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The multiscale complexity of modern problems in computational science and engineering can prohibit the use of
traditional numerical methods in multi-dimensional simulations. Therefore, novel algorithms are required in these
situations to solve partial differential equations (PDEs) with features evolving on a wide range of spatial and
temporal scales. To meet these challenges, we present a multiresolution wavelet algorithm to solve
PDEs with significant data compression and explicit error control. We discretize in space by projecting
fields and spatial derivative operators onto wavelet basis functions. We provide error estimates for
the wavelet representation of fields and their derivatives. Then, our estimates are used to construct
a sparse multiresolution discretization which guarantees the prescribed accuracy. Additionally, we
embed a predictor-corrector procedure within the temporal integration to dynamically adapt the
computational grid and maintain the accuracy of the solution of the PDE as it evolves. We present examples
to highlight the accuracy and adaptivity of our approach.
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1. INTRODUCTION

Modern computational science and engineering applicatioa inherently multiphysics and multiscale. For example,
models of the global ocean (Ringler et al., 2013), detonat@mbustion (Cai et al., 2016), asteroid impacts (Boslough
et al., 2015), mechanics of materials (Matous et al., 20479 supernova remnants (Malone et al., 2014) all must
solve partial differential equations (PDES) with spatiadlaemporal scales across many orders of magnitude. Several
novel numerical methods have been developed to addressotisutational challenge. For example, adaptive mesh
refinement (AMR) (Berger and Oliger, 1984; Fatkullin and thasen, 2001), multigrid methods (Brandt, 1977;
Hackbusch, 1978; Yushu and Matous, 2020), Chimera oversds (Benek et al., 1989), and remeshing/refining
finite element methods (FEM) (Dong and Karniadakis, 2003;aBd Babuska, 1986a,b; Rajagopal and Sivakumar,
2007) have been used to accomplish a great deal of contergpmmaputational modeling. However, all of these
methods become computationally expensive when the usesrraidénowa priori the spatial and temporal locations
of interesting solution features. In this work, we proposeaaelet-based method which is well suited for problems
with dynamic spatial and temporal scales.
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Wavelet-based numerical methods have been shown to beeeffitir modeling multiscale and multiphysics
problems because they provide spatial adaptivity throbghuse of multiresolution basis functions (Jawerth and
Sweldens, 1994; Schneider and Vasilyev, 2010). Furthespooirrent wavelet solvers have achieved several notable
accomplishments, including significant data compresdantpluzza, 1996; Beylkin and Keiser, 1997; Liandrat and
Tchamitchian, 1990), bounded energy conservation (Qidnvegiss, 1993; Ueno et al., 2003), modeling stochastic
systems (Kong et al., 2016), multiscale model reductiom (Yaijl et al., 2019), and solving coupled systems of
nonlinear PDEs (Dubos and Kevlahan, 2013; Nejadmalayeal.e015; Paolucci et al., 2014a,b; Sakurai et al.,
2017). However, some implementations only solve PDEs initefor periodic domains [e.g., Frohlich and Schneider
(1994); Goedecker (1998); Igbal and Jeoti (2014)], some atautilize the data compression ability of wavelets,
resulting in a costly uniform grid [e.g., Le and Caracogk815); Lin and Zhou (2001); Qian and Weiss (1993)],
and some use finite difference methods to calculate theasplatiivatives, inhibiting the ability to solve PDEs in the
wavelet domain and control accuracy [e.g., Holmstrom @) 98ejadmalayeri et al. (2015); Paolucci et al. (2014a,b)]

To overcome some of the difficulties mentioned above, we ltaxesloped an algorithm which retains the
advantages of other wavelet methods while attempting tocowmee their limitations. Specifically, this work extends
our one-dimensional solver described in Harnish et al. 82@ito multiple spatial dimensions. Since our proposed
numerical method exploits the properties of wavelet basistions, it is helpful to provide a brief outline of wavelet
principles. Therefore, in Section 2, we summarize the weaif wavelet basis functions and define the operations
needed to solve PDEs using this basis. Then, in Section 3 segide the numerical implementation, and in Section 4
we present illustrative numerical examples.

2. WAVELET THEORY

A multiresolution analysis (MRA) provides the formal mathetical framework for a wavelet family of basis
functions (Daubechies, 1992). An MRA of a domdinconsists of a progression of nested approximation spaces
V; and their associated dual spatésuch that the union of these spaces isith@?) space (Cohen et al., 2000). The

wavelet spacedl’; and their associated dual spa@é@ are then defined as the complements of the approximation
spaced/; in V;41 (Bacry et al., 1992; Qian and Weiss, 1993):

Vi Vi, JVi=L2Q), Vip=V,ew, (1)
J

Then, multidimensional representations are defined bytgm®ducts. For example, the two-dimensional spkice
is defined by the tensor product of two one-dimensional spkice

Vit = Vi1 ® Vi,

Vin=(V;eW;) e (V; e W;),

Vin=VeVi)eW,;aV)e(V;oW;)e (W; o W;).
—_——— ———— e N

A=0 A=1 A=2 A=3

(2)

Therefore, the MRA creates four types of two-dimensionaidavhere each is designated byand defined by
the appropriate products of the one-dimensional basis §#x) and ()] (Daubechies, 1992). Note that the
multiresolution nature of wavelets requires the use of types$ of indices — one to define the resolution levahd
another to define the spatial locationen a particular resolution level.

In general, wavelet bases do not have a closed-form expressstead they are defined in terms of four types
of filter coefficients i(.e., h;, 7%, gi, andg;) (de Villiers et al., 2003; Goedecker, 1998). Our algorithees the
Deslauriers Dubuc wavelet family, with second-generatiamelets near spatial boundaries, as defined in de Villiers
et al. (2003). Furthermore, a single parameteefines the properties of this basis, such as the number &fhiag
moments and the degree of continuity (Harnish et al., 2048)discretize space by projecting each continuous field
f(Z) onto the wavelet basifp%(f) and*qﬂg(f), wheres indicates a vector. The corresponding wavelet coefficients

5% and"d% are defined by integrating the field with the dual basis,
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2= [ 1@ bp@ e and = [ @) i) a0 @

Leveraging properties of the Deslauriers-Dubuc waveletilfa the integrals in Eq. (2) can be solved exactly and
are replaced with the matrix operatBr; defined in terms of the filter coefficients, as shown in Héreisal. (2018).
Repeated application of this operator yields all of the wetveoefficients on each resolution level. As the resolution
level increases, the magnitude of the calculatét coefficients decreases, and on high resolution leyets .,

all of the coefficients will be below a prescribed toleramcét has been shown by many authors [e.g., Holmstrom
(1999); Nejadmalayeri et al. (2015); Paolucci et al. (201 #¢iat discarding thosédﬂ coefficients with a magnitude
less thare results in the discretization

Jmax 2NV —1

B =Y e bpD+> D>, D> L@, )
R

=1 A=1 fp. agqd
j (F:pdi]>e)

which approximateg (), in N spatial dimensions, with the spatial error

1F (@) = fe(@)]|oe < O(e). ()

Since there exists a one-to-one correspondence betwelecatan points in the domain and each wavelet basis
function, the omission of the wavelet coefficients in the summresponds to the omission of collocation points in the
computational domain and this procedure results in a spamsiiresolution spatial discretization with a spatiaiogr
bounded by the prescribed tolerarice

The wavelet coefficients are mapped back to their repretsemfield values using the matrix operatBr= F~1.
Both the ' and B matrix operators are sparse, banded, and composed onlg Gftén coefficients (i.e.k;, ﬁi, 9i,
andg;). The use of matrix operators presents the opportunity ptace the cumbersome notation of Eq. (4) with
index notation and implied summation. For instance, thedimensional transformations become

fe(Z) = dp ¥y (2) with dit = Fien Fio fro and  fu = By Bio dno. (6)

It has been shown that the Deslauriers-Dubuc wavelet faimitpntinuous and differentiable, which allows spatial
derivatives to operate directly on the basis functions flitdret al., 2018; Rioul, 1992):
o* . 0% 0%y (7 )
= \ =dy—
l_ f(@) ~ pre (i Vit (7)) = di D%
As in Harnish et al. (2018), we project the spatial derivatof the basis back onto the wavelet basis, and this
combination of differentiation and projection transfor&s (7) into

(7)

% . (2,00) o
F (T) =~ (Dknlb dno)\lfkl(x), (8)

where the operatdP(*+- ) is defined in terms of an eigenvector solution and linear doattons of the four types of
filter coefficients (e, h;, hi, ¢, andg;). Application of theD(#:-*) operator results in a discrete approximation of
the «'" order derivative in the direction with the following spatial error:

Hf(“’“) (&) = D) fo(2)

<0 (elf%) . (9)
A derivation of Eq. (9) and details on how to assemblefti& - operator can be found in our previous publication
(Harnish et al., 2018). We note that the error estimate in®cdcolds only on the dense wavelet grid (i.e., all wavelet
coefficients are present), and the sparse wavelet approgimdefined in Eq. (4) approaches this estimate as more of
the D(*-%) operator’s stencil points are included in the sparse waygeie.
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3. NUMERICAL IMPLEMENTATION

The following algorithm combines the operations definedéet®n 2 to solve PDEs. To illustrate the process, con-
sider the following model problem:

LS vWVu, (10)

ot

with specified initial and boundary conditions, whéfend are constants. First, the initial condition and operators
are projected onto the wavelet basis functions using E§jan@(8). This process transforms the PDE into an ordinary
differential equation (ODE), and the two-dimensional seliscretization of Eq. (10) yields

due
dt

By retaining collocation points based on the magnitude & wavelet coefficients, a sparse multiresolution
computational grid is created. Furthermore, the spatiali@cy of the initial condition is bounded according to
Eq. (5).

Considering that the solution of the PDE may advect and evoler time, the algorithm must be able to insert
and discard points as needed to ensure that the spatiabaga@mains bounded at each time step. Therefore we
use the predictor-corrector strategy described in Haretisth. (2018) to predict where new collocation points will be
needed at the next time step and iteratively correct thaligien until the necessary grid is obtained. Specificalty,
explicit, embedded, Runge-Kutta time integration scheBugacki and Shampine, 1989; Fehlberg, 1970) is used to
progress the solution from the time stefo a trial time step.+1*. This converts the ODE in Eqg. (11) into a system of

algebraic equations which updaté”) to the trial time stepu(g’”rl*) while providing an estimate of the temporal error
and adjusting the time-step si2& such that the temporal error is of the same order as the bpaia [i.e., O(¢)].

At each stage of the Runge-Kutta integration, Dirichlet Biedimann boundary conditions are applied either directly
using the procedure developed by Carpenter et al. (1985)fr Dirichlet data) or by using the penalty formulation
Hesthaven and Gottlieb (1996) that will modify Eq. (11) oe tioundary (i.e., for Dirichlet and/or Neumann data).
The magnitudes of the wavelet coefficients at the new timedetlermine if the grid prediction must be corrected.
If so, the trial time stem(!”rl*) is discarded and the computational grid at time stdp supplemented with new

collocation points and steps are repeated as describedriisHaet al. (2018). When the trial time step is accepted

as the true time stemﬁ”“) = u(E”“*), some wavelet coefficients are no longer needed to satisfertor bounds
and are therefore pruned from the sparse computationahgtiicevolves with the solution of the PDE (Harnish et al.,
2018).

This algorithm has been implemented in the Multiresolutiavelet Toolkit (MRWT) written using modern
C++ and is multithreaded using OpenMP. The compressed esp@ametry is stored in a sorted coordinate list
(COO0) matrix format, while collocated field and meta-datastored in an associated struct-of-array layout. Dynamic
grid modification requires a merge-and-sort operation $irtfrequent and performed in bulk. This grid structure is
optimized for slice-based stencil operations versus ramdocess in order to leverage temporal and spatial locality
and is trivially vectorizable for right-hand-side comptigas. The coreF, B, andD (%) operators are stored mostly
matrix-free and target the grid’s slice-based Applicattvagramming Interface (API). These stencil contractions a
trivially parallelizable and scale well.

= [D(””’Z)ug + D(”’Z)ug} — D@Dy, — D@y (11)

4. NUMERICAL EXAMPLES

This section provides implementation verification of thgosithm described in Section 3. Here, the two-dimensional
unitless model problem given by Eq. (10) is solved on theigpdbmain) = (0,1)? and the temporal domain
T = (0,1/2). The specified Dirichlet condition and the initial conditiare chosen so that the exact solution is given

by
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(@, t) = 5v (le +5v) . (12)
(x14+5v) 4+ (t — x2)

The constants are sett = 0, V> = 1, andv = 1/100. Equation (11) is integrated using the embeddée?)
and O(At®) explicit Runge-Kutta method developed in Bogacki and Shieefi1989) to maintair©(e) accuracy.
Figure 1(a) shows the sparse multiresolution grid and tlmeesponding wavelet approximatiom,, of the solution
halfway through the simulation using wavelet paramepers6 ande = 10~3. The exact solution in Eq. (12) allows
quantitative error analysis, and the color map in Fig. 1€8gcts the erroju — u.|. Convergence rates are calculated
by solving Eq. (10) with a variety of wavelet bagisind threshold parametesrsThe convergence of the spatial error
is calculated halfway through the simulation. Figure 1¢ijwes the error in agreement with estimates Eqgs. (5) and
(9).

Having demonstrated the mathematical correctness of theerical method, we now exercise the physics
simulation capabilities by solving the coupled system oflm®ar PDEs given by the conservation of mass,
momentum, and energy:

dp _ S

S ==V (oD, (13)
o N
S (p7) = =V - (pT @ T — 0) + i, (14)
0 _ o
E(pé):—V-(peﬁ—017+(j)+pb-17+pr, (15)

wheree = e + ¥ - ¥/2. In Egs. (13)—(15), we solve for the densityvelocity ¥, and specific internal energy
This system requires closure equations to describe theh@astress tensos, the specific internal energy, and
the heat fluxg. In this work, the source terms are set to zero (hes 0 andr = 0), we define the stress tensor

0 0.5

1
1 u — g
1074

Ue
1072} ||u
L0.5 107°
10~
0
o
_ SO
107°} O Bt .
0.5 0.5 o p=6:08
~O- p=8 : 107
% x A B p
| | 10—8 A p=10:1.23
1o 05 1 1076 10~ 1072 10°
Y E
(@) (b)

FIG. 1: MRWT solution of Eq. (10), sparse multiresolution grid, asmhtial convergence rates obtained halfway through the
simulation: (a) MRWT solution halfway through time usingwetet parameters = 6 ande = 103, and (b) spatial convergence
halfway through time
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with the Newtonian fluid constitutive equation, and assuralarically perfect ideal gas with Fourier's law of heat
conduction. Additionally, the material parameters areasebrding to the values in Table 1.

This model has been used to describe the evolution of a T8ddov blast wave (Paolucci et al., 2014b),
where energy is deposited in a compressible fluid, leadinige@aevelopment of a spherical shock wave. The initial
condition is made continuous by way of a Gaussian profile Herinitial pressure, with an overpressure peak of 2
MPa and a standard deviation 9f(10v/2) m. The semidiscretized Egs. (13)—(15) are integrated ubmgmbedded
O(At*) andO(At®) explicit Runge-Kutta method developed in Fehlberg (19T@k temporal discretizatioAt is
chosen adaptively to retaifi(e) accuracy. The boundary conditions, are set to maintaimitialiconditions and the
simulation is stopped before the developing shock wavednts with the computational boundary. Figure 2 shows the
numerical solutions to Egs. (13)—(15) at time: 133902us, generated with wavelet parametgrs 8 ands = 10-2.

For the numerical solution in Fig. 2, the MRWT discretizataf the initial condition required only two resolution
levels (i.e..jmax = 2), Which resulted in 3250 mm between the closest collocation points at time 0. As the
internal energy converted into kinetic energy, MRWT auttioadly refined the grid near regions of the developing
shock wave. As shown in Fig. 2(a), MRWT predicted nine regmfulevels (i.e.jmax = 9) at timet = 133902 s,
which resulted in 44 mm between the closest collocation points. A denseatigation at this length scale would
require over 67 million collocation points, whereas the MR®blution in Fig. 2 contains only 312,793 collocation
points, resulting in a compression ratio greater than 208reldver, the sparse multiresolution spatial discretirati
maintains symmetry and adapts to follow features as thelyetbrough the domain.

TABLE 1: Material parameters for dry air at room temperature

Variable Name Value
Y Ratio of specific heats 7/5
m Dynamic viscosity 19x 107° Pas
K Thermal conductivity 2.55x 1072 W/(m K)
Cy Constant volume specific heat 7.18 x 107 J/(kg K)

0
x [m]  [m]

@) (b)

FIG. 2: Sparse multiresolution grid and numerical solutiort at 133902 us obtained using = 8 ande = 1072 In (a), the
grid points are colored according to their resolution leueThe reader is referred to the online version of this articteclarity
regarding the color in this figure. In (b), the maximum vetpé$ approximately 568 m/s. (a) MRWT solution of the densigyd
p, and (b) MRWT solution of the velocity fielff]|».
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5. CONCLUSIONS

Our proposed wavelet-based algorithm has the potentialnprave computational science and engineering
applications requiring resolution across multiple spatiad temporal scales. In particular, our method is welleslit
for situations where fine-scale features are dynamic. Wiseteaditional numerical methods require costly
remeshing/refining procedures, our method leverages tpepies of wavelet basis functions to automatically adapt
the computational domain as needed to accurately resadterés.

We have demonstrated that our implementation, MRWT, islaigpat solving multidimensional PDEs with error
controlled by the threshold parameterThis work advances the state of wavelet-based algorithynsxploiting
the regularity of the Deslauriers-Dubuc family of wavel@t®valuate spatial derivatives directly on the waveletdbas
functions. Additionally, we have verified that our predietmrrector procedure is able to solve initial-boundaayue
problems using compressed data on sparse multiresoluioretizations in finite domains. Furthermore, we have
provided error estimates for each wavelet operation ané Bhewn that our numerical solutions have a bounded
error at each time step, with convergence rates in agreenitnthe theoretical estimates.
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