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The multiscale complexity of modern problems in computational science and engineering can prohibit the use of

traditional numerical methods in multi-dimensional simulations. Therefore, novel algorithms are required in these

situations to solve partial differential equations (PDEs) with features evolving on a wide range of spatial and

temporal scales. To meet these challenges, we present a multiresolution wavelet algorithm to solve

PDEs with significant data compression and explicit error control. We discretize in space by projecting

fields and spatial derivative operators onto wavelet basis functions. We provide error estimates for

the wavelet representation of fields and their derivatives. Then, our estimates are used to construct

a sparse multiresolution discretization which guarantees the prescribed accuracy. Additionally, we

embed a predictor-corrector procedure within the temporal integration to dynamically adapt the

computational grid and maintain the accuracy of the solution of the PDE as it evolves. We present examples

to highlight the accuracy and adaptivity of our approach.
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1. INTRODUCTION

Modern computational science and engineering applications are inherently multiphysics and multiscale. For example,
models of the global ocean (Ringler et al., 2013), detonation combustion (Cai et al., 2016), asteroid impacts (Boslough
et al., 2015), mechanics of materials (Matouš et al., 2017), and supernova remnants (Malone et al., 2014) all must
solve partial differential equations (PDEs) with spatial and temporal scales across many orders of magnitude. Several
novel numerical methods have been developed to address thiscomputational challenge. For example, adaptive mesh
refinement (AMR) (Berger and Oliger, 1984; Fatkullin and Hesthaven, 2001), multigrid methods (Brandt, 1977;
Hackbusch, 1978; Yushu and Matouš, 2020), Chimera oversetgrids (Benek et al., 1989), and remeshing/refining
finite element methods (FEM) (Dong and Karniadakis, 2003; Gui and Babuška, 1986a,b; Rajagopal and Sivakumar,
2007) have been used to accomplish a great deal of contemporary computational modeling. However, all of these
methods become computationally expensive when the user does not knowa priori the spatial and temporal locations
of interesting solution features. In this work, we propose awavelet-based method which is well suited for problems
with dynamic spatial and temporal scales.
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Wavelet-based numerical methods have been shown to be efficient for modeling multiscale and multiphysics
problems because they provide spatial adaptivity through the use of multiresolution basis functions (Jawerth and
Sweldens, 1994; Schneider and Vasilyev, 2010). Furthermore, current wavelet solvers have achieved several notable
accomplishments, including significant data compression (Bertoluzza, 1996; Beylkin and Keiser, 1997; Liandrat and
Tchamitchian, 1990), bounded energy conservation (Qian and Weiss, 1993; Ueno et al., 2003), modeling stochastic
systems (Kong et al., 2016), multiscale model reduction (van Tuijl et al., 2019), and solving coupled systems of
nonlinear PDEs (Dubos and Kevlahan, 2013; Nejadmalayeri etal., 2015; Paolucci et al., 2014a,b; Sakurai et al.,
2017). However, some implementations only solve PDEs in infinite or periodic domains [e.g., Fröhlich and Schneider
(1994); Goedecker (1998); Iqbal and Jeoti (2014)], some do not utilize the data compression ability of wavelets,
resulting in a costly uniform grid [e.g., Le and Caracoglia (2015); Lin and Zhou (2001); Qian and Weiss (1993)],
and some use finite difference methods to calculate the spatial derivatives, inhibiting the ability to solve PDEs in the
wavelet domain and control accuracy [e.g., Holmström (1999); Nejadmalayeri et al. (2015); Paolucci et al. (2014a,b)].

To overcome some of the difficulties mentioned above, we havedeveloped an algorithm which retains the
advantages of other wavelet methods while attempting to overcome their limitations. Specifically, this work extends
our one-dimensional solver described in Harnish et al. (2018) into multiple spatial dimensions. Since our proposed
numerical method exploits the properties of wavelet basis functions, it is helpful to provide a brief outline of wavelet
principles. Therefore, in Section 2, we summarize the creation of wavelet basis functions and define the operations
needed to solve PDEs using this basis. Then, in Section 3 we describe the numerical implementation, and in Section 4
we present illustrative numerical examples.

2. WAVELET THEORY

A multiresolution analysis (MRA) provides the formal mathematical framework for a wavelet family of basis
functions (Daubechies, 1992). An MRA of a domainΩ consists of a progression of nested approximation spaces
Vj and their associated dual spacesṼj such that the union of these spaces is theL2(Ω) space (Cohen et al., 2000). The
wavelet spacesWj and their associated dual spaces̃Wj are then defined as the complements of the approximation
spacesVj in Vj+1 (Bacry et al., 1992; Qian and Weiss, 1993):

Vj ⊂ Vj+1,
⋃

j

Vj = L2(Ω), Vj+1 = Vj ⊕Wj . (1)

Then, multidimensional representations are defined by tensor products. For example, the two-dimensional spaceVj

is defined by the tensor product of two one-dimensional spacesVj :

Vj+1 = Vj+1 ⊗ Vj+1,

Vj+1 = (Vj ⊕Wj)⊗ (Vj ⊕Wj) ,

Vj+1 = (Vj ⊗ Vj)︸ ︷︷ ︸
λ=0

⊕ (Wj ⊗ Vj)︸ ︷︷ ︸
λ=1

⊕ (Vj ⊗Wj)︸ ︷︷ ︸
λ=2

⊕ (Wj ⊗Wj)︸ ︷︷ ︸
λ=3

.
(2)

Therefore, the MRA creates four types of two-dimensional basis where each is designated byλ and defined by
the appropriate products of the one-dimensional basis [i.e., φj

k(x) andψj
k(x)] (Daubechies, 1992). Note that the

multiresolution nature of wavelets requires the use of two types of indices – one to define the resolution levelj and
another to define the spatial locationsk on a particular resolution level.

In general, wavelet bases do not have a closed-form expression: instead they are defined in terms of four types
of filter coefficients (i.e., hi, h̃i, gi, and g̃i) (de Villiers et al., 2003; Goedecker, 1998). Our algorithmuses the
Deslauriers Dubuc wavelet family, with second-generationwavelets near spatial boundaries, as defined in de Villiers
et al. (2003). Furthermore, a single parameterp defines the properties of this basis, such as the number of vanishing
moments and the degree of continuity (Harnish et al., 2018).We discretize space by projecting each continuous field
f(~x) onto the wavelet basisφ0

~k
(~x) andλψ

j
~k
(~x), where~• indicates a vector. The corresponding wavelet coefficients

s0
~k

andλdj~k
are defined by integrating the field with the dual basis,
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s0
~k
=

∫

Ω

f(~x) φ̃
0
~k(~x) dΩ and λdj~k

=

∫

Ω

f(~x) λψ̃
j

~k(~x) dΩ. (3)

Leveraging properties of the Deslauriers-Dubuc wavelet family, the integrals in Eq. (2) can be solved exactly and
are replaced with the matrix operatorF , defined in terms of the filter coefficients, as shown in Harnish et al. (2018).
Repeated application of this operator yields all of the wavelet coefficients on each resolution level. As the resolution
level increases, the magnitude of the calculatedλdj

~k
coefficients decreases, and on high resolution levelsj > jmax,

all of the coefficients will be below a prescribed toleranceε. It has been shown by many authors [e.g., Holmström
(1999); Nejadmalayeri et al. (2015); Paolucci et al. (2014b)] that discarding thoseλdj

~k
coefficients with a magnitude

less thanε results in the discretization

fε(~x) =
∑

~k

s0
~k
φ

0
~k
(~x) +

jmax∑

j=1

2N−1∑

λ=1

∑

{~k:|λdj
~k
|≥ε}

λdj~k
λψ

j
~k
(~x), (4)

which approximatesf(~x), in N spatial dimensions, with the spatial error

||f(~x)− fε(~x)||∞ ≤ O(ε). (5)

Since there exists a one-to-one correspondence between collocation points in the domain and each wavelet basis
function, the omission of the wavelet coefficients in the sumcorresponds to the omission of collocation points in the
computational domain and this procedure results in a sparse, multiresolution spatial discretization with a spatial error
bounded by the prescribed toleranceε.

The wavelet coefficients are mapped back to their representative field values using the matrix operatorB = F
−1.

Both theF andB matrix operators are sparse, banded, and composed only of the filter coefficients (i.e.,hi, h̃i, gi,
and g̃i). The use of matrix operators presents the opportunity to replace the cumbersome notation of Eq. (4) with
index notation and implied summation. For instance, the two-dimensional transformations become

fε(~x) = dkl Ψkl(~x) with dkl = Fkn Flo fno and fkl = Bkn Blo dno. (6)

It has been shown that the Deslauriers-Dubuc wavelet familyis continuous and differentiable, which allows spatial
derivatives to operate directly on the basis functions (Harnish et al., 2018; Rioul, 1992):

∂α

∂xα

i

f(~x) ≈ ∂α

∂xα

i

[dkl Ψkl(~x)] = dkl
∂αΨkl(~x)

∂xα

i

. (7)

As in Harnish et al. (2018), we project the spatial derivative of the basis back onto the wavelet basis, and this
combination of differentiation and projection transformsEq. (7) into

∂α

∂xα

i

f(~x) ≈
(
D(xi,α)

knlo dno
)
Ψkl(~x), (8)

where the operatorD(xi,α) is defined in terms of an eigenvector solution and linear combinations of the four types of
filter coefficients (i.e., hi, h̃i, gi, andg̃i). Application of theD(xi,α) operator results in a discrete approximation of
theαth order derivative in thei direction with the following spatial error:

∣∣∣∣
∣∣∣∣f

(xi,α)(~x)−D(xi,α)fε(~x)

∣∣∣∣
∣∣∣∣
∞

≤ O
(
ε1−α

p

)
. (9)

A derivation of Eq. (9) and details on how to assemble theD(xi,α) operator can be found in our previous publication
(Harnish et al., 2018). We note that the error estimate in Eq.(9) holds only on the dense wavelet grid (i.e., all wavelet
coefficients are present), and the sparse wavelet approximation defined in Eq. (4) approaches this estimate as more of
theD(xi,α) operator’s stencil points are included in the sparse wavelet grid.
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3. NUMERICAL IMPLEMENTATION

The following algorithm combines the operations defined in Section 2 to solve PDEs. To illustrate the process, con-
sider the following model problem:

∂u

∂t
+ ~V · ∇u = ν∇2u, (10)

with specified initial and boundary conditions, where~V andν are constants. First, the initial condition and operators
are projected onto the wavelet basis functions using Eqs. (6) and (8). This process transforms the PDE into an ordinary
differential equation (ODE), and the two-dimensional semi-discretization of Eq. (10) yields

duε

dt
= ν

[
D(x1,2)uε +D(x2,2)uε

]
− V1D(x1,1)uε − V2D(x2,1)uε. (11)

By retaining collocation points based on the magnitude of the wavelet coefficients, a sparse multiresolution
computational grid is created. Furthermore, the spatial accuracy of the initial condition is bounded according to
Eq. (5).

Considering that the solution of the PDE may advect and evolve over time, the algorithm must be able to insert
and discard points as needed to ensure that the spatial accuracy remains bounded at each time step. Therefore we
use the predictor-corrector strategy described in Harnishet al. (2018) to predict where new collocation points will be
needed at the next time step and iteratively correct that prediction until the necessary grid is obtained. Specifically,an
explicit, embedded, Runge-Kutta time integration scheme (Bogacki and Shampine, 1989; Fehlberg, 1970) is used to
progress the solution from the time stepn to a trial time stepn+1∗. This converts the ODE in Eq. (11) into a system of
algebraic equations which updateu(n)

ε to the trial time stepu(n+1∗)
ε while providing an estimate of the temporal error

and adjusting the time-step size∆t such that the temporal error is of the same order as the spatial error [i.e.,O(ε)].
At each stage of the Runge-Kutta integration, Dirichlet andNeumann boundary conditions are applied either directly
using the procedure developed by Carpenter et al. (1995) (i.e., for Dirichlet data) or by using the penalty formulation
Hesthaven and Gottlieb (1996) that will modify Eq. (11) on the boundary (i.e., for Dirichlet and/or Neumann data).
The magnitudes of the wavelet coefficients at the new time will determine if the grid prediction must be corrected.
If so, the trial time stepu(n+1∗)

ε is discarded and the computational grid at time stepn is supplemented with new
collocation points and steps are repeated as described in Harnish et al. (2018). When the trial time step is accepted
as the true time step,u(n+1)

ε = u
(n+1∗)
ε , some wavelet coefficients are no longer needed to satisfy the error bounds

and are therefore pruned from the sparse computational gridas it evolves with the solution of the PDE (Harnish et al.,
2018).

This algorithm has been implemented in the MultiresolutionWavelet Toolkit (MRWT) written using modern
C++ and is multithreaded using OpenMP. The compressed sparse geometry is stored in a sorted coordinate list
(COO) matrix format, while collocated field and meta-data are stored in an associated struct-of-array layout. Dynamic
grid modification requires a merge-and-sort operation but is infrequent and performed in bulk. This grid structure is
optimized for slice-based stencil operations versus random access in order to leverage temporal and spatial locality
and is trivially vectorizable for right-hand-side computations. The coreF ,B, andD(xi,α) operators are stored mostly
matrix-free and target the grid’s slice-based ApplicationProgramming Interface (API). These stencil contractions are
trivially parallelizable and scale well.

4. NUMERICAL EXAMPLES

This section provides implementation verification of the algorithm described in Section 3. Here, the two-dimensional
unitless model problem given by Eq. (10) is solved on the spatial domainΩ = (0, 1)2 and the temporal domain
T = (0, 1/2). The specified Dirichlet condition and the initial condition are chosen so that the exact solution is given
by
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u(~x, t) =
5ν (x1 + 5ν)

(x1 + 5ν)2
+ (t− x2)

2 . (12)

The constants are set toV1 = 0, V2 = 1, andν = 1/100. Equation (11) is integrated using the embeddedO(∆t2)
andO(∆t3) explicit Runge-Kutta method developed in Bogacki and Shampine (1989) to maintainO(ε) accuracy.
Figure 1(a) shows the sparse multiresolution grid and the corresponding wavelet approximation,uε, of the solution
halfway through the simulation using wavelet parametersp = 6 andε = 10−3. The exact solution in Eq. (12) allows
quantitative error analysis, and the color map in Fig. 1(a) reflects the error|u− uε|. Convergence rates are calculated
by solving Eq. (10) with a variety of wavelet basisp and threshold parametersε. The convergence of the spatial error
is calculated halfway through the simulation. Figure 1(b) shows the error in agreement with estimates Eqs. (5) and
(9).

Having demonstrated the mathematical correctness of the numerical method, we now exercise the physics
simulation capabilities by solving the coupled system of nonlinear PDEs given by the conservation of mass,
momentum, and energy:

∂ρ

∂t
= −∇ · (ρ~v) , (13)

∂

∂t
(ρ~v) = −∇ · (ρ~v ⊗ ~v − σ) + ρ~b, (14)

∂

∂t
(ρẽ) = −∇ · (ρẽ~v − σ~v + ~q) + ρ~b · ~v + ρr, (15)

whereẽ = e + ~v · ~v/2. In Eqs. (13)–(15), we solve for the densityρ, velocity ~v, and specific internal energye.
This system requires closure equations to describe the Cauchy stress tensorσ, the specific internal energye, and
the heat flux~q. In this work, the source terms are set to zero (i.e.,~b = ~0 andr = 0), we define the stress tensor

(a) (b)

FIG. 1: MRWT solution of Eq. (10), sparse multiresolution grid, andspatial convergence rates obtained halfway through the
simulation: (a) MRWT solution halfway through time using wavelet parametersp = 6 andε = 10−3, and (b) spatial convergence
halfway through time

Volume 19, Issue 2, 2021



34 Harnish et al.

with the Newtonian fluid constitutive equation, and assume acalorically perfect ideal gas with Fourier’s law of heat
conduction. Additionally, the material parameters are setaccording to the values in Table 1.

This model has been used to describe the evolution of a Taylor-Sedov blast wave (Paolucci et al., 2014b),
where energy is deposited in a compressible fluid, leading tothe development of a spherical shock wave. The initial
condition is made continuous by way of a Gaussian profile for the initial pressure, with an overpressure peak of 2
MPa and a standard deviation of 1/(10

√
2) m. The semidiscretized Eqs. (13)–(15) are integrated usingthe embedded

O(∆t4) andO(∆t5) explicit Runge-Kutta method developed in Fehlberg (1970).The temporal discretization∆t is
chosen adaptively to retainO(ε) accuracy. The boundary conditions, are set to maintain the initial conditions and the
simulation is stopped before the developing shock wave interacts with the computational boundary. Figure 2 shows the
numerical solutions to Eqs. (13)–(15) at timet = 133.902µs, generated with wavelet parametersp = 8 andε = 10−2.

For the numerical solution in Fig. 2, the MRWT discretization of the initial condition required only two resolution
levels (i.e.,jmax = 2), which resulted in 31.250 mm between the closest collocation points at timet = 0. As the
internal energy converted into kinetic energy, MRWT automatically refined the grid near regions of the developing
shock wave. As shown in Fig. 2(a), MRWT predicted nine resolution levels (i.e.,jmax = 9) at timet = 133.902µs,
which resulted in 0.244 mm between the closest collocation points. A dense discretization at this length scale would
require over 67 million collocation points, whereas the MRWT solution in Fig. 2 contains only 312,793 collocation
points, resulting in a compression ratio greater than 200. Moreover, the sparse multiresolution spatial discretization
maintains symmetry and adapts to follow features as they evolve through the domain.

TABLE 1: Material parameters for dry air at room temperature

Variable Name Value
γ Ratio of specific heats 7/5
µ Dynamic viscosity 1.9× 10−5 Pa s
κ Thermal conductivity 2.55× 10−2 W/(m K)

cv Constant volume specific heat 7.18× 102 J/(kg K)

(a) (b)

FIG. 2: Sparse multiresolution grid and numerical solution att = 133.902µs obtained usingp = 8 andε = 10−2. In (a), the
grid points are colored according to their resolution levelj. The reader is referred to the online version of this articlefor clarity
regarding the color in this figure. In (b), the maximum velocity is approximately 568 m/s. (a) MRWT solution of the densityfield
ρ, and (b) MRWT solution of the velocity field‖~v‖2.
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5. CONCLUSIONS

Our proposed wavelet-based algorithm has the potential to improve computational science and engineering
applications requiring resolution across multiple spatial and temporal scales. In particular, our method is well suited
for situations where fine-scale features are dynamic. Whereas traditional numerical methods require costly
remeshing/refining procedures, our method leverages the properties of wavelet basis functions to automatically adapt
the computational domain as needed to accurately resolve features.

We have demonstrated that our implementation, MRWT, is capable of solving multidimensional PDEs with error
controlled by the threshold parameterε. This work advances the state of wavelet-based algorithms by exploiting
the regularity of the Deslauriers-Dubuc family of waveletsto evaluate spatial derivatives directly on the wavelet basis
functions. Additionally, we have verified that our predictor-corrector procedure is able to solve initial-boundary-value
problems using compressed data on sparse multiresolution discretizations in finite domains. Furthermore, we have
provided error estimates for each wavelet operation and have shown that our numerical solutions have a bounded
error at each time step, with convergence rates in agreementwith the theoretical estimates.
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Gui, W. and Babuška, I., The h,p and h-p Versions of the Finite Element Method in 1 Dimension – Part II. The Error Analysis of
the h- and h-p Versions,Numerische Mathematik, vol. 49, pp. 613–657, 1986b.

Hackbusch, W., Computing 9,Computing, vol. 20, pp. 291–306, 1978.
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Matouš, K., Geers, M.G., Kouznetsova, V.G., and Gillman, A., A Review of Predictive Nonlinear Theories for MultiscaleModeling
of Heterogeneous Materials,J. Comput. Phys., vol. 330, pp. 192–220, 2017.

Nejadmalayeri, A., Vezolainen, A., Brown-Dymkoski, E., and Vasilyev, O.V., Parallel Adaptive Wavelet Collocation Method for
PDEs,J. Comput. Phys., vol. 298, pp. 237–253, 2015.

Paolucci, S., Zikoski, Z.J., and Grenga, T., WAMR: An Adaptive Wavelet Method for the Simulation of Compressible Reacting
Flow. Part II. The Parallel Algorithm,J. Comput. Phys., vol. 272, pp. 842–864, 2014a.

Paolucci, S., Zikoski, Z.J., and Wirasaet, D., WAMR: An Adaptive Wavelet Method for the Simulation of Compressible Reacting
Flow. Part I. Accuracy and Efficiency of Algorithm,J. Comput. Phys., vol. 272, pp. 814–841, 2014b.

Qian, S. and Weiss, J., Wavelets and the Numerical Solution of Partial Differential Equations,J. Comput. Phys., vol. 106, pp. 155–
175, 1993.

Rajagopal, A. and Sivakumar, S.M., A combined r-h Adaptive Strategy Based on Material Forces and Error Assessment for Plane
Problems and Bimaterial Interfaces,Comput. Mech., vol. 41, pp. 49–72, 2007.

Ringler, T., Petersen, M., Higdon, R.L., Jacobsen, D., Jones, P.W., and Maltrud, M., A Multi-Resolution Approach to Global Ocean
Modeling,Ocean Modell., vol. 69, pp. 211–232, 2013.

Rioul, O., Simple Regularity Criteria for Subdivision Schemes,SIAM J. Math. Anal., vol. 23, pp. 1544–1576, 1992.

Sakurai, T., Yoshimatsu, K., Schneider, K., Farge, M., Morishita, K., and Ishihara, T., Coherent Structure Extractionin Turbulent

International Journal for Multiscale Computational Engineering



Multiresolution Wavelet Toolkit 37

Channel Flow Using Boundary Adapted Wavelets,J. Turbulence, vol. 18, pp. 352–372, 2017.

Schneider, K. and Vasilyev, O.V., Wavelet Methods in Computational Fluid Dynamics,Annual Review Fluid Mech., vol. 42,
pp. 473–503, 2010.

Ueno, T., Ide, T., and Okada, M., A Wavelet Collocation Method for Evolution Equations with Energy Conservation Property,
Bull. Sci. Mathemat., vol. 127, pp. 569–583, 2003.
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