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a b s t r a c t

We extract a suitably averaged fluctuating density from the two-dimensional radiographic image of a
flow. The X-ray attenuation is given by the Beer–Lambert law which exponentially damps the incident
beam intensity by a factor proportional to the density, opacity and thickness of the target. By making
reasonable assumptions for the mean density, opacity and effective thickness of the target flow, we
estimate the density fluctuation contribution to the attenuation. The extracted density fluctuations
averaged across the thickness of the flow in the direction of the beam may be used to form the density–
specific-volume correlation b. In a statistical description of variable-density turbulence, b quantifies the
degree of mixedness. The ability to extract a measure of mixedness from experimental data would be
a powerful tool that could be used in the validation of mix models. The scheme proposed is tested
for DNS data computed for variable density buoyancy-driven mixing. We quantify the deficits in the
extracted value of b due to target thickness, Atwood number and modeled signal noise. This analysis
justifies using the proposed scheme to infer the mix parameter from thin targets at moderate to low
Atwood numbers. To illustrate how the scheme might be used in a practical problem, we demonstrate
its application to a radiographic image of counter-shear flow obtained from experiments at the National
Ignition Facility.

Published by Elsevier B.V.

1. Introduction

Experimental platforms such as the National Ignition Facility
(NIF) at the Lawrence Livermore National Laboratory [1,2] and
the OMEGA laser at the Laboratory for Laser Energetics [3] are
designed to facilitate measurements of fluid dynamics events that
result from laser pulses impinging on suitably designed targets.
Among the diagnostic tools used to study these events are radio-
graphic images taken from various angles relative to the target.
The resulting images, which may be taken at any prescribed time
after the laser is shot, are a 2-dimensional (2D) representation
of flow structure. A visualization of such an image might show
the positions of, for example, instabilities and their spatial extent,
and perhaps retain some information on the relative positions
of various components of the target. However, quantitative in-
formation on density variances and mixing, in particular, are
not directly available. If such information were to be deduced
from the radiographic images, it would be very useful in param-
eterizing physical processes in model calculations of such flows.
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This process is standard in improving predictive capabilities of
models for complex flow systems.

Approaches to modeling turbulent mixing have often been
motivated by the causative instabilities such as Rayleigh–Taylor
and Richtmyer–Meshkov instabilities. Youngs was an early pro-
ponent of the need to model such instabilities, developing a
two-fluid modeling approach as well as extensive early numerical
simulations and analysis of RT instability driven turbulence [4,5].
Since those efforts, RT and RM instability validation have re-
mained a mainstay of turbulence model development. The NIF
and OMEGA platforms offer a unique platform for imaging such
instability driven hydrodynamic flows. However, such images of
flow structures evolved from instabilities do not give a quanti-
tative measure of the mixing itself. If such measures could be
recovered from radiographic data, they would provide powerful
new ways to constrain and validate models.

In this paper we propose a way to extract a statistical measure
of mixing from 2D radiographic images. The data obtained in
this way is essentially photon counts through the target. The
attenuation of an X-ray beam through a target depends on the
thickness, density and opacity of the target via the Beer–Lambert
law. We do not, in principle, know all of the three parameters
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a priori. However, using reasonable assumptions for any two of
the parameters, we can invert the attenuation law to recover
information about the third. In our particular case we show how
to recover a statistical measure of the density fluctuations which
will then be used to compute a mixing parameter.

We approach the problem of computing a mixing parameter at
the level of equations for single-point, second-order correlations
in variable-density turbulence. One such modeling framework
is the BHR model [6] which was developed at Los Alamos Na-
tional Laboratory to address the problem of mix modeling in
multi-physics codes. While we will use the BHR model and its
description of mixing in what follows, it is worth emphasizing
at the outset that the algorithm developed below for extraction
of a mixing parameter from radiographic data permits straight-
forward application to analogous quantities in other modeling
frameworks that lie within the Reynolds- or Favre-averaged fam-
ily of single-point closure models for turbulence. The k-L [7] and
Reynolds stress [8] models are two examples of alternative RANS
models for which a mixing parameter, suitably defined, may be
analyzed in a manner similar to what follows. In particular, the
proposed algorithm does not depend on how well the model
performs in a particular flow or what the underlying modeling
assumptions are. Once a mix parameter that is defined based
solely on density fluctuations is identified, our approach can be
used to approximate it from radiographic data.

Variable-density turbulence consists of the mixing and trans-
port of two fluids of different densities that are permitted to
interpenetrate and mix driven by an acceleration (e.g. gravity or
laser impulse). The second-order equations of motion are dis-
cussed at length in [6] wherein a closure model is formulated at
the level of the second-order single-point correlations. We review
this approach here briefly in order to introduce the quantity
of interest for this study. We begin with the choice of Favre
decomposition for the velocity field:

ui = ũi + u′′

i (1)

where the mass-weighted (Favre averaged) velocity ũi =
ρui
ρ

and
u′′

i is the fluctuation with respect to the Favre averaged mean
velocity. The equations for the fluctuations defined in this way
are obtained from the Navier–Stokes equations. Subsequently, the
equation for single-point correlations of the fluctuations Rij =

ρu′′

i u
′′

j gives rise to a pressure-gradient production term an ∂p
∂xn

where ai = −u′′

i may now be interpreted as the velocity cor-
responding to mass flux. This requires a further equation for
ai which gives rise to a second pressure-gradient production
term b ∂p

∂xi
where b = −ρ ′υ ′ for the specific-volume fluctuations

defined by υ ′
= υ − υ where υ = 1/ρ, The density–specific-

volume correlation b, also called the density self-correlation may
be re-written as b =

(ρ′)2
ρρ

which implies that b is non-negative.
The detailed closed form of BHR includes additional equations
for a length-scale, energy-dissipation and conservation of species
which we will not present or discuss here.

The quantity of interest to us in the present work is

b = −⟨ρ ′υ ′
⟩ (2)

where ρ ′ is the density fluctuation and υ ′ is the specific volume
fluctuations; ⟨·⟩ denotes a suitable average over the domain or
over an ensemble. As described in the introduction, the factor
b modulates the pressure gradient which generates the mass
flux, which in turn governs the conversion from potential to
kinetic energy. Production of kinetic energy stirs the flow. b may
be shown to be positive, only going to zero when the flow is
molecularly mixed. Given these properties, b might be considered
to be a good measure of the mixing state of the flow.

The variable density case provides a non-trivial test bed for
non-Boussinesq effects in the mix problem. The parameter b can
be written to separate out the Boussinesq contribution using a
Taylor series expansion for small density fluctuations [9]:

b =
⟨ρ ′2

⟩

ρ2
0

−
⟨ρ ′3

⟩

ρ3
0

+ · · · (3)

=

∞∑
n≥2

(−1)n
⟨ρ ′n

⟩

ρn
0

(4)

=

∞∑
n≥2

(−1)2
⟨ρ ′∗n

⟩

An (5)

where ρ0 = ⟨ρ⟩ is the mean density over the domain. The last
equality expresses the expansion in terms of the non-dimensional
Atwood number parameter A and ρ ′∗ is normalized by one half
the different between the pure fluid densities. The series trun-
cated at the first term n = 2 is the Boussinesq component. In
the paper we will assess the importance of the non-Boussinesq
contributions both from studying the terms in this expansion
as well as direct measurements from DNS of different Atwood
numbers.

The paper is divided into five sections. Section 2 describes how
to derive a statistical measure of density that would result in an
observed attenuation, and calculate an estimate of b. In Section 3
we apply the method to data obtained from DNS of variable
density gravity-driven flow for which we know all statistical
quantities exactly. We use the DNS data as the target for a test
incident beam and compute estimates for b and compare them
to the exact quantities to assess the accuracy of our inversion
procedure. We quantify the deficits inherent in the attenuation
process due to the target thickness, Atwood number and non-
Boussinesq effects and noise in the incident beam. In Section 4
we apply the procedure to infer statistical estimates of a mix
parameter from a sample image obtained from NIF experiment
designed to study the development of shear instability in a thin
Titanium tracer foil that is counter-sheared by shocks generated
by simultaneous laser impulse at both ends of the foil. A summary
and discussion are presented in Section 5.

2. Inversion algorithm

Let ẑ denote the direction of incident beam of intensity I0 in a
conventional right-handed Cartesian coordinate system denoted
by unit-vectors (î, ĵ, k̂). Then the Beer–Lambert law for the beam
intensity upon exiting the target is given by

I(x, y) = I0 exp
(
−

∫ Z0

0
ρ(x)κ(x)dz

)
(6)

x and y are the cartesian position coordinates in the plane orthog-
onal to z; ρ and κ are respectively the spatially varying density
and opacity of the material at vector position x = (xî, yĵ, zk̂);
Z0 is the linear distance through which the beam travels. In-
deed the experimental data available are essentially the function
Γ (x, y) = ln

(
I0

I(x,y)

)
. From this function we attempt to extract

quantitative information about the density fluctuations and a
mixing parameter as follows.

Define the average of a quantity f in the n direction by

⟨f ⟩n =
1
N

∫ N

0
f dn (7)

where n may be x, y or z and N is the upper bound of the n
coordinate in the flow. Then, attenuation through the flow as a
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function of position (x, y) in the plane may be written as:

Γ (x, y) = ln
( I0
I(x, y)

)
= κ0Z0⟨ρ(x, y, z)⟩z

= κ0Z0ρ(x, y)
= κ0Z0(ρ0 + ρ ′(x, y)) (8)

where the planar average ρ(x, y) is expressed in terms of the
global mean ρ0 and fluctuations about the mean ρ ′(x, y) at a
given (x, y). We could just as well have used the more refined
definition of ρ0 = ⟨ρ⟩z,y but this does not add anything relative
to our test case which is 3D homogeneous; this choice is also
motivated by the fact that we will not have a priori knowledge
of structures and inhomogeneities in the actual experimental
and therefore (near) statistical homogeneity is a reasonable first
assumption. The reader will note that in Eq. (8) the opacity κ0
and the thickness Z0 are modeled as constants. It is not easy to
confirm this from data of the type we are ultimately interested
in analyzing, but should be a reasonable assumption for a large
enough class of situations. A suitable fluctuating density can
stand as a surrogate for the effects of both opacity and thickness
variation if we consider an effective mass attenuation constant
µ = κρ. The first term of Eq. (8) corresponds to an optical depth
(or inverse Knudsen number), being a ratio of the characteristic
flow size Z0 to a radiation mean free path LR = 1/(ρ0κ0), while
the second term might be interpreted as a fluctuating Knudsen
number.

From Eq. (8) we may infer the density fluctuations in the plane
in terms of the experimentally known quantities and material
properties:

ρ ′(x, y) =
Γ (x, y)
κ0Z0

− ρ0. (9)

and similarly the specific-volume fluctuations in the plane:

υ ′(x, y) =
1

ρ(x, y)
−

( 1
ρ(x, y)

)
0

=
κ0Z0

Γ (x, y)
−

( κ0Z0
Γ (x, y)

)
0

(10)

where again the subscript 0 denotes a mean-value over the do-
main. The fluctuation quantities defined by Eqs. (9) and (10)
describe an infinitesimally thin layer with material distributed
such that the net effect of the X-ray beam attenuation through
that layer is the same as the effect of the attenuation through the
original three-dimensional domain. We define the experimentally
inferred surrogate for b,

bSe = ⟨ρ ′(x, y)υ ′(x, y)⟩ (11)

where ρ ′ and υ ′ are given by Eqs. (9) and (10) respectively.
What is lost in this description, is any detailed information of
the fluctuations in the direction of attenuation. Therefore, in a
radiographic imaging experiment, beam attenuation represents
an a priori averaging of density fluctuations in one (beam) direc-
tion. Any subsequent inference of density fluctuation statistics or
correlations necessarily uses such averaged quantities with some
inherent loss of detail about the flow.

To emphasize this point, let us suppose that one does have
the detailed information about density at all points in the do-
main.Then the mix parameter may be computed for any aver-
aging scheme as follows. In the plane orthogonal to the beam
direction the functional form of b is,

b(x, y) = ⟨ρ ′(x)υ ′(x)⟩z (12)

where the point-wise fluctuations ρ ′(x) = ρ(x) − ρ0 and ρ0 is
the mean density over the entire domain. An analogous defini-
tion holds for υ ′(x). and along, say, the x-direction, by further
averaging

b(x) = ⟨b(x, y)⟩y = ⟨ρ ′(x)υ ′(x)⟩z,y (13)

and finally down to a single-point quantity defined over the
entire domain

b = ⟨b(x)⟩x = ⟨ρ ′(x)υ ′(x)⟩z,y,x (14)

If, however, one can only infer a statistical value of the density
fluctuations in the plane as in Eqs. (9) and (10), then a type of
surrogate value of b might be estimated as:

bS(x) = ⟨ρ ′(x, y)υ ′(x, y)⟩y (15)

where,

ρ ′(x, y) = ⟨ρ(x)⟩z − ρ0 (16)
υ ′(x, y) = ⟨1/ρ(x)⟩z − υ0 (17)

may be calculated exactly from DNS data. The inferred density
fluctuation in Eq. (9) is consistent with the above definition
in Eq. (16). However, the specific-volume inferred from experi-
ments in Eq. (10) is inconsistent with the definition of Eq. (17).
This is because the average in the z-direction of the point-wise
specific-volume ⟨1/ρ(x)⟩z only approaches the inverse of the
z-averaged density 1/⟨ρ(x)⟩z in the Boussinesq limit wherein
density fluctuations are small. For an experimental measurement
using radiography, the choice υ ′ from Eq. (10) is the only one
and we will denote the corresponding mix parameter as bSe. We
propose that bSe computed using quantities from radiographic
data in this way, is a reasonable approximation for bS and hence
the true b. We will evaluate this hypothesis using calculations of
the different measures of υ ′ from DNS data as a surrogate for the
experimental system. In the next section we will use DNS data to
compute the mixing parameter both exactly and in its surrogate
forms from the radiographic field generated by an assumed initial
X-ray beam. The goal is to understand the deficits implicit in an
experimentally computed b.

3. Test case: DNS of homogeneous variable density flow

We use as our test case Direct Numerical Simulations (DNS)
data of homogeneous buoyancy driven variable density turbu-
lence [10]. This flow is described by the variable-density Navier–
Stokes equations, which represent the incompressible (infinite
speed of sound) limit of the compressible Navier–Stokes equa-
tions with two miscible species with different molar masses
[9–11]. In this limit, the density variations arise from compo-
sitional changes as the two species mix and lead to non-zero
divergence of velocity. The boundary conditions are triply peri-
odic, and the two fluids are initialized as random blobs, consistent
with the homogeneity assumption. The flow starts from rest, with
only a small amount of dilatational velocity necessary to satisfy
the divergence condition and turbulence is generated as the two
fluids start moving in opposite directions due to differential buoy-
ancy forces. These forces are generated due to a constant gravity
term ρgz , acting in the vertical direction z in the momentum
equations [10]. However, as the fluids become molecularly mixed,
the buoyancy forces decrease and at some point the turbulence
starts decaying. The flow has similarities with the inner region of
the mixing layer generated by the acceleration-driven Rayleigh–
Taylor instability during the growth stage and the shock-driven
Richtmyer–Meshkov instability during the decay stage [12–14].
As a canonical flow to study variable density effects on turbu-
lence, this flow has also been used to calibrate turbulence models,
including the model targeted by our analysis [15].

The test problem is set up as follows. An incident beam of
X-rays with intensity I0 = 1 is assumed to enter the box of fluid
at z = 0 and exit at z = 1. We assume that the attenuation is
dominated by density fluctuations and set constant κ0 = 1.0. The
density at each point in the flow domain has been computed as
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Fig. 1. Comparison of exact b(x) (red) with the surrogate value bS (x) (black) for
averages over a thin slice (top) and full thickness (bottom) of the flow domain.

the DNS solution [9,10]. We considered a snapshot of the flow
at the time the turbulent kinetic energy reaches its peak, so that
the flow has a rich turbulent structure. At this time the Atwood
number is 0.75 and the mean density ρ0 = 4.0 in the units of
the simulation. As explained in [9] turbulence in homogeneous
variable-density turbulence at the time of peak kinetic energy is
similar to various canonical turbulence problems, including the
inner region of the fully developed Rayleigh–Taylor mixing layer.

3.1. Effect of target thickness

We first assess whether the surrogate bS(x) defined in Eq. (15)
is indeed a good approximation of the true b(x) defined in Eq. (13).
In Fig. 1 we show these quantities computed both over a thin slice
of the domain with thickness Z0 = 0.03 and then over the full
domain with thickness Z0 = 1.0. As may be expected, for the thin
domain, the actual and surrogate values agree quite well, while
the disparity is significant for averages over the full domain.

We computed the error as a function of the non-dimensional
thickness Z0/Lρ where Lρ is the integral length scale of the density
variable tabulated for the decaying flow as a function of A in
Table 1. The standard error is defined as

σb =

√∑
x (bS(x) − b(x))2

Nx
(18)

where Nx = 256 is the number of data points in the x-direction.
The error is shown in Fig. 2 for different A as the flow decays. As
the thickness becomes smaller than Lρ the error scales as Z2

0 while
the growth is a shallower Z1/2

0 as the thickness increases past Lρ .

Fig. 2. Standard error relative of bS (x) relative to b(x) as a function of domain
thickness.

Table 1
Integral length scale Lρ of the density variance as a
function of the Atwood number as the flow evolves.
A Lρ

0.75 0.034
0.41 0.051
0.14 0.069
0.02 0.072

This result demonstrates that for attenuation through sufficiently
thin slices of a statistically homogeneous flow, the surrogate
definition of the mix parameter is justified. This is reassuring in
terms of application of these methods to real data for which the
actual density fluctuations are not known. The NIF experiments
that provide the motivation for the present analysis appear to fall
in the regime of ‘thin’ domains for which the inversion algorithm
we propose might be justified.

We proceed in the next section to assess the effect of non-
Boussinesq effects on the surrogate measurement of bS .

3.2. Effect of Atwood number

Given the above justification for using bS as a reasonable
surrogate for the true b for thin domains, we now proceed to
assess the difference arising in bS with definitions for υ ′ given
by Eqs. (10) and (17).

From the attenuation formula Eq. (6) we obtain the radio-
graphic image of the data as shown in Fig. 3. The attenuation
ranges from almost total (blue regions) to about 85% (red regions).
From this intensity field we can infer ρ ′(x, y) using both Eqs. (9),
as inferred from the test attenuation field, and (16). These are
identical and the resulting field is shown in Fig. 4. However a
comparison of υ ′ computed from the attenuated field according
to Eq. (10) and from Eq. (17) shows a difference (see Fig. 5).
As discussed above, this discrepancy is due to non-Boussinesq
effects, pointing to an Atwood number (A) dependence. The global
Atwood number in this DNS flow decays over time as the flow
mixing. We can therefore track the discrepancy introduced by
the Boussinesq effects by tracking bS computed in two ways over
time.

We compare the exact bS(x) as defined in Eq. (15) and its
estimate bSe(x) using the quantities defined in Eqs. (9) and (10)
at two different times in the flow corresponding to two differ-
ent global Atwood numbers 0.75 and 0.14. Fig. 6 shows these
results.
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Fig. 3. Map of intensity field I(x, y) after attenuation in the z-direction through
variable density flow data.

Fig. 4. Two-dimensional field of density fluctuations ρ ′(x, y). The calculation
from Eq. (9) shown here (inferred from I(x, y) in Fig. 3) agrees with the direct
calculation from the DNS data using Eq. (16) (not shown).

The Atwood number dependence may be further quantified by
considering the error

σbS =

√∑
x (bS(x) − bSe(x))2

Nx
. (19)

This quantity is plotted for Atwood number as the flow decays
at four different times; the result is shown in Fig. 7. The error is
calculated for attenuation through the whole domain Z0 = 1.0
and for attenuation through thickness equal to the integral scale
of the density Z0 = Lρ . The relative error decays rapidly with A
for both cases, justifying the use of the estimated bSe at moderate
to low A. These errors are relatively small compared to the error
implicit in thickness effects. The two errors become comparable
for thin target domains, that is, for Z0 ≤ Lρ (see Fig. 2).

3.2.1. Taylor-series expansion of b and non-Boussinesq effects
We recall that the parameter b may be expanded in a Taylor

series for small υ ′ as described in the Introduction (Eq. (5))
with the leading order capturing the Boussinesq contribution. We
compute the series expansion bE for n up to 6. In the expansion, ρ ′

is inferred from Γ , (Eq. (9)) and ρ0 is the mean over the domain.
Fig. 8 shows that the series bE converges to bSe(x) over most of

Fig. 5. Two-dimensional specific-volume υ ′(x, y) inferred from the X-ray image
as in Eq. (10) (top); and computed according to Eq. (17) (bottom).

the domain indicating consistency with the definitions. However,
also consistent with expectation, the deficit between bSe and bS
is not recoverable. That is lost in the averaging implicit in the
attenuation process itself.

The analysis thus far shows that the optimal procedure is to
estimate bSe from the attenuated intensity field. This will be close
to bS at low to moderate A. Then, assuming a thin target (relative
to some dynamically significant scale such as the density integral
length scale), bS becomes a true surrogate of b.

In the next section we consider the effect of noise on the
attenuation and the resulting inferred statistics.

3.3. Effect of noise

Experimental data will typically be noisier than DNS data.
In this section we make a reasonable ansatz for the noise in
the incident beam and compute the resulting variability in the
inferred density statistics. Since the incident beam is a positive
definite signal, we choose a Gamma-distribution for I0 with shape
k and scale θ . The mean of a gamma distribution is kθ . We
therefore choose values of k and θ such that kθ = 1. That is, we
model a system with mean incident X-ray intensity of 1.0 and
vary the shape of the distribution around this mean. Fig. 9 shows
the effect of adding noise in the incident beam for two different
values of θ at A = 0.75 for attenuation through the entire box.
The estimated bSθ (x) (defined by bSe with input noise) in fact
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Fig. 6. Exact bS (x) computed from Eq. (15) compared with its estimate from the
radiography data at A = 0.75 (top) and A = 0.14 (bottom).

Fig. 7. Atwood number dependence of the standard error σbS of bSe (x) relative
to bS .

shows better agreement with the target bS(x) for small values of
θ . The noise appears to artificially decrease the error relative to bS
for small θ . This observation is strengthened in Fig. 10. Denoting
the estimated mix parameter as bSθ , we compute the error

σbθ =

√∑
x (bS(x) − bSθ (x))2

Nx
. (20)

For each A the error goes to a different lower bound for suffi-
ciently small θ . It is interesting to note that for each A there is a
lower bound on the error. As θ approaches 1, the relative error

Fig. 8. The surrogate function bS , its estimate bSe from the radiography inversion,
and the series expansion bE at A = 0.75. The series bE converges (magenta line,
n = 6) to bSe (dashed line).

Fig. 9. The surrogate mix parameter bS (x) compared with a noisy inferred value
bSθ for two values of the noise parameter θ from a gamma-distribution of initial
intensity I0 . Top: θ = 0.0002; bottom: θ = 0.25.

becomes independent of A. There also appears to be an Atwood-
independent regime for the error introduced by noise in a band
of values 0.1 ≤ θ ≤ 1. We conclude from this simple noisy
model analysis that a small amount of noise could in fact ‘help’
by artificially pushing the inferred bSθ closer to bS . However, since
there is still some deficit due to the fact that bSθ is a modification
of bSe (which is the best we can obtain from experiment), we
never reduce the error relative to bS to zero at any A. That is, the
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Fig. 10. Dependence on noise distribution parameter θ of the standard error
relative to bS (x) for various Atwood numbers.

Fig. 11. Schematic of counter-shear experiment.

Table 2
List of exact (top row) and approximate measurements of the mixing parameter.
Each row has the definition and whether it can be measured in DNS or
radiographic experiments.
b(x) ⟨ρ ′(x)υ ′(x)⟩z,y DNS
bS (x) ⟨ρ ′(x, y)υ ′(x, y)⟩y using Eqs. (16) and (17) DNS
bSe(x) ⟨ρ ′(x, y)υ ′(x, y)⟩y using Eqs. (9) and (10) DNS, expt
bE (x)

∑
∞

n≥2(−1)n ⟨ρ′n
⟩

ρn
0

DNS
bSθ (x) bSe for noisy I0 DNS

noise model does not compensate entirely (even if artificially) for
the loss of information about density fluctuations.

Table 2 lists the various definitions of b used in this study. In
summary thus far, the analysis of DNS data has shown that the
target thickness is a key factor in whether a reasonable mix pa-
rameter bS may be extracted from radiographic data. For domains
of thickness less than the integral length scale of the density
field, the approximation bS(x) ≃ b(x) seems to be justified. The
Atwood number dependence is independent of target thickness,
and errors associated with A are smaller than those of thickness
effects. Finally, for small values of the scale parameter θ , the error
relative to bS(x) is artificially decreased.

4. Extraction of mix parameter from the radiographic image
of a counter-sheared flow

In this section we perform a calculation to demonstrate the
utility of our scheme in a practical application. The main purpose
is to step through the process of deriving a mixing parameter
from radiographic data supplemented with knowledge of relevant
experimental conditions and material properties. Since we do not
have density measurements yet to confirm our results, as can
be done with DNS, we use our validation and assessment of the
method for DNS data above, along with the associated caveats, to
justify application to experimental data.

Fig. 11 shows the experiment geometry — a 5 mm long beryl-
lium shock tube with inner diameter 1.5 mm is driven by the

Fig. 12. Plane-view of the function Γ for the counter-shear flow in a Ti target
generated by opposing shocks moving in the x-direction, at t = 34.5 ns after
initiation of the experiment. The vertical black lines enclose the mixing region
of interest.

National Ignition Facility [1] on both sides by 330 kJ, shining into
gold hohlraums mounted on either end. This fills the hohlraums
with a 250 eV radiation bath, which ablates a plastic reaction
mass (shown in crosshatch in the schematic) and drives a strong
shock into each side of the tube. The tube interior is filled with
two hemicylinders of light foam, bisected by a metal foil: here,
24 µm of solid density titanium. Gold hemi-cylindrical plugs are
placed on opposite sides of each end of the tube to collimate the
shocks, so that they break separately into opposite sides of the
shock tube. The laser drive is sustained for 11 ns, allowing an
approximately steady flow of around 110 km/s to set up behind
each shock. When the shocks cross in the tube center, this creates
a region of intense shear across the foil. Furthermore, the drive
heats the tube environment to over 50 electron volts (around
600,000 K), driving it into the dense plasma regime, allowing
it to respond hydrodynamically to the drive. The experiment
survives until approximately 36 ns, at which point the shock tube
disintegrates under the high pressure and temperature and the
experiment ends.

The experiment is diagnosed by reserving 100 kJ of the avail-
able laser energy drive to later irradiate a iron foil placed outside
of the shock tube. The heated foil then emits X-rays which pass
through the shock tube and are imaged by an opposing camera
system, with time resolution around 0.1 ns. Experiment materials
are chosen such that the diagnostic X-rays pass preferentially
through the tube and low density foam, but are absorbed by the
titanium. The facility geometry only allows this data to be taken
in one direction per experiment; the experiment is then repeated
to image the mixing layer in an orthogonal direction. Sample
images are shown in the x-z plane (the edge view, Fig. 13) and in
the orthogonal plane imaging down through the planar titanium
layer (Fig. 12). More information on the facility configuration
and experiment including details on the laser drive and auxiliary
diagnostics can be found in [16–19] and on the X-ray diagnostic
scheme in [20,21].

We choose a representative frame from a series of shots com-
pleted at NIF for counter-shear flow in Titanium (Ti) target of
initial thickness of 24 µm [22]. Both planar and edge views of
the target are available at identical time t = 34.5 ns. The planar
view (orthogonal to beam in the z-direction) of the function Γ is
shown in Fig. 12 while the edge view is in Fig. 13. In the planar
view, the equivalent of Γ (x, y) is directly imaged while in the
edge view the intensity is in photon counts. The edge-view in
this type of experiment has been used extensively to infer a mix-
width based on the thickness over which the intensity is damped
to, say, 90% of maximum [18].
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Fig. 13. Edge-view of the X-ray intensity field for counter-shear flow in a Ti
target generated by opposing shocks moving in the x-direction, at t = 34.5 ns
after initiation of the experiment. The vertical black lines enclose the mixing
region of interest.

Table 3
Experimental data parameters for Ti target at shot time t = 34.5 µs.
Target ρi (g/cc) Zi (cm) κ0 (cm2/g) Z0 (cm) ρ0 (g/cc)

Ti 4.5 0.0024 203.7 0.06 0.208

From these data parameters we need to obtain the quantities
κ0, Z0 and ρ0 in order to solve for the effective fluctuations in the
plane as defined in Eqs. (9) and (10). We will use the mix-width
for this dataset as the thickness Z0 = 0.06 cm reported in [23].
The value of the opacity is estimated from the cold flat-field data
(prior to start of experiment) using the initial relation

Γi = κ0ρiZi (21)

where the subscript i denotes initial (t = 0) values. The initial
flat-field image had a uniform attenuation of 11% through the
target, that is, I/I0 = 0.11 giving Γi = ln(I/I0) = 2.2. The initial
density of the target Ti is ρi = 4.5 g/cc. Eq. (21) may be solved
giving κ0 = 203.7 cm2/g. In practice, when the density fluctua-
tions are multiplied by the specific-volume in Eq. (11), the actual
value of κ0 drops out, so we are only sensitive to our choices for
this value if we want to check intermediate calculations.

To estimate the mean density ρ0 at shot-time, we use the
internal consistency of the data, requiring that:

ρ0 =

⟨Γ (x, y)
κ0Z0

⟩
x,y

(22)

Restricting the average to the region that is thought to be the
mix region (excluding the peripheral regions which have ablator
and other contaminants) this yields ρ0 = 0.20 g/cc. As a check
we can use the fact that the thickness increases by a factor of
Z0/Zi = 25 to scale the density so that ρ0 = ρi/25 = 0.18
g/cc. There is good agreement between the two estimates given
that the mix region at this stage is defined somewhat arbitrarily.
Indeed one might be justified in narrowing the Γ field for the
mix region even further, or even prescribe a more sophisticated
non-constant mix-width consistent with the visual impression of
the radiograph (Fig. 12) so that the ρ0 estimated is arbitrarily
close to 0.18 g/cc which we may think of as a lower bound.
We will use the latter value in the remaining analysis. Similarly,
the magnitude of Z0 drops out of the final calculation of b, but
may be useful for checking intermediate calculated values. The
main given and inferred parameters of the experimental data are
summarized in Table 3.

Fig. 14. Mix parameter for NIF Ti data.

The procedure to extract bSe(x) is followed as for the DNS
test case example above. We also compute the expansion bE(x)
and show it for up to n = 7 in Fig. 14. The figures show that
the mixing parameter retains the structure of the flow quite
well, that is, the positions of the ‘‘roll-ups’’ are captured. The
solid thick black line represents bSe; the series expansions ap-
pear to converge to bSe from below for lower values of b; with
exception of the very high valued regions where the series tends
to converge but falls significantly short of the experimentally
extracted value of bSe. The notable exception to this behavior
is observed for the two central features at 0.065 and 0.075 cm,
corresponding to the central pair of roll-up structures. Here the
Boussinesq approximation at n = 2 (blue line) approximates bSe
(thick black line) quite well while approximations with higher-
order contributions (n > 3) overshoot and converge to values
larger than bSe. It must be recalled that in the case of the ex-
periments we do not have information on the true value of the
density fluctuations, since what we extract is a surrogate, or effec-
tive, density fluctuation field. Assuming that the target thickness
is small enough, we may speculate that the deficits between
the expansion and the value of bSe may be due to invalidity
of the expansion itself in strongly non-Boussinesq regimes (for
example, near the coherent vortical structures, where baroclinic
torques become important [24]). The negligible contribution of
odd-n terms reflects the near-symmetry of the problem in the
x-direction.

5. Conclusion

Our goal in this study was to develop a method to extract
quantitative information about turbulent mixing processes from
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radiographic images of hydrodynamic flows. The quantity of in-
terest is the density–specific-volume correlation function b =

−⟨ρ ′υ ′
⟩. This mixing parameter arises in a second-order statis-

tical representation of the equations for variable density turbu-
lence, and its value goes to zero as the flow becomes molecularly
mixed. Two-dimensional radiographic images essentially offer
photon counts which, when the incident beam details are known,
may be associated with an averaged density fluctuation profile by
inverting the Beer–Lambert attenuation law. From such a density
fluctuation profile, approximate functional forms for b may be
derived. The main approximation arises from the attenuation
process itself, which is an intrinsic loss of information due to
averaging that is proportional to the finite thickness of the target.
The dependence on proximity to Boussinesq approximation may
be used to quantify Atwood number (A) dependence.

Our derived approximations for b are evaluated using high-
resolution data from Direct Numerical Simulations (DNS) of vari-
able density buoyancy-driven turbulence. Since the simulations
offer the exact b, we can assess the quality of the approximations
imposed due to target thickness and Atwood number. The target
thickness is the dominant effect in most cases, and clearly so for
the lowest A = 0.02. Anticipating noisy data from experiments,
we also performed test of how the results may be affected if a
noisy incident beam is used. The effect of moderate noise is also
subdominant to target thickness effects.

With the understanding that thin targets at moderate to low
Atwood number are suitable candidates from which to extract
hydrodynamic mixing parameters, we next applied the new al-
gorithm to experimentally acquired radiographic data from the
NIF facility. This was done not attempting to exhaustively identify
all possible sources of experimental uncertainties, but to demon-
strate that the method tested against DNS data may be applied to
suitably reduced laboratory flows in a straightforward manner.
The width of the structures in these data appears to be of the
same order as the thickness of the mixing layer, thus placing us
in the ‘thin’ target regime, thus justifying this type of exercise. The
results from application of the inversion algorithm to extract an
approximate b profile showed good agreement with the locations
and intensities of the ‘roll-ups’ and other gross features of the
flow. A series approximation with leading order Boussinesq terms
shows poor agreement with the data in the highly unmixed
regions; this is not surprising since the flow is likely in parameter
regimes outside the weakly non-Boussinesq regime for which the
series approximation is valid. The latter observation reaffirms the
importance of estimating b directly, using the procedure outlined
in this paper.

There have been different formulations of statistical measures
of mixing proposed in other models. For example [8] evolves
the square of the density fluctuations while [25,26] are examples
of modeling approaches that evolve the square of the specific-
volume fluctuations. Both of these may be interpreted as descrip-
tive of mixing. Since both these rely on knowledge of density
fluctuations, our method would allow for either of these alterna-
tive formulations to be extracted in a manner formally analogous
to what has been described above. However, only the combi-
nation of density and specific-volume in b will be insensitive
to inferred mixing layer properties κ0 and Z0, and may require
correspondingly greater care to estimate.

In future work, more quantitative assessments for b com-
puted from the experiments will be done in conjunction with
simulations that compute b dynamically for the flows of interest.
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