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We present a numerical method which exploits the biorthogonal interpolating wavelet family, and second-generation
wavelets, to solve initial–boundary value problems on finite domains. Our predictor-corrector algorithm constructs
a dynamically adaptive computational grid with significant data compression, and provides explicit error control.
Error estimates are provided for the wavelet representation of functions, their derivatives, and the nonlinear product of
functions. The method is verified on traditional nonlinear problems such as Burgers’ equation and the Sod shock tube.
Numerical analysis shows polynomial convergence with negligible global energy dissipation.
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1. INTRODUCTION

As the field of computational physics has matured, the engineering applications which we seek to model have grown
remarkably in size and complexity. The scope of modern simulations include: the global ocean (Ringler et al., 2013),
detonation combustion (Cai et al., 2016), asteroid impacts (Boslough et al., 2015), and supernova remnants (Mal-
one et al., 2014). As these problems are inherently interdisciplinary and multiscale, reliable numerical models must
adaptively solve partial differential equations (PDEs) with multiphysics features on spatial and temporal scales across
many orders of magnitude.

Several numerical methods have been developed to address the computational difficulty of these multiscale prob-
lems. For example, adaptive mesh refinement (AMR) constructs an irregular grid by recursively refining the mesh size
in different locations (Berger and Oliger, 1984; Fatkullin and Hesthaven, 2001). Similarly, multigrid methods use a
hierarchy of grids to find a suitable spatial resolution (Brandt, 1977; Hackbusch, 1978). Further adaptivity is available
with finite element methods (FEM) by modifying the mesh size, changing the degree of the basis functions, relocating
nodes, or any combination of such approaches (Dong and Karniadakis, 2003; Gui and Babuška, 1986a,b; Rajagopal
and Sivakumar, 2007). Each of these techniques have merits and deficiencies. For example, AMR methods readily
achieve variable resolution (Klein, 1999), multigrid methods are extremely efficient linear solvers (Thekale et al.,
2010), and complex geometries are amenable to FEM (Schillinger and Rank, 2011). However, both AMR and FEM
require costlya posteriorianalysis for adaption criteria (Segeth, 2010), and computationally efficient implementa-
tion of the necessary mesh repair, smoothing, or remeshing is challenging (Demkowicz et al., 1989). Furthermore,
multigrid methods may require a major programming effort for each new grid configuration (Dendy, 1982).
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Wavelet methodologies offer an alternative approach for numerically solving multiscale PDEs (Schneider and
Vasilyev, 2010). These algorithms achieve spatial adaptivity with multiresolution wavelet basis functions (Jawerth
and Sweldens, 1994). Notable accomplishments of wavelet solvers include: significant data compression (Bertoluzza,
1996; Beylkin and Keiser, 1997; Liandrat and Tchamitchian, 1990), bounded energy conservation (Qian and Weiss,
1993; Ueno et al., 2003), modeling stochastic systems (Kong et al., 2016), and solving coupled systems of nonlinear
PDEs (Dubos and Kevlahan, 2013; Nejadmalayeri et al., 2015; Paolucci et al., 2014a,b; Sakurai et al., 2017). While
past solvers have had many successes, they are not without shortcomings. Many wavelet approaches only solve PDEs
which are defined on infinite or periodic domains [e.g., Fröhlich and Schneider (1994); Goedecker (1998); Iqbal and
Jeoti (2014)]. Additionally, some algorithms do not exploit the data compression ability of wavelets, resulting in
a computationally expensive uniform grid [e.g., Le and Caracoglia (2015); Lin and Zhou (2001); Qian and Weiss
(1993)]. Lastly, several wavelet methods use finite difference techniques to compute the spatial derivatives, requiring
the PDEs to be solved in the physical domain rather than in the wavelet domain [e.g., Holmström (1999); Nejad-
malayeri et al. (2015); Paolucci et al. (2014a,b)].

Our work advances the state of wavelet-based methods with the development of a predictor-corrector algorithm
which is designed to overcome the limitations of past solvers while retaining their advantages. We solve nonlinear
initial–boundary value problems on finite domains using differentiable wavelet bases and second-generation wavelets
near spatial boundaries. We maximize the data compression ability of these bases by populating the coarsest resolution
with the minimum number of collocation points required for support of the wavelet basis function. Therefore, we
define our bases with a modified support interval and derive special scaling relations to account for the variable
grid spacing. Moreover, we compute spatial derivatives by operating directly on the wavelet bases. We derive error
estimates for field values, their derivatives, and the aliasing errors associated with the nonlinear terms in a PDE. Then,
our estimates are used to construct a sparse, dynamically adaptive computational grid for each unknown thata priori
guarantees the required accuracy. Our predictor-corrector procedure maintains the prescribed accuracy through time
and allows each field to adapt independently using its own wavelet grid. Our algorithm provides data compression on
par with state-of-the-art wavelet solvers, has negligible global energy growth, and solves coupled systems of nonlinear
PDEs in the wavelet domain.

Before presenting the mathematical and numerical concepts, a summary of wavelet discretization, differentia-
tion, and correspondinga priori error estimation, is presented in Section 2. Then, the procedure of our algorithm is
described in Section 3. Lastly, verification is provided in Section 4 with numerical solutions of nonlinear problems
such as Burgers’ equation and the Sod shock tube.

2. WAVELET REPRESENTATION

For completeness of the presentation, we provide a brief review of wavelet theory. In particular, we summarize the
formation of wavelet basis functions and explicitly define the mathematical operations needed to solve nonlinear
PDEs with these bases. Additionally, we identify the known estimates for the spatial error associated with each of
these operations and provide a new derivation of the error accumulated during wavelet-based differentiation.

A multiresolution analysis (MRA) provides the formal mathematical definition of a wavelet family of basis
functions (Daubechies, 1992). A MRA of a domainΩ ⊂ R consists of a sequence of successive approximation spaces
Vj and their associated dual spacesṼj such that the union of these spaces is theL2(Ω) space (Cohen et al., 2000b):

Vj ⊂ Vj+1, Ṽj ⊂ Ṽj+1,
∞∪
j=0

Vj = L2(Ω). (1)

The wavelet spacesWj (W̃j) are then defined as the complements of the approximation spacesVj (Ṽj) in Vj+1 (Ṽj+1)
(Bacry et al., 1992; Qian and Weiss, 1993):

Vj+1 = Vj ⊕Wj , Ṽj+1 = Ṽj ⊕ W̃j . (2)

This multiresolution property requires the use of two indices:j the resolution level andk the unique spatial
locations on levelj. The scaling functionsϕj

k(x) and dual scaling functions̃ϕj
k(x) are the basis functions of the
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spacesVj andṼj , respectively, whereas the waveletsψj
k(x) and dual wavelets̃ψj

k(x) are the basis functions of the

spacesWj andW̃j , respectively. These bases are completely defined by the filter coefficientshi, h̃i, gi, andg̃i, derived
in Goedecker (1998) and Villiers et al. (2003).

Our proposed numerical method utilizes the biorthogonal interpolating wavelet family of basis functions, defined
in Donoho (1992). These bases are sometimes referred to as the Deslauriers-Dubuc wavelets (Burgos et al., 2013; Fujii
and Hoefer, 2003), or the autocorrelation of the Daubechies wavelets (Bertoluzza and Naldi, 1996). Since modified
bases are required for wavelet representation on an interval (Alpert et al., 2002; Sweldens, 1998), we use the second-
generation wavelets defined in Villiers et al. (2003) near spatial boundaries. The remainder of this section summarizes
operations specialized for this particular wavelet family.

2.1 Wavelet Discretization

We discretize in space by projecting a continuous functionf(x), defined on a finite interval{x ∈ Ω | a ≤ x ≤ b},
onto the basis functionsϕ0

k(x) andψj
k(x). Thes0

k scaling function coefficients are equal to the field values calculated
from

s0
k = f(a+ k∆x), where∆x =

b− a

2p
, {k ∈ Z : 0 ≤ k ≤ 2p}. (3)

The parameterp is an even integer which defines the properties of the basis functions (e.g., number of vanishing
moments and interpolation order). Equation (3) departs from traditional wavelet methods by defining the coarsest
grid spacing∆x with the minimum number of collocation points (i.e., 2p + 1) required to satisfy the support of the
wavelet basis function. This modifies the support interval of all basis functions, maximizes data compression, and is
unique to our algorithm as traditional wavelet methods usually define∆x = 1.

Next, thedjk wavelet coefficients are equal to the local interpolation error calculated from

djk =

2p∑
i=0

g̃ifi, where{j, k ∈ Z : 1 ≤ j ≤ ∞∧ 1 ≤ k ≤ 2jp}, (4)

andfi is defined by,

fi =



f

(
a+ i

∆x

2j

)
k ≤ p/2

f

[
b+ (i− 2p)

∆x

2j

]
k > 2jp− p/2

f

[
a+ (i+ 2k − p− 1)

∆x

2j

]
otherwise.

(5)

It has been shown by many authors [e.g., Holmström (1999); Nejadmalayeri et al. (2015); Paolucci et al. (2014b)]
that retaining only thosedjk coefficients with a magnitude greater than or equal to some prescribed thresholdε results
in the discretizationfε(x) that approximatesf(x) with the spatial error

||f(x)− fε(x)||∞ ≤ O(ε). (6)

Therefore, we calculate all of thedjk coefficients on resolution levelj = 1 and refine locally around those|djk| ≥ ε

until we reachj = jmax, where any further refinement would not produce any significant coefficients. In this way,
we create the sparse representation

fε(x) =

2p∑
k=0

s0
kϕ

0
k(x) +

jmax∑
j=1

∑
{k:|dj

k|≥ε}

djkψ
j
k(x). (7)

For any continuous function, this discretization procedure requires defining only two parameters. The parameterp
determines the properties of the bases and the parameterε determines the accuracy of the discretization. For example,
suppose we wish to discretize the function
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f(x) = arctan (100x− 50), on x ∈ [0,1]. (8)

If we choosep = 8 andε = 10−3, then Eqs. (3)–(7) completely define the projection onto wavelet basis functions.
The resulting sparse multiresolution discretization is shown in Fig. 1. We will show in Section 2.3 the spatial error
for field values [i.e., Eq. (6)] together with derivatives.

2.2 Backward and Forward Wavelet Transforms

With interpolating wavelets, a backward wavelet transform (BWT) maps thedjk wavelet coefficients back to their
corresponding field values. A forward wavelet transform (FWT) does the inverse and returns these field values to
their correspondingdjk wavelet coefficients. These operations are often referred to as wavelet synthesis and analysis,
respectively (Farge, 1992). The BWT is performed at each resolution level, from lowest to highest, by the matrix
operatorB. Likewise, the FWT is performed at each resolution level, from highest to lowest, by the matrix operator
F . These matrices are sparse, banded, and constant in time. Due to these properties, theB andF matrices are
never fully assembled and only nonredundant, nonzero entries are stored in memory. Therefore, the FWT and BWT
operations have a matrix-free computational implementation.

The structure of these matrices are similar to those used in Goedecker (1998) and Jameson (1993), though like
Dahmen et al. (1999), we modify these matrices with information of spatial boundaries (e.g., circled region of the
matrix in Fig. 2). The matrix notation replaces the cumbersome indices and summations of Eq. (7) with

fε(x) = f⃗ · Φ⃗ where f⃗ = B · d⃗, (9)

fε(x) = d⃗ · Ψ⃗ where d⃗ = F · f⃗ . (10)

2.3 Wavelet Derivatives

The smoothness of our wavelet family has been studied in Rioul (1992) and is summarized in Table 1. This continuity
allows the spatial derivative operator to act directly on the basis functions,

dm

dxm
f(x) ≈ dm

dxm

(⃗
d · Ψ⃗

)
= d⃗ · d

mΨ⃗

dxm
. (11)

(a) (b)

FIG. 1: Wavelet spatial discretization of Eq. (8) withp = 8 andε = 10−3: (a) Sparse multiresolution grid and (b) corresponding
field values
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FIG. 2: Definition of matrixF with modifications near spatial boundaries. An example of this modification is highlighted by
the circle. The matrixB is defined by the inverse ofF . Note that the matrix-free implementation of the FWT and BWT can be
developed.

TABLE 1: Regularity estimates from Rioul (1992) for the
biorthogonal interpolating wavelet family

p Hölder regularity Continuity
2 Ċ1 C0

4 Ċ2 C1

6 Ċ2.83 C2

8 Ċ3.55 C3

10 Ċ4.1935 C4

As in Beylkin and Keiser (1997), we project the spatial derivative ofΨ⃗ onto the same wavelet basis functions
and Eq. (11) becomes

dm

dxm
f(x) ≈

(
D(m) · d⃗

)
· Ψ⃗, (12)

where the matrixD(m) is defined in Appendix A and depicted in Fig. 3. Again, this matrix is sparse, banded, and
constant in time. Therefore, the derivative operations also have a matrix-free computational implementation. This
results in a discrete approximationD(m)fε(x) of themth-order derivativef (m)(x) with the spatial error

FIG. 3: Structure of the wavelet derivative matrix operatorD(m) with modifications near spatial boundaries. An example of this
modification is highlighted by the circle. Due to its defined structure, the matrix-free implementation can be developed.
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∣∣∣∣∣∣∣∣f (m)(x)−D(m)fε(x)

∣∣∣∣∣∣∣∣
∞

≤ O
(
ε1−m/p

)
. (13)

Similar error estimates are found in Dubos and Kevlahan (2013) and McCormick and Wells (1994). In this work, we
rigorously derive the error bound on wavelet derivatives of any order, defined on a finite domain. Our derivation of
Eq. (13) is a new contribution specific to the Deslauriers-Dubuc wavelet family and is located in Appendix B.2.

Now we show the merits of the wavelet discretization and differentiation in more detail. Suppose we have a
continuous field, such as in Eq. (8), and we need to calculate its first and second derivatives. Since we must choose
bases that are at least twice differentiable, we choosep = 6 andp = 8 (using information from Table 1). Then, by
choosing a small arbitrary value forε, the process in Section 2.1 provides a sparse multiresolution discretization
of the field. This wavelet representation guaranteesa priori the spatial accuracy ofO(ε), as defined in Eq. (6) and
shown in Fig. 4. Next, the spatial derivatives of the field are calculated on this sparse grid through the matrix-free
implementation ofD(1), D(2), and Eq. (12). Furthermore, we knowa priori that such approximations of the first and
second derivatives will have the spatial accuracy ofO

(
ε1−1/p

)
andO

(
ε1−2/p

)
, respectively, as defined by Eq. (13)

and also shown in Fig. 4.

2.4 Nonlinear Terms

Calculating the product of fields in wavelet space is computationally expensive because it requires a convolution op-
eration. Therefore, we utilize the more efficient pseudo-spectral approach of point-wise multiplication in the physical
domain. Specifically, we use Eq. (9) to perform a BWT and map thedjk wavelet coefficients to their corresponding
field values. Then, we approximate the product of fields by multiplying the field values at each collocation point.

It is well known that this technique introduces aliasing errors. An estimate of the magnitude of such errors is
provided in Holmstr̈om (1999), where it is shown that this process approximates the product of fields,f1(x) and
f2(x), with the spatial error

||f1(x)× f2(x)− f1ε(x)× f2ε(x)||∞ ≤ O(ε). (14)

Since these aliasing errors are bounded byε, their influence remains of the same order as all other error sources.

(a) (b)

FIG. 4: Spatial error for a field, Eq. (8), and itsmth derivatives is shown to beO(ε) andO
(
ε1−m/p

)
, respectively: (a) conver-

gence rates withp = 6 and (b) convergence rates withp = 8
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3. COMPUTATIONAL IMPLEMENTATION

We use the wavelet operations defined in Section 2 to solve nonlinear PDEs. Although these operations are well
defined for multiple spatial dimensions (Daubechies, 1992), we present examples with one spatial dimension to
provide better insight in the underlying steps of the algorithm. More detailed three-dimensional studies are needed
to fully assess the general convergence estimates and algorithmic improvements. For example, consider the initial–
boundary value problem:

∂u

∂t
+ (u+ c)

∂u

∂x
= ν

∂2u

∂x2
in Ω× [0, tf ],

u = ud on ∂Ωd × [0, tf ],

∂u

∂x
= un on ∂Ωn × [0, tf ],

u = u0 in Ω× (t = 0). (15)

Due to the presence of a second derivative, we specifyp such that the bases are at least twice differentiable. This
defines the matrix operatorsD(m),B andF . Next, as is traditional for wavelet-based solvers, we use spatial dis-
cretizations from Eqs. (10) and (12) to transform the nonlinear PDE into a nonlinear ordinary differential equation
(ODE),

d

dt
d⃗ + (⃗d + c)D(1) · d⃗ = νD(2) · d⃗. (16)

We use the process defined in Section 2.1, to discretize the initial conditionu0. Equation (6) providesa priori
knowledge that the spatial accuracy associated with this approximation is explicitly controlled by the threshold pa-
rameterε. Furthermore, as shown in Section 2.1, achieving theO(ε) spatial error only requires the retention of those
entries in⃗d with |dk| ≥ ε. Associating these coefficients with their corresponding collocation points results in the
multiresolution computational grid shown in Fig. 5(a).

Next, we use the process defined in Section 2.3 to approximate the spatial derivatives of the initial condition.
Equation (13) relates the threshold parameterε with the spatial accuracy ofmth order derivative approximations.
As shown in Appendix B.2, achieving theO

(
ε1−m/p

)
spatial error requires the retention of some entries ind⃗ with

(a) (b)

FIG. 5: Wavelet spatial discretization of the initial condition withp = 8 andε = 10−3. (a) Collocation points with|dk| ≥ ε

(squares) are defined by the initial condition. (b) Computational grid contains the additional collocation points with 0< |dk| < ε

(filled diamonds) that are needed for accurate derivative calculations.
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0 < |dk| < ε. Therefore, comparable to the adjacent zone defined in Vasilyev and Paolucci (1996), we include
additional points in the computational domain. However, this step is one of the novelties of our method, as we define
the neighboring region such that Eq. (13) is satisfied.

For example, each point in Fig. 5(a) corresponds to an entry ind⃗ and a particular row in the matrixD(m) (see
Fig. 3). We examine the nonzero entries within a row to define a multiresolution wavelet stencil for each point. Then,
this stencil is used to identify those points which influence the derivative calculations but which were not retained by
the initial discretization of the field with|dk| ≥ ε. Such points, shown as filled diamonds in Fig. 5(b), are included in
the computational grid if their wavelet coefficients are 0< |dk| < ε. This procedure ensures the validity of Eq. (13)
and defines the sparse computational grid.

Now the computational grid contains all of the collocation points that are required to approximate the solution
of the PDE at time stepn with a priori knowledge of the spatial accuracy from Eqs. (6), (13), and (14). Since the
solution of the PDE may evolve and advect, it is not clear if these collocation points will be sufficient at time step
n + 1. To resolve this issue, our algorithm combines ideas from Liandrat and Tchamitchian (1990) and Cohen et al.
(2000a) to define a predictor-corrector procedure. First we add trial points, shown as filled circles in Fig. 6, before
advancing to a trial time stepn + 1∗. We utilize the procedure in Liandrat and Tchamitchian (1990) to define a trial
grid by expanding the current computational grid by one resolution level and one point in each direction, as shown in
Fig. 6(a). The trial grid serves as a prediction of the collocation points which will be required at the next time step.

We then use an explicit time integration scheme to advance the solution, on the trial grid, from the time stepn to
the trial time stepn+ 1∗. The time step size∆t is determined from the traditional linear stability criteria and adapts
according to the highest resolution level present in the grid. This transforms the nonlinear ODE in Eq. (16) into a
system of algebraic equations which updated⃗ to the trial time stepn + 1∗. Equation (12) is used to calculate spatial
derivatives in the wavelet domain at each point in the trial grid. When nonlinear terms are present, the procedure in
Section 2.4 is used to calculate the pointwise product on a collocation grid defined by the union of the fields involved.
Then, a FWT returns the products to the wavelet domain and the update equations are evaluated.

At this point, we depart from traditional wavelet algorithms by verifying that our prediction of the grid modifi-
cation was accurate. In one time step, it is possible that structures within the grid have advected more than one point
or refined more than one level. Therefore, we check the magnitude of the coefficients on the highest resolution level
at the trial time step. If||⃗dn+1∗ ||∞ ≥ ε, then we cannot guarantee the accuracy of the solution of the PDE according
to the estimates in Eqs. (6), (13), and (14). Consequently, we correct our prediction of the trial grid by discarding
the trial time step and, similar to the growing procedure in Cohen et al. (2000a), we expand our prediction of the

(a) (b)

FIG. 6: Collocation points associated with the predictor stage of the algorithm. (a) Trial grid containing additional trial points and
(b) location of the trial points.
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trial grid by one more resolution level and one more point in each direction. We repeat this process of correcting the
trial grid and recalculating the trial time step until the accuracy of the solution of the PDE can be guaranteed (i.e.,
||⃗dn+1∗ ||∞ < ε on the highest resolution level). This predictor-corrector procedure populates the sparse computa-
tional grid as it evolves with the solution of the PDE and ensures that the spatial error remains bounded by Eqs. (6),
(13), and (14) through time.

When a trial time step is accepted, we setd⃗n+1 = d⃗n+1∗ , and many wavelet coefficients are no longer needed.
Collocation points at the new time are retained only if||⃗dn+1||∞ ≥ ε, or if they are used for calculating the spatial
derivatives at such points. This procedure prunes the sparse computational grid as it evolves with the solution of the
PDE.

Now that we have evolved the solution of the PDE to a new time, we enforce boundary conditions. Dirichlet
conditions are handled by setting all collocation points on∂Ωd to the Dirichlet valueud. Neumann conditions are
handled by modifying Eq. (16) for all collocation points on∂Ωn to reflect the known derivativesun.

Figure 7 and Algorithm 1 summarize our predictor-corrector algorithm to solve nonlinear PDEs on a sparse,
dynamically adaptive computational grid with explicit error control.
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FIG. 7: Dynamically adaptive wavelet solver for nonlinear PDEs
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Algorithm 1: Explicit solver for initial–boundary value problems
Read input
Create the initial sparse grid

Discretize the initial condition with wavelet basis ◃ Eqs. (3) to (7)
Include nonzero coefficients for derivative calculations ◃ Eq. (12)

while t < tfinal do
Choose∆t
repeat

Add trial points
Calculate derivatives ◃ Eq. (12)
Calculate products ◃ Eqs. (9) and (10)
Perform a trial time step

until ||⃗dn+1∗ ||∞ < ε on highest resolution level
Accept time step

Retain coefficients based on||⃗dn+1||∞ ≥ ε and derivative calculations
Enforce B.C.

end

4. NUMERICAL EXAMPLES

This section provides verification examples of the adaptive algorithm described in Section 3. Burgers’ equation is
solved in two separate cases to subject the algorithm to shock wave evolution and shock wave advection. Then, the
Sod shock tube problem is solved to subject the algorithm to a coupled system of nonlinear equations.

4.1 Burgers’ Equation

The general form of Burgers’ equation was given in Eq. (15), and this section uses the following dimensionless values:
ν = 10−2, tf = 1/2, andΩ = (−1,1), with no Neumann conditions. A shock evolution problem is defined by setting
c = 0, with the following initial and Dirichlet conditions:

u0 = − sinπx, (17)

u(−1, t) = 0, u(1, t) = 0, (18)

and has the exact solution,

u(x, t) = −

∫∞
−∞ sin (πx− πη) exp

(
− cos (πx−πη)

2πν

)
exp

(
−η2

4νt

)
dη∫∞

−∞ exp
(

− cos (πx−πη)
2πν

)
exp

(
−η2

4νt

)
dη

. (19)

A shock advection problem is defined by settingc = 2, with the following initial and Dirichlet conditions:

u0 = − tanh

(
x+ 1/2

2ν

)
, (20)

u(−1, t) = 1, u(1, t) = −1, (21)

and has the exact solution,

u(x, t) = − tanh

(
x+ 1/2− ct

2ν

)
. (22)

Second-order accurate explicit Runge-Kutta time integration is used withp = 6 andε = 10−3 to obtain the
approximate solutions shown in Figs. 8 and 9.
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FIG. 8: Sparse multiresolution grid and corresponding field values for the evolution of a shock at timest = 0 (top),t = 1/4 (middle),
andt = 1/2 (bottom) withp = 6 andε = 10−3
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FIG. 9: Sparse multiresolution grid and corresponding field values for the evolution of a shock at timest = 0 (top),t = 1/4 (middle),
andt = 1/2 (bottom) withp = 6 andε = 10−3
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We use the exact solutions in Eqs. (19) and (22) to provide quantitative error analysis. The error at each time
stepn is shown in Fig. 10 for both the shock evolution and shock advection problems. As predicted bya priori error
estimates Eqs. (6), (13), and (14), the error at any time step is bounded bymax{O(ε),O(ε1−m/p)}.

Solving each form of Burgers’ equation with various values forε verifies that the spatial convergence rate ap-
proaches the theoretical estimates, as shown in Fig. 11.

In general, collocation methods are not energy conserving. However, the strict error control of our method results
in negligible changes to the global energy at each time step. Specifically, we quantify the global energy growth of our
algorithm by showing that the generalized energy integralHB is approximately time invariant. It has been shown in
Ueno et al. (2003) that

HB =

∫ 1

−1

{∫ t

0

[(
∂u

∂ξ

)2

+ u
∂u

∂ξ

∂u

∂x

]
dξ+

ν

2

(
∂u

∂x

)2
}
dx, (23)

(a) (b)

FIG. 10: Spatial error at each time stepn with p = 6 andε = 10−3: (a) shock evolution problem and (b) shock advection problem.
Thea priori estimate of the error bound ismax{O(ε),O(ε5/6),O(ε2/3)} = 10−2.

(a) (b)

FIG. 11: Spatial convergence for Burgers’ equation: (a) shock evolution problem and (b) shock advection problem
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d

dt
HB =

∫ 1

−1

∂u

∂t

(
∂u

∂t
+ u

∂u

∂x
− ν∂

2u

∂x2

)
dx, (24)

d

dt
HB =

∫ 1

−1
utR dx. (25)

Instead of evaluating this integral directly, Fig. 12 shows the magnitude of the integrand normalized by the value of
HB computed from the exact solution. Since this integrand is approximately zero for every time step, our adaptive
wavelet algorithm conserves global energy approximately, but with a high degree of accuracy.

4.2 Sod Shock Tube

The Sod problem, as defined in Kamm et al. (2008), is a type of Riemann problem, with a shock wave and a contact
discontinuity that move to the right and a rarefaction wave that moves to the left. The governing equations for this
problem are the one-dimensional Navier-Stokes equations:

∂ρ

∂t
= − ∂

∂x
(ρv), (26)

∂

∂t
(ρv) = − ∂

∂x
(ρv2 + p− τ), (27)

∂

∂t
(ρE) = − ∂

∂x
(ρEv + pv − vτ+ q). (28)

The following closure equations arise from assuming a calorically perfect ideal gas, with zero bulk viscosity, and
Fourier heat conduction:

τ =
4
3
µ
∂v

∂x
, q = −k

∂T

∂x
, e = cvT, p = (γ− 1)ρe, E = e+

1
2
v2. (29)

The ratio of the specific heats isγ = 7/5, and the other material properties are taken from tabulated values for dry
air at 250 K (Heldman, 2003). Table 2 lists the initial conditions, domain, and interface locationxi for this Riemann
problem. The initial conditions are made continuous by using a hyperbolic tangent function.

(a) (b)

FIG. 12: Magnitude of the integrand in Eq. (25) at each time stepn: (a) shock evolution problem and (b) shock advection problem
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TABLE 2: Initial conditions and domain for the
Sod shock tube from Kamm et al. (2008)

ρ [g/cm3] u [cm/s] p [dyn/cm2]
Left 1.0 0.0 1.0

Right 0.125 0.0 0.1
x ∈ [0, 1] cm; xi = 0.5 cm; t ∈ [0,0.2] s

The boundary conditions are set to maintain the initial conditions at each time step. The inviscid (i.e.,µ = 0)
Sod problem has an analytical solution and it is shown against the viscid numerical solution for qualitative compar-
ison. First-order accurate forward Euler time integration is used with parametersp = 8 andε = 10−3 to obtain the
approximate solutions (Figs. 13–15).

FIG. 13: Sparse multiresolution grid and corresponding density values at timest = 0.0 s (top),t = 0.1 s (middle), andt = 0.2 s
(bottom) withp = 8 andε = 10−3
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FIG. 14: Sparse multiresolution grid and corresponding velocity values at timest = 0.0 s (top),t = 0.1 s (middle), andt = 0.2 s
(bottom) withp = 8 andε = 10−3
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FIG. 15: Sparse multiresolution grid and corresponding energy values at timest = 0.0 s (top),t = 0.1 s (middle), andt = 0.2 s
(bottom) withp = 8 andε = 10−3
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As shown in Fig. 16, we allow each field to advance using its own sparse collocation grid. By retaining only the
nonredundant information from grid to grid (field to field), a high degree of data compression is obtained. This is
especially evident when comparing the initial computational grid of velocity against the initial grids for density and
energy. Figure 16 shows the first 100 steps to highlight the transient development of each field. In total, 9,834 time
steps were taken. On average, 200, 232, and 239 collocation points were needed to represent the density, velocity, and
energy fields, respectively. Vasilyev and Bowman (2000) define a compression coefficient by dividing the number
of points used in a uniform grid with comparable resolution by the number of points in the adaptive grid. This work
achieves average compression coefficients of approximately 10.25, 8.83, and 8.57 for the density, velocity, and energy
fields, respectively.

5. CONCLUSIONS

In this work, we have developed an adaptive algorithm for solving nonlinear PDEs. We have incorporated a matrix
notation to simplify the fundamental wavelet operations and utilized a matrix-free computational implementation.
We have shown that our numerical method is capable of solving initial–boundary value problems on finite domains
with an explicit error control and negligible global energy growth. The algorithm takes advantage of the regularity of
the biorthogonal interpolating wavelet family and evaluates spatial derivatives directly on the wavelet basis functions.
We have advanced the state of wavelet based algorithms by deriving bounds on the spatial error of PDE solutions
and developing a predictor-corrector strategy to ensure that the spatial error stays bounded at each time step. We
have verified these error estimates through numerical analysis of nonlinear shock problems with analytical solutions.
Furthermore, we have defined each field in the governing equations on its own dynamically adaptive computational
grid, and fine-scale features, such as shock waves, are well resolved with no spurious numerical oscillations.
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Gui, W. and Babǔska, I., The h, p, and h-p Versions of the Finite Element Method in 1 Dimension, Part I,Numer. Math., vol. 49,
pp. 577–612, 1986a.
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APPENDIX A. VECTOR AND MATRIX DEFINITIONS

The vectors and matrices described in Section 2 are similar to those in Goedecker (1998) and Jameson (1993), though
in this work they are modified to account for finite domains. Spatial derivative calculations require the matrix operator
D(m), defined by

D(m) = Γ(m) single resolution, (A.1)

D(m) = F · Γ(m) ·B multiresolution, (A.2)

Γ
(m)
kl =

∫
ϕ̃

j
k(x)

dm

dxm
ϕ

j
l (x)dx. (A.3)

As in Qian and Weiss (1993), evaluating Eq. (A.3) for the interior scaling functions can be accomplished by solving
an eigenvector problem. The eigenvectorχi is then normalized according to∑

i

im χi =

(
−1
∆x

)m

m!. (A.4)

We note that Eq. (A.4) is derived in Beylkin (1992) and further scaled for a variable∆x. This scaling is unique to our
method since we have modified the support interval of the basis in Section 2.1.

In Villiers et al. (2003), the modified boundary basis functions are defined as linear combinations of the interior
bases. Therefore, evaluating Eq. (A.3) for a basis function near the boundary is accomplished by calculating an
appropriate linear combination of the normalized eigenvectorχi. With Γ(m) fully defined,D(m) is calculated in the
“standard form” (Goedecker, 1998) by applying Eq. (A.2) at each resolution level.

APPENDIX B. MATHEMATICAL DERIVATIONS

The following mathematical formulations are used to estimate the spatial error associated with evaluating derivatives
of the wavelet bases. Much of the literature on this subject has been focused on orthogonal wavelet families with
infinite or periodic domains and a coarse grid spacing of unity (i.e.,∆x = 1). Therefore, it is necessary to derive
identities which pertain to our biorthogonal interpolating wavelet family, with modified bases on finite domains, and
a variable coarse grid spacing (i.e.,∆x = (b− a)/(2p)).
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The derivations consider a polynomial of an arbitrary orderP in the domainx ∈ [0, 1],

f(x) = xP . (B.1)

For nontrivial derivatives,P ≥ m and

f (m)(x) =
P !

(P −m)!
xP−m. (B.2)

Let p be the order of the wavelet basis functions,J be a maximum resolution level, andN + 1 is the number of
collocation points on resolution levelJ whereN = 2J(2p).

APPENDIX B.1 Moment Property of the Derivative Matrix

The following identity is required in Appendix B.2. Starting with∫
ϕ̃J

k (x)
dm

dxm
xPdx =

P !

(P −m)!

(
k∆x

2J

)P−m

, (B.3)

two cases develop, depending on the power of the polynomial.

• ForP less than the order of the wavelet basis, (i.e.,P < p):

xP =
N∑
l=0

(
l
∆x

2J

)P

ϕJ
l (x), (B.4)

∫
ϕ̃J

k (x)
dm

dxm
xPdx =

∫
ϕ̃J

k (x)
dm

dxm

[
N∑
l=0

(
l
∆x

2J

)P

ϕJ
l (x)

]
dx, (B.5)

∫
ϕ̃J

k (x)
dm

dxm
xPdx =

(
∆x

2J

)P N∑
l=0

lP
∫
ϕ̃J

k (x)
dm

dxm
ϕJ

l (x)dx, (B.6)

∫
ϕ̃J

k (x)
dm

dxm
xPdx =

(
∆x

2J

)P N∑
l=0

lPD
(m)
kl . (B.7)

Setting Eqs. (B.3) and (B.7) equal yields

N∑
l=0

lPD
(m)
kl =

P ! kP−m

(P −m)!

(
∆x

2J

)−m

for P < p. (B.8)

• ForP greater than or equal to the order of the wavelet basis, (i.e.,P ≥ p),

xP =

N∑
l=0

(
l
∆x

2J

)P

ϕJ
l (x) +

∞∑
j=J+1

2jp∑
l=1

djlψ
j
l (x), (B.9)

∫
ϕ̃J

k (x)
dm

dxm
xPdx =

∫
ϕ̃J

k (x)
dm

dxm

[
N∑
l=0

(
l
∆x

2J

)P

ϕJ
l (x) +

∞∑
j=J+1

2jp∑
l=1

djlψ
j
l (x)

]
dx, (B.10)

∫
ϕ̃J

k (x)
dm

dxm
xPdx =

(
∆x

2J

)P N∑
l=0

lPD
(m)
kl +

∫
ϕ̃J

k (x)
dm

dxm

( ∞∑
j=J+1

2jp∑
l=1

djlψ
j
l (x)

)
dx, (B.11)
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∫
ϕ̃J

k (x)
dm

dxm
xPdx =

(
∆x

2J

)P N∑
l=0

lPD
(m)
kl +

∞∑
j=J+1

2jp∑
l=1

djl

∫
ϕ̃J

k (x)
dm

dxm
ψ

j
l (x)dx. (B.12)

Setting Eqs. (B.3) and (B.12) equal yields,

N∑
l=0

lPD
(m)
kl =

P !

(P −m)!
kP−m

(
∆x

2J

)−m

−
(
∆x

2J

)−P ∞∑
j=J+1

2jp∑
l=1

djl

∫
ϕ̃J

k (x)
dm

dxm
ψ

j
l (x)dx. (B.13)

APPENDIX B.2 Error Estimate for the Wavelet Derivative

Let fε(x) be the wavelet representation off(x) andf (m)
ε (x) be the wavelet representation of themth derivative of

f(x). Then, subtract the discrete representation from the continuous to obtain∣∣∣∣∣∣∣∣f (m)(x)−D(m)fε(x)

∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣f (m)(x)− f (m)
ε (x) + f (m)

ε (x)−D(m)fε(x)

∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣f (m)(x)− f (m)

ε (x)

∣∣∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣∣∣f (m)
ε (x)−D(m)fε(x)

∣∣∣∣∣∣∣∣
∞
. (B.14)

The norms on the right-hand side of Eq. (B.14) have different expressions depending on the powerP of the
polynomial. The first norm corresponds to the interpolation error of a wavelet representation truncated at resolution
levelJ . This error estimate has been derived in Donoho (1992) to be,∣∣∣∣∣∣∣∣f (m)(x)− f (m)

ε (x)

∣∣∣∣∣∣∣∣
∞

= 0, for P < p, (B.15)

∣∣∣∣∣∣∣∣f (m)(x)− f (m)
ε (x)

∣∣∣∣∣∣∣∣
∞

≤ C1

(
∆x

2J

)p

, for P ≥ p. (B.16)

The second norm on the right-hand side of Eq. (B.14) corresponds to the error from projecting the derivatives of
the basis functions onto the same basis functions:

fε(x) =

N∑
k=0

(
k
∆x

2J

)P

ϕJ
k (x), (B.17)

f (m)
ε (x) =

N∑
k=0

P !

(P −m)!

(
k
∆x

2J

)P−m

ϕJ
k (x), (B.18)

∣∣∣∣∣∣∣∣f (m)
ε (x)−D(m)fε(x)

∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣ N∑
k=0

P !

(P −m)!

(
k
∆x

2J

)P−m

ϕJ
k (x)−

N∑
k=0

N∑
l=0

D
(m)
kl

(
l
∆x

2J

)P
ϕJ

k (x)

∣∣∣∣∣∣∣∣
∞
, (B.19)

∣∣∣∣∣∣∣∣f (m)
ε (x)−D(m)fε(x)

∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣ N∑
k=0

{
P ! kP−m
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∣∣∣∣∣∣∣∣
∞
. (B.20)

Proceeding, there are two cases:

• ForP < p, using Eq. (B.8), Eq. (B.20) becomes
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∣∣∣∣∣∣∣∣f (m)
ε (x)−D(m)fε(x)
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, (B.21)

∣∣∣∣∣∣∣∣f (m)
ε (x)−D(m)fε(x)

∣∣∣∣∣∣∣∣
∞

= 0. (B.22)

• ForP ≥ p, using Eq. (B.13), Eq. (B.20) becomes∣∣∣∣∣∣∣∣f (m)
ε (x)−D(m)fε(x)
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(B.23)

∣∣∣∣∣∣∣∣f (m)
ε (x)−D(m)fε(x)
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, (B.24)

∣∣∣∣∣∣∣∣f (m)
ε (x)−D(m)fε(x)
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∣∣∣∣∣∣∣∣f (m)
ε (x)D(m)fε(x)
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∣∣∣∣∣∣∣∣f (m)
ε (x)−D(m)fε(x)
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As shown in Goedecker (1998), thedji coefficients are identical to the Lagrange remainder [defined in Abramowitz
and Stegun (1964)]:∣∣∣∣∣∣∣∣f (m)

ε (x)−D(m)fε(x)
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. (B.28)

Then, since the norm is less than or equal to the sum of the norms for eachi, and the components of theD(m) matrix
come from the normalized eigenvectorsχi in Eq. (A.4), we obtain∣∣∣∣∣∣∣∣f (m)

ε (x)−D(m)fε(x)
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. (B.29)

Again, since the norm is less than or equal to the sum of the norms for eachj, we obtain∣∣∣∣∣∣∣∣f (m)
ε (x)−D(m)fε(x)
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, (B.30)

∣∣∣∣∣∣∣∣f (m)
ε (x)−D(m)fε(x)
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∞

≤ C2

(
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2J

)p−m

. (B.31)

Now Eq. (B.14) has the following forms:
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• ForP < p, use Eqs. (B.15) and (B.22) to obtain∣∣∣∣∣∣∣∣f (m)(x)−D(m)fε(x)

∣∣∣∣∣∣∣∣
∞

= 0. (B.32)

• ForP ≥ p, use Eqs. (B.16) and (B.31) to obtain∣∣∣∣∣∣∣∣f (m)(x)−D(m)fε(x)

∣∣∣∣∣∣∣∣
∞

≤ C2

(
∆x

2J

)p−m

. (B.33)

This estimate takes into account the modified support interval of our bases and the modified bases near the spatial
boundaries. As shown in Holmström (1999), the grid spacing at the highest resolution level,h = ∆x/2J , may be
related to the thresholding parameterε with

O(h) ≈ O(ε1/p) (B.34)

to obtain ∣∣∣∣∣∣∣∣f (m)(x)−D(m)fε(x)

∣∣∣∣∣∣∣∣
∞

≤ O
(
ε1−m/p

)
. (B.35)
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