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ABSTRACT

The structure of collisional plasma shocks has been subject to an extensive, multi-decadal investigation—in the hydrodynamic, hybrid kinetic
ion/electron fluid, and fully kinetic ion/electron limits. Despite this thoroughness, all of these studies apply exclusively to classical, weakly
coupled plasmas. Here, we report the first results for a planar hydrodynamic simulation of a strong, steady-state shock in a subspace of the
warm dense matter (WDM) regime. Specifically, we consider a plasma of fully degenerate electrons with moderate-to-strongly coupled ions.
Since the WDM ion and electron transport coefficients and equation of state differ markedly from their non-degenerate, weak-coupling
equivalents, we find that the structure of a WDM plasma shock notably deviates from the ideal plasma picture.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0129941

I. INTRODUCTION

The warm dense matter (WDM) regime covers a very broad
range of material densities and temperatures and is quite ubiquitous in
high-energy-density (HED) environments. Such settings where WDM
may be found include white dwarf stars, the interior cores of the solar
system gas giants, and certain phases of an Inertial Confinement
Fusion (ICF) implosion.1 Unlike classical, weakly coupled plasmas,
WDM is characterized by strong plasma particle correlations and may
involve quantummechanical effects (e.g., electron Fermi degeneracy).

Another phenomenon that many HED systems have in common
is the appearance of shocks; which is particularly the case for ICF. While
the structure of a plasma shock in weakly coupled plasmas (with purely
classical electrons and ions) has been well explored,2–10 to our knowl-
edge, no results for any WDM regime have been published. We aim to
rectify this by reporting the first results for a hydrodynamic simulation
of a strong, steady-state, planar plasma shock in aWDM regime charac-
terized by strongly coupled ions and fully Fermi degenerate electrons.

We acknowledge that strong shocks are intrinsically kinetic in
nature and that the hydrodynamic (i.e., continuum) approach will not
capture these effects. However, as a first step toward uncovering the
structure of WDM shocks, we follow the historical precedent2–5 estab-
lished by the study of non-degenerate/weakly coupled shocks, by first
considering the hydrodynamic approach. Limitations of hydrody-
namic modeling aside, we show that the WDM shock structure dis-
plays some notable differences from the non-degenerate/weakly
coupled continuum solution.

Another advantage to using the hydrodynamic limit is the fact
that, via the Green–Kubo11,12 relations, equilibrium molecular dynam-
ics (MD) simulations can be used to calculate the ion transport coeffi-
cients in the strong Coulomb coupling regime. Equilibrium MD can
also be used to infer the ion equation of state (EOS).

The paper is organized as follows. Section II reviews the basic
structure of plasma shocks in the weakly coupled, purely classical limit.
Section III describes the basic physics parameters and orderings which
confine the WDM subspace we consider in this study. Next, Sec. IV
details the fluid equations we use to simulate a WDM shock. Then,
Sec. V considers subtleties surrounding the meaning of the mean-free-
path in a strongly coupled regime and presents a resolution. Section
VI explains the hydro code, SHion, which we use for our simulations.
After that, Sec. VII shows our main results, which make it clear that
the structure of a WDM shock differs from the non-degenerate/weakly
coupled equivalent. We address the uncertainties in our EOS model in
Sec. VIII and consider the impact of kinetic effects on the plasma
structure in Sec. IX. Finally, we conclude in Sec. X. All equations
appear in cgs units.

II. REVIEW OF COLLISIONAL PLASMA SHOCKS

We start with a review of collisional plasma shocks. To our
knowledge, the structure of plasma shocks has only been studied in
the non-degenerate/weakly coupled plasma regime. Multiple
authors2–5 have shown that the hydrodynamic structure of a strong
(non-radiative and non-magnetized), planar, steady-state plasma
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shock can be divided into three distinct regions. These are (1) an electron
preheat layer, in which the electron temperature exceeds the ion tempera-
ture in the front part of the shock, of length �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
kii—where mi

and me are the ion and electron mass, respectively, and kii is the post-
shock (downstream) ion–ion mean free path (mfp); (2) an ion compres-
sion shock of a few kii in length, wherein the plasma density is compressed
by a factor of about 4 (for shocks in monatomic ideal gases; like weakly
coupled plasmas), and the electrons are heated quasi-adiabatically; (3) a
layer behind the shock where the ion and electron temperatures
equilibrate—which is also of length�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
kii (see Fig. 1).

As we expand upon in Sec. IX, plasma kinetic effects cause the
structure of a shock to differ from the hydrodynamic picture,6–8,10 by
smearing out the sharp features near sites of strong gradients (see Fig. 2).

Nonetheless—as Fig. 2 attests—the basic division into three
distinct regions remains. For our study—which approaches shock
structure from the hydrodynamic perspective—it will be the non-
degenerate/weakly coupled fluid results which provide our reference
point.

III. BASIC PHYSICS CONSIDERATIONS

For our main results, we will consider hydrogen plasma, only.
However, for the sake of generality, let us first consider a generic
single-ion plasma (labels “i” and “e” signify the ion and electron spe-
cies s, respectively) in a non-magnetized, non-radiative, non-
relativistic plasma with strongly coupled, classical ions and fully Fermi
degenerate electrons. This represents a subspace of the WDM regime.
The ion coupling strength is then fully determined by the Coulomb
coupling parameter

Ci �
Z2
i e

2

aTi
; (1)

where Ti is the ion temperature, e � jej is the elementary electric
charge, and Zi � qi=e—where qi is the net ion charge, and

a ¼ 3=ð4pniÞ½ �1=3; (2)

is the Wigner–Seitz radius (i.e., the average separation distance
between plasma particles)—where ni is the ion number density. Ions
occupy the moderate to strong coupling regime when Ci � 1.

Next, the impact of electron degeneracy depends upon two key
parameters: (1) the Fermi temperature13

TF �
2
3
�F ¼

p4=3�h2

31=3me

 !
n2=3e ; (3)

where �h ¼ h=ð2pÞ is the reduced Planck’s constant, me is the electron
mass, ne is the electron number density, and �F is the Fermi energy
and (2) the Thomas–Fermi screening length13

kTF ¼
p
3ne

� �1=6 �h

2Ziem
1=2
e

: (4)

If the electron temperature Te � TF , and a� kTF , then, the
electrons are strongly Fermi degenerate. In this case, the degenerate
electrons largely serve as a neutralizing background for the ions. This
is the regime where the one-component plasma (OCP) accurately
describes the ion state.13

In the opposite limit of a� kTF and Te � TF , the ion and elec-
tron interactions are mostly classical unless an electron–ion pair
approach each other within their de Br€oglie wavelengths, ke and ki; at
which point, effects like quantum diffraction become important. These
effects, however, can be approximated via the use of an effective poten-
tial for a two-component (i.e., ionþ electron) plasma (TCP).13

Finally, we can quantify the role of electron strong coupling
effects using the Brueckner parameter, rs—which is the ratio of the
Wigner–Seitz radius to the Bohr radius14

FIG. 1. Normalized temperature profiles for a non-degenerate/weakly coupled,
single-ion, hydrogen plasma shock with M � 1 at steady state in a planar geome-
try. T0 is the upstream temperature, and kUSDD is the upstream ion–ion mean-free-
path. Reproduced with permission from Keenan et al., Phys. Rev. E 96, 053203
(2017). Copyright 2017 American Physical Society.

FIG. 2. Normalized temperature profiles for a non-degenerate/weakly coupled,
D-3He, hydrogen plasma shock with M¼ 5 at steady state in a planar geometry.
Here, the solutions labeled iFP are from a Vlasov–Fokker–Planck code—which is
fully kinetic for the ions, but uses a fluid electron model. The hydro curves are
obtained from the SHion shock code. Reproduced with permission from Keenan
et al., Phys. Rev. E 96, 053203 (2017). Copyright 2017 American Physical Society.
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rs ¼ a=aB: (5)

For a hydrogen plasma,

rs ¼
Ci

2p
a
ke

� �2

: (6)

Electrons are weakly coupled when rs � 1. To avoid complica-
tions associated with TCP in this study, we assume the following
orderings

Ci � 1; (7a)

Te

TF
� h � 1; (7b)

kTF � a; (7c)

rs � 1; (7d)

so that the local plasma equilibrium is well described by molecular
dynamics (MD) simulations of just ions in a neutralizing background
(provided by degenerate electrons). This then allows us to use OCP-
type MD simulations to inform the models we adopt for ion transport
coefficients and the ion EOS. Given the assumption of full electron
degeneracy, we also employ the ideal Fermi gas EOS for the electrons
and the Boltzmann–Ziman model15,16 (with a generalized Coulomb
logarithm) for their thermal conductivity.

With National Ignition Facility (NIF) ICF implosions shots in
mind, we plot the density and temperature range of a radiation-
hydrodynamic simulation of NIF shot N17060117 in Fig. 3. The WDM
subspace described by Eq. (7) roughly fits around the characteristic
evolution curve of the D-T ice layer—as extracted from Rinderknecht
et al.17 using Datathief III.18

Our ion MD simulations use the Yukawa-OCP model. This
entails a simulation of just ions, all interacting via an effective
(screened) potential. We use the following ion–ion potential19

Uab ¼
Z2
i e

2

r
exp �r=kð Þ; (8)

where a and b denote individual ion particles, and

k�2 � 4pe2neffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
e þ T2

F

p ; (9)

is an effective screening length which bridges the gap from the classical
(i.e., Debye-type) to the fully degenerate (i.e., Thomas–Fermi-type)
screening regimes.

Despite the fact that we treat the electrons as a neutralizing back-
ground in our MD simulations, we still allow Ti 6¼ Te (where Ti is the
ion temperature) in our fluid shock simulation. We believe that this
assumption is justified in the regime of interest since the ion EOS and
transport coefficients are largely independent of the electron dynamics.
This is certainly the case in weakly coupled plasmas, where ion–ion
collisions exclusively determine the ion transport coefficients (i.e., vis-
cosity). Admittedly, however, correlation effects between ion and elec-
trons can be very consequential in strongly coupled plasmas. In other
words, ion–electron interactions can make a Virial contribution to the
ion transport coefficients and EOS.

Nevertheless, by using an effective MD potential (as we do here),
the impact of ion–electron correlations on ion transport and the EOS
can be emulated—as long as these correlations remain relatively weak.
In this respect, Te 6¼ Ti is handled via Eq. (8) by using a separate elec-
tron temperature to define the screening length, and it is thereby
assumed that any weak ion–electron correlations impact transport and
EOS properties exclusively via the effective ion–ion potential.

Nevertheless, while only weak ion–electron correlations may be
present within the shock front itself, ion–electron temperature equili-
bration occurs downstream of the plasma shock. Fortunately, we can
approximate the impact of ion–electron correlations on thermal equili-
bration by using a generalized, i.e., Coulomb logarithm (informed by
dedicated TCPMD simulations20).

As a final consideration, we note that the plasma ionization state
can vary across a WDM shock. For this study, we will ignore this effect
and assume that Zi remains constant throughout the entirety of the
WDM shock.

Having elucidated the microphysics underlying our EOS and
transport models, we describe the fluid equations used to simulate a
hydrogen (Zi¼ 1) WDM shock in Sec. IV.

IV. PLASMA FLUID EQUATIONS

To simulate a plasma shock in the WDM regime, we appeal to
the equations of hydrodynamics. Since we allow Ti 6¼ Te, we will
require a set of equations for both the ions and the electrons. First, we
describe the ion fluid equations in the following.

A. Ion hydrodynamic treatment

Allowing Ti 6¼ Te means that we require separate evolution equa-
tions for the protons and electrons. The ion quantities (mass density,
temperature, and flow velocity) can be obtained from the total plasma
continuity equations. By imposing quasi-neutrality, and ignoring elec-
tron inertia, only the electron energy equation is then required to close
the system.

With a focus on the ion physics, we note that the total plasma
mass continuity, momentum, and energy equations are given by21–24

FIG. 3. A selection of the range of temperatures and densities visited by a
radiation-hydrodynamic simulation of NIF shot N170601.17 The shaded area repre-
sents the sub-space which abides by the WDM orderings from Eq. (7), and the
magenta curve is the characteristic path of the D–T ice layer through q–T space.
The leftmost edge of this curve represents the time of the main shock rebound from
the capsule center, and the rightmost edge is near peak thermonuclear reactivity.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 30, 012706 (2023); doi: 10.1063/5.0129941 30, 012706-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


@tqþr � quð Þ ¼ 0; (10a)

@t quð Þ þ r � qu	 uð Þ þ e Zini � neð ÞE ¼ �r � r$ ; (10b)

@t niEi þ neEeð Þ þ r � niEiuþ neEeuþ qþ u � r$ $ r
� �

¼ J � E;
(10c)

where q � qi þ qe ¼ mini þmene 
 mini is the plasma mass density
(ns denotes a number density for species, s ¼ i; e), u is the bulk fluid
velocity, Zi is the assumed constant, E is the macroscopic (Vlasov)
electric field, J is the electric current density, E is the total plasma inter-
nal energy, and r$ is the plasma stress tensor, defined by23–25

r � r$ ¼ rp�r �
X
s

gs ruþ ruð ÞT
h i( )

þr �
X
s

2
3
gs � ls

b

� �
r � u

( )
�
X
s

nsF
C
s ðx; tÞ; (11)

wherein, the sum is over both ions and electrons, gs is the species shear
viscosity, ls

b is the species bulk viscosity, p � pe þ pi is the total pres-
sure (where pe and pi are the electron and ion pressures, respectively),
and FCs is the Coulomb force between a particle of species, s, and all
other particles, which has the form24

FCs ðx; tÞ ¼ �e2
X
s0

ð
dx0 r ZsZs0

jx � x0j

� �
ns0 ðx0; tÞ; (12)

where Zs can be either Zi or Ze ¼ �1, and

pi � niTi �
1
6
n2i

ð
d3r r hðrÞ dU

dr
; (13)

whereU is given by Eq. (8).
The second term on the RHS of Eq. (13) is called the excess pres-

sure13,24 and h is the ion–ion pair correlation function. Let us define

aðni;Ti;TeÞ � �
1
6
ni
Ti

ð
d3r r hðrÞ dU

dr
; (14)

so that we may write

pi ¼ ð1þ aÞniTi ¼ pki þ apki ; (15)

where pki ¼ niTi is the ion kinetic pressure. Note that Eq. (14) applies
strictly to a homogeneous medium. More specifically, accounting for
weak spatial inhomogeneity, the total ion pressure becomes24

p 
 niTi �
2p
3
n2i

ð
s3

dU
ds

h0ðsÞ ds� 2p
3
nirni

ð
s4

dU
ds

h0ðsÞ ds;

(16)

where h0 is the local pair correlation function. The local pair correla-
tion function is not available to use directly in a hydrodynamic
simulation—although it can be readily post-processed (e.g., via MD
simulations, or a hypernetted chain solve) after the fact. For this rea-
son, we will ignore this non-local correlation effect on the ion EOS.
However, this assumption likely fails within the compression shock,
but we leave further investigation of this to a future study.

Next, to first order (i.e., ignoring spatial gradients in the ion
temperature/density, and electron inertia), the total internal energy
density is

niEi þ neEe ¼
3
2
pk þ 1

2
qu2 þ 3aniTi; (17)

where pk � pki þ pe is the total kinetic pressure.
Finally, q � qi þ qe is the total heat flux, where

qs ¼ �jsrTs; (18)

in which js is the species coefficient of the thermal conductivity.
To proceed, we need to further deconstruct the plasma stress ten-

sor, Eq. (11). Fortunately, we can make a few simplifying assumptions.
First, we note that while the ion bulk viscosity is zero for weakly cou-
pled plasmas, in principle, it may assume non-zero values for Ci � 1.
However, it has been shown that li

b � gi in the OCP for
Ci 2 ð1; 160Þ,26 and li

b is nearly zero by magnitude.27 Consequently,
abiding by the Stokes’ hypothesis, we may take 2

3 gi � li
b 
 2

3 gi in Eq.
(11)—i.e., we ignore the ion bulk viscosity, li

b.
Furthermore, we assume that gi � ge and that l

e
b can be neglected.

The first assumption is definitely true for very low-Z plasmas, but le
b

could—in principle—be large for degenerate electrons. Preliminary com-
parisons with established theory16 indicate that le

b � gi in the WDM
regime of interest, but we leave the details to a future study.

Next, if we assume quasi-neutrality, ne ¼ Zini; thus, the electric
field term disappears from the total plasma momentum equation.

Similarly, the FCs ðx; tÞ term vanishes as well since

FCi ðx; tÞ ¼ �Zie2
ð
dx0r 1

jx � x0j

� �
Zni � neð Þ ¼ 0; (19)

and the same results for FCe ðx; tÞ.
Another consequence of charge conservation and quasi-

neutrality is ambipolarity: r � J ¼ 0. If we additionally consider a 1D
geometry for the shock, J ¼ 0, and so J � E ¼ 0 (this also implies that:
u ¼ ui ¼ ue). Consequently, we do not need an additional equation
for the electric field since it vanishes from Eqs. (10).

Finally, we must make a choice for the ion shear viscosity and
thermal conductivity coefficients. For this, we elect to use the
Stanton–Murrilo28 transport model. This model is informed by
Yukawa-OCPMD simulations and the Boltzmann transport theory.

B. Electron hydrotreatment

For weakly coupled electrons, it can be shown that21

@t
3
2
pe

� �
þr � 3

2
peu� jerTe

� �
þ per � u ¼ g Ti � Teð Þ; (20)

where je is the electron thermal conductivity and g is the electron–ion
relaxation rate.

Equation (20) is obtained from substituting the ambipolar electric
field—obtained from the electron momentum equation in theme ! 0
limit—into the electron energy equation. Additionally, the electron
mass continuity equation may be ignored as mene 
 0. Thus, only the
modified electron energy equation—Eq. (20)—is needed to close the
plasma fluid equations.

Note that we omit the electron viscosities, ge and le
b, from Eq.

(20). The electron shear viscosity contribution for non-degenerate/
weakly coupled hydrogenic plasma shocks is negligible compared to
the other terms,10 so we assume that the same holds here. We assume
that the le

b contribution can, likewise, be neglected.
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Since the electrons are assumed to be fully degenerate, they are
described by the ideal Fermi EOS. Thus, the electron temperature is
given by29

Te ¼
2p�h2

me

 !3=5
pe

f5=2ðzÞ

� �2=5
; (21)

where z (the fugacity) is unknown and f5=2ðzÞ is the Fermi–Dirac
integral29

f5=2ðzÞ ¼
4ffiffiffi
p
p

ð1
0

dx x2 log 1þ ze�x
2

� �
: (22)

We appeal to quasi-neutrality, ne¼Zni, and the Fermi–Dirac equation
for the density

ne ¼ T3=2
e

me

2p�h2

� �3=2

f3=2ðzÞ; (23)

where

f3=2ðzÞ ¼ z
@

@z
f5=2ðzÞ; (24)

to find z by solving the equation

Zni ¼
me

2p�h2

� �3=5 pe
f5=2ðzÞ

� �3=5
f3=2ðzÞ: (25)

Next, we need an expression for the electron thermal conductiv-
ity je. We use the Boltzmann–Ziman hydrogen conductivity15,16

je ¼ Aj
neTe

me

� �
3p�h3

4mee4

 !
2GðqFÞ; (26)

where Aj � p2=3; GðqFÞ is a function which depends upon the OCP
structure factor (which is related to the Fourier image of the ion–ion
pair correlation function), and qF¼ kFa—with kF being the Fermi
wave-number at zero temperature (cf. the fully degenerate transport
coefficients in the high-Z Lee–More model30).

The Boltzmann–Ziman model is valid in the fully degenerate
limit for hydrogen, where electron–electron collisions can be ignored
via the Pauli exclusion principle, and the Wiedemann–Franz relation
between the electron thermal and electric conductivities holds. The
Wiedemann–Franz relation is satisfied in a hydrogen plasma for
h � 0:1.31

The structure factor term, 2GðqFÞ, may be treated as the multipli-
cative inverse of a generalized Coulomb log, ln ðKeiÞ�. We elect to
use20,32

ln Keið Þ� ¼ log 1þ bmax=bminð Þ; (27)

where

bmin ¼ max 1:31
Ze2

TBCH
; 0:78

�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meTBCH
p

 !
(28)

and

bmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
TBCH

4pnee2

r
(29)

with TBCH �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
e þ T2

F

p
. With these choices, we may re-write Eq.

(26) as

je ¼ Aj
neTesF
me

� �
; (30)

where

sF ¼
3p�h3

4mee4 ln Keið Þ� ; (31)

is an effective electron–ion thermal relaxation time, which is equal to the
Lee–More30 ��1ei in the fully degenerate limit (which we assume here).

Finally, we need an equation for g. By analogy to the classical
limit, we take

g 
 3
me

mi

� �
nes
�1
F ; (32)

which is the standard Braginskii form.21 but with an electron–ion colli-
sion frequency given by s�1F . Note, for simplicity, we use the same gen-
eralized electron–ion Coulomb log, Eq. (27).

C. Simplified electrons

The orderings in Eq. (7) can be used to simplify the Fermi pres-
sure, Eq. (21). For ke � a, it can be shown that29

pe 

2
5
ne�F 1þ 5p2

12
Te

�F

� �2
" #

: (33)

For ke � a, Eq. (33) is not necessarily accurate. For our shock
simulation, we use the Zimmerman33 fit to the ideal Fermi chemical
potential

lpot

Te
¼ ln ya þ 0:3536ya � 0:004 95y2a þ 0:000 125y3a; ya < 5:5;

(34a)
lpot

Te
¼ 1:209y2=3a � 0:6803y�2=3a � 0:85y�2a ; ya � 5:5; (34b)

where ya ¼ neðh=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmeTe
p

Þ3=2 and elpot ¼ z.
Then, with z calculated, we use the excellent fit to the Fermi inte-

grals given by Aymerich-Humet et al.34

D. 1D ion equations

Considering for now a 1D planar geometry, Eq. (10) simplifies to

@q
@t
þ
@ quð Þ
@x

¼ 0; (35a)

@ quð Þ
@t
þ @

@x
qu2 þ pk � 4

3
g
@u
@x

� �
¼ � @

@x
aniTið Þ; (35b)

@

@t
3
2
pk þ 1

2
qu2

� �
þ @

@x
5
2
pkuþ 1

2
qu3 þ q� 4

3
gu
@u
@x

� �

¼ �4 @
@x

aniTiuð Þ � 3
@

@t
aniTið Þ; (35c)

with q ¼ �je@xTe � ji@xTi; pk ¼ niTi þ pe, and where we have iso-
lated the excess pressure terms—unique to strong/moderate
coupling—on the RHS in the momentum and energy equations.
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E. Reference frame and boundary conditions

We consider planar shocks moving through a homogeneous
medium and perform our calculations in the rest frame of the shock
(i.e., the frame that moves at the constant shock speed, u0). Thus, in
the steady-state @t ¼ 0, everything else (in all three ion equations) is a
total derivative (@x) equal to zero. Thus, the momentum equation—
for example—becomes

qu2 þ pk � 4
3
g
@u
@x
þ aniTi ¼ q0u

2
0 þ p0e þ a0 þ 1ð Þn0T0; (36)

where 0 denotes the upstream (pre-shock) values. This is a generaliza-
tion of the famous Rankine–Hugoniot (jump) condition for momen-
tum conservation.

Sufficiently downstream of the shock (i.e., the post-shock region),
the hydro gradients will vanish (and the ion and electron temperatures
will be equilibrated), meaning that

q1u
2
1 þ ð1þ a1Þn1T1 þ p1e ¼ q0u

2
0 þ ð1þ a0Þn0T0 þ p0e ; (37)

where 1 denotes the downstream values. Because T1
e ¼ T1

i ¼ T1, we
do not need the electron energy equation, Eq. (20), to specify the
boundary conditions in the shock frame.

Similarly, the pre/post-shock jump condition for mass conserva-
tion is

q1u1 ¼ q0u0; (38)

and for energy

5
2
n1T1u1 þ 4a1n1T1u1 þ

5
2
p1eu1 þ

1
2
q1u

3
1

¼ 5
2
n0T0u0 þ 4a0n0T0u0 þ

5
2
p0eu0 þ

1
2
q0u

3
0: (39)

The set of Eqs. (37)–(39) define the boundary conditions used in
our steady-state, planar shock simulations described in Sec. VII.

F. Ion EOS

Finally, to close the system of Eqs. (35c) and (20), we need an
expression for the excess ion pressure piex � aðni;Ti;TeÞniTi. For
what follows, we consider only single-ion hydrogen plasmas (hence,
the ions are protons).

To that end, we have performed a number of Yukawa-OCP MD
simulations using LAMMPS.35 We present the results over a range of
Ci and h ¼ Te=TF in Fig. 4.

Figure 4 also shows a fit of the LAMMPS data to a DWSC-type
(DeWitt, Slattery, and Chabrier)36 OCP model—which is a function of
Ci, only. The DWSCmodel is given by

aDWSC ¼ aCi þ bCs
i þ c; (40)

where a¼�0:899126, b¼0.60712, c¼�0:27998, and s¼0.321308.
The DWSCmodel is an accurate fit of the OCP a, with 1�Ci �160.

Despite the accuracy of aDWSC, however, it is not a good fit to
our Yukawa-OCP-derived data. The reason for this is that the use of
an effective potential emulates the proton–electron contributions to
the proton pair correlation functions, and as a consequence, our sys-
tem differs from the bare Coulomb OCP model which informs the
DWSC fit.

Nonetheless, we find that new values of a, b, c, and s are a great
fit to the LAMMPS data. These values are a¼ 46.274 465 01,
b ¼ �46:450 978 2, c¼ 0.117 312 67, and s¼ 1.000 122 67. To simplify
the inversion of the proton EOS (i.e., to calculate the proton tempera-
ture, Ti), we take s¼ 1. As s is very close to one, this has a mostly negli-
gible effect on the fit (which is shown in Fig. 4 as the green crosses) for
Ci�10.

In Sec. VI, we describe the single-purpose hydrodynamic code
we developed to perform our shock simulation, SHion.

V. CONCERNING THE MEAN-FREE-PATH IN STRONGLY
COUPLED SYSTEMS

The mean-free-path (mfp) in weakly coupled systems is the
mean distance a plasma particle of species, s, travels—with a typical
speed given by its thermal velocity, vths ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ts=ms

p
—before its initial

velocity vector is deflected by an angle of 90. Since particle collisions
are largely just grazing in weakly coupled plasmas, in order for
Coulomb collisions to radically alter a plasma particle’s trajectory,
many collisions need to happen in succession (hence, the criterion of a
90 deflection). Individual collisions occur on a timescale comparable
to the species’ plasma frequency, xps ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pns=ms

p
, but a “collision

time,” s90 is considerably longer.
In contrast, strongly coupled plasmas have strong Coulomb

collisions. These collisions are not necessarily grazing so that s90 is
no longer a meaningful metric. Nonetheless, a thorough examina-
tion of WDM shocks will require some definition for the strongly
coupled ion mfp.

To this end, we appeal to the experimental results of Bannasch
et al.,37 who measured the velocity relaxation time for a strongly cou-
pled ion plasma with degenerate electrons. By normalizing the relaxa-
tion time to the inverse plasma frequency, Bannasch et al.37 developed
an accurate fit to their observations across multiple ion couplings,
which they plotted in Fig. 5. Using Datathief III,18 we extracted relaxa-
tion times from the Bannasch et al.,37 fit.

FIG. 4. The normalized excess proton pressure, a vs the ionic coupling parameter,
Ci and the electron degeneracy parameter, h. The blue circles are obtained from
LAMMPS Yukawa-OCP MD simulations, and the green crosses are from the fit
function: afit ¼ �0:176 513 19Ci þ 0:117 312 67.
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Given the extracted relaxation times, sB as the effective collision
time, we define the Bannasch mfp as

kB ¼ vthsB: (41)

As we show in Sec. VII, Eq. (41) does have a natural correspon-
dence to the non-degenerate, weakly coupled equivalent.

VI. DESCRIPTION OF THE SHION HYDRO CODE

To simulate a planar WDM shock in its steady state, we use a
dedicated hydro solver, which we call SHion. This code is a modifica-
tion of the shock hydro code described in Simakov et al.21 and Keenan
et al.8,38

This single-purpose hydro code—which uses backward Euler
implicit time-stepping and an upwinding scheme for the spatial
derivatives—was created to simulate planar, steady-state, multi-ion
plasma shocks with non-degenerate, weakly coupled ions and elec-
trons. Thus, the code normalizations are framed from that perspective.
For convenience, we retain these basic normalizations, but withWDM
modifications, as needed.

As in the original code, the spatial coordinate, x, is normalized to
the (non-degenerate, weakly coupled) mfp in the upstream region,
kwc0 ; in other words,

x̂ � Sf
x

kwc0
; (42)

where Sf is a computational scale factor. Here, and elsewhere, we
denote quantities defined with respect to non-degenerate/weakly cou-
pled systems by the sub/superscript, wc.

Next, although kwc0 is arbitrary, considerable simplification of the
hydrodynamic equations is achieved by choosing it to be the proto-
n–proton mfp in the upstream region, kwc0 ¼ v0thH=�

wc
HH0—where v0thH

and �wcHH0 are the upstream proton thermal velocity and proton–pro-
ton collision frequency, respectively. For simplicity, we use a constant
reference Coulomb log of 10 in �wcHH0. Note that, as discussed in Sec. V,
�wcHH0 does not have any clear meaning in the strongly coupled regime.
Nonetheless, for ease of translating the normalized equations to
strong-coupling, we retain this normalization.

This choice for x̂ , similarly, allows us to write the time normaliza-
tion as

t̂ � Sf
u0t
kwc0

; (43)

where, as before, u0 is the shock velocity in the lab frame.
Additionally, we normalize all pressures to pwc0 ¼ ðZi þ 1Þn0T0,

which is the total ideal plasma pressure upstream. Then, the (ideal)
upstream sound speed is

cwcs0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpwc0 =q0

p
; (44)

where c ¼ 5=3 is the classical, ideal adiabatic index. So,

Mwc �
u0
cwcs0

(45)

is the plasma Mach number, as defined under the assumption that the
plasma is non-degenerate and weakly coupled. Note that the true
shock Mach number within a WDM plasma will differ from Mwc for
any given u0 since the sound speed is different.

Given these normalizations, the electron energy equation
becomes

3
2
@t̂ p̂e þ @x̂

3
2
p̂eû � ĵe@x̂ T̂ e

� �
þ p̂e@x̂ û ¼ ĝ T̂ i � T̂ e

� �
; (46)

where û � u=u0; q̂ � q=q0; p̂e ¼ pe=pwc0 ¼ pe=½ðZi þ 1Þn0T0�;
T̂ e � Te=T0, and T̂ i � Ti=T0. The normalized electron thermal con-
ductivity, ĵe, and the electron–ion thermal equilibration rate, ĝ , are
given by normalized versions of Eqs. (26) and (32), respectively.

The normalized electron transport coefficients are given in
Simakov et al.,21 but with a few modifications. Aside from constant
numerical factors, the coefficients differ only in the definition of the
electron–ion collisional timescale. Letting ŝF represent the Fermi colli-
sion time, and ŝS � �̂�1ei the original Simakov e–i collision time, the
two scales are related by

sF

sS
¼

ffiffiffi
6
p

r
ĥ
�3=2 q̂

T̂
3=2
e

 !
; (47)

where ĥ � h=h0.
Next, the total plasma equations (which we use to solve for the

ion quantities) become

@t̂ q̂ ¼ �@x̂ q̂ûð Þ; (48a)

@x̂ p̂ þ cM2
wcq̂û

2 � ĝi@x̂ û
	 


¼ �@t̂ q̂ûð Þ; (48b)

@x̂
5
2
p̂k þ 4p̂iex

� �
û þ 1

2
cM2

wcq̂û
3 þ q̂i þ q̂e � ĝiû@x̂ û

� �

¼ �@t̂
3
2
p̂k þ 3p̂iex þ

1
2
cM2

wcq̂û
2

� �
; (48c)

where p̂iex � p̂i � p̂k ¼ aq̂T̂ i=ðZi þ 1Þ and ĝi is defined in Simakov
et al.21—with the caveat that we use a generalized Coulomb log from
the Stanton–Murillo28 model here (Simakov et al.21 assume the same
Coulomb log for all quantities). Similarly, ĵ i is also given by Simakov
et al.21 but also using a Stanton–Murillo28 generalized Coulomb log.

At steady state—assuming constant Coulomb logs for all
interactions—the structure of a shock within a non-degenerate/weakly
coupled plasma will only depend upon Mwc. However, in the WDM
regime, we must also add h0 and Ci0 to describe a steady-state shock.
Consequently, the space of possibilities is now ðMwc;Ci0; h0Þ, which is
significantly more vast. Fortunately, our assumed orderings, i.e., Eq.
(7), do considerably narrow this space.

Finally, we can translate a normalized SHion solution (which
depends uponMwc, h0, andCi) using the following unit conversions

T0 ¼ 4p=3ð Þ1=3 e2

Ci0
n1=30 ¼ 2:32� 10�7

n1=30 cm�3½ �
Ci0

eV½ �; (49a)

n0 ¼ 4a3fs
h�10

pCi0

 !3
mec
�h

� �3

¼ 8:71� 1023
h�10

Ci0

 !3

cm½ ��3; (49b)

where afs is the fine structure constant.

VII. MAIN RESULTS

Amajor issue with simulating shock structure is the separation in
scales across its distinct regions. Whereas the ion compression shock
is the order of a few downstream mfps, the electron pre-heat layer and
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thermalization layers are�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
times larger in a shock with non-

degenerate, weakly coupled ions and electrons. This separation is exac-
erbated by degenerate electrons; as they are—in some sense—more
resistant to changes in temperature than their classical counterparts.
This is evident from Eq. (33), which shows that the Fermi pressure
is independent of temperature as h! 0. Similarly, the weak depen-
dence of sF—i.e., Eq. (30)—on temperature/density also implies that
electron–ion thermal equilibration can occur at a very low rate com-
pared to competing processes (e.g., ion–ion collisional equilibration,
which has a stronger dependence upon high temperature and density).

Hence, given these considerations, not only is a large computa-
tional grid required to simulate the full extent of a WDM shock, but
fine resolution is also required to resolve the compression shock.

Weighing computational costs, we have found that some set of
parameters work well over others. Here, we present specific results for
a hydrogen shock with Mwc¼ 5, Ci0 ¼ 10, and h0 
 0:2—which
translates to n0 ¼ 1:88� 1023 cm�3 and T0 ¼ 1:33 eV, in physical
units. Fortunately, we find that shocks in the neighborhood of
3� Ci � 10 and h � 0:1 are very qualitatively similar.

Given a mild amount of pre-heat, n0 ¼ 1:88� 1023 cm�3 and
T0 ¼ 1:33 eV are similar to the initial state of the cryogenic D–T
nuclear fuel in a triple shell Revolver ICF capsule prior to the breakout
of the first shock.39 The Mach number of this shock is�6.

The computational domain size of the WDM shock simulation is
L ¼ ð120=Sf Þk0, with a resolution of dx̂ ¼ 0:05 and Sf ¼ 10�4.

The shock solution is achieved by equilibrating an arbitrary pro-
file (satisfying the jump boundary conditions) until the self-consistent
steady-state solution is reached.

Figures 5(a) and 5(b) show the temperature and density profiles,
respectively. These plots also show the results from an SHion simula-
tion of an Mwc¼ 5 shock in a non-degenerate/weakly coupled plasma
(wherein all C� 1; h� 1, and the Coulomb logs are set equal for all
interactions). The boundary conditions for this shock are given by the
respective jump conditions—i.e., Eqs. (37)–(39), with a¼ 0 and
pe ¼ neTe ¼ ZiniTe ¼ niTe. The proton and electron transport coeffi-
cients are those of Braginskii.

The profiles from both simulations have been normalized to their
respective upstream proton–proton mfps; i.e.,

k0 � vHHth0 =�
wc
HH0 if C� 1 and h� 1;

k0 � kB if Ci0 > 1 and h0 < 1;

(
(50)

where kB is the Bannasch mfp, as given by Eq. (41).
Visually, there are some striking similarities between the non-

degenerate/weakly coupled and the WDM shocks. Although the jump
conditions differ between the solutions (owing to the differences in the
proton and electron EOSs), their respective thermalization layers
are about the same length (in the normalized coordinate, k0). Since
the non-degenerate/weakly coupled thermalization layer scales as
� ffiffiffiffiffi

mi
p

mek
wc
HH1—where kwcHH1 is the downstream proton–proton mfp—

we can conclude that the WDM shock thermalization layer shows the
analogous scaling,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
k1B. While this result is not entirely sur-

prising, it was not a foregone conclusion, given that the electron–pro-
ton thermalization time scales can differ considerably between the two
regimes.

There are some notable differences between the shock solutions,
however. For example, the non-degenerate/weakly coupled proton
temperature has a more pronounced “pedestal” feature in its electron
pre-heat layer. This is more smoothed out in the WDM shock (the
same can be said of the density feature there).

Similarly, the temperature separation between the protons and
electrons is smaller in the pre-heat layer for the WDM shock. This is
likely due to the suppressed WDM electron heat flux, which no longer
retains its /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
advantage over the proton conduction,8 since

je / Te in this regime—whereas ji remains/ T5=2
i . The same reason-

ing explains why the WDM electron pre-heat layer is—relative to the
Bannasch mfp—considerably shorter than the non-degenerate/weakly
coupled equivalent.

Next, we look at the WDM shock proton and electron pressures
in Fig. 6. In this case, we present our results in physical units, showing

FIG. 5. Density and temperature profiles for a planar WDM shock with
Ci0 ¼ 10; h0 
 0:2, and Mwc¼ 5, and a non-degenerate/weakly coupled (all
C� 1 and h� 1) Mach 5 planar shock—both at steady-state conditions. The
abscissas for both plots is normalized to the upstream mean-free-path, as defined
by Eq. (50).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 30, 012706 (2023); doi: 10.1063/5.0129941 30, 012706-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


that the pressures in this WDM system are on the order of 1–10Mbar.
Additionally, we plot the ideal (kinetic) contributions to the pressures
as well, showing that the excess proton pressure and the electron
degeneracy contribute significantly.

Note that the physical scale of the WDM shock is �100 nm in
length. It should be noted that the proton shock width is then, accord-
ingly, on the scale of a few nanometers. Only �100 protons will fit
into a region of �1 nm at these densities. Hence, the continuum
assumption likely breaks down within a few nanometers of the proton
density jump (i.e., around 80nm). Thus, the accuracy of the shock
solution in this region, as well as the assumption of quasi-neutrality
there, is in doubt. Nevertheless, as we show in Sec. IX, ion kinetic
effects—which are, also, not accounted for by our hydrodynamic
model—will probably smear out these sharp features near the com-
pression shock in the real system. Hence, the overall effect is that the
continuum limit is likely still satisfied in aWDM shock.

Troublingly, we note that piex > niTi in the upstream region—
implying a negative total pressure there. While this may appear con-
cerning at first, it is a common result for OCP plasmas. In fact, the
DWSC model predicts a negative proton pressure at Ci 
 11:15.

This negative pressure problem arises from ignoring the back-
ground’s contribution to the proton Virial.40 As we show in Sec. VIII,
properly accounting for the proton–electron contribution to the proton
excess pressure restores positivity. Fortunately, we see no differences in
the shock structure when the proton pressure is strictly positive.

Next, to test the accuracy of our proton EOS—relative to the
Yukawa-OCP—we performed a number of LAMMPS simulations
using the temperatures and densities extracted from our shock simula-
tion. Figure 7 shows that our fitted a model does a decent job of
matching LAMMPS. The strongest deviations are in the downstream
region, but this is to be expected, as our fit is less accurate at small cou-
plings, and Ci � 2 there (see Fig. 8 for a plot of Ci vs x). Notice that
LAMMPS also predicts a negative pressure in the upstream region,
albeit one that is closer to zero.

Finally, we address the adherence of our shock solution to our
desired orderings—i.e., Eq. (7)—in Fig. 8. We note that rs � 2 in the
upstream, which indicates that non-ideal electron effects could be
non-negligible.

As mentioned before, our upstream parameter choices (Ci0, h0,
and Mwc) are a compromise between computational expediency, and
relevance to WDM regimes of interest (e.g., ICF plasmas).
Nonetheless, we need to address the impact of rs > 1, which we con-
sider in Sec. VIII.

VIII. ESTIMATING THE IMPACT OF ELECTRON
NON-IDEALITY AND ION-ELECTRON CORRELATIONS

As mentioned previously, strong coupling effects in the electrons
(i.e., non-ideality) and strong ion–electron correlations will alter the
electron and ion EOS. This means that a simple post-processing of the
excess electron pressure and the ion–electron pressure will not allow
an apples-to-apples comparison to our results with ideal Fermi elec-
trons since the downstream conditions could differ considerably
between our original shock solution and the corrected one.

FIG. 6. The proton and electron pressures for a WDM shock with
Ci0 ¼ 10; h0 
 0:2, and Mwc¼ 5. FIG. 7. The normalized proton excess pressure vs position for a WDM shock with

Ci0 ¼ 10; h0 
 0:2, and Mwc¼ 5. The LAMMPS pressure is from Yukawa-OCP
simulations using the equivalent shock temperature and density values.

FIG. 8. Key WDM parameters vs position for a WDM shock with
Ci0 ¼ 10; h0 
 0:2, and Mwc¼ 5.
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To overcome this problem, we appeal to the self-similarity of
strong, steady-state, planar, plasma shocks in the non-degenerate/
weakly coupled regime. Specifically, we note that—since the three
principal regions within these shocks all scale / kii—all such shocks
are the same length in the normalized coordinate, x=kwcHH0. Similarly,
although the scale factor is not necessarily known, the temperature,
density, and pressure all scale by a factor which depends upon the
shock Mach number, ion mass, charge state, and the upstream tem-
perature/density. Hence, the properly normalized density and temper-
ature will also look the same across Mach numbers for M � 1 (given
the same upstream conditions).

Let us assume that WDM shocks also exhibit a self-similarity like
this, but with respect to their EOS. More specifically, let us assume
that a change in the electron and/or ion EOS amounts to scaling the
gradients in the ion þ electron densities and temperatures by some
multiplier set by the corrected jump conditions. In other words,

Qnon�idealðxÞ � vQ

ðx
0
dx0

dQidealðx0Þ
dx0

þ Q0
ideal; (51)

where “ideal” refers to the original quantities (as given by simulations
using a Yukawa-OCP EOS for the ions, and an ideal Fermi EOS for the
electrons), vQ is a scale factor; Q can be the electron temperature, ion
temperature, or the mass density. By choosing to scale the gradients, we
can force Qnon�idealðx!1Þ ¼ Qnon�ideal

1 , and Qnon�idealðx !�1Þ
¼ Qidealðx !�1Þ ¼ Q0

ideal—i.e., despite the two solutions differing in
scale, they will have the same upstream temperatures and densities.

To proceed, we require expressions for the electron excess pressure
and the proton–electron pressure. To that end, we appeal to the
Chabrier and Potekhin41 fit for the proton–electron excess (Helmholtz)
free energy given a hydrogen plasma; i.e., their Eq. (29). This fit, which
accounts for mild relativistic effects in the electrons, is good to a few
percentage points across a wide range of Ci and rs. Given fie—the
proton–electron excess free energy—the proton–electron pressure, pie
can be calculated from the thermodynamic relation41

pie
niT
� 1

3
@fie
@ ln C

� �
rs

� @fie
@ ln rs

� �
C

" #
; (52)

where C and T remain ambiguous, in our case. Whereas Chabrier and
Potekhin41 assume that Ti ¼ Te � T—so that, Ci ¼ Ce � C—we
allow Ti 6¼ Te. Hence, it is unclear if the Chabrier and Potekhin41 fit
strictly applies to our shock problem. Nonetheless, since Ti and Te
only ever differ from each other by a factor of a few (�2) within the
shock front, we believe that the Chabrier and Potekhin41 fit is likely
still accurate enough for our purposes. With this in mind, we take
C ¼ Ce � e2=ðaTeÞ and T¼Ti.

Next, to calculate the electron excess pressure, we employ the
Ichimaru, Iyetomi, and Tanaka (IIT)42 fit. This fit to the electron
excess free energy, f exee —or, in the parlance of density functional the-
ory, the correlation-exchange free energy—is also very accurate. In this
case, the excess pressure is given by42

pexe
neT
� 1

3
Eint
NT

� �
� 2

@f exee
@ ln h

� �
C

( )
; (53)

where the first term on the RHS is the interaction energy (for which,
IIT also provide an accurate fit). As before, Te ¼ Ti � T is assumed in
the IIT derivation. We opt to take T¼Te and C ¼ Ce.

Finally, we show plots of the re-normalized shock electron
þ proton pressures in Fig. 9(a), and Fig. 9(b) shows the total pressure.
Here, we take the new proton pressure to be pi ¼ ð1þ aDWSCÞniTi

þ pie so that we can account for the partial proton–electron correlation
contribution provided by afit.

Interestingly, the ideal and non-ideal—as defined by Eq. (51)—
proton pressures are very similar in Fig. 9(a), indicating that the Virial
theorem applied to a Yukawa-OCP does a decent job of emulating the
proton–electron contribution to the EOS—at least, for rs � 2. As
promised, the renormalized proton pressure is greater than zero every-
where, including the upstream region.

Unfortunately, the ideal and non-ideal—as defined by Eq. (51)—
electron pressures are more notably different in Fig. 9(a); pexe is just not
negligible at these conditions.

Despite the differences, we are encouraged by the fact that the
two shock solutions have the same qualitative shape, suggesting that

FIG. 9. Renormalized pressure profiles for the WDM shock with
Ci0 ¼ 10; h0 
 0:2, and Mwc¼ 5. Here, we include the post-processed electron
and proton pressures which account for the proton–electron contribution to the pro-
ton Virial and the electron excess pressure.
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our assumption of self-similarity does, in fact, hold. Furthermore, the
original total pressure—as shown in Fig. 9(b)—is fairly close to the
renormalized one, where the principal differences are downstream of
the shock (�10%). Thus, although our shock solution effectively uses
the wrong boundary conditions (i.e., the shock jump conditions are in
error), this does not appear to affect the qualitative features of the
shock solution.

In Sec. IX, we consider a final source of error: kinetic effects.

IX. ASSESSING KINETIC EFFECTS

In weakly coupled steady-state systems composed of classical
particles, the validity of the equations of hydrodynamics depends
upon the Knudsen number, NK—which is the ratio of a characteristic
spatial gradient scale to the particles’ mean-free-path. The reason for
this is that the fluid transport coefficients—which are essential to close
the system of hydrodynamic equations—are derived under the
assumption of local thermal equilibrium (LTE). As a rule of thumb,
non-LTE (i.e., kinetic) effects appear at NK � 10�3 for plasmas.

Figure 10(a) shows the (kinetic pressure, nT) Knudsen numbers
for the non-degenerate, weakly coupled protons and electrons from
our Mach 5 plasma shock simulation. Note that both the proton and
electron Knudsen numbers are well above 10�3 inside the shock. This
impacts the transport of energy and momentum within the shock,
leading to a very different shock structure when kinetic effects are
accounted for by simulating the shock using a kinetic code.6–8,10

To assess ion kinetic effects within a WDM shock, we use the
generalized Bannasch mfp37 to define a Bannasch–Knudsen number,
NKB � kBr lnQ—where Q is some hydrodynamic quantity and kB
� vthsB is the Bannasch generalized mfp.

Figure 10(b) shows the proton Bannasch–Knudsen numbers,
NKB across our WDM shock (Mwc¼ 5; h0 
 0:2; Ci0 ¼ 10). Here, the
gradient scale is taken from the kinetic pressure, niTi [as done in
Fig. 10(a)]. Unsurprisingly, NKB approaches similar values to non-
degenerate/weakly coupled equivalent in the vicinity of the ion com-
pression shock. On the whole, the qualitative features are largely the
same between Figs. 10(a) and 10(b).

We also show an estimate for the electron Knudsen number in
Fig. 10(b). Here, we define the effective mfp as vthesF . In this respect,
the Knudsen number, Nei

K � vthesF � ½@x logðneTeÞ� tells us something
about the kinetic effects associated with the electron–proton collisions.
We observe that Nei

K remains large throughout the electron pre-heat
layer of both shocks, indicating that kinetic effects will impact the elec-
tron heat flux there. The total impact, however, is hard to predict since
the various drivers of energy and momentum transport within the
shock can counter each other, leading to only a modest overall change
in the shock structure—as recent results for the full kinetic structure of
a non-degenerate/weakly coupled plasma shock show.10

Finally, we point out that non-local EOS effects24 will also be
more pronounced at these strong gradient sites. A self-consistent
quantification of both kinetic and non-local correlation effects on
shock structure requires a first-principle treatment appealing to a gen-
eralized kinetic equation.

X. CONCLUSIONS

In this work, we simulated a strong, steady-state, planar WDM
shock in hydrogen plasma using the single-purpose fluid code, SHion.
In this context, WDM refers to a plasma characterized by strongly

coupled ions þ fully Fermi degenerate electrons. We found that—
unlike the classical, weakly coupled ions þ electrons analogue; whose
structure depends solely on the Mach number—a strong WDM shock
(for a planar geometry in steady state) also depends upon the
upstream electron degeneracy parameter, h0 ¼ T0=TF0, and the ionic
Coulomb coupling parameter, Ci0 ¼ e2=ðaT0Þ.

We find that our simulated WDM shock (Mwc¼ 5; h0 
 0:2;
Ci0 ¼ 10) differs in some ways from the non-degenerate/weakly cou-
pled counterpart in the detailed structure. Namely, when compared to
the appropriate upstream ion–ion mean-free-path (mfp), the electron

FIG. 10. Perturbative parameters evaluated within the WDM and non-degenerate/
weakly coupled Mwc¼ 5 shocks. For a non-degenerate/weakly coupled plasma, the
proton Knudsen number determines the validity of the fluid approximation; with
hydro models breaking down for NK � 10�3. For WDM shocks, we define an analo-
gous parameter—the Bannasch-Knudsen number—which properly accounts for the
proton–proton collisional relaxation time, given Ci > 1. As done in Fig. 5(a), the
abscissas for both plots is normalized to the upstream mean-free-path, as defined
by Eq. (50).
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pre-heat layer is much shorter in the WDM shock than it is in the
non-degenerate/weakly coupled equivalent. However, the mfp normal-
ized thermalization layers have nearly the same length between the
two solutions—suggesting that the WDM thermalization layer length
has the same scaling with the mfp and ion/electron mass ratio as the
non-degenerate/weakly coupled one. Whether or not this is unique to
a hydrogen (proton) plasma, or if it applies generally throughout the
WDM regime, is yet to be determined.

In Sec. VIII, we considered what impact EOS errors could have on
our shock solution. Namely, we estimate the excess pressure contribu-
tion to the degenerate electron EOS, and the contribution of proton–
electron correlations to the proton EOS. We find that, although these
effects may meaningfully affect the shock jump conditions in a real sys-
tem, the overall impact on the shock structure appears minimal.

Additionally, we showed in Sec. IX that ion and electron kinetic
effects are likely just as important for strong WDM shocks as they are
for non-degenerate/weakly coupled ones. This is contrary to the expec-
tation offered by effective potential theory models for OCP transport
coefficients, which show43 that 2nd-order corrections to the
Chapman–Enskog derived transport coefficients approach zero for
C� 1. Since these corrections represent higher-order deviations from
local thermal equilibrium, their suppression at strong coupling sug-
gests a weakening of kinetic effects. However, this undoubtably has its
limits in systems with strong spatial inhomogeneity—as is the case for
strong shocks.

It is worth mentioning that the structure of a plasma shock, in
general, may be consequential. This is because, although the length of
a shock is typically smaller than the system size of interest (e.g., in an
ICF capsule), shocks can leave imprints behind when they reflect off
boundaries44 or breakout of material interfaces.45,46 These imprints
are transient but sometimes result in long-lasting ion species density
stratification or temperature separation. Of course, this effect will only
occur in a plasma mixture, but the vast majority of plasma settings
have multiple ion species. While it is clear that these imprinting effects
may be important in weakly coupled plasmas, we do not know what to
expect at strong-coupling since non-local EOS and non-ideal transport
effects may contribute in unanticipated ways.

On a related note, differences in pressure profiles compared to
non-degenerate/weakly coupled shocks could significantly affect the
hydrodynamic instability development in the context of ICF, by
changing the vorticity deposition at material interfaces.

Finally, we note that the most faithful treatment of aWDM shock
requires a fully quantum kinetic treatment. This would be a heroic cal-
culation since something akin to an expensive path integral Monte
Carlo, density functional theory, or non-equilibrium quantum molec-
ular dynamics simulation would be required. Nonetheless, until such a
simulation is completed, the full self-consistent structure of a WDM
shock will remain unknown.
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