 0: - E+1

\bigl( 
\bfitphi  - T

\bigr) 
\in \BbbR ME . Formally, delay embedding can be considered as a re-

gression to identify the optimal function \bff \bfittheta \ast 
\bigl( 
\bfg 0: - E+1

\bigl( 
\bfitphi  - T

\bigr) \bigr) 
that best approximates \bfg 1 (\bfitphi 0).

As such, coupled terms could exist, should the family of regressional functions admit, within
the delay-embedding paradigm. Hankel-DMD [3] is the special delay-embedding case that the
learning is formulated as a linear regression problem, i.e., the regression functions take the
form \bff (\bfg 0: - E+1 (\bfitphi 0) ;\bfitbeta ) := \bfitbeta \cdot \bfg t - E+1:t (\bfitphi 0), where \bfitbeta is an (ME)\times (ME) matrix (versus in
linear regression--based MZ, \bfitbeta (\ell ) is M \times M , \ell = 0 . . .H  - 1 with the same memory length).
Although its structure resembles Mori and Zwanzig's GLE, it is not necessary---and generally
not the case---that the best-fit parameters of the Hankel-DMD satisfy the GFD relation (2.11).
Notably, an extreme of the delay-embedding technique is the Wiener projection, which has
an infinitely long delay embedding. For stationary processes, Wiener projection leads to no
MZ memory [23]. A similar notion was also concluded in [14], in which the authors argue
that kernel methods could be used to learn the delay embedding with sufficient information
that fully resolves the dynamics, resulting in zero MZ memory contribution. Our proposition
complements these approaches which attempt to eliminate the MZ memory kernels: given any
projection operator, our proposed procedure extracts the MZ memory kernels.

Because the structure of the GLE is contained in the family of delay-embedded regressional
functions, the error of the former should have been lower-bounded by that of the latter. How-
ever, with the Kuramoto--Sivashinsky equation, we showed that the MZ formalism with H = 4
truncated memory contribution outperformed the more expressive delay-embedded CNN with
E = 4. We hypothesized that it was because the architecture of the delay-embedded CNN was
not as expressive as the CNN with MZ memory. As the latter contained four separate CNNs,
each of which learned an operator \bfOmega (\ell ), the delay-embedded CNN had a fixed architecture
(the past history augmented the channel dimension of the input and not the complexity of
the regression model). To examine whether a more expressive delay-embedded CNN could
learn better, we deliberately developed delay-embedded CNNs whose number of parameters
is identical to H times the number of parameters of CNNs for learning MZ operators. For
H = E = 4, we still observed that the MZ outperformed the delay-embedding model (1-step
MSE of the CNN+MZ: 1.563\times 10 - 5; 1-step MSE of the CNN+DEm: 2.038\times 10 - 5). For
H = E = 10, the delay-embedding model performed better in predicting the first step than
the MZ did (1-step MSE of the CNN+MZ: 1.478\times 10 - 5; 1-step MSE of the CNN+DEm:
1.085\times 10 - 5). However, for multistep predictions, MZ outperformed the delay embedding af-
ter a few (\scrO (10)) steps; see Figure 12. These observations highlight the practical difficulty of
learning the larger delay-embedded models: they require more data, potentially need a longer
history, and for nonlinear problems, the training could be trapped in some local minimum.
The precise reason why the delay-embedded models are worse in predicting multiple steps into
the future merits a more carefully designed investigation.

Furthermore, we demonstrated that MZ formalism and delay embedding are not mutually
exclusive. On the Kuramoto--Sivashinsky model, we illustrated a delay-embedded CNN com-
bined with the MZ formalism. In this combined approach, the input of the Markov operator
was a flattened observable \bfg 0: - E+1, and the input of the \ell th-order (\ell \geq 1) memory operator
was a vector function of the flattened observable shifted by \ell time step, \bfg  - \ell : - E - \ell +1. We show
in Figure 9(a) and (b) that the inclusion of the MZ memory operators can further improve
the performance of the delay-embedded CNN.
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Figure 12. MZ learning of Kuramoto--Sivashinsky system with various CNN-based regression models. The
MSE of the prediction as a function of the prediction horizon. The CNN-based MZ models with different MZ
memory lengths (H = 4 and H = 10) are compared with corresponding delay-embedded models with identical set
of embedding lengths (E = 4 and E = 10). The CNN architectures for this numerical experiment are specially
designed such that (1) the total number of parameters of both the CNN-based MZ model and the CNN-based
delay-embedded model is the same and (2) the same information, i.e., the length of the past history, is used for
making predictions for both models (H=E).

We view regression-based MZ formalism as a promising direction to enable data-driven
learning for partially observed dynamical systems. We have identified a few directions which
merit further investigation. Theoretically, we would like to generalize the formalism for sto-
chastic systems, including generic stochastic processes, hidden Markov models, and random
dynamical systems. We are working on the application of the neural network--based MZ mod-
els on isotropic turbulence data [49]. Another interesting idea we would like to explore is
making formal connections to time-series analysis. As recently pointed out, dynamic mode
decomposition can be considered as a vector autoregression (VAR-1) model in time-series
analysis [4]. It is clear that the Hankel-DMD can be mapped to a VAR-p model in time-series
analysis. It was shown that the Wiener projection can be mapped to the nonlinear auto-
regressive moving average model with exogenous inputs (NARMAX) in time-series analysis,
after a rational approximation in the Laplace domain [23]. This existing evidence prompted
an interesting research question: what is the time-series analysis method which corresponds
to the MZ formalism, which imposes a very stringent GFD condition on the residuals and
the memory? Next, we discussed the difference between the memory-embedding techniques
such as Hankel-DMD and the MZ formalism. These two formalisms can be considered as
two extremes of memory-dependent dynamics: the former considers an extremely large func-
tional space which couples a whole segment of the past trajectory, and the latter restricts its
functional space to the regressional functions at an instantaneous time. In modern machine
learning for time series, RNN-LSTM [16] and its variants are also equipped with memory
kernels, learned by a neural network. The architecture has been claimed to learn MZ memory
kernels [28, 15]. We argue that because the critical GFD is neither enforced nor checked, it is
unclear that RNN-LSTM is learning MZ memory, or some other form of memory-dependent
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2924 Y. T. LIN, Y. TIAN, D. PEREZ, AND D. LIVESCU

predictors. It will be an interesting direction to perform a careful analysis, dissecting the
RNN-LSTM to identify what type of memory-dependent predictor RNN-LSTM is. Finally,
in this manuscript, we did not attempt to model the orthogonal dynamics, which is needed
for making accurate predictions. Our test showed that the common choice of white (indepen-
dent in time) Gaussian noise is unsatisfactory (data not shown). A certain color noise must
be needed. This is because the orthogonal dynamics, which encode unresolved dynamics,
are also correlated in time. Although our numerical extraction of the orthogonal dynamics
provides the data stream for learning, how one can use these extracted data to model or-
thogonal dynamics in a principled and system-agnostic way remains an open and challenging
problem.
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