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ABSTRACT

The two-fluid plasma equations for a single ion species, with full transport terms, including temperature and magnetic field
dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating terms, have been imple-
mented in the CFDNS code and solved by using sixth-order non-dissipative compact finite differences for plasma flows in several
different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales, while maintaining com-
putational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. Non-dimensional
analysis of the two-fluid plasma equations shows that, by varying the characteristic/background number density, length scale,
temperature, and magnetic strength, the corresponding Hall, resistive, and ideal magnetohydrodynamic equations can be recov-
ered as limiting cases. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows in different regimes
have been validated against four canonical problems: Alfven and whistler dispersion relations, electromagnetic plasma shock, and
magnetic reconnection. For all test cases, by using physical dissipation and diffusion, with negligible numerical dissipation/diffu-
sion, fully converged Direct Numerical Simulation (DNS)-like solutions are obtained when the ion Reynolds number based on the
grid size is smaller than a threshold value which is about 2.3 in this study. For the magnetic reconnection problem, the results
show that the magnetic flux saturation time and value converge when the ion and magnetic Reynolds numbers are large enough.
Thus, the DNS-like results become relevant to practical problems with much larger Reynolds numbers.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5082190

I. INTRODUCTION

Plasma, by far the most abundant form of ordinary matter
in the universe, has been the subject of research in many disci-
plines, particularly in fusion,1–3 space physics,4–6 industrial appli-
cations,7–9 astrophysics,10–12 and so on. Aside from full ab initio
descriptions,13–15 for many applications, a reasonable level of
accuracy for plasma flow calculations can be achieved by using
kinetic theory and the distribution functions that characterize
each particle component.16 The evolution of the distribution
functions is governed by the Boltzmann equation.17 However, for
turbulent flows, solving the six-dimensional Boltzmann equation
coupled with Maxwell’s equations for the electromagnetic field
is prohibitively expensive, due to the broad range of scales that
need to be captured. Using the continuum approximation, when

possible, becomes computationally necessary for the descrip-
tion of turbulent plasma flows because the governing equations
solved in the fluid model are three-dimensional. Assuming
quasi-local thermal equilibrium (i.e., small departures from the
Maxwellian distribution function) within each of the compo-
nents, the fluid equations describing plasma dynamics can be
obtained by taking appropriate moments of the Boltzmann
equation and averaging over velocity space for each of the
components.18,19

For single component plasmas, i.e., consisting of electrons
and a single ion component, starting from the equations for the
ion and electron distribution functions, Braginskii17 derived a
two-fluid hydrodynamic model for separate ion and electron
fluids by using the Chapman-Enskog expansion with two-term
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Sonine polynomial solutions. In the Braginskii two-fluid model,
the transport terms include the magnetic field impact on the
viscous stress tensor, heat flux, and frictional drag force, with
different formulations along and perpendicular to the magnetic
field. In contrast to the single ion component case, plasma equa-
tions containing multiple ion species involve additional trans-
port phenomena such as baro- and electro-diffusion.20–22

Although this is a very active area of research,23–26 there are still
many open questions, especially on how to treat mixtures with
magnetic field dependent transport properties.

According to the H-theorem of Boltzmann,18,27 if the distri-
bution function changes only by virtue of collisions, any arbi-
trary distribution will approach a Maxwellian. Therefore, the
Braginskii two-fluid plasma model17 can describe well plasma
flows in which the characteristic time scale is much larger than
the collision time, i.e., t0 � ss, and the characteristic length
scale is much larger than the distance traversed by particles
between collisions (i.e., particle mean-free-path), i.e., L0 � kmfp.
One of such applications is the study of hydrodynamic instabil-
ities between the hot spot and the colder surrounding plasma
during the Inertial Confinement Fusion (ICF) coasting/decelera-
tion stage. For the DT plasma in the early deceleration stage, the
primary parameters of interest found in the literature,28,29 i.e., a
reference number density of n0 � 1030m�3, a temperature of
T0 � 2:5 keV, an acceleration of g � 1:0� 1014m=s2, and a hot-
spot radius of Rhs � 55lm, lead to sRT=si � 250� 1 and
Rhs=kmfp � 150� 1. Here, sRT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðAkgÞ

p
is the classical single-

mode Rayleigh-Taylor instability (RTI) growth time and si is the
ion collision time. The definitions of the Atwood number, A, and
wavenumber, k, can be found in Ref. 30. Similarly, by using the
typical plasma scales for the late deceleration stage,31,32 one
obtains sRT=si � 500� 1 and Rhs=kmfp � 320� 1.

Unfortunately, magnetized plasmas encountered in nature,
including space and astrophysical plasmas, are mostly collision-
less, and the typical collision time and mean-free-path in such
flows can be comparable to or even larger than certain charac-
teristic time and length scales of the flow. For example, accord-
ing to the primary parameters given in Refs. 33 and 34, the
particle mean-free-path in solar flare/corona is much larger
than the length-scale of the reconnecting current sheet, i.e.,
kmfp � 1:0� 105m� d � 10m. Therefore, the quasi-Maxwellian
distribution (or quasi-local thermal equilibrium) assumption
does not seem to be guaranteed in such regimes. Theoretically,
the highly collisionless magnetic reconnection can only be rig-
orously described by using collisionless kinetic models (e.g.,
Vlasov-Maxwell system of equations) in which both ion and
electron kinetic-scale features are included.35 However, in fact,
the fluid model can still describe fairly well some strongly mag-
netized, collisionless plasma dynamics,1,36 which is largely due to
the following two justifications. First, a strong magnetic field
can play the role of collisions by forcing particles to gyrate in a
Larmor orbit that is smaller than the mean free path by a factor
of xcese,17,36 where xce is the electron cyclotron frequency and se
is the electron collision time.1 The other argument is that, even
though the real distribution function in collisionless plasmas
may significantly deviate from Maxwellian distribution, the fluid
equations derived based on the quasi-Maxwellian assumption

may approach the physical solution when the range of fluid
scales is very broad. This argument is similar to the mixing tran-
sition37 often invoked in fluid turbulence to justify the relevance
of finite Reynolds number simulations to practical problems with
a much larger range of scales.38 A more rigorous statement of
the argument is that the flow develops an inertial range, where
the energy cascade is local39 and not influenced by the viscosity,
except through the magnitude of the mean dissipation. From
this point of view, it is tempting to assume that numerical dissi-
pation in Euler equation simulations can act in a similar way and
allow the development of an inertial range so that the numerical
solution is close to the physical solution when the grid is fine
enough. However, developing a power law range in the spectrum
is not proof of the emergence of an inertial range40 and proving
cascade locality in the presence of numerical viscosity/diffusion
may be impossible in general. In a broader sense, mixing transi-
tion may be extended to certain non-turbulent flows to mean
convergence of the results with respect to the Reynolds number.
In other instances, the concept of separation of scales can also
be used to justify the relevance of fluid simulations to practical
applications. For example, when the shock wave thickness is
much smaller than the flow scales, the results become indepen-
dent of the shock profile. In this case, even though the Navier-
Stokes description breaks around strong shocks, it can still accu-
rately predict the shock-turbulence interaction.41 While the mix-
ing transition has not been explicitly explored for plasma flows,
it has implicitly been assumed for example by showing that two-
fluid plasma (including Hall-MHD) equations can successfully
predict the fast reconnection rate in collisionless magnetic
reconnection.6,42–45 Here, we further address this issue by con-
sidering the convergence of magnetic reconnection results as
the ion andmagnetic Reynolds numbers are increased.

Single-fluid magnetohydrodynamics (MHD) has been suc-
cessfully used for studying large-scale plasma flows in a wide
range of problems.46–51 However, single-fluid MHD fails to
describe plasma phenomena that occur on a length scale com-
parable to or smaller than the ion skin depth, i.e., when
L0 � ki ¼ c=xpi, where c is the speed of light in vacuum and xpi

is the ion plasma frequency. When applied to the magnetic
reconnection problem, ideal MHD cannot predict the reconnec-
tion due to its flux-frozen-in limitation, while resistive MHD
predicts a growth rate much lower than observations.6 This is
because two-fluid effects become important at length scales
below ki as the ion and electron motions start to decouple. By
including the Hall current in the governing equations and elec-
tron pressure contribution to the total pressure, Hall-MHD
equations52 account for some two-fluid effects and have been
successful in capturing the rapid magnetic reconnection pro-
cess.6,43,44,53 Nevertheless, Hall-MHD equations are not as gen-
eral as the Braginskii two-fluid plasma model. For example, to
close the Hall-MHD equations, some studies neglect the elec-
tron pressure altogether,54–56 while others assume identical ion
and electron temperatures.34,57 In addition,when viscous effects
were included in Hall-MHD equations,34,55 again these were less
general than those in the Braginskii two-fluid plasmamodel.

In many practical problems, electron and ion temperatures
are different. For example, the ion temperature in the Saturnian

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 012109 (2019); doi: 10.1063/1.5082190 26, 012109-2

Published under license by AIP Publishing

https://scitation.org/journal/php


magnetosphere near the Titan orbit is normally higher than the
electron temperature, while in Titan’s ionosphere, the electron
temperature is dominant over the ion temperature.58 The two-
fluid plasma model17,46,59,60 can solve many of the problems
encountered in single-fluid MHD and Hall-MHD formulations
by considering separate ion and electron sets of equations.
Nevertheless, previous applications of the two-fluid model59–61

did not include plasma transport terms and relied on the
numerical dissipation/diffusion to obtain stable solutions; such
solutions can obviously become corrupted by numerical arti-
facts and generally might misrepresent the physical transport.

Previous studies of plasma flows with physical transport
phenomena such as thermal diffusion include simulations with
Flash,62,63 Hydra,64,65 and Miranda29,66,67 codes. In these codes,
the transport coefficients for thermal diffusion were calculated
by using the Lee-More model.68 However, Flash and Hydra
codes solve the inviscid fluid equations and onlyMiranda explic-
itly considers viscous and diffusive effects.69 In particular, the
Miranda code uses a similar (even higher order) numerical
scheme as the CFDNS code, with negligible numerical dissipa-
tion; however, this is accompanied by a high order filter to
remove high frequency oscillations. No filtering is used with
the CFDNS code. As far as we know, the magnetic field impact
on the transport phenomena perpendicular to the magnetic
field has not been considered in previous two-fluid plasma
flow simulations. Nevertheless, the presence of a strong mag-
netic field reduces the distance traveled by particles between
collisions. As a result, depending on the magnetic strength,
plasma transport coefficients in the directions perpendicular
to the magnetic field may become significantly small so that
the associated fluxes are strongly anisotropic. As argued
above, there are many situations, e.g., when a mixing transition
exists, where the exact form of the physical transport is not
important, provided that the energy transfer among scales of
motion remains local. Nevertheless, such transition and the
role of anisotropic transport have not been explored for many
of the practical situations of interest.

The objective of this study is to present an accurate two-
fluid plasma solver with a single ion component that can simu-
late magnetized plasma flows in a range of applications, with a
special focus on collisional dominated transport for low-Z fully
ionized nondegenerate plasmas, in regimes where the results
might be sensitive to the exact formulation of the transport
terms. All plasma transport terms such as the temperature and
magnetic field dependent ion and electron viscous stresses and
heat fluxes, frictional drag force, and ohmic heating are included
in the two-fluid plasma solver. To obtain fully resolved Direct
Numerical Simulation (DNS)-like solutions, the two-fluid plasma
equations are solved by using sixth-order non-dissipative com-
pact finite differences70 at sufficiently fine grid resolutions. In
this study, to maintain computational feasibility, the infinite
speed of light and negligible electron inertia assumptions are
made to eliminate severe time-step limitations. These two
assumptions can be well justified for problems such as the ICF
coasting stage, where ion thermal velocity is non-relativistic,
VTi=c � Oð10�3Þ, and mi=me � 5� 103. The length scale limita-
tion imposed by using these two assumptions, L0 � ðrLe; keÞ,

where rLe is the electron Larmor radius and ke is the electron
skin depth, is also satisfied in many other practical problems.
While the primary target applications for the new solver are
plasma flows which can be described with collisional transport
terms, the test problems considered are widely used in the liter-
ature and have been addressed primarily using ideal equations
solvers; the numerical treatment of such equations requires
numerical dissipation/diffusion for regularization. Our new
solver yields smooth solutions without any numerical dissipa-
tion/diffusion and can recover inviscid analytical solutions for
sufficiently high Reynolds numbers.

In general, the Braginskii transport coefficients become
inaccurate for degenerate partially ionized plasmas or high-Z
materials.68 However, more general formulations do not include
the full directional dependence of the physical transport with
respect to the magnetic field. A separate objective of this study
is to form the basis of future estimations of anisotropic trans-
port importance and explore the existence of a mixing transition
in various applications.

This paper is organized as follows: in Sec. II, the derivations
of reduced two-fluid plasma equations from the Braginskii full
two-fluid plasmamodel, together with an analysis of their ranges
of applicability, are discussed in detail. A non-dimensional analy-
sis of the reduced two-fluid plasma equations is conducted in
Sec. III. The accuracy and robustness of the two-fluid plasma
solver are highlighted, in Sec. IV, against a series of canonical
problems. Finally, the main conclusions are provided in Sec.V.

II. MATHEMATICAL FORMULATION

The macroscopic description of plasma in fluid theory can
be obtained by taking appropriate moments of the Boltzmann
equation and averaging over velocity space for each of the com-
ponents in plasma. When using the Chapman-Enskog expan-
sion,18,19 the zeroth-order distribution function for each species,
f0s , is chosen to be a Maxwellian, which assumes a local thermal
equilibrium within each of the components. By considering the
effects that produce small deviations from equilibrium,
Braginskii17 derived a set of two-fluid plasma transport equa-
tions and constitutive relations for all transport terms. On the
other hand, ignoring those effects leads to a set of Euler-type
two-fluid plasma equations in which all transport phenomena
are absent.59,60 Such equations develop singularities in finite
time and need to be regularized by the numerical algorithm.

A. Braginskii’s two-fluid plasma model

For a simple fully ionized plasma, the continuity, momen-
tum, and internal energy transport equations for species s (s¼ i
for ions and s¼ e for electrons) are given as follows:17

@qs

@t
þr � qsusð Þ ¼ 0; (1)

@ qsusð Þ
@t

þr � qsususð Þ

¼ �rps �r � ps þ
qsqs

ms
Eþ us � Bð Þ þ Rs þ qsg; (2)

@ qsesð Þ
@t

þr � qsesusð Þ ¼ �psr � us �r � qs þ ps : rus þQs; (3)

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 012109 (2019); doi: 10.1063/1.5082190 26, 012109-3

Published under license by AIP Publishing

https://scitation.org/journal/php


where the primary variables are species density, qs, velocity, us,
and specific internal energy, es. In this study, the ideal gas
equation of state (EOS) is assumed for simplicity. Therefore, the
species pressure can be expressed as ps ¼ ðc� 1Þqses ¼ nskBTs,
in which c and kB are the specific heat ratio and Boltzmann
constant, while ns ¼ qs=ms and Ts are the species number
density and temperature, respectively. ms and qs are the
mass and charge of particle s. The ion and electron charges are
qi ¼ Ze and qe ¼ �e, in which e is the constant elementary
charge. The formulations for plasma transport terms in the
above equations, including species viscous stress, ps, heat flux,
qs, frictional drag force, Rs, and collision generated heat, Qs,
can be found in Appendix A and Ref. 17. The accuracy of
Braginskii transport coefficients for the domain of applicability
has been confirmed by comparing with the transport coeffi-
cients predicted by using Ab Initio Molecular Dynamics
(AIMD).71,72 For example, for the DT hot-spot in ICF with a
number density of ne � 1031m�3 and a temperature of
Te � 10:0keV, the electron thermal conductivity calculated by
using the Braginskii model (see Appendix A for full definitions)
is jTe ¼ nek2BTese=me ¼ ðnek2BTe=meÞ � ½6

ffiffiffi
2
p

p3=2e20
ffiffiffiffiffiffiffi
me
p ðkBTeÞ3=2=

ðlnKe4ZneÞ	 � 5:15� 109ðWm�1K�1Þ which is very close to the
AIMD prediction,72 i.e., je ¼ 5:05� 109ðWm�1 K�1Þ.

As discussed before, the Braginskii two-fluid plasma model
is derived for the collision-dominated plasma flows in which the
characteristic time and length scales are much larger than the
collision time and the particle mean-free-path, i.e., t0 � ss and
L0 � kmfp. In addition, the Braginskii transport coefficients
become inaccurate for degenerate partially ionized or high-Z
plasmas.68 Thus, the results presented here apply to fully ionized
nondegenerate single low-Z ion component collisional plasmas
or plasma flowswhere a mixing transition has occurred.

The evolutions of electric field, E, and magnetic field, B, are
governed by theMaxwell equations given as follows:

1
c2
@E
@t
¼ r� B� l0J; (4)

@B
@t
¼ �r� E; (5)

r � E ¼ qc

e0
; (6)

r � B ¼ 0; (7)

where l0 and e0 are the permeability and permittivity of free
space, respectively, and are related to the speed of light in vac-
uum, c, as c ¼ ðl0e0Þ�1=2. In the above equations, the formula-
tions for current density, J, and local charge density, qc, are
J ¼

P
qsnsus ¼ eðZniui � neueÞ and qc ¼

P
qsns ¼ eðZni � neÞ,

respectively. It is worth pointing out that, for closing the govern-
ing equations, one only needs to solve two of the Maxwell equa-
tions and the other two equations [e.g., Eqs. (6) and (7)] are just
restatements of the closed set of governing equations. For exam-
ple, by multiplying continuity Eq. (1) by qs=ms and then taking
summation over ion (s¼ i) and electron (s¼ e) species, one obtains

@qc

@t
þr � J ¼ 0: (8)

Furthermore, by taking the divergence of Ampere Eq. (4) and
then subtracting it from Eq. (8), it yields

@

@t
r � E� qc=e0ð Þ ¼ 0: (9)

Obviously, the Gauss equation (6) is just a restatement of the con-
sequence [i.e., Eq. (9)] of solving continuity Eq. (1) and Ampere Eq.
(4). In this study, we would like to call Eq. (6) a diagnostic equation
instead of a redundant equation. This is because that, after apply-
ing the two assumptions discussed in Secs. IIB and IIC, the elec-
tric field is calculated from generalized Ohm’s law (13) instead of
the Ampere equation (4), and Eq. (8) is reduced to a quasi-
neutrality condition. As a result, Eq. (9) is no longer rigorously
guaranteed to be satisfied when solving the final governing equa-
tions given in Sec. IID. Therefore, in this study, we solve Eq. (6) as
a diagnostic tool tomonitor the importance of the numerical inte-
gration errors. By following the same procedure, one can also
conclude that, mathematically, the magnetic field remains diver-
gence free if it is initially divergence free.

B. Infinite speed of light assumption

In this study, the severe time-step restrictions57 (e.g., Dt
� CFLDx=c and Dt � 0:1=xpe, where CFL is the Courant-
Frederich-Levy constant, Dx is the mesh size, and xpe is the
electron plasma frequency) caused by high frequency electro-
magnetic waves are eliminated by using the infinite speed of
light assumption, i.e., ð@E=@tÞ=c2 � 0, which reduces the
Amperes equation (4) to

J ¼ 1
l0
r� B: (10)

Consequently, this assumption restricts the calculations
to plasma flows with nonrelativistic thermal velocity, VTs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTs=ms

p

 c, and to electromagnetic waves with phase

speed, Vp ¼ x=k
 c (also see Ref. 46). Furthermore, by
substituting Eq. (10) into Eq. (8), one obtains

@qc

@t
¼ 0; (11)

which indicates that the quasi-neutrality condition (qc ¼ 0) is
maintained at all times if the initial plasma flow is charge free.
Consistently, the number densities and mass densities of ions
and electrons become dependent, i.e., ne ¼ Zni and
qe ¼ Zðme=miÞqi, which eliminates the need to solve the conti-
nuity equation (1) for electrons and relates the ion and electron
velocities via the current density as

ue ¼ ui �
1

eZni

� �
J: (12)

The quasi-neutrality condition limits our interest to plasma
phenomena whose characteristic frequency is much smaller
than the electron plasma frequency, x
 xpe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=e0me

p
,

and characteristic length is much larger than the Debye length,
L0 � kDe ¼ VTe=xpe (also see Ref. 46).

C. Negligible electron inertia assumption

The second assumption made in this study is negligible
electron inertia in the electron momentum equation (2). This
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assumption is justified as the right-hand side of the electron
momentum equation is of the same order as that of the ion
momentum equation, but the advection part is of the order
me=mi compared to the corresponding part of the ionmomentum
equation. Then, after applying the relation between ion and elec-
tron velocities [Eq. (12)], one can obtain generalizedOhm’s law as

E ¼ mi

eZqi

� �
�rpe �r � pe þ Re þ Z

me

mi

� �
qig þ J� B

� �
� ui � B;

(13)

where the Biermann battery, viscous, resistive, acceleration, and
Hall effects are all included. Recent kinetic simulations20 show
that the Biermann battery term appearing in Eq. (13) is the physi-
cal source of strong, self-generated electric fields observed in
ICF plasma.73 The rest of the terms, in particular, the Hall term
and the last term in Eq. (13), are also indispensable inmaintaining
the constant charge condition [i.e., Eq. (11)].

Negligible electron inertia implies that the electron flow has
an infinite fast response time on the time scales of interest.
Therefore, the characteristic time scale of interest must be
larger than electron plasma frequency and electron cyclotron
frequency, i.e., 1=x� ð1=xpe; 1=xceÞ, which further relaxes the
time-step restriction on 0:1=xce.57 Consistently, the characteris-
tic length scale of interest must be longer than the Debye length,
the electron Larmor radius, and/or the electron skin depth, i.e.,
L0 � ðkDe; rLe; and=or keÞ, where rLe ¼ VTe=xce; ke ¼ VA=xce

¼ c=xpe, and VA ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0nimi
p

is the ion Alfven velocity. The infi-
nite speed of light assumption further reduces the above condi-
tion to L0 � ðrLe and=or keÞ since ke=kDe ¼ c=VTe � 1.

After replacing the electric field, E, in the momentum equa-
tion (2) for ions using Eq. (13) and then applying the quasi-
neutrality condition, a modified expression for the ionmomentum
equation can bewritten as

@ qiuið Þ
@t

þr � qiuiuið Þ ¼ �r pi þ peð Þ � r � pi þ peð Þ

þ Re þ Rið Þ þ J� Bþ qig: (14)

D. Final two-fluid plasma equations

Finally, the two-fluid plasma transport equations consid-
ered in this study are the dimensional ion continuity equation,
ionmomentum equation, ion and electron internal energy equa-
tions, and Faraday’s law, and are summarized as follows:

@qi

@t
þr � qiuið Þ ¼ 0; (15)

@ qiuið Þ
@t

þr � qiuiuið Þ ¼ �r pi þ peð Þ � r � pi þ peð Þ

þ J� Bþ qig; (16)

@ qieið Þ
@t

þr � qieiuið Þ ¼ �pir � ui �r � qi þ pi : rui þQD; (17)

@ qieeð Þ
@t

þr � qieeueð Þ ¼
mi

Zme

� ��
�per � ue �r � qe

þ pe : rue þ
mi

eZqi

� �
Re � J�QD

�
; (18)

@B
@t
¼ �r� E; (19)

where the currently density, J, electron velocity, ue, and electric
field, E, are calculated from formulations (10), (12), and (13),
respectively. The ion/electron pressures, ps, and temperatures,
Ts, are related through the ideal gas EOS as described in Sec.
IIA.

As a result of infinite speed of light and negligible electron
inertia assumptions, the consistency of the quasi-neutrality
condition (qc � 0) in the final two-fluid plasma equations must
be checked numerically by examining the value of charge den-
sity, qc, calculated from Eq. (6). In other words, the divergence of
the electric field, E, calculated from generalized Ohm’s law Eq.
(13) must be sufficiently small to maintain the quasi-neutrality
condition. The numerical results obtained for all test cases con-
firm the quasi-neutrality condition, and two sample results are
presented in Appendix B.

III. NON-DIMENSIONAL ANALYSIS

In order to assess the importance of Hall and Biermann
battery effects, resistivity, viscous stress, and heat flux in
plasma flows in different regimes, as well as characterize
special limiting cases, in this section, a non-dimensional anal-
ysis of the two-fluid plasma equations is provided. In order to
compare different applications, the characteristic parame-
ters that can be varied in practical problems of interest
including temperature, number density, characteristic length
scale, and magnetic field strength are chosen as the primary
reference quantities.

A. Non-dimensional two-fluid plasma equations

We choose the characteristic number density, n0, length
scale, L0, temperature, T0, magnetic field strength, B0, and
external acceleration, g0, as the primary reference quantities
and use them to construct scales for other variables like ion
mass density, q0 ¼ n0mi, ion Alfven velocity, V0

A ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0n0mi
p

,
plasma pressure, p0 ¼ n0kBT0, a time scale, L0=V0

A , and so on.
With these choices, the non-dimensional two-fluid plasma
equations become

@q�i
@t�
þ r� � q�i u

�
i

� �
¼ 0; (20)

@ q�i u
�
ið Þ

@t�
þ r� � q�iu

�
iu
�
i

� �
¼ �br� p�i þ p�e

� �
þ J� � B�

� 1
Rei
r� � p�i �

1
Ree
r� � p�e þ

1
Fr2

q�i g
�;

(21)

@ q�i e
�
ið Þ

@t�
þ r� � q�i e

�
iu
�
i

� �
¼ �bp�ir� � u�i �

b
Rei
r� � q�i

þ 1
Rei

p�i : r�u�i þ 3Z
mi

me

� �
bx0

eiQ
�
D;

(22)
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@ q�i e
�
eð Þ

@t�
þr� � q�i e

�
eu
�
e

� �
¼ mi

Zme

� ��
�bp�er� �u�e �

mi

me

� �
b
Ree
r� �q�Te

� 1
Ree

p�e :r�u�e þ
1

Rem
R�u � J�

�
�3x0

eibQ
�
D

þ mi

me

� �
k̂ib �r� �q�ueþR�T � J�
� �

; (23)

@B�

@t�
¼ �r� � E�; (24)

E� ¼ k̂i
1
q�i

�
J� � B� � br�p�e �

1
Ree
r� � p�e þ Zbq�iR

�
T

þ Zme

mi

� �
1

Fr2
q�i g

�
�
þ 1
Rem

R�u � u�i � B�; (25)

u�e ¼ u�i � k̂i
1
q�i

J�; (26)

J� ¼ r� � B�: (27)

where the superposed asterisk refers to the dimensionless vari-
able and the non-dimensional parameters are the ion inertial
scale or skin depth

k̂i ¼ c= x0
piL0

	 

¼ mi= ZeL0

ffiffiffiffiffiffiffiffiffiffi
l0q0
p� �

; (28)

ion and electron reference Reynolds (or viscous Lundquist)
numbers

Rei ¼ q0V
0
AL0=l

0
i ; (29)

Ree ¼ l0
i =l

0
e

	 

Rei; (30)

plasma beta

b ¼ n0kBT0= B2
0=l0

	 

; (31)

magnetic Reynolds (or resistive Lundquist) number

Rem ¼ l0V
0
AL0=g

0: (32)

Froude number, and

Fr ¼ V0
A=

ffiffiffiffiffiffiffiffiffiffi
g0L0

p
; (33)

the collision frequency

x0
ei ¼ L0= V0

As0e

	 

: (34)

In the above non-dimensional parameters, g0 ¼ mi
eZq0

	 

� me

es0e

	 

is the background resistivity, and the formulations for

other reference variables are ion plasma frequency, x0
pi

¼ Ze
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0=ðe0miÞ

p
, ion viscosity, l0

i ¼ n0kBT0s0i , electron viscosity,

l0
e ¼ Zn0kBT0s0e , ion collision time, s0i ¼ ½12p3=2e20

ffiffiffiffiffiffi
mi
p ðkBT0Þ3=2=

ðlnKe4Z4n0Þ	, and electron collision time, s0e
¼ ½6

ffiffiffi
2
p

p3=2e20
ffiffiffiffiffiffiffi
me
p ðkBT0Þ3=2=ðlnKe4Z2n0Þ	. The Coulomb loga-

rithm (lnK) variation is described in Appendix A.
In addition, by using the relations, rLe=rLi ¼ ke=ki

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
, we can summarize the range of applicability for the

two assumptions made in this study in terms of the non-
dimensional ion length scales as: k̂i 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
and/or

r̂Li 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
depending on the local magnetic field strength.

Thus, in the magnetic dominant regime (e.g., low plasma b), the
fact that r̂Li=k̂i ¼

ffiffiffi
b
p

< 1 yields k̂i 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
. On the other

hand, in the plasma dominant regime (e.g., large plasma b), the
applicability condition becomes r̂Li 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
.

B. Single-fluid limiting equations

In order to demonstrate the limiting cases of the two-fluid
plasma equations solved in this study, the non-dimensional sin-
gle-fluid plasma equations for ion-electron mixture density
q� ¼ q�i þ q�e , velocity, u� ¼ ðq�iu�i þ q�eu

�
eÞ=q�, and pressure,

p� ¼ p�i þ p�e , are derived from the two-fluid plasma equations
and given as follows:

@q�

@t�
þ r� � q�u�ð Þ ¼ 0; (35)

@ q�u�ð Þ
@t�

þ r� � q�u�u�ð Þ ¼ �br�p� þ J� � B� � 1
Rei
r� � p�i

� 1
Ree
r� � p�e þ

1
Fr2

q�g�; (36)

1
c� 1

@p�

@t�
þ r� � p�u�ð Þ

� �
¼ �p�r� � u� þ k̂i

c� 1
r� � p�e

q�
J�

� �
þ k̂ip�er� �

J�

q�

� �
þ 1

bRem
R�u � J�

� 1
Rei
r� � q�i þ

mi

me

1
Ree
r� � q�Te

� �
� 1

b
1

Rei
p�i : r�u�i þ

1
Ree

p�e : r�u�e
� �

þZk̂i �r� � q�ue þ R�T � J�
� �

: (37)

Equation (35) is obtained by applying the relations
q�e=q

�
i ¼ Zme=mi; q� ¼ q�i þ q�e ; u

� ¼ ðq�iu�i þ q�eu
�
eÞ=q�, and Eqs.

(26) and (27) into Eq. (20). Similarly, by using the above ion-
electron mixture variable definitions (including p� ¼ p�i þ p�e)
and Eq. (26), one can obtain Eq. (36) from the ion momentum
equation (21) under the negligible electron inertia assumption.
Finally, using the non-dimensional EOS, q�se

�
s ¼ b=ðc� 1Þp�s , the

ion-electron mixture variable definitions, negligible electron
inertia assumption, and Eq. (26), Eq. (37) is obtained by taking
summation of ion and electron energy Eqs. (22) and (23).

In addition, generalized Ohm’s law is rewritten as

E� þ u� � B� ¼ k̂i
1
q�

J� � B� � k̂i
b
q�
r�p�e þ

1
Rem

R�u

� k̂i
1

q�Ree
r� � p�e þ Zk̂ibR�T þ k̂i

Z
Fr2

me

mi
g�: (38)

Equation (38) is obtained by substituting the ion-electron
mixture variables and Eq. (26) into Eq. (25). Faraday’s law for the
non-dimensional magnetic field, B�, and reduced Ampere’s law
for current density, J�, remain unchanged as Eqs. (24) and (27),
respectively.

The ion velocity u�i and electron velocity u�e can be obtained
by using the relations q�e=q

�
i ¼ Zme=mi; q� ¼ q�i þ q�e; u

� ¼ ðq�i u�i
þq�eu

�
eÞ=q�, and the definition of current density under quasi-

neutrality condition (26) and then are used to calculate the
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viscous stresses, p�e and p�i , appearing in the single-fluid equa-
tions (36)–(38).

Written as above, the equations are unclosed, as the ion
and electron temperatures and densities cannot be indepen-
dently determined. For plasma flows with identical ion and elec-
tron temperatures (i.e., T�i ¼ T�e), the ion and electron
temperatures become the same as the mixture temperature, T�,
which can be obtained from the total pressure, p�, by using the
EOS. In addition, the electron pressure can be obtained via the
relation p�e ¼ Zp�i ¼ p�=ð1þ 1=ZÞ. In this case, the single-fluid
plasma equations, including all transport terms, are closed.

As demonstrated in Appendix C, the conventional Hall,
resistive, and ideal MHD equations can be recovered from the
above single-fluid plasma equations, as limiting cases, in regimes
where the non-dimensional parameters satisfy the correspond-
ing conditions described below:

• The conventional Hall-MHD equations can be recovered in
regimes where Rei; Ree !1; Fr!1; q�ue ! 0, and R�T ! 0
(q�ue and R�T are always ignored in the Hall-MHD equations
and are only considered in the Braginskii two-fluid model17)

• Resistive MHD equations can be recovered in regimes
where k̂i ! 0 (and/or r̂Li ! 0), Rei; Ree !1, and Fr!1.

• Ideal MHD equations can be recovered in regimes where
k̂i ! 0 (and/or r̂Li ! 0), Rei; Ree !1; Fr!1, and Rem
!1.

The Hall-MHD equations can sometimes be classified as a
two-fluid model because of the inclusion of the Hall term and
the electron pressure gradient. However, similar to the discus-
sion made above, due to the presence of the electron pressure,
the Hall-MHD equations are not closed. In practice, to close the
Hall-MHD equations, some studies54–56 simply neglect the elec-
tron pressure, while others34,57 assume identical ion and elec-
tron temperatures (T�i ¼ T�e) and obtain the electron pressure as
p�e ¼ Zp�i ¼ p�=ð1þ 1=ZÞ.

The viscous terms vanish from the single-fluid equations in
the limit of infinite Reynolds numbers only for non-turbulent
flows. This restricts the domain of applicability of the limiting
cases above, unless models for subgrid or turbulence transport
are added to the equations. In some recent studies,34,55 viscous
effects are included in the Hall-MHD equations for regimes
where Rei is not sufficiently large. However, the formulations for
the viscous terms are more or less ad-hoc. Some studies55

model the viscous stress term by using ion-electron mixture
velocity, u�, with the standard formulation for compressible
ideal gas, i.e., r� � p� ¼ r�2u� þ ð1=3Þr�r� � u� instead of the
detailed plasma formulations for p�i and p�e given in Appendix A.
In addition, the viscous contribution was only added to the
momentum equations.

In Sec. IV, numerical simulations will be conducted for a
series of canonical problems to highlight the accuracy and
robustness of the two-fluid plasma solver in handling plasma
flows in different regimes.

IV. TEST CASES

The dimensional two-fluid plasma equation with full trans-
port terms described in Sec. IID have been implemented in the

CFDNS code41,74,75 and solved by using sixth-order non-dissipa-
tive compact finite differences70,75 for four canonical problems:
Alfven and whistler dispersion relations, electromagnetic plasma
shock, and magnetic reconnection. For these cases, ion and
electron temperatures are the same, i.e., Ti ¼ Te. Therefore, the
collision generated heat for the ion energy equation, QiðQDÞ,
vanishes, while the collision generated heat for the electron
energy equation, Qe, reduces to the ohmic heating term shown
as the fourth term in the RHS of Eq. (18). Therefore, the two-
fluid plasma equations solved in these test cases
are mathematically equivalent to the single-fluid plasma equa-
tions described in Sec. III B which can be viewed as the general
or full Hall-MHD equations (therefore more general than the
conventional Hall-MHD equations used in previous studies and
explained in Appendix C 1), including all plasma transport terms.
The identical temperature simplification further eliminates the
need to solve the ion energy equation (17).

For the test cases considered in this study, the initial condi-
tions for all primary variables (non-dimensional) are identical to
those given in the references mentioned below. The values of
the non-dimensional parameters, i.e., k̂i, Rei, and Rem, are calcu-
lated based on the characteristic number density, n0, length
scale, L0, temperature, T0, and magnetic strength, B0, and cho-
sen to match previous studies and/or certain practical applica-
tions, with the requirement that the simulations remain well-
resolved.

A. Alfven and whistler dispersion relations

The first two test cases used to test the accuracy of the
newly developed two-fluid plasma solver are the dispersion
relations for Alfven and whistler waves. These are the two
plasma phenomena often observed in different space flow
regimes.4,76–78 The frequency and length scales for Alfven waves
satisfy the relations x
 xci and L0 � c=xpi ¼ ki.

79 Therefore,
Alfven waves become ideal MHD waves when the local Rei and
Rem values are sufficiently high. The basic frequency and length
scales for whistler waves are in the ranges of xci 
 x
 xce and
ke 
 L0 
 ki.

77,79 Therefore, whistler waves are a Hall-MHD
phenomenon.

By linearizing the ideal MHD and Hall-MHD equations
about the equilibrium and assuming plane wave solutions of the
form expðik�x� � ix�t�Þ, one obtains the Alfven and whistler dis-
persion relations

x� ¼ k� for Alfvenwaves; (39)

x�2 � k�2ð Þ2 ¼ x�2k�4 forWhistlerwaves; (40)

where k� ¼ 2pm=L�x is the wavenumber, m is the integer mode,
and x� is the wave frequency. The initial conditions are

q�i ¼ 1; u�i ¼ 0; v�i ¼ �d� cos k�x�ð Þ; w�i ¼ d� sin k�x�ð Þ;
p�i ¼ 1; B�x ¼ 1; B�y ¼ d�v�p cos k�x�ð Þ; B�z ¼ �d�v�p sin k�x�ð Þ;

where v�p is the phase velocity which can be calculated from lin-
ear Eqs. (39) and (40). The simulations are conducted over a peri-
odic domain with a size of L�x ¼ 9:6 and a number of grid points
of NX ¼ 384. Therefore, for the simulations conducted in this
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study, the largest wave resolution is 192 points per wavelength
for the minimum mode (i.e.,m¼ 2). For the case using the maxi-
mum mode (i.e., m¼30), the wave resolution becomes 12.8
(¼ 384=30) points per wavelength. The initial perturbation
amplitude d� ¼ 10�5 was used in all simulations.

Because Alfven waves are believed to be the main mecha-
nism for heating the solar corona,4 the characteristic number
density, n0, length scale, L0, temperature, T0, and magnetic
strength, B0, are chosen as the typical values for solar corona/
flares.33,34 These characteristic values are L0 � 107m; n0

� 1015m�3; T0 ¼ 100 eV, and B0 � 0:01T, which leads to
k̂i � 1:0� 10�6; Rem � 2:0� 1013, and Rei � 1:0� 104. Figure 1(a)
shows that the CFDNS results calculated using the two-fluid
plasma equations in the global solar corona regime are in excel-
lent agreement with the analytical linear stability theory (LST)
predictions for ideal MHD over a wide range of modes, m.

The whistler waves found in solar corona/flares are related
to the fast, collisionless magnetic reconnection that occurs on
the length-scales comparable to the ion skin-depth.78,80 The
ion-skin depth estimated using the typical parameter values of
solar corona/flare parameters shown above is similar to the one
provided in Ref. 34, i.e., ki � 10m. However, the viscous effects
estimated using the closures described in Ref. 17 and Appendix A
are probably not accurate at this scale, which is smaller than the
mean free path for the solar corona/flares.33,34 Developing clo-
sures applicable to collisionless systems is difficult.81 Therefore,
to be able to perform simulations relevant to the whistler wave
dispersion relation, yet maintain the correspondence to the
solar corona/flare parameters, we still use the above parame-
ters, but decrease the reference temperature T0 to obtain high
enough values of Rei � 4:0� 103 and Rem � 1:0� 104. Again, as
shown in Fig. 1(b), the CFDNS results calculated using the two-
fluid plasma equations perfectly match the analytical solution
given in Eq. (40).

B. Electromagnetic plasma shock

The presence of plasma shocks is also often observed in
space and fusion applications. For example, the interaction of
the solar wind with the Earth magnetosphere leads to the for-
mation of a bow shock upstream of the magnetopause.82,83 The

electromagnetic plasma shock simulated here is an extension of
the single-fluid, inviscid Brio-Wu shock84 to the two-fluid
plasma model. The initial values for the non-dimensional pri-
mary variables are

q�i

u�i
v�i
w�i
p�i
B�x
B�y
B�z

2666666666666666664

3777777777777777775

¼

1:0

0:0

0:0

0:0

0:5

0:75

1:0

0:0

2666666666666666664

3777777777777777775

For x� � 0:5 and

q�i

u�i
v�i
w�i
p�i
B�x
B�y
B�z

2666666666666666664

3777777777777777775

¼

0:125

0:0

0:0

0:0

0:05

0:75

�1:0
0:0

2666666666666666664

3777777777777777775

For x� > 0:5;

and Dirichlet boundary conditions are implemented at the
shock-tube boundaries.

Most (if not all) previous numerical studies of the bow
shock48,51,85 and Brio-Wu shock61,84,86 ignore the viscous and
heat flux terms and fully rely on the numerical dissipation intro-
duced by shock-capturing schemes to regularize the equations
around sharp discontinuities. In contrast, by including full
plasma transport terms, one should be able to resolve the
shocks by using high-order non-dissipative numerical schemes
at a sufficiently high grid resolution. Therefore, in this test case,
we choose the characteristic number density, n0 � 107m�3,
length scale, L0 � 1011m, and magnetic strength, B0e10 nT , as
the typical values found in solar wind,51,79,85 and vary T0 to obtain

FIG. 1. Comparison of analytical Alfven
and whistler dispersion relations (LST)
with numerical solutions calculated by
using the two-fluid plasma solver
(CFDNS) in (a) ideal MHD regime and
(b)Hall-MHD regime.
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a range of substantial high, but still affordable Reynolds num-
bers. These reference scales give k̂i � 1:0� 10�6 and Rem � 1012,
and therefore, both the Hall effect and the magnetic resistivity
become negligible.

Figure 2 shows that, without the need to explicitly turn
off the corresponding terms from the governing equations,
the ideal MHD results including the slow compound wave
(SM), contact discontinuity (CD), and slow shock (SS) are
obtained from the two-fluid plasma solver for flows with
large enough Reynolds numbers. In the presence of physical
viscosity, the shock wave is no longer zero-thickness.
Instead, the value of the shock thickness depends on the local
Reynold number. Therefore, all shock structures can be fully

resolved by using high-order non-dissipative numerical
schemes, provided that the grid resolutions are sufficiently
high. Of course, by increasing viscosity or decreasing the
Reynolds number, the profiles for all variables become
smoother and, therefore, can easily be resolved at lower grid
resolutions.

In this study, grid convergence tests have been conducted
for all plasma shock cases to guarantee that computational
results presented are free of numerical error. As indicated in Fig.
3, fully resolved DNS-like solutions are obtained at all ion vis-
cous Reynolds numbers when the ion grid Reynolds number,
ReD ¼ Rei=NX, is smaller than a threshold value, which is 2.3 for
our 6th order compact finite difference solver.

FIG. 2. CFDNS results calculated by
using two-fluid plasma equations for
plasma shock with the normalized ion skin
depth, k̂ i ¼ 1:0� 10�6, the magnetic
Reynolds number, Rem � 1:0� 1012,
and the ion viscous Reynolds number,
Rei ¼ 6:3� 103.

FIG. 3. Fully converged CFDNS results
for plasma shocks at two ion viscous
Reynolds numbers (a) Rei ¼ 6:3� 103

and (b) Rei ¼ 2:3� 104.
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By using the finest grid solutions as the exact results, i.e.,
NX ¼ 40960 for Rei ¼ 6:3� 103 and NX ¼ 122880 for
Rei ¼ 2:3� 104, Fig. 4 shows that the grid convergence rates
are n̂ ¼ 6:14 for the Rei ¼ 6:3� 103 case and n̂ ¼ 6:08 for Rei

¼ 2:3� 104 cases. Both values are very close to the theoretical
limit of the sixth-order compact finite difference scheme. This
shows that the high-order two-fluid plasma solver results are
free of the spurious behavior commonly found in high-order
shock-capturing scheme results, like themodification of the dis-
continuity location.87 Second, the CFDNS results maintain nearly
6-order accuracy across the discontinuities, while the conver-
gence rate of most shock-capturing schemes drops to first-
order accuracy near discontinuities.88

C. Magnetic reconnection

The last test case considered in this study is the collision-
less magnetic reconnection, a rapid rearrangement of magnetic
field topology, and release of free magnetic energy. It is of par-
ticular importance to the dynamic evolution of the solar
corona/flares,4,78 the magnetosphere,89,90 and thermonuclear
fusion.91,92 Previous studies6,43,44,53,80 confirm that the fast mag-
netic reconnection occurs on a length scale comparable to the
ion skin depth and is mainly contributed by the Hall term.

Although extensive computational work has been done on
the magnetic reconnection problem, simulations of magnetic
reconnection with explicit viscous and thermal diffusion effects
are rare. In addition, instead of a dynamically changing property,
the resistivity in most previous studies43,56 was simply chosen as
a constant value. The justification for the absence of physical
plasma transport terms is partially because the rapid magnetic
reconnection is collisionless, therefore, the closures for trans-
port terms based on Chapman-Enskog expansion in the small
mean-free-path17 become inappropriate, while developing clo-
sures applicable to collisionless systems is difficult.81 In turn,
most widely used plasma solvers use dissipative shock-
capturing techniques and rely on numerical dissipation instead
of physical transport terms to regularize the equations. In gen-
eral, in such approaches, the numerical dissipation is related to
the mesh size and the simulations do not converge as the mesh
size is increased. Therefore, it seems impossible for such plasma
flow solvers to produce fully resolved DNS-like solutions.

In this study, we choose the characteristic number density
and length scale as the typical values found in solar flare reconnec-
tion,34 i.e., L0 � 10m and n0 � 1015m�3,which leads to k̂i ¼ 1:0.We
demonstrate that physical transport can be used to obtain mesh
converged solutions with negligible numerical dissipation.
Moreover, as the viscous Reynolds number is increased, the solu-
tions tend to converge and predict the collisionless magnetic
reconnection results. We vary the reference temperature, T0, and
magnetic strength, B0, to generate a wide range of viscous
Reynolds number, Rei, andmagnetic Reynolds number, Rem, values.
The range of Rem values is chosen to include values used in previ-
ous studies, i.e., Rem ¼ 100� 350 and Rem ¼ 200 employed by Ma
and Bhattacharjee43 and Toth et al.,56 respectively.

Similar to previous studies, the initial conditions for the
non-dimensional primary variables are

q�i
u�i
v�i
w�i
p�i
B�x
B�y
B�z

26666666666666664

37777777777777775
¼

1=5þsech2 2x�ð Þ
0:0

0:0

0:0

1=5þsech2 2x�ð Þ
h i

=4

2p=10L�y
	 


�sin 2py�=L�y
	 


�cos px�=L�x
� �

tanh 2x�ð Þ� p=10L�x
� �

�cos 2py�=L�y
	 


�sin px�=L�x
� �

0:0

26666666666666666664

37777777777777777775

:

The perfectly conducting wall boundary condition is
applied in the vertical direction (x�) and the periodic boundary
condition is implemented in the horizontal direction (y�). The
simulations are conducted in a two-dimensional domain with
L�x ¼ 12:8 and L�x ¼ 25:6.

Figures 5 and 6 show that the two-fluid non-dissipative
plasma solver (i.e., CFDNS) with temperature and magnetic field
dependent transport (ion/electron viscous stress, heat flux, fric-
tional drag force, and magnetic resistivity) can successfully reveal
the whole magnetic reconnection process. For example, Fig. 5
shows that, during the reconnection process, the high-density
sheet is stretched and finally broken up into two ligaments, which
further shrink to increase the high density values. In contrast to

FIG. 4. The comparison of grid conver-
gence rates calculated by two-fluid plasma
solver for plasma shock at two ion viscous
Reynolds numbers (a) Rei ¼ 6:3� 103

and (b) Rei ¼ 2:3� 104 with the theoreti-
cal limit of the sixth-order compact
scheme (n¼ 6).
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previous two-fluid plasma results without transport terms,57 the
CFDNS results remain perfectly symmetric, which indicates the
high accuracy of the two-fluid plasma solver in handling this chal-
lenging plasma flow. Figure 6 clearly shows that, as the reconnec-
tion takes place, the magnetic streamlines tend to bend from the
horizontal direction to the vertical direction and the intensity of
the vertical component, Bx, increases dramatically. This corre-
sponds to a rapid increase in reconnection flux and an eruptive
release ofmagnetically stored energy to heat the plasma.

The temperature contours shown in Fig. 7 further confirm the
rapid conversion of magnetic energy into particle energy. As the
reconnection takes place, both temperature and velocities (not
shown) increase significantly due to the rapid conversion of mag-
netic energy into thermal and kinetic energies. In the solar corona,
this phenomenon is thought to give rise to solar flares and drive
the outflow of the solar wind.4 Consistently, the rapid increase in

temperature causes a dramatic increase in heat flux and viscous
dissipation, since j / T5=2 and ls / T5=2, as well as a large decrease
in magnetic resistivity, since g / T�3=2. The presence of thermal
diffusion is then absolutely necessary to prevent unphysically high
temperatures to be generated at the reconnection points. Previous
studies without physical thermal diffusion had to rely on the
numerical diffusion introduced by dissipative numerical schemes to
damp this effect. The effect of numerical diffusion is hard to quan-
tify due to the higher order nonlinearities usually present in the
associated terms (if such terms can be explicitly evaluated at all). In
addition, different numerical schemes have different truncation
errors, and so, numerical diffusion is difficult to generalize across
various codes. Thus, numerical results relying on numerical diffu-
sion to regularize the equations should be regardedwith caution.

A grid convergence test has been conducted for the mag-
netic reconnection problem, and the reconnection fluxes

FIG. 5. The temporal variation of density
contours during magnetic reconnection
with Rem � 112 and Rei � 426.

FIG. 6. The temporal variation of magnetic
streamlines during magnetic reconnection
with Rem � 112 and Rei � 426.
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calculated using the two-fluid plasma solver are converged at a
moderate grid resolution (e.g., 256� 512) for Rei ¼ 426 and Rem
¼ 112, as shown in Fig. 8(a). By using the finest grid (e.g.,
768� 1536) results as the exact solutions, one can calculate the
numerical error on coarser grids. The results are shown in Fig.
8(b). The grid convergence rate estimated from the last two
points is n̂ ¼ 6:58, which is fairly close to the theoretical limit of
the sixth-order compact scheme. Fully converged DNS-like
results can also be observed in cases with higher viscous
Reynolds number, provided that the grid resolution is suffi-
ciently large. For example, the CFDNS results for the case with
initial ion Reynolds number Rei ¼ 850 are fully converged at a
grid resolution of 384� 768. In this test case, the threshold value
for fully converged DNS-like results is around ReD � 2:6. In
addition to the reconnection flux profile, the 2D contours of
vertical velocity and spanwise current density shown in Fig. 9
further confirm that the CFDNS results presented here are
indeed fully converged DNS-like solutions.

Finally, to examine the effects of the plasma transport
terms and convergence of the results with the Reynolds number,

we have conducted a series of simulations for a range of Rei and
Rem values. First, as observed in Fig. 10(a), viscosity has a slight
delay effect on the reconnection time, as Rei is increased from
124 to 850. However, for all viscous Reynolds numbers, Rei, the
magnetic flux saturates to the same non-dimensional value of
around 4.0 at a non-dimensional time close to 40.0. These values
are consistent with those reported in Refs. 6 and 43. In addition,
the time variations of the reconnection flux quickly converge at
Rei values above �400. For Rei ¼ 426, Fig. 10(b) shows that the
magnetic flux also converges as the magnetic Reynolds number
is increased toRem¼ 890.

Based on this convergence, we assess that the results
obtained with Rei ¼ 426 and Rem ¼ 890 fully represent the colli-
sionless reconnection process for the number density and
length scale shown above, representative of solar flare recon-
nection. In addition, due to the robustness of the saturation flux
value and time to the viscosity value, the results are also very
similar to numerical results relying on numerical dissipation for
regularization. On the other hand, resistivity has a larger effect
than viscosity at moderate Rem values [Fig. 10(b)], in particular

FIG. 7. The temporal variation of ion tem-
perature contours during magnetic recon-
nection with Rem � 112 and Rei � 426.

FIG. 8. (a) Temporal variation of recon-
nection flux at different resolutions and (b)
comparison of the grid convergence rate
for the two-fluid plasma solver results
(n̂ ¼ 6:58) against the theoretical limit of
the sixth-order compact finite difference
scheme. The simulations were conducted
with Rem � 112 and Rei � 426.
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on the reconnection time. Lower resistivity or large Rem values
lead to an earlier reconnection and slightly larger saturation flux
values. The reconnection time and saturation flux value for the
case Rem ¼ 224 shown in Fig. 10(b) are very close to those pre-
dicted by previous Hall-MHD simulations56 with Rem ¼ 200.
However, due to the larger potential effect of the numerical reg-
ularization scheme regarding resistivity, predictions using the
ideal (inviscid and perfect conductivity) two-fluid plasma model
(e.g., Ref. 45), need to be evaluated with more caution.
Nevertheless, again, the convergence of the results, as Rei and
Rem are increased, explains why previous studies using relatively
low Rem values are still useful in predicting the magnetic recon-
nection phenomena occurring in space.

V. CONCLUSION

In this study, to be able to generate high-order fully con-
verged DNS-like solutions for plasma flow problems, we have
implemented the Braginskii two-fluid plasma model with full
plasma transport terms, including temperature and magnetic

field dependent ion and electron viscous stresses and heat
fluxes, frictional drag force, and ohmic heating term, in the
CFDNS code, using sixth-order non-dissipative compact finite
differences with negligible numerical dissipation/diffusion. To
maintain computational feasibility, while also solving all the
dynamically relevant time and length scales, the infinite speed of
light and negligible electron inertia assumptions have been used.

The range of applicability of the resulting two-fluid plasma
equations was discussed in detail. This was achieved by using a
non-dimensional analysis of the equations, which highlights the
relevant non-dimensional parameters. These parameters are
cast in terms of characteristic scales found in practical problems
of interest, including the characteristic number density, n0,
length scale L0, temperature,T0, and magnetic strength, B0. The
non-dimensional parameters can be used to estimate the rela-
tive contributions of Hall and Biermann battery effects, resistiv-
ity, viscous stress, and heat flux in different regimes. In the
appropriate limits, the two-fluid plasma equations recover the
conventional MHD (i.e., ideal, resistive, and Hall) equations. First,

FIG. 9. The contours of vertical velocity,
Vx, and spanwise current density, jJzj,
with different resolutions for Rem � 112
and Rei � 426.

FIG. 10. The temporal variations of recon-
nection flux for different viscosities and
magnetic resistivities.
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the corresponding non-dimensional single fluid equations for
the mixture velocity, density, pressure, and temperature are
derived. Then, (i) conventional Hall-MHD equations can be
recovered in regimes where 0
 k̂i 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
(and/or

0
 r̂Li 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
), Rei; Ree !1, and Fr!1; (ii) Resistive

MHD equations can be recovered in regimes where k̂i ! 0
(and/or r̂Li ! 0), Fr!1, and Rei; Ree !1, but Rem has a finite
value; and (iii) Ideal MHD equations are recovered in regimes
when in addition Rem !1. The single fluid and the conven-
tional Hall-MHD equations are unclosed due to the explicit
presence of the electron pressure. Several choices for closing
these equations in previous studies are discussed. In contrast,
the two-fluid plasma equations are more general and do not
need additional assumptions.

The two-fluid solver was demonstrated against four
canonical problems, to confirm its accuracy and robustness in
handling plasma flows in different regimes. These test cases
include the Alfven and whistler waves for parameter values rel-
evant to solar corona, the electromagnetic Brio-Wu plasma
shock84 with parameter values relevant to the bow shock
caused by the interaction between solar wind and the earth
magnetosphere, and the fast magnetic reconnection in solar
flares. All physical transport terms are retained for the four test
cases, and the convergence with respect to the viscous and
magnetic Reynolds numbers was discussed, in addition to prov-
ing grid convergence of the results. For both Alfven and whistler
dispersion relations, the numerical results are in excellent
agreement with the analytical or linear stability theory (LST)
predictions for the corresponding ideal MHD and Hall-MHD
equations over a wide range of wavenumbers. Because of the
inclusion of physical viscosity in the two-fluid plasma solver, all
plasma shock characteristics can be fully resolved at all
Reynolds numbers, provided that the grid resolution is suffi-
ciently high. This means that the ion grid Reynolds number,
ReD ¼ Rei=NX, needs to be smaller than a threshold value, which
for the plasma shock test case is around 2.3. Near the sharp gra-
dients in the plasma shock problem, in contrast to the first-
order convergence rate commonly found in studies using
shock-capturing schemes, the grid convergence rate calculated
here is in the range of n̂ � 6:08� 6:14 which is very close to the
theoretical value of the sixth-order compact scheme.

For the last test case, the CFDNS results successfully demon-
strate, using the two-fluid plasmamodel, the fastmagnetic recon-
nection process occurring under solar flare conditions. The
magnetic flux saturation time and value predicted here are in
good agreement with those reported in previous studies under
similar conditions. The systematic examination of Rei and Rem
effects on the magnetic reconnection reveals that the results are
converged for the largest values used in this study, Rei ¼ 426 and
Rem ¼ 890. This implies that the results are relevant to practical
problemswithmuch larger Reynolds numbers.The viscous effects
are relatively small for Rei � 100� 400, so that coarse resolution
simulation results using numerical dissipation to regularize the
equations are likely close to the high Reynolds number results. On
the other hand, the reconnection flux saturation value and time
are more sensitive to changes in Rem. The CFDNS results with
Rem � 200 are close to those reported in previous studies, but

the results become converged at much higher magnetic Reynolds
number values (Rem > 800). These results are particularly useful
in evaluating the different approximations used in plasma solvers
(e.g., with/without viscosity, heat flux, resistivity, etc.).

In general, the Braginskii transport coefficients become
inaccurate for degenerate and/or partially ionized plasmas.
However, more general formulations do not include the full
directional dependence of the physical transport with respect
to the magnetic field or are less accurate for low-Z materials.
Future simulations will address the importance of anisotropic
transport and differences with more accurate models where
available (e.g., for higher-Z materials) and further explore the
existence of a mixing transition in various applications.
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APPENDIX A: PLASMA TRANSPORT TERM
FORMULATIONS

For completeness, the formulations for all transport
terms, mostly following Ref. 17, as well as the details of their
implementation are given below.

1. Viscous stress tensors, ps

In general, three major steps are needed for calculating
the viscous stress. First, the strain rate tensor, Ws, is calcu-
lated in the fixed Cartesian coordinate system, fe1; e2; e3g, as
follows:

Ws ¼ � rus þ rusð ÞT � 2
3
r � usð ÞI

� �
; (A1)

where I is the second-order identity tensor.
The next step is to restate the strain rate tensor, Ws, into

a moving coordinate system aligned with the magnetic field,
fe01; e02; e03g, in which e03 ¼ B=jBj denotes the unity vector in the
direction of the magnetic field, as follows:

W0
s ¼ QTWsQ: (A2)

The transformation matrix,Q, is defined by

Q ¼
�B02 �B01B003 B001
B01 �B02B003 B002
0 B01B

00
1 þ B02B

00
2 B003

2664
3775; (A3)
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where B0i ¼ Bi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 þ B2

2

q
and B00i ¼ Bi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 þ B2

2 þ B2
3

q
. The viscous

stress in the new coordinate system can then be calculated as

p011;s ¼ �
1
2

ls
0 W0

11;s þW0
22;s

	 

� 1
2

ls
1 W0

11;s �W0
22;s

	 

� ls

3W
0
12;s ;

(A4)

p012;s ¼ p021;s ¼ �ls
1W
0
12;s þ

1
2

ls
3 W0

11;s �W0
22;s

	 

; (A5)

p013;s ¼ p031;s ¼ �ls
2W

0
13;s � ls

4W
0
23;s ; (A6)

p022;s ¼ �
1
2

ls
0 W0

11;s þW0
22;s

	 

� 1
2

ls
1 W0

22;s �W0
11;s

	 

þ ls

3W
0
12;s ;

(A7)

p023;s ¼ p032;s ¼ �ls
2W

0
23;s þ ls

4W
0
13;s ; (A8)

p033;s ¼ �ls
0W

0
33;s ; (A9)

where ls
j ; j ¼ 1; ::; 4 are the ion and electron viscosity coeffi-

cients which are mainly functions of temperature, Ts,
and number density, ns. For ions, one has li

0 ¼ ð2:23=
2:33ÞnikBTisi; li

2 ¼nikBTisið1:2x2þ2:23Þ=D; andli
4¼nikBTisixðx2

þ2:38Þ=D, where x¼xcisi and D¼x4þ4:03x2þ2:33. The
coefficients li

1 and li
3 can be obtained by replacing x by 2x in

the formulations for li
2 and li

4, respectively. Here, si

¼ 12p3=2e20
ffiffiffiffiffiffi
mi
p ðkBTiÞ3=2=ðlnKe4Z4niÞ is the ion collision time

and xci¼ZejBj=mi is the ion cyclotron frequency. For elec-
trons, one has le

0¼ð8:50=11:6ÞnekBTese; le
2¼nekBTeseð2:05x2

þ8:50Þ=D;andle
4¼�nekBTesexðx2þ7:91Þ=D, where x¼xcese and

D¼x4þ13:8x2þ11:6. Similarly, the coefficients le
1 and le

3 can be
obtained by replacing x by 2x in the formulations for le

2 and

le
4, respectively. Here, se¼6

ffiffiffi
2
p

p3=2e20
ffiffiffiffiffiffiffi
me
p ðkBTeÞ3=2=ðlnKe4ZneÞ

is the electron collision time and xce¼ejBj=me is the electron
cyclotron frequency.

In this study, the Coulomb logarithm formula, lnK, is
adopted from Ref. 93 and its expression in Gaussian units is
given as follows:

lnK ¼
�ln

X5
k¼1

akgk

0@ 1A; if g ¼ ðZeÞ2=kBkeffTe � 1

2� b0 þ b1lnðgÞ þ b2ln2ðgÞ
1þ b3gþ b4g2

; if g ¼ ðZeÞ2=kBkeffTe > 1:

8>>>>><>>>>>:
(A10)

The numerical values of the constant coefficients
a1; a2;…; a5; b0;…; b4 can be found in Ref. 93. The effective
screening length keff can be estimated as

keff ¼ ke 1þ 1
1þ 3C

� ��1=2
; (A11)

where ke ¼ ½kBTe=ð4pZ2e2neÞ	1=2; C ¼ ðZeÞ2=âikBTe, and
âi ¼ ð3=4pneÞ1=3.

Finally, the viscous stress tensor, ps, can be obtained by
restating p0s back into the fixed coordinate system, fe1; e2; e3g,
as follows:

ps ¼ Qp0sQ
T: (A12)

For the special case without the magnetic field, i.e.,
B ¼ 0, the viscous stress tensor can be calculated directly by
using the following formulation:

ps ¼ ls
0Ws: (A13)

Another special situation is when the magnetic field is
aligned with the fixed coordinate system, i.e., B1 ¼ B2 ¼ 0 and
B3 6¼ 0. In this case, the transformation matrix, Q, is reduced
to the second-order identity tensor I. Therefore, no coordi-
nate transformation is needed and the viscous stress tensor
can be calculated by using Eqs. (A4)–(A9) directly.

2. Heat flux, qs

The ion heat flux, qi, is caused by the temperature gradi-
ent only and can be expressed as

qi ¼ �
nik2BTisi

mi

 !�
g0rkTi þ

g01x
2 þ g00
D

� �
r?Ti

� x g001 x
2 þ g000

� �
D

h�rTið Þ
�
; (A14)

where h ¼ B=jBj represents a unity vector in the direction of
the local magnetic field and the symbols k and ? on any vector
denote its component in the parallel or perpendicular direction
to the magnetic field, B, respectively. For example, rkTi

¼ hðh � rTiÞ and r?Ti ¼ h� ðrTi � hÞ ¼ rTi �rkTi. The non-
dimensional variables x and D follow the above definitions.

In contrast, the electron heat flux, qe, is caused by both
the temperature gradient and the relative velocity between
ions and electrons, ðui � ueÞ or current density, J, and can be
written as qe ¼ qTe þ que. The two parts are formulated as

qTe ¼ �
nek2BTese

me

� ��
c0rkTe þ

c01x
2 þ c00
D

� �
r?Te

� x c001 x
2 þ c000

� �
D

h�rTeð Þ
�
; (A15)

que ¼ �
kBTe

e
b0Jk þ

b01x
2 þ b00
D

� �
J? þ

x b001 x
2 þ b000

� �
D

h� Jð Þ
� �

:

(A16)

The numerical values of the constant coefficients, g0, c0,
b0, c00, etc., can be found in Ref. 17.

3. Frictional drag force, Rs

Similar to the electron heat flux, qe, the frictional drag
force between ions and electrons, Rei (or Re), also has two dif-
ferent contributions

Ru ¼
me

ese

� �
a0Jk þ 1� a01x

2 þ a00
D

� �
J? �

x a001 x
2 þ a000

� �
D

h� Jð Þ
� �

;

(A17)

RT ¼ � nekBð Þ
�
b0rkTe þ

b01x
2 þ b00
D

� �
r?Te

þ x b001 x
2 þ b000

� �
D

h�rTeð Þ
�
: (A18)
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Ru is the classical momentum frictional force caused by
the velocity difference between ions and electrons, while the
thermal frictional force, RT, is produced by the electron tem-
perature gradient.

4. Collision generated heat, Qs

Following the approximations made in Refs. 17 and 54, the
ion and electron collision generated heat terms are written as

Qi ¼ QD ¼ 3
me

mi

� �
ne

se

� �
kB Te � Tið Þ; (A19)

Qe ¼ Re � ui � ueð Þ �QD: (A20)

The expression Ru � ðui � ueÞ is the general ohmic heating
term.

We note here that the Braginskii coefficients are consis-
tently derived using two-term Sonine polynomial solutions.
The electron conductivity model presented in Ref. 68 reduces
to the Braginskii model for fully ionized nondegenerate plas-
mas but retains a higher precision for the numerical coeffi-
cients due a different treatment of the Sonine polynomial
solution. Thus, most of the coefficients appearing in the heat
flux and frictional drag force Braginskii formulas are about
8% different from the exact values. On the other hand, Ref. 68
does not include electron-electron scattering, which adds a
non-negligible contribution for low-Z materials, where the
model overestimates the conductivity. For consistency with
the other transport formulas and to consider the full direc-
tional dependence of the transport, here, we use the
Braginskii formulation for the heat flux and frictional drag
force and will address the differences compared to the formu-
lation in Ref. 68 elsewhere.

APPENDIX B: QUASI-NEUTRALITY CONDITION

As discussed in Sec. II D, an indication of the accuracy of
the numerical integration is that the charge density, qc, evalu-
ated from the divergence of the electric field, E, remains suffi-
ciently small at all the times. For all test cases discussed in

this paper, the maximum normalized charge density in the
computational domain, jqc jmax ¼ je0r � E=ðeZniÞjmax, was moni-
tored throughout the simulation times.

Figure 11 shows jqc jmax variation for the 1D plasma shock
and 2D magnetic reconnection problems. Both cases exhibit
sufficiently small values to conclude that the simulations con-
ducted in this study satisfy the quasi-neutrality condition.

APPENDIX C: SINGLE-FLUID LIMITING EQUATIONS

The single-fluid plasma equations (35)–(38) described in
Sec. III B are derived from the non-dimensional two-fluid
plasma equations (20)–(27) by using the ion-electron mixture
definitions, infinite speed of light, and negligible electron
inertia assumptions. The Hall term, electron pressure term,
and all plasma transport terms are retained in the single-fluid
plasma equations, which can be viewed as full Hall-MHD
equations, in contrast to the conventional Hall-MHD equa-
tions where the viscous, heat flux, and acceleration terms are
neglected. As shown in this Appendix, the conventional Hall,
resistive, and ideal MHD equations can be recovered from the
general single-fluid equations (35)–(38) as limiting cases.

1. The conventional Hall-MHD equations

In regimes where Rei;Ree !1; q�ue ! 0, and R�T ! 0 and
assuming that the gradients remain finite, the single-fluid
equations (35)–(38) given in Sec. III B reduce to

@q�

@t�
þ r� � q�u�ð Þ ¼ 0; (C1)

@ q�u�ð Þ
@t�

þ r� � q�u�u�ð Þ ¼ �br�p� þ J� � B�; (C2)

1
c� 1

@p�

@t�
þ r� � p�u�ð Þ

� �
¼ �p�r� � u� þ k̂i

c� 1
r� � p�e

q�
J�

� �
þ k̂ip�er� �

J�

q�

� �
þ 1

bRem
R�u � J�; (C3)

@B�

@t�
¼ �r� � E�; (C4)

E� þ u� � B� ¼ k̂i
1
q�

J� � B� � k̂i
b
q�
r�p�e þ

1
Rem

R�u; (C5)

FIG. 11. The temporal variations of maxi-
mum normalized charge density for (a)
plasma shock and (b) magnetic reconnec-
tion cases.
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J� ¼ r� � B�: (C6)

Equations (C1)–(C6) are the conventional Hall-MHD
equations52,54 in which Ru is a function of current density, J�,
as shown in Appendix A 3 and 1

bRem
R�u � J� / 1

bRem
J� � J� repre-

sents the resistive effects. The q�ue and R�T terms have been
never been considered in previous derivations of Hall-MHD
equations. For the tests considered in this study, these two
terms are negligible. In the presence of turbulence, it is
assumed that viscous dissipation does not vanish in the infi-
nite Reynolds number limit, so that the domain of applicabil-
ity of Eqs. (C1)–(C6) relates to non-turbulent flows, unless
they are used in the context of turbulence modeling with
added subgrid or turbulent transport models.

Written as above, the conventional Hall-MHD equations
are not closed, due to the presence of the electron pressure,
p�e , which cannot be estimated from the rest of the variables.
In practice, to close the equations, some studies54–56 simply
neglect the electron pressure, while others34,57 assume identi-
cal ion and electron temperatures, T�i ¼ T�e . In the latter case,
the electron pressure becomes p�e ¼ Zp�i ¼ p�=ð1þ 1=ZÞ.

2. The resistive MHD equations

In regimes where k̂i ! 0 (and/or r̂Li ! 0), Rei;Ree !1,
and Fr!1, the single-fluid equations (35)–(38) reduce to

@q�

@t�
þ r� � q�u�ð Þ ¼ 0; (C7)

@ q�u�ð Þ
@t�

þ r� � q�u�u�ð Þ ¼ �br�p� þ J� � B�; (C8)

1
c� 1

@p�

@t�
þ r� � p�u�ð Þ

� �
¼ �p�r� � u� þ 1

bRem
R�u � J�; (C9)

@B�

@t�
¼ �r� � E�; (C10)

E� þ u� � B� ¼ 1
Rem

R�u; (C11)

J� ¼ r� � B�: (C12)

Equations (C7)–(C12) are the non-dimensional resistive
MHD equations46,54. Obviously, the resistive MHD equations
are closed without the need of explicitly assuming identical
ion and electron temperatures (T�i ¼ T�e). As before, Ru is a
function of current density, J�. Again, neglecting the viscous
contributions in the infinite Reynolds number limit generally
precludes the use of Eqs. (C7)–(C12) for turbulent flow
calculations.

3. The ideal MHD equations

If in addition, Rem !1, the resistive MHD equations
(C7)–(C12) can be further reduced to the ideal-MHD equa-
tions46,54 given as follows:

@q�

@t�
þ r� � q�u�ð Þ ¼ 0; (C13)

@ q�u�ð Þ
@t�

þ r� � q�u�u�ð Þ ¼ �br�p� þ J� � B�; (C14)

1
c� 1

@p�

@t�
þ r� � p�u�ð Þ

� �
¼ �p�r� � u�; (C15)

@B�

@t�
¼ �r� � E�; (C16)

E� þ u� � B� ¼ 0; (C17)

J� ¼ r� � B�: (C18)
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