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The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a back-

ground temperature gradient, H, using a normal mode analysis. The effect of H variation is examined

for three interface types corresponding to the combinations of the viscous properties of the fluids

(inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when

at least one of the fluids’ viscosity is non-zero, as a function of the Grashof number. For the general

case, the resulting ordinary differential equations are solved numerically; however, dispersion rela-

tions for the growth rate are presented for several limiting cases. An analytical solution is found for

the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is

obtained in the limit of large H. For the viscous-inviscid case, a dispersion relation is derived in the

incompressible limit and H¼ 0. Compared to H¼ 0 case, the role of H< 0 (hotter light fluid) is

destabilizing and becomes stabilizing when H> 0 (colder light fluid). The most pronounced effect of

H 6¼ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all

interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the

growth rate for the H< 0 case exceeds the infinite domain incompressible constant density result.

The results are applied to two practical examples, using sets of parameters relevant to Inertial

Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate

reduction is discussed together with highlighting the range of wavenumbers most affected by viscos-

ity. The viscous effects further increase in the presence of background temperature gradient, when

the viscosity is temperature dependent. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4959810]

I. INTRODUCTION

The Rayleigh-Taylor instability1–4 (RTI) occurs in a

number of important natural phenomena and

applications, for example, in supernova explosions and neu-

tron stars,5–7 solar corona,8,9 earth oceans, atmosphere and

mantle,10–15 quantum plasma,16–19 combustion,20 and

Inertial Confinement Fusion (ICF).21,22 Compared to its clas-

sical formulation, in most practical cases, RTI manifests

itself as an extremely complex process. The complexity

arises, in particular, due to an inter-wined manifold of factors

involved, among which are the density difference, compress-

ibility, temperature distribution, viscosity, surface tension,

and other interfacial phenomena for the immiscible case or

mass diffusion for the miscible case, heat diffusion, geomet-

rical and finite boundary effects, specific plasma and mag-

netic field properties, etc. A lot of endeavor has been

undertaken to understand the implication of these parameters

and their combinations for RTI growth. The stabilizing

effects of viscosity, surface tension, and magnetic fields on

the linear stage development were discussed in the classical

work of Chandrasekhar.23 Inclusion of mass diffusion was

shown to dump to zero the instability growth rate in the limit

of large wave numbers.24–26 The parameter space increases

substantially for the compressible case, since various aspects

(e.g., flow compressibility, material properties such as spe-

cific heat ratio or viscosity dependence on temperature, and

background state) depend on different parameters, which

independently affect the growth.27–29 Studying the astro-

physical phenomena and ICF has inspired further interest in

understanding the RTI development for the compressible

case, sometimes in association with other phenomena such

as plasma effects and ablation. Specifically for the ICF

plasma, the crucial role of the ablative22,30–33 and vis-

cous34,35 effects on RTI has been highlighted.

Temperature differences are often present across the

Rayleigh-Taylor (RT) unstable layers and can modify the

instability growth compared to the layers of constant temper-

ature. For example, in the solar corona prominences, the

temperature difference can reach 105 K and during the ICF

coasting or deceleration stage up to 107 K. In oceans and

atmosphere, due to the presence of inverted temperature

regions, denser gas and water can occasionally be dumped

over less-dense material. In some specific theoretical studies

of liquid-vapor interfaces with temperature differences, the

effect of mass and heat transfer was shown to be stabilizing

or destabilizing depending on whether the gas phase is hotter

or colder than the liquid.36 In the experimental work of

Burgess et al.,37 heating from below was applied to RT

unstable liquid-gas interface. The authors demonstrate that

the restoring force provided by the temperature-dependent

surface tension can stabilize the interface. Ho38 studied RTIa)Electronic mail: livescu@lanl.gov.
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with two viscous fluids of equal kinematical viscosities in

the presence of heat and mass transfer. Thermal effects on

linear and nonlinear RTI in the presence of mass, heat trans-

fer, and magnetic field were also studied in Ref. 39.

However, there has been no systematic study of the effects

of temperature differences on RTI for a range of parameters

such as density difference, viscosity, and background stratifi-

cation for the compressible case. Previously, Livescu27

investigated the effects of compressibility on RTI with uni-

form background temperature and Yu and Livescu28

extended the study to cylindrical geometry. This paper

addresses a more general case, in which the background tem-

perature varies linearly in the direction perpendicular to the

interface. For non-zero temperature conduction coefficient,

more complex variations of the background temperature

would lead to unsteady background states, which prevent the

separation of variables and the reduction of the governing

equations to ordinary differential equations required by the

normal mode approach.

Most studies to date of the linear stage of RTI with addi-

tional effects compared to the classical incompressible case

have been performed for inviscid fluids. Some examples

with viscous fluids can be found in Refs. 25 and 27 and refer-

ences therein. However, even when viscous effects were con-

sidered, the viscosities of the two fluids were commensurate.

Nevertheless, in applications such as ICF, RTI can develop

between fluids with vastly different viscosities. In the ICF

context, this is due to the viscosity variation with tempera-

ture and the large temperature difference between the hot

spot and the surrounding material. Thus, the limiting case in

which one of the fluids is viscous and the other is inviscid is

practically important. The stability of the viscous-inviscid

interfaces has been studied for mixing layers,40,41 but, to our

knowledge, not for RTI. Thus, in this study, we present the

first investigation of the viscous-inviscid interface in the con-

text of RTI; the growth rate is obtained numerically for the

general case, while a dispersion relation is presented for the

incompressible case. All derivations and results apply to the

case when the ratio of specific heats of the two fluids are

equal and the only incompressible limit considered is that of

infinite speed of sound due to infinite interfacial pressure

(incompressible flow limit). The incompressible fluid limit

(ratio of specific heats, c ! 1)4,27,28 and the effects of dif-

ferent specific heats are not addressed since they are not

directly relevant to the applications discussed here.

The paper is organized as follows. Section II presents

the governing equations and the corresponding zeroth (sub-

section II A) and first order (subsection II B) equations subse-

quent to linearization. Sections III, IV, and V describe the

application of these equations to the inviscid-inviscid,

viscous-viscous, and viscous-inviscid cases, respectively.

Although this is not the first study of the viscous-inviscid

interface,40,41 to our knowledge this is the first time when

this is applied to RTI and the first time when a dispersion

equation for the growth rate is presented. For the inviscid-

inviscid interface, an analytical dispersion equation is

derived in the limit of large background temperature gradi-

ent, which gives a good estimate of the growth rate even for

small temperatures in the limit of small Atwood, At, and/or

for large wave numbers. Section VI presents a discussion of

the results for three different At values at several Grashof,

Gr, numbers. Estimation values of the dimensional growth

rates are numerically obtained in Section VII for parameters

relevant to the ICF coasting stage and solar corona plumes

and compared to the existing results in the literature. The

effects of temperature dependent viscosity are also consid-

ered here. Finally, conclusions are provided in Section VIII.

The terms in the equations for the general viscous-viscous

case are provided in the Appendix.

II. GOVERNING EQUATIONS

Taking the case of two superimposed fluids with an

interface at x̂1 ¼ 0 and the gravitational acceleration given

by ð�ĝ; 0; 0Þ, the equations of motion for each fluid are4,29,42

@q̂
@ t̂
þ @q̂ûk

@x̂k
¼ 0; (1)

@q̂ûi

@ t̂
þ @q̂ûiûk

@x̂k
¼ � @p̂

@x̂i
þ @ŝik

@x̂k
� q̂ĝdi1; (2)

@q̂ê

@ t̂
þ @q̂êûk

@x̂k
¼ �p̂

@ûk

@x̂k
þ ŝjk

@ûj

@x̂k
þ @

@x̂k
ĵ
@T̂

@x̂k

 !
; (3)

where the viscous stress is Newtonian, ŝij ¼ l̂ð@ûi=@x̂j

þ @ûj=@x̂i � ð2=3Þð@ûk=@x̂kÞdijÞ, and the heat flux is

assumed to follow Fourier’s law. In these equations, a

dimensional quantity is denoted by a hat, ð̂�Þ. To close the

governing equations, ideal gas equations of state for pressure

and internal energy are used

p̂ ¼ R̂ q̂ T̂ ; ê ¼ p̂

q̂ c� 1ð Þ ; (4)

where R̂ is the gas constant and c is the ratio of specific

heats. In the above equations, material properties such as c
and l̂ can be different for the two fluids, but are constant for

each of the fluids unless otherwise specifically considered

(e.g., when studying the influence of a temperature depen-

dence of l̂).

By defining

x̂i ¼ xiL̂ t̂ ¼ t

ffiffiffî
L

ĝ

s
q̂m ¼ qm q̂1;1 þ q̂2;1

� �
ûim ¼ uim

ffiffiffiffiffiffi
ĝL̂

q
p̂m ¼ pmp̂1 T̂m ¼ TmT̂1;

equations (1)–(3) can be cast into non-dimensional form. In

these definitions, the dimensional quantities defined at the

fluid interface are denoted by an (1) subscript, (m) subscript

indicates a quantity in either fluid 1 or 2, with fluid 2 at the

top, non-dimensional quantities are unadorned, and L̂ is the

height of the domain occupied by each fluid (half-height of the

total domain). These non-dimensionalizations imply that there

is a density jump across the interface, but the pressure and

temperature are continuous across the interface. Continuities

of the background pressure and temperature assume that the

unperturbed configuration is in thermodynamical equilibrium
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at the interface, which is necessary to reduce the first order

equations to ordinary differential equations. This implies that

the two fluids had been in contact for sufficient time before

the perturbation is applied.

Using the definitions above, the non-dimensional forms

of Eqs. (1)–(3) become

@q
@t
þ @quk

@xk
¼ 0; (5)

@qui

@t
þ @quiuk

@xk
¼ � 1

M2

@p

@xi
þ @

@xk

lffiffiffiffiffiffi
Gr
p @ui

@xk
þ @uk

@xi

�"

� 2

3

@ul

@xl
dik

��
� qdi1; (6)

@p

@t
þ uk

@p

@xk
¼ �cp

@uk

@xk
þ c� 1ð Þ lM2ffiffiffiffiffiffi

Gr
p @uj

@xk
þ @uk

@xj

�

� 2

3

@ul

@xl
djk

�
@uj

@xk
þ c

@

@xk

j

Pr
ffiffiffiffiffiffi
Gr
p @T

@xk

� �
:

(7)

The non-dimensional numbers in Equations (5)–(7) are

(a) the gravitational Mach number,27,28 characterizing the

compressibility effects as the ratio between free fall velocity

over the distance L̂ and isothermal sound speed

M2 ¼ ĝL̂
q̂1;1 þ q̂2;1

p̂1

 !
; (8)

(b) the Grashof number, characterizing the importance of

buoyancy relative to viscous forces,

Gr ¼ ĝL̂
3

�̂2
1
; (9)

and (c) the Prandtl number, characterizing the importance of

momentum diffusivity relative to thermal diffusivity

Pr ¼ �̂1c p̂1
ĵ1 c� 1ð ÞT̂1

: (10)

Note that in the context of RTI, the Archimedes number might

be used to replace Gr. In the non-dimensionalization used

here, the Froude number, Fr, does not appear explicitly.

Nevertheless, since the velocity perturbation amplitude is

small, the linearized analysis corresponds to the limit Fr! 0.

On the other hand, neglecting the nonlinear terms in the

momentum equations, but keeping the viscous terms, corre-

sponds to the assumption that the Reynolds number is small.

However, since Gr¼Re/Fr, there is no restriction on Gr val-

ues for the linear analysis, so both the limits Gr ! 0 and

Gr ! 1 are valid in this context. The nondimensional

dynamic viscosity coefficient is defined as lm ¼ l̂m

�̂1ðq̂1;1þq̂2;1Þ
,

where the kinematic viscosity at the interface is �1 �
ðl̂1;1=q̂1;1 þ l̂2;1=q̂2;1Þ=2 and the nondimensional con-

duction coefficient is jm ¼ ĵm

ĵ1
, with ĵ1 � ðĵ1 þ ĵ2Þ=2. With

the above notations, M2 and Gr can be independently varied

by changing the pressure, p̂1, and kinematic viscosity, �̂1, at

the interface.

The equation of state, Eq. (4), is written in non-

dimensional form as

pm ¼
qmTm

am
; (11)

where

am ¼
q̂m;1

q̂1;1 þ q̂2;1
: (12)

The linearized analysis can be performed in two ways. In

the classical approach,23,27,28 the linearized equations are

assumed valid throughout the domain, in which case the sub-

script (m) does not appear in Equations (5) and (6) and the

variables are considered in the sense of generalized functions.

The discontinuity at the interface is treated by integrating the

vertical momentum equation over a small volume across the

interface, which yields a jump condition across the interface.

This is the approach followed in this paper. However, for the

rest of the derivations, each fluid region is treated separately,

in which case the subscript (m) will be used to distinguish

between the two fluid regions. Alternately, one can consider

the governing equations separately in each fluid region and

treat the interface as a boundary. The vertical momentum

equations are integrated over each domain separately and the

continuity of the normal stress at the interface yields a condi-

tion equivalent to the jump condition from the first approach.

The two approaches are fully equivalent for the linearized

equations.

A. Zeroth-order equations

The two fluids are assumed to be initially at rest and the

primary variables are written as small perturbations about

the equilibrium (background) state, denoted by the subscript

(0). For the (unperturbed) equilibrium state, u0 ¼ 0, variables

depend on x1 only and the governing equations in each fluid

region are

@q0m

@t
¼ 0; (13)

@p0m

@x1

¼ �M2q0m ;
@p0m

@x2

¼ @p0m

@x3

¼ 0; (14)

@p0m

@t
¼ cm

@

@xk

jm

Pr
ffiffiffiffiffiffi
Gr
p @T0m

@xk

� �
: (15)

As far as we know, all previous studies of the linear

stage of compressible RTI neglect the heat conduction term

in Equation (15). Indeed, if the heat conduction term is non-

zero, then the background pressure is not constant in time,

which prevents the normal mode analysis. Previous studies

were able to neglect this term by considering a uniform

background temperature. Nevertheless, the heat conduction

term also becomes zero for a constant background tempera-

ture gradient, provided that the heat conduction coefficient is

constant for each fluid. Since in many practical applications

such as ICF or astrophysics, RTI occurs in the presence of
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background temperature variation, here we consider, for the

first time, the role of a background temperature gradient.

The condition that the heat fluxes are equal on both

sides of the interface is imposed by ĵ1
@T̂ 01

@x̂k
¼ ĵ2

@T̂ 02

@x̂k
. Thus,

in dimensional form, it is assumed that the background

temperature varies as T̂0m ¼ â 2ĵm

ĵ1þĵ2
x̂1 þ T̂1, with â

� 0:5ðT̂ 2 � T̂1Þ=L̂, where T̂ 1;2 are temperatures at x̂1 ¼ �L
and x̂2 ¼ þL, respectively, and T̂1 ¼ ðT̂1ĵ1 þ T̂2ĵ2Þ
=ðĵ1 þ ĵ2Þ is the temperature at the interface. In non-

dimensional form, the temperature variation is

T0m ¼ HjmM2x1 þ 1; (16)

where H�ðT̂2� T̂ 1Þ=½2ĝL̂ð1=R̂1þ1=R̂2Þ� and 0�HjmM2

�1. This nondimensionalization, where the M2 factor appears

explicitly, highlights the condition that, as the incompressible

limit is approached following M! 0, the background temper-

ature (and hence density) becomes constant in each fluid

region. Under these assumptions, the background pressure is

constant in time. Using the T0m variation with x1 (Eq. (16)),

Eq. (14) becomes

dp0m

dx1

¼ � amM2

HjmM2x1 þ 1
p0m: (17)

The solution to this equation is

p0m ¼ p1 HjmM2x1 þ 1
� �� am

Hjm : (18)

This solution is normalized, so that the nondimensional pres-

sure at the interface is p1. Using the equation of state, the

density is obtained as

q0m ¼ am HjmM2x1 þ 1
� �� am

Hjm
�1
: (19)

The kinematic viscosity is then

l0m

q0m

¼ l0m

am
HjmM2x1 þ 1
� � am

Hjm
þ1
: (20)

In the subsequent analysis, a power law dependence of

the dynamic viscosity with temperature, l0m¼l0m;1
ðHM2x1þ1Þn, will be assumed, since this may be important

in the practical applications considered, as the temperature

can have large variations across the RTI layer. The dimen-

sionless isothermal sound speed can be written as c2
m

¼ p0m

q0m
¼ 1

am
HjmM2x1þ1Þ
�

. The equations reduce to those

derived in Ref. 27 when H! 0.

B. First-order equations

The interface between the fluids is perturbed with an x2

and x3 dependent perturbation. The location of the interface

can be described using the function xs(x2, x3, t), with

@xs/@t¼ u1. It is further assumed that the first order heat con-

duction term is small (large Pr
ffiffiffiffiffiffi
Gr
p

). Then the first-order lin-

earized equations become

@q
@t
þ q0Dþ u1Dq0 ¼ 0; (21)

q0

@u1

@t
¼ � 1

M2
Dp� qþ @

@xj

l0ffiffiffiffiffiffi
Gr
p @u1

@xj
þ Duj

� �� �

� 2

3
D

l0ffiffiffiffiffiffi
Gr
p D
� �

; (22a)

q0

@u2

@t
¼ � 1

M2

@p

@x2

þ @

@xj

l0ffiffiffiffiffiffi
Gr
p @u2

@xj
þ @uj

@x2

� �� �

� 2

3

@

@x2

l0ffiffiffiffiffiffi
Gr
p D
� �

; (22b)

q0

@u3

@t
¼ � 1

M2

@p

@x3

þ @

@xj

l0ffiffiffiffiffiffi
Gr
p @u3

@xj
þ @uj

@x3

� �� �

� 2

3

@

@x3

l0ffiffiffiffiffiffi
Gr
p D
� �

; (22c)

@p

@t
¼ �cp0D� u1Dp0: (23)

In these equations, D ¼ @uk=@xk and D ¼ @=@x1. Following

a normal mode analysis, solutions to these equations are

sought with the x2, x3, and time dependencies of the form

expðiðk2x2 þ k3x3Þ þ ntÞ, where k2 ¼ k̂2L̂; k3 ¼ k̂2L̂. k̂ is

defined as k̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂

2

2 þ k̂
2

3

q
, so that k2 ¼ k2

2 þ k2
3. The growth

rate, n̂, is nondimensionalized as n ¼ n̂
ffiffiffiffiffiffiffiffi
L̂=ĝ

q
.

III. INVISCID-INVISCID INTERFACE

In the absence of viscosity, l¼ 0; however, the back-

ground temperature gradient can still be present. In this

case, if heat conduction is further assumed to be zero, the

background temperature variation simply becomes T
¼ HM2xþ 1. The same relation is obtained for equal ther-

mal conduction coefficients for the two fluids. After trans-

forming Equations (21)–(23) into Fourier space, the

equations for the amplitudes of the Fourier modes become

(where the same notation was used for the real space varia-

bles and their Fourier amplitudes)

nq ¼ �q0D� u1Dq0; (24)

nq0u1 ¼ �
1

M2
Dp� q ; q0nu2 ¼ �

1

M2
ik2p ;

q0nu3 ¼ �
1

M2
ik3p; (25)

np ¼ �cp0DþM2u1q0: (26)

After eliminating p, D, u2, and u3 from these equations,

an equation for u1 is obtained as

q0u1 ¼ �u1D
q0

n2 þ cc2k2=M2

� �

þ D
cc2q0

M2 n2 þ cc2k2=M2ð ÞDu1

" #
þ u1

n2
Dq0

þ q0u1

n2 n2 þ cc2k2=M2ð Þ : (27)
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Eq. (27) gives the jump condition at the interface between

the two fluids by integrating over an infinitesimal element

which includes the interface

�usd
q0

n2 þ cc2k2=M2

� �
þ d

cc2q0

M2 n2 þ cc2k2=M2ð ÞDu1

" #

þ us

n2
dq0 ¼ 0; (28)

where the subscript s denotes a quantity evaluated at the

interface, whose location is given by the equation xs ¼ x1

and df ¼ fþ � f� with fþ ¼ f ðxs þ 0Þ; f� ¼ f ðxs � 0Þ. After

further simplifications, the equation for u1 in each fluid (27)

becomes

D2u1 � Du1

M2

c2
þ cHk2

a n2 þ cc2k2=M2ð Þ

 !
� u1 k2 þM2n2

cc2

 

þ c� 1ð ÞM2k2

cc2n2
þ cHk4

an2 n2 þ cc2k2=M2ð Þ

�
¼ 0: (29)

Note that the coefficients in Eq. (29) are functions of x1

because the sound speed is a linear function of x1. Eq. (29)

does not admit an analytical solution in a general case and

is solved numerically using the following boundary condi-

tions: ui¼ 0 at x1¼61, continuity of u1 at the interface,

du1¼ 0, and the jump condition Eq. (28). When H¼ 0, Eq.

(29) becomes identical to the differential equation derived

in Ref. 27.

In the limit of large H, the coefficients in Eq. (29) are

dominated by temperature gradient effects and the equation

reduces to

D2u1 �
cHk2

a n2 þ cc2k2=M2ð ÞDu1

� k2 þ cHk4

an2 n2 þ cc2k2=M2ð Þ

 !
u1 ¼ 0: (30)

The solution to Eq. (30) is

u1 ¼ e
�k x1þ an2

cHk2þ 1

HM2

	 

x1

n2
þ a

cHk2
þ 1

HM2n2

� �2

� C1U
3þ k=n2

2
; 3; 2k x1 þ

an2

c Hk2
þ 1

HM2

 ! !"

þC2L � 3þ k=n2

2
; 2; 2k x1 þ

an2

cHk2
þ 1

HM2

 ! !#
;

(31)

where U is the confluent hypergeometric Kummer’s function

of the second kind and L is the associated Laguerre’s polyno-

mial. The coefficients C1, C2 are determined to a multiplying

constant from the conditions that u1 vanishes at the rigid

boundaries located at x1¼61 and that it is continuous over

the interface. After replacing u1 in the jump condition, a dis-

persion equation for the growth rate can be obtained (not

shown in the paper because of its cumbersomeness).

In the incompressible limit (M2¼ 0), the dispersion rela-

tion simplifies to an explicit formula for the growth rate,

n2=k ¼ Attanhk, which corresponds to the finite domain

growth rate equation from Ref. 27. In this case, the normal-

ized growth rate becomes zero in the limit of small domain

size with respect to the perturbation wavelength (k! 0) and

approaches the infinite domain formula (n2/k¼At) in the

limit of large domain size with respect to the perturbation

wavelength (k!1).

IV. VISCOUS-VISCOUS INTERFACE

For the viscous case, neglecting viscosity fluctuations in

x2 and x3 so that viscosity varies in x1 direction only (i.e.,

consistent with viscosity dependent on the mean tempera-

ture), the Equations (21)–(23) become

nq ¼ �q0D� u1Dq0 ; (32)

nq0u1 ¼ �
Dp

M2
� qþ 2Dl0ffiffiffiffiffiffi

Gr
p Du1 �

D
3

� �

þ l0ffiffiffiffiffiffi
Gr
p D2u1 � k2u1 þ

DD
3

� �
; (33a)

nq0u2 ¼ �
ik2p

M2
þ Dl0ffiffiffiffiffiffi

Gr
p Du2 � ik2u1ð Þ

þ l0ffiffiffiffiffiffi
Gr
p D2u2 � k2u2 þ

ik2D
3

� �
; (33b)

nq0u3 ¼ �
ik3p

M2
þ Dl0ffiffiffiffiffiffi

Gr
p Du3 � ik3u1ð Þ

þ l0ffiffiffiffiffiffi
Gr
p D2u3 � k2u3 þ

ik3D
3

� �
; (33c)

np ¼ �cp0DþM2u1q0: (34)

Following a similar procedure as in Section III, the equation

for u1 is obtained as a fourth order ordinary differential

equation

A4D4u1 þ A3D3u1 þ A2D2u1 þ A1Du1 þ A0u1 ¼ 0; (35)

where the coefficients Ai are given in the Appendix. The

boundary conditions for Eq. (35) are vanishing velocity at

the rigid boundaries, ui¼ 0 and D� Du1 ¼ 0 at x1 ¼ 61,

continuity of velocity and tangential stress at the interface,

du1 ¼ 0; dðD� Du1Þ ¼ 0 and d½l0ðDD� D2u1 � k2u1Þ� ¼ 0

at xs ¼ x1. The jump condition is

d �q0 þ
l0

n
ffiffiffiffiffiffi
Gr
p D2

� �
D� Du1ð Þ

� �
þ k2

n
ffiffiffiffiffiffi
Gr
p d l0Du1ð Þ

þ 1

n
ffiffiffiffiffiffi
Gr
p d Dl0ð Þ DD� D2u1 � k2u1

� �
s

¼ � k2

n2
d q0ð Þu1;s þ

2k2

n
ffiffiffiffiffiffi
Gr
p d l0ð Þ D� Du1ð Þs: (36)

The divergence of velocity, D, is given by

b1D ¼ B3D3u1 þ B2D2u1 þ B1Du1 þ B0u1; (37)
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with the coefficients b and Bi and expressions for DD and

D2D in terms of the derivatives of u1 are provided in the

Appendix. Since u1 can be found only to a multiplying con-

stant, the boundary conditions are supplemented with the

specification of u1 or one of its derivatives at one point inside

the domain. Then Eq. (35) with the boundary and jump con-

ditions form a closed set of equations from which u1 on each

side of the interface and the growth rate, n, can be deter-

mined. Eq. (35) is numerically integrated on each side of the

domain using a fourth order Runge-Kutta scheme. In order

to determine n and u1 from the matching conditions at the

interface, a multidimensional secant method (Broyden’s

method) is employed.43 This numerical method, where the

equations are integrated starting from one boundary to the

next, works very well at small to moderate Gr, but it can

become unstable at large Gr values. An approach which can

capture the case when Gr is large for one of the fluids is

described in Section V.

V. VISCOUS-INVISCID INTERFACE

In some practical applications (including the two appli-

cations considered here), the viscosity ratio between the two

fluids is large enough, so that for the range of wavenumbers

around the most unstable mode corresponding to one of the

fluids, the other fluid has negligible viscous effects. In this

case, the first fluid still needs to be considered as viscous,

while the second can be treated as inviscid. This allows the

equations to simplify considerably compared to the fully vis-

cous case and also the use of the numerical integration

method described in Section IV. For ICF and solar corona

examples, the large viscosity ratio between the two fluids is

due to the very large temperature difference between the hot

spot and DT ice during the ICF coasting stage and solar coro-

nal plasma and prominence plumes, respectively. Consistent

with these two examples, here we consider that the light fluid

is viscous and the heavy fluid is inviscid. Then the boundary

conditions are ui¼ 0 at x1 ¼ 61, vanishing tangential veloc-

ity at the rigid boundary only for the viscous side, i.e., D�
Du1 ¼ 0 at x1 ¼ �1, continuity of u1 at the interface, du1 ¼
0 at x1 ¼ xs, and vanishing viscous tangential stress at the

interface due to slip condition, l0ðDD� D2u1 � k2u1Þ ¼ 0

at xs ¼ x1. Unlike the viscous-viscous case, the tangential

velocity is not continuous at the interface. The jump condi-

tion becomes

d �q0 þ
l0

n
ffiffiffiffiffiffi
Gr
p D2

� �
D� Du1ð Þ

� �
þ k2

n
ffiffiffiffiffiffi
Gr
p d l0Du1ð Þ

¼ � k2

n2
d q0ð Þu1;s þ

2k2

n
ffiffiffiffiffiffi
Gr
p d l0 D� Du1ð Þ

� �
; (38)

where l0 ¼ 0 on the inviscid part and Gr corresponds to the

viscous part of the interface.

In the incompressible limit (p1 !1) and without tem-

perature gradient (H ¼ 0; M2 ¼ 0), a dispersion equation for

the growth rate can be obtained. Eq. (35) for the viscous part

in this case reduces to

D4u1 � ðn
ffiffiffiffiffiffi
Gr
p

þ 2k2ÞD2u1 þ ðn
ffiffiffiffiffiffi
Gr
p

þ k2Þk2u1 ¼ 0 (39)

and can be analytically solved

u1 ¼ C1eqx1 þ C2e�qx1 þ C3ekx1 þ C4e�kx1 ; (40)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
ffiffiffiffiffiffi
Gr
p

þ k2
p

. Eq. (29) for the inviscid part

becomes

D2u1 � k2u1 ¼ 0 (41)

and has the solution

u1 ¼ C5ekx1 þ C6e�kx1 ; (42)

where C1 through C6 are constants of integration. After

applying the boundary and jump conditions to Eqs. (40) and

(42) to eliminate the constants of integration, a dispersion

equation can be obtained as

ðqCqSk � kCkSqÞ½4k2R1Sk þ ðq2 � k2ÞðR5e�k � R6ekÞ�
þðR2 � R1ÞSk½2k2e�qðkCk þ qSkÞ � kðq2 þ k2Þ�
þ 2R3Skðq2 þ k2ÞðkCkSq � qCqSkÞ
þðR4 � R3ÞSk½e�kðq2 þ k2ÞðqCq þ kSqÞ � 2qk2� ¼ 0;

(43)

where the coefficients are defined as R1;R2 ¼ At=ð2n2Þ72a1

q=ðn
ffiffiffiffiffiffi
Gr
p
Þ; R3;R4 ¼ At=ð2n2Þ72a1k=ðn

ffiffiffiffiffiffi
Gr
p
Þ7a1=k; R5;R6

¼At=ð2n2Þ6a2=k;Cq;Sq¼0:5ðeq6e�qÞ;Ck;Sk¼0:5ðek6e�kÞ,
with upper and lower signs corresponding to the left and

right coefficients, respectively.

For a large domain compared to the wavelength of the

perturbation (k ¼ k̂L̂ � 1), keeping only the dominant terms

in Eq. (43) simplifies this equation to

4a1k2

Gr
�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
ffiffiffiffiffiffi
Gr
p

þ k2

q
þ k2 þ n

ffiffiffiffiffiffi
Gr
p

� �
� kAtþ n2 ¼ 0;

(44)

where At ¼ ðq02 � q01Þ=ðq02 þ q01Þ. For the case of infi-

nitely small viscosity on the viscous side (Gr !1), the first

term in Eq. (44) becomes small compared to the other two

terms and the equation reduces to the classical inviscid-

inviscid incompressible interface for an infinite domain

n2=k ¼ At, or in the dimensional form n̂2=ĝk̂ ¼ At.23

VI. DISCUSSION

The comparison of all the three interface types for dif-

ferent At values in the simplest incompressible case without

temperature gradient (M2¼ 0, H¼ 0) is shown in Fig. 1. As

Gr increases, the normalized growth rates obtained for the

viscous cases approach the limiting inviscid case results for

some low k range which increases with At. Viscous cases

have the most unstable mode close to k 	 2 (the wavenum-

ber location decreases with At), which is relatively insensi-

tive to Gr. While for all viscous and viscous-inviscid cases,

the normalized growth rate goes to zero as k!1, it is inter-

esting to mention the growth behavior around the most

unstable mode. When one side is inviscid, the results are
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very close to the fully inviscid case at high At, with larger

differences at low At values. Compared to the viscous-

viscous case, there are noticeable differences for the viscous-

inviscid case results at all At values.

The effect of H 6¼ 0 on the normalized growth rate for

the inviscid-inviscid case is shown in Fig. 2. For the com-

pressible cases, we chose M2¼ 1 as representative. The role

of M2 on the instability growth was discussed in Ref. 27

Negative background temperature gradients (H < 0), corre-

sponding to hotter light fluid, yield growth rates larger than

those obtained for H¼ 0. Thus, the effect should be destabi-

lizing for the two applications considered in this paper. Both

the negative and positive temperature gradient effects are

more pronounced for smaller At and smaller k (k < 6). This

is consistent with the variation of the background stratifica-

tion subsequent to the variation of H (Fig. 3). Thus, the inte-

gral Atwood numbers, AtI, presented in Table I, show larger

differences between positive and negative H cases at small

nominal At. Here, AtI values are calculated using the back-

ground density integrals over the heavy and light fluid

regions, respectively.

While the growth rates obtained for H < 0 are larger than

those obtained for the H¼ 0 compressible case for all k val-

ues, they also become larger than those obtained for the

incompressible constant density case in an infinite domain

(n2=k ¼ At) for k sufficiently large. Again, this is consistent

with the background density variation and the fact that H < 0

growth rates are larger than H¼ 0 growth rates and the latter

should approach the incompressible constant density infinite

domain results as k!1.27 Since the normalized growth rate

starts from small values and approaches the asymptotic value

n2=k ¼ At from above as k increases, there is a maximum nor-

malized growth rate which, interestingly, occurs around

k 	 2, similar to the most unstable mode obtained for the

viscous cases. Again, this effect is more pronounced at small

At and becomes negligible as At approaches 1.

The results for the growth rate obtained analytically from

Eq. (30) in the large temperature gradient limit are also pre-

sented in Fig. 2. The analytical formula follows the numerical

results for a finite temperature gradient and approximates

these results well for small At and/or large k values (large

domain size compared to the perturbation wavelength).

Figure 2 also shows that the compressible growth rate

with H¼ 0 can become larger than the corresponding incom-

pressible growth rate at At¼ 0.9 and k/ 2. This overshoot

occurs in a different parameter range than that studied in

Ref. 27 Nevertheless, unlike the overshoot studied in Ref.

27, in this case, since the normalized growth rates for com-

pressible and incompressible H¼ 0 cases increase monotoni-

cally with k, the infinite domain incompressible constant

density growth rate still represents the upper bound.

The effects of the background temperature gradient on

the normalized growth rate for viscous-viscous and viscous-

inviscid (lower part/light fluid – viscous, upper part/heavy

fluid – inviscid) cases are shown in Figs. 4 and 5, respec-

tively. Viscosity is important at all scales and dominates at

large k, when the normalized growth rate asymptotes to zero.

Similar to the inviscid-inviscid interface, a H < 0, corre-

sponding to hotter light fluid, has a destabilizing effect, while

H > 0 has a stabilizing effect. The destabilizing effect of H
< 0 is more pronounced at low At and becomes smaller as At
! 1. The peak of n2=k (most unstable mode) with respect to

its location corresponding to the HM2 ¼ 0 case shifts to

larger k values for H > 0 and to lower k values for H < 0.

This effect becomes more pronounced for smaller At values.

The results are qualitatively similar for the viscous-inviscid

case, though these are closer to the H¼ 0 results at high At
values. For the viscous-inviscid case, Fig. 5 also shows the

FIG. 1. Growth rate normalized by

wave number n2=k ¼ n̂2=k̂ ĝ for

M2¼ 0, H¼ 0. Plots from top to bottom:

At¼ 0.9, 0.5, 0.25. Thick solid line:

inviscid-inviscid, thin lines: viscous-

viscous, thick non-solid lines: viscous-

inviscid. Dashed line: Gr¼ 10 000,

dashed-dotted line: Gr¼ 1000, dotted

line: Gr¼ 100.
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results obtained from the dispersion relations Eqs. (43) and

(44) derived for incompressible, constant temperature case.

The dispersion relation (43) gives identical results with those

calculated numerically by integrating the governing ordinary

differential equations. The simplified formula (44) does not

produce the correct k ! 0 limit, as expected, but becomes a

good approximation for k’ 2. The growth rate for inviscid-

viscous case (lower part/light fluid – inviscid, upper part/

heavy fluid – viscous) is qualitatively similar but slightly

smaller in magnitude than for viscous-inviscid interface (not

shown here).

VII. APPLICATION TO ICF AND SOLAR CORONA

In this section, the viscous-viscous and viscous-inviscid

formulas are applied to two practical situations: the coasting

phase in ICF and solar corona plumes. While these applica-

tions contain many other complicating plasma physics

FIG. 2. Growth rate for the inviscid-

inviscid case. Plots from top to bottom:

At¼ 0.9, 0.5, 0.25. Dashed thick line:

H¼�0.9, M2¼ 1, solid thin line:

H¼ 0, M2¼ 0, solid thick line: H¼ 0,

M2¼ 1, dashed thin line: H¼ 0.9,

M2¼ 1, squares: H¼�0.9, M2¼ 1

from Eq. (30), circles: H¼ 0.9, M2¼ 1

from Eq. (30).

FIG. 3. Background density profiles,

q0 ¼ a HM2x1 þ 1ð Þ�
a
H�1

. Plots from

top to bottom: At¼ 0.9, 0.5, 0.25.

Dashed thick lines: H¼�0.9, M2¼ 1,

dashed thin lines: H¼ 0.9, M2¼ 1.
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effects, we demonstrate what a normal mode analysis using

two immiscible fluids predicts for the range of parameters

associated with such applications. Results from normal mode

analysis with immiscible fluids have been routinely used for

these applications to qualitatively predict the importance of

RTI and, as far as we know, this is the first time when such

an analysis is used with viscous (or viscous-inviscid), com-

pressible fluids with a background temperature gradient. We

further assume that the density variation across the domain is

concentrated at the interface such that the nominal At num-

bers are matched.

In ICF, ignition is triggered by a hot spot at the center of

an imploded fuel shell.21,22 The hot spot formation requires

implosion symmetry, which is hindered, in particular, by the

development of RTI. The focus of the present study is the

instability that forms during the coasting or deceleration

phase, before stagnation, when the dense fuel shell is decel-

erated by the pressure exerted by the hot and less dense inner

plasma. Curvature effects are neglected in this analysis; this

implies that the results are not applicable at small wavenum-

bers, i.e., k̂�1=R (R—radius of ICF shell).

The input parameters for the numerical calculations are

taken from Weber et al.34 Fig. 6 shows the radial profiles,

averaged over 4p, corresponding to the beginning of the

coasting phase. In their computational study, Weber et al.34

considered the importance of plasma viscosity on the devel-

opment of turbulent mixing during the coasting phase. In

another computational study using ILES (implicit Large

Eddy Simulation), Haines et al.35 investigated the effects of

plasma viscosity and diffusion on the turbulent instability

growth under the ICF conditions. The main conclusion

reached in these studies is that the small scale turbulent

motions resulting from RTI are damped by the increased vis-

cosity in the hot spot, while only the large scale perturba-

tions, possibly carrying over the imprint of laser non-

uniformities, survive. The normal mode analysis described

here does not account for mass diffusion, but it is still inter-

esting to see what it predicts for the range of wavenumbers

likely to survive the damping due to increased viscosity of

the hot fluid.

One degree of uncertainty related to the set of parame-

ters described above is the vertical extent of the domain. As

explained in Section IV, the numerical integration method

used here becomes unstable at large Gr values and increasing

the domain size has the effect of increasing the overall Gr.

On the other hand, small domain sizes are affected by finite

size effects and yield lower growth rates. Thus, first the influ-

ence of L̂ is examined. Fig. 7 shows the growth rate in

dimensional form in the approximation of viscous-inviscid

interface and uniform background temperature for different

L̂ values. The inviscid-inviscid case is also presented for

comparison. The growth rate increases significantly as L̂
increases from 1 lm to 10 lm; however, it appears to con-

verge as L̂ approaches 10 lm. The inset to Fig. 7 shows the

peak value and the peak location of the growth rate as a

TABLE I. Integral Atwood numbers, AtI6¼ðq2;I6�q1;I6Þ=ðq2;I6þq1;I6Þ,
and their differences, dAtI6¼AtI��AtIþ. The integral densities, qm,I, are

calculated by integrating the background density profiles over the two fluid

regions. The differences between the growth rates, dn2=k6�n2=k��n2=kþ,

are calculated from Fig. 2 at k 	 2. 6 refer to H¼0.9 and H¼�0.9 cases,

respectively. M2¼1.

Case AtI– AtIþ dAtI6 dn2/k6

At¼ 0.9 0.92 0.56 0.36 0.08

At¼ 0.5 0.63 �0.39 1 0.26

At¼ 0.25 0.45 �0.65 1.1 0.3

FIG. 4. Growth rate for viscous-

viscous case computed at Gr¼ 1000.

Plots from top to bottom: At¼ 0.9, 0.5,

0.25. Dashed thick line: H¼�0.9,

M2¼ 1, solid thin line: H¼ 0, M2¼ 0,

solid thick line: H¼ 0, M2¼ 1, dashed

thin line: H¼ 0.9, M2¼ 1.
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function of L̂. For L̂ > 5lm both the peak and its location

almost do not depend on the domain size, which means that

the calculations made with the domain size L̂ ¼ 10 lm pro-

vide converged results. It can also be concluded from the

comparison of the viscous-inviscid and inviscid-inviscid

interfaces that viscosity has a strong damping effect on RTI

during the coasting phase, pointing to the importance of

including the physical transport in the multi-dimensional

calculations.

Fig. 8 presents the effect of H on the growth rate. The

temperature gradient is estimated from Fig. 6 and corresponds

to non-dimensional value H ¼ �0.88. H 6¼ 0 adds only about

0.5% to the peak growth rate in the case of temperature inde-

pendent viscosity. Using temperature dependent viscosity,

l̂ ¼ l̂0;1ðT̂=T̂1Þ2:5, where the exponent follows the formu-

las derived in Braginksii44 reduces the peak more noticeably

by about 10%. The wavenumbers least affected by viscosity

and showing significant growth are around the most unstable

mode and lie in the range k̂ 	 0:1lm�1 to k̂ 	 8lm�1.

The results can be qualitatively compared with previous

results related to the ICF coasting.32,45 These studies include

the effect of ablation, though they do not account for the

FIG. 5. Growth rate for viscous-

inviscid case computed at Gr¼ 1000.

Plots from top to bottom: At¼ 0.9, 0.5,

0.25. Dashed thick line: H¼�0.9,

M2¼ 1, solid thin line: H¼ 0, M2¼ 0,

solid thick line: H¼ 0, M2¼ 0, dashed

thin line: H¼ 0.9, M2¼ 1. Squares:

from Eq. (43) for the incompressible,

uniform background temperature case,

circles: from Eq. (44) for the large

domain size compared to the perturba-

tion wavelength case.

FIG. 6. Profiles from Weber et al. (Fig. 3).34 Thick lines in the density and vis-

cosity profiles: jumps applied in the present simulations. Circle in the pressure

profile: pressure P̂1 ¼ 1:5 Gbar applied in the present simulations. Circles in

the temperature profile are the temperatures on both sides T̂ 1 ¼ 1:15 keV and

T̂ 2 ¼ 0:075 keV applied in the present simulation and corresponding to H ¼
ðT̂ 2 � T̂ 1Þ=ðT̂ 2 þ T̂ 1Þ ¼ �0:88 with T̂1 ¼ ðT̂ 2 þ T̂ 1Þ=2 ¼ 0:6 keV.

FIG. 7. The dimensional growth rates calculated based on the parameters

from Fig. 6 in the viscous-inviscid interface limit: At¼ 0.9, H¼ 0,

ĝ ¼ 1014m=s2; c1 ¼ c2 ¼ 5=3. Solid thin lines from top to bottom:

L̂ ¼ 10 lm; 3 lm; 2 lm; 1 lm, for l̂1 ¼ 1000 g=cms; l̂2 ¼ 0g=cms, thick

solid line: inviscid-inviscid interface at L̂ ¼ 10 lm. L̂ ¼ 10 lm corresponds

to M2 	 0.2, Gr 	 10. Inset: peak value of the dimensional growth rate

(upper) and its location (lower) as functions of the domain size.
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presence of viscosity in the hot spot. Fig. 9 shows the growth

rates at two representative accelerations: at the very begin-

ning of the coasting phase after the lasers were turned off

(ĝ ¼ 1014m=s2) and at the so called continuous deceleration

phase (ĝ ¼ 31� 1014m=s2).32 It can be concluded that the

ablation process has stronger dumping effect than just inclu-

sion of viscosity, but taking into consideration both these

effects can lead to even larger decrease in the growth rate. In

addition, the destabilizing effect of the negative temperature

gradient with temperature independent viscosity is found to

be negligible compared to the ablation stabilization (compare

Figs. 8 and 9 for ĝ ¼ 1014m=s2).

In ICF, RTI grows at micron scale. It would be interest-

ing to compare the results to large scale applications. As an

example, the solar corona is considered here where the insta-

bilities can develop on hundreds to thousands kilometers

scale. RT-type instabilities are formed at the interface of the

quiescent low density coronal plasma and the prominence

plumes of denser plasma from the chromosphere, providing

At ¼ 0:6
 0:7 and H 	 �0.9.46–48 Because the prominence

plasma is strongly magnetized, there is a dumping effect of

magnetic pressure on the instability growth that, in addition

to other complex plasma properties, is not taken into account

in the present estimates.

FIG. 8. Dimensional growth rates calculated based on the parameters from

Fig. 6 in the viscous-inviscid interface limit: L̂ ¼ 10 lm and

l̂1 ¼ 1000 g=cm s; l̂2 ¼ 0g=cms. Solid line: constant temperature H¼ 0,

M2 	 0.2, dashed line: H¼�0.88, M2 	 0.2, n¼ 0, dashed-dotted line:

H¼�0.88, M2 	 0.2, n¼ 2.5.

μ

μ

FIG. 9. Dimensional growth rates calculated based on the parameters from

Fig. 6 in the viscous-inviscid interface limit for L̂ ¼ 10 lm and ĝ ¼
1014 m=s2 (lower curve), ĝ ¼ 31� 1014 m=s2 (upper curve). Inset: dimen-

sional growth rates calculated using the formula 65 and parameters from

Ref. 32 with ĝ ¼ 1014 m=s2 (lower curve), ĝ ¼ 31� 1014 m=s2 (upper

curve).

FIG. 10. The dimensional growth rates for the solar corona calculated in the

viscous-inviscid interface limit: At¼ 0.67, H¼ 0, ĝ ¼ 0:274 km=s2;
c1 ¼ c2 ¼ 5=3. Solid thin lines from top to bottom: L̂ ¼ 200 km, 50 km,

25 km for l̂1 ¼ 10 kg=kms; l̂2 ¼ 0kg=kms, thick solid line: inviscid-inviscid

interface at L̂ ¼ 200 km. L̂ ¼ 200 km corresponds to M2 	 1, Gr 	 900.

Inset: peak value of the dimensional growth rate (upper) and its location

(lower) as functions of the domain size.

FIG. 11. The dimensional growth rates for the solar corona calculated in the

viscous-inviscid interface limit: L̂ ¼ 200 km and l̂1 ¼ 10 kg=kms and

l̂2 ¼ 0kg=kms. Solid line: constant temperature H¼ 0, M2 	 1, dashed line:

H¼�0.9, M2 	 1, n¼ 0, dashed-dotted line: H¼�0.9, M2 	 1, n¼ 2.5.
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In Fig. 10, the growth rate is calculated based on the

parameters derived from Refs. 46–48 in the limit of the

viscous-inviscid interface without temperature gradient.

Similar to the previous calculations, the influence of the

domain size is examined first. The inviscid-inviscid inter-

face is also shown for comparison. The inset to Fig. 10

demonstrates that for L̂’ 200 km both the peak growth rate

and its location almost do not change. As in the previous

example, viscosity plays a significant role, especially at

k̂ > 0:5 km�1. Fig. 11 shows the effect of H for the

viscous-inviscid interface. Similar to the previous results,

the effect is more pronounced for the temperature depen-

dent viscosity, with the wavenumbers least affected by vis-

cosity and showing significant growth lying in the range

k̂ 	 0:01 km�1 to k̂ 	 0:5 m�1.

VIII. CONCLUSIONS

Using a normal mode analysis, the effects of viscosity

and background temperature gradient, H, on the growth

rate are systematically studied for the compressible RTI

with two immiscible fluids. When the effects of heat con-

duction are considered, a uniform H 6¼ 0 still allows a

steady background state and the linearized equations reduce

to ordinary differential equations. This relaxes the assump-

tion made in previous normal mode studies of compressible

RTI, which satisfied the requirement of a steady back-

ground state by using uniform background temperature.

Allowing H 6¼ 0 makes the analysis closer to practical

applications such as ICF and solar corona. The non-

dimensional growth rate, n2=k ¼ n̂2=k̂ ĝ, is presented as a

function of the non-dimensional wave number, k ¼ k̂L̂, and

analyzed for a range of At and Gr numbers, with positive

and negative background temperature gradients, as well as

for compressible and incompressible flow (p1!1) cases.

The incompressible fluid limit4,27,28 as well as the effects

of different specific heats were not addressed since they

are not directly relevant to the applications discussed in the

paper.

The results are presented as a logical set from three dif-

ferent interface types corresponding to the combinations of

the viscous properties of the two fluids: inviscid-inviscid,

viscous-viscous, and viscous-inviscid. The viscous-inviscid

configuration has not been studied before in the context of

RTI and provides a convenient way of addressing applica-

tions with large viscosity ratios between the two fluids, as in

the examples mentioned above.

For two limiting cases, the inviscid-inviscid configura-

tion at large H and incompressible viscous-inviscid configu-

ration with H¼ 0, the dispersion equations for the growth

rate are obtained analytically. The former case shows good

correspondence with the numerical results at large At and/or

large wave numbers, so that the analytical result can be used

instead of numerical calculations for such ranges of

parameters.

In general, for all cases, the effect of H < 0, correspond-

ing to hotter light fluid, is found to be destabilizing and that

of H > 0 stabilizing compared to the background state with

H¼ 0. These results are consistent with the corresponding

background density stratifications. The effect of H 6¼ 0 is

stronger at small At and becomes small as At approaches 1

for all cases. In the limit of large k, the effect diminishes and

the growth rates approach the corresponding H¼ 0 case. On

the other hand, for the inviscid case, at small k values, the

growth rate obtained with H < 0 exceeds the infinite domain

incompressible constant density result, n2/k¼At, so that this

result is no longer an upper bound for the compressible

growth rate as in the H¼ 0 case. Then, since n2/k corre-

sponding to H < 0 should approach the value At from above,

this suggests the existence of a peak in the normalized

growth rate variation with k. The magnitude of the overshoot

relative to the n2/k¼At value decreases with At, consistent

with the rest of the results.

The effect of viscosity on the growth rate is important for

all At numbers and at all scales, but becomes dominant at

large k. As Gr increases, the viscous growth rates approach

the limiting inviscid case results for some small range of k
and this range becomes larger with At. Viscous cases have a

most unstable mode at k	 2 (the wavenumber location

decreases with At) almost insensitive to Gr. The viscous-

inviscid growth rate is closer to the fully inviscid case at high

At, with larger differences at lower At values. Compared to

the viscous-viscous case, there are noticeable differences for

the viscous-inviscid case results at all At values.

The results are applied to two practical examples dis-

playing RTI—coasting phase in ICF and solar corona

plumes. The results demonstrate the importance of inclusion

of viscosity, which can significantly dampen the growth rates

starting from small wave numbers as k̂ 	 0:5lm�1 for ICF

and k̂ 	 0:02 km�1 for solar corona. For both applications,

H 6¼ 0 has no significant influence on the growth rates for

constant viscosities, but when viscosity is allowed to vary

with temperature, the effect becomes noticeable.
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APPENDIX: EQUATION FOR THE VISCOUS CASE

In the following derivations, the dynamic viscosity is

assumed constant on the different sides of the interface and

the kinematic viscosity is considered continuous over inter-

face, so that l0;1=q0;1 ¼ l0;2=q0;2, where l0;m=q0;m ¼ Gr�1=2

ðHjmM2x1 þ 1Þam=ðHjmÞþ1
. The equations for u1 and D on

each side of the interface can be written as

A4D4u1 þ A3D3u1 þ A2D2u1 þ A1Du1 þ A0u1 ¼ 0; (A1)

b1D ¼ B3D3u1 þ B2D2u1 þ B1Du1 þ B0u1; (A2)
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where the coefficients (with subscript (m) is dropped for sim-

plicity) are given by

A4 ¼
b2

aM2n
B3; (A3)

A3 ¼
b2

aM2n
�Db1B3

b1

þ DB3 þ B2

� �
� c� 1

n
B3; (A4)

A2 ¼
b2

aM2n
�Db1B2

b1

þ DB2 þ B1

� �
� c� 1

n
B2 þ

b3

aM2n
b1;

(A5)

A1 ¼
b2

aM2n
�Db1B1

b1

þ DB1 þ B0

� �
� c� 1

n
B1 �

b1

n
;

(A6)

A0 ¼
b2

aM2n
�Db1B0

b1

þ DB0

� �
� c� 1

n
B0

� nþ k2b3

aM2n

� �
b1; (A7)

B3 ¼ �
b2b3

a3M6n3
b2 þ b3ð Þ; (A8)

B2 ¼
b3

a2M4n3
1� Db3

aM2

� �
b2 � c� 1� Db2

aM2

� �
b3

� �
;

(A9)

B1 ¼
1

aM2n3
c� 1� Db2

aM2

� �
b3 þ b2 þ b3ð Þ

�

� n2 þ k2b3

aM2

� �
b2

aM2

!
; (A10)

B0 ¼
1

aM2n3

 
c� 1� Db2

aM2

� �
n2 þ k2b3

aM2

� �
b3

þ Db3b3

aM2
þ b2

� �
b2k2

aM2

!
; (A11)

b3 ¼
aM2nffiffiffiffiffiffi

Gr
p HjM2x1 þ 1

� � a
Hjþ1

; (A12)

b2 ¼ c HjM2x1 þ 1
� �

þ 1

3
b3; (A13)

b1 ¼
1

aM2n3
n2 þ k2 b2 þ b3ð Þ

aM2

� �
b2

2 � c� 1ð Þb3

�

� c� 1� Db2

aM2

� ��
;

(A14)

with DB3, DB2, DB1, DB0 obtained after differentiation of

Eqs. (A8)–(A11), and Db3, Db1, Db1 after differentiation of

Eqs. (A12)–(A14), respectively (not shown).

The equation for DD can be written as

DD ¼ aM2n

b2

c� 1

n
D� b3

aM2n
D2u1 þ

1

n
Du1

�

þ nþ k2b3

aM2n

� �
u1

�
; (A15)

and the equation for D2D

D2D ¼ aM2 c� 1ð Þ
b2

DD� aM2Db2 c� 1ð Þ
b2

2

D� b3

b2

D3u1

þ 1

b2
2

Db2b3 � b2Db3ð Þ þ aM2

b2

 !
D2u1

þ aM2

b2

n2 þ k2b3

aM2
� Db2

b2

 !
Du1

þ 1

b2
2

k2 b2Db3 � Db2b3ð Þ � aM2n2Db2

� �
u1:

(A16)

1L. Rayleigh, “Investigation of the character of the equilibrium of an

incompressible heavy fluid of variable density,” Proc. London Math. Soc.

s1-14(1), 170–177 (1883).
2G. I. Taylor, “The instability of liquid surfaces when accelerated in a

direction perpendicular to their planes. I,” Proc. R. Soc. London A 201,

192–196 (1950).
3D. H. Sharp, “An overview of Rayleigh-Taylor instability,” Physica D 12,

3–10 (1984).
4D. Livescu, “Numerical simulations of two-fluid turbulent mixing at large

density ratios and applications to the Rayleigh-Taylor instability,” Philos.

Trans. R. Soc. A 371, 20120185 (2013).
5B.-I. Jun and M. L. Norman, “MHD simulations of Rayleigh-Taylor insta-

bility in young supernova remnants,” Astrophys. Space Sci. 233, 267–272

(1995).
6W. H. Cabot and A. W. Cook, “Reynolds number effects on

Rayleigh–Taylor instability with possible implications for type ia super-

novae,” Nat. Phys. 2, 562–568 (2006).
7C. Litwin, E. F. Brown, and R. Rosner, “Ballooning instability in polar

caps of accreting neutron stars,” Astrophys. J. 553, 788 (2001).
8A. D�ıaz, R. Soler, and J. Ballester, “Rayleigh-Taylor instability in partially

ionized compressible plasmas,” Astrophys. J. 754, 41 (2012).
9E. Khomenko, A. D�ıaz, A. de Vicente, M. Collados, and M. Luna,

“Rayleigh-Taylor instability in prominences from numerical simulations

including partial ionization effects,” Astron. Astrophys. 565, A45 (2014).
10M. Davey and J. Whitehead, Jr., “Rotating Rayleigh-Taylor instability as a

model of sinking events in the ocean,” Geophys. Astrophys. Fluid Dyn.

17, 237–253 (1981).
11D. M. Schultz, K. M. Kanak, J. M. Straka, R. J. Trapp, B. A. Gordon, D. S.

Zrnic, G. H. Bryan, A. J. Durant, T. J. Garrett, P. M. Klein et al., “The

mysteries of mammatus clouds: Observations and formation mechanisms,”

J. Atmos. Sci. 63, 2409–2435 (2006).
12F. Neyret, “Qualitative simulation of convective cloud formation and

evolution,” in Computer Animation and Simulation’97, Proceedings of the
Eurographics Workshop in Budapest, Hungary (1997), pp. 113–124.

13T. V. Gerya and D. A. Yuen, “Rayleigh-Taylor instabilities from hydration

and melting propel ‘cold plumes’ at subduction zones,” Earth Planet. Sci.

Lett. 212, 47–62 (2003).
14D. Mege, D. Chardon, and V. L. Hansen, “Rayleigh-Taylor instability-

driven plume tectonics and the rheology of the Archean, Venusian, and

Martian crusts,” in Lunar and Planetary Science Conference, Lunar and

Planetary Inst. Technical Report, Vol. 31 (2000), p. 1998.
15M. Kelley, G. Haerendel, H. Kappler, A. Valenzuela, B. Balsley, D. A.

Carter, W. L. Ecklund, C. Carlson, B. H€ausler, and R. Torbert, “Evidence

for a Rayleigh-Taylor type instability and upwelling of depleted density

regions during equatorial spread,” Geophys. Res. Lett. 3, 448–450,

doi:10.1029/GL003i008p00448 (1976).
16V. Bychkov, M. Marklund, and M. Modestov, “The Rayleigh-Taylor insta-

bility and internal waves in quantum plasmas,” Phys. Lett. A 372,

3042–3045 (2008).
17J. Cao, H. Ren, Z. Wu, and P. K. Chu, “Quantum effects on Rayleigh-

Taylor instability in magnetized plasma,” Phys. Plasmas 15, 012110

(2008).
18L. Wang, B. Yang, W. Ye, and X. He, “Stabilization of the Rayleigh-

Taylor instability in quantum magnetized plasmas,” Phys. Plasmas 19,

072704 (2012).

072121-13 S. Gerashchenko and D. Livescu Phys. Plasmas 23, 072121 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  72.54.118.66 On: Thu, 28 Jul

2016 16:53:58

http://dx.doi.org/10.1112/plms/s1-14.1.170
http://dx.doi.org/10.1098/rspa.1950.0052
http://dx.doi.org/10.1016/0167-2789(84)90510-4
http://dx.doi.org/10.1098/rsta.2012.0185
http://dx.doi.org/10.1098/rsta.2012.0185
http://dx.doi.org/10.1007/BF00627358
http://dx.doi.org/10.1038/nphys361
http://dx.doi.org/10.1086/320952
http://dx.doi.org/10.1088/0004-637X/754/1/41
http://dx.doi.org/10.1051/0004-6361/201322918
http://dx.doi.org/10.1080/03091928108243684
http://dx.doi.org/10.1175/JAS3758.1
http://dx.doi.org/10.1016/S0012-821X(03)00265-6
http://dx.doi.org/10.1016/S0012-821X(03)00265-6
http://dx.doi.org/10.1029/GL003i008p00448
http://dx.doi.org/10.1016/j.physleta.2007.12.065
http://dx.doi.org/10.1063/1.2833588
http://dx.doi.org/10.1063/1.4737162


19M. Momeni, “Linear study of Rayleigh-Taylor instability in a diffusive

quantum plasma,” Phys. Plasmas 20, 082108 (2013).
20J. C. Beale and R. D. Reitz, “Modeling spray atomization with the Kelvin-

Helmholtz/Rayleigh-Taylor hybrid model,” Atomization Sprays 9(6),

623–650 (1999).
21J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and

Energy Gain Using Indirect Drive (Springer, New York, 1998).
22S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion

(Clarendon, Oxford, 2004).
23S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dower,

New York, 1981).
24R. E. Duff, F. H. Harlow, and C. W. Hirt, “Effects of diffusion on interface

instability between gases,” Phys. Fluids 5, 417–425 (1962).
25M. A. Lafay, B. Le Creurer, and S. Gauthier, “Compressibility effects on

the Rayleigh-Taylor instability growth for miscible fluids,” Europhys.

Lett. 79, 64002 (2007).
26T. Wei and D. Livescu, “Late-time quadratic growth in single-mode

Rayleigh-Taylor instability,” Phys. Rev. E 86, 046405 (2012).
27D. Livescu, “Compressibility effects on the Rayleigh-Taylor

instability growth between immiscible fluids,” Phys. Fluids 16, 118–127

(2004).
28H. Yu and D. Livescu, “Rayleigh-Taylor instability in cylindrical geome-

try with compressible fluids,” Phys. Fluids 20, 104103 (2008).
29S. J. Reckinger, D. Livescu, and O. V. Vasilyev, “Comprehensive

numerical methodology for Direct Numerical Simulations of compress-

ible Rayleigh-Taylor instability,” J. Comput. Phys. 313, 181–208

(2016).
30H. Takabe, K. Mima, L. Montierth, and R. L. Morse, “Self-consistent

growth rate of the Rayleigh-Taylor instability in an ablatively accelerating

plasma,” Phys. Fluids 28, 3676–3682 (1985).
31R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Growth

rates of the ablative Rayleigh-Taylor instability in inertial confinement

fusion,” Phys. Plasmas 5, 1446–1454 (1998).
32R. Betti, M. Umansky, V. Lobatchev, V. N. Goncharov, and R. L.

McCrory, “Hot-spot dynamics and deceleration-phase Rayleigh-Taylor

instability of imploding inertial confinement fusion capsules,” Phys.

Plasmas 8, 5257–5267 (2001).
33V. Bychkov, M. Modestov, and C. Law, “Combustion phenomena in mod-

ern physics: I. Inertial confinement fusion,” Progr. Energy Combust. Sci.

47, 32–59 (2015).

34C. R. Weber, D. S. Clark, A. W. Cook, L. E. Busby, and H. F. Robey,

“Inhibition of turbulence in inertial-confinement-fusion hot spots by vis-

cous dissipation,” Phys. Rev. E 89, 053106 (2014).
35B. M. Haines, E. L. Vold, K. Molvig, C. Aldrich, and R. Rauenzahn, “The

effects of plasma diffusion and viscosity on turbulent instability growth,”

Phys. Plasmas 21, 092306 (2014).
36D. Y. Hsieh, “Interfacial stability with mass and heat transfer,” Phys.

Fluids 21, 745–748 (1978).
37J. M. Burgess, A. Juel, W. D. McCormick, J. B. Swift, and H. L. Swinney,

“Suppression of dripping from a ceiling,” Phys. Rev. Lett. 86, 1203 (2001).
38S. Ho, “Linear Rayleigh-Taylor stability of viscous fluids with mass and

heat transfer,” J. Fluid Mech. 101, 111–127 (1980).
39M. H. Obied Allah and M. A. Ibraheem, “Thermal effects on linear and

nonlinear Rayleigh-Taylor stability in the presence of mass, heat transfer

and magnetic field,” Indian J. Pure Appl. Math. 31, 1545–1558 (2000).
40J. Hogan and P. S. Ayyaswamy, “Linear stability of a viscous–inviscid

interface,” Phys. Fluids 28, 2709–2715 (1985).
41H. Power and M. Villegas, “Viscous-inviscid model for the linear stability

of core-annular flow,” Z. Angew. Math. Phys. ZAMP 41, 1–11 (1990).
42S. J. Reckinger, D. Livescu, and O. V. Vasilyev, “Adaptive wavelet collo-

cation method simulations of Rayleigh-Taylor instability,” Phys. Scr.

T142, 014064 (2010).
43W. H. Press, B. P. Flannery, and S. A. Teukolsky, Numerical Recipes. The

Art of Scientific Computing (University Press, Cambridge, 1986).
44S. I. Braginskii, “Transport processes in a plasma,” in Reviews of Plasmas

Physics, edited by M. A. Leontovich (Consultants Bureau, New York,

1965), Vol. 1, pp. 205–311.
45S. Atzeni, A. Schiavi, and M. Temporal, “Converging geometry Rayleigh-

Taylor instability and central ignition of inertial confinement fusion

targets,” Plasma Phys. Controlled Fusion 46, B111–B120 (2004).
46T. E. Berger, G. Slater, N. Hurlburt, R. Shine, T. Tarbell, A. Title, B. W.

Lites, T. J. Okamoto, K. Ichimoto, Y. Katsukawa, T. Magara, Y.

Suematsu, and T. Shimizu, “Quiescent prominence dynamics observed

with the hinode solar optical telescope. I. Turbulent upflow plumes,”

Astrophys. J. 716, 1288–1307 (2010).
47I. Ballai, R. Oliver, and M. Alexandrou, “Dissipative instability in partially

ionised prominence plasmas,” Astron. Astroph. 577, A82 (2015), e-print

arXiv:1503.07917[astro-ph.SR].
48A. Delcroix and J. Lemaire, “Transport coefficients in the chromosphere

and coronal gas. I. Viscosity,” Astrophys. J. 154, 1155 (1968).

072121-14 S. Gerashchenko and D. Livescu Phys. Plasmas 23, 072121 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  72.54.118.66 On: Thu, 28 Jul

2016 16:53:58

http://dx.doi.org/10.1063/1.4817744
http://dx.doi.org/10.1615/AtomizSpr.v9.i6.40
http://dx.doi.org/10.1063/1.1706634
http://dx.doi.org/10.1209/0295-5075/79/64002
http://dx.doi.org/10.1209/0295-5075/79/64002
http://dx.doi.org/10.1103/PhysRevE.86.046405
http://dx.doi.org/10.1063/1.1630800
http://dx.doi.org/10.1063/1.2991431
http://dx.doi.org/10.1016/j.jcp.2015.11.002
http://dx.doi.org/10.1063/1.865099
http://dx.doi.org/10.1063/1.872802
http://dx.doi.org/10.1063/1.1412006
http://dx.doi.org/10.1063/1.1412006
http://dx.doi.org/10.1016/j.pecs.2014.10.001
http://dx.doi.org/10.1103/PhysRevE.89.053106
http://dx.doi.org/10.1063/1.4895502
http://dx.doi.org/10.1063/1.862292
http://dx.doi.org/10.1063/1.862292
http://dx.doi.org/10.1103/PhysRevLett.86.1203
http://dx.doi.org/10.1017/S0022112080001565
http://dx.doi.org/10.1063/1.865228
http://dx.doi.org/10.1007/BF00946070
http://dx.doi.org/10.1088/0031-8949/2010/T142/014064
http://dx.doi.org/10.1088/0741-3335/46/12B/010
http://dx.doi.org/10.1088/0004-637X/716/2/1288
http://arxiv.org/abs/1503.07917[astro-ph.SR]
http://dx.doi.org/10.1086/149838

