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Cut-cell methods for unsteady flow problems can greatly simplify the grid generation 
process and allow for high-fidelity simulations on complex geometries. However, cut-cell 
methods have been limited to low orders of accuracy. This is driven, largely, by the variety 
of procedures typically introduced to evaluate derivatives in a stable manner near the 
highly irregular embedded geometry. In the present work, a completely new approach, 
termed TEMO (truncation error matching and optimization), is taken to solve this problem. 
The approach is based on two simple and intuitive design principles. These principles 
directly allow for the construction of stable 8th order approximations to elliptic and 
parabolic problems. In addition, when combined with the non-linear optimization process 
of Ref. [6], these principles allow for stable and conservative 4th order approximations 
to hyperbolic problems without the addition of numerical dissipation. To the best of the 
authors’ knowledge, these are the highest orders ever achieved for a cut-cell discretization 
by a significant margin. This is done for both explicit and compact finite differences and is 
accomplished without any geometric transformations or artificial stabilization procedures.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The cut-cell method [17] allows for the solution of partial differential equations (PDEs) defined on complicated domains 
to be computed numerically on simple Cartesian meshes. This method has seen extensive use in the fluids community, so 
we define the domain of interest, � f , as the fluid domain which is bounded by � f ∪ �s , where the Cartesian and solid 
object boundaries are given by � f and �s , respectively. A schematic of this is shown in Fig. 1. Thus, the non-Cartesian 
physical boundaries are embedded into the simpler Cartesian mesh, leading to computational cells which have been cut 
by the embedded object. Rather than modifying the physical equations to implicitly account for this object, the cut-cell 
approach modifies the discrete operators and imposes boundary conditions directly on �s .

The allure of cut-cell type methods has attracted the attention and effort of a number of researchers for many years 
(see [26] for a review). In theory, cut-cell methods obviate the need for unstructured meshes and allow for the use of robust, 
accurate and conservative finite difference/volume schemes with only slight modifications near the boundary. However, the 
current solutions to the severe numerical challenges of cut-cell schemes typically lead to significant modifications of the 
discrete algorithm. The discrete algorithms are modified by requiring extra procedures to evaluate derivatives near the 
boundary since a straightforward evaluation leads to instabilities. The complexity of the correction procedures and the 
errors incurred by them have made it difficult to achieve high order accurate cut-cell methods.
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Fig. 1. Schematic of solid object, �s , bounded by �s , embedded in a fluid domain, � f . The right side shows the representation of the generated cut-cells 
from both a finite volume and finite difference perspective. Note that the finite volume approach requires more geometric information than the finite 
difference based approach.

The numerical difficulties facing cut-cell methods, warranting these kinds of modifications, are three-fold:

1. Evaluation of spatial derivatives on meshes where at least one point on �s is arbitrarily close to a fluid point in � f
(termed a “degenerate mesh” herein) without compromising stability.

2. Robust and accurate interpolation of field data to evaluate spatial gradients at the boundary.
3. Robust and accurate handling of computational cells whose fluid/solid geometry varies with time.

A solution to item 2 is required for a multi-dimensional �s with general boundary conditions. A solution to item 3 is 
required for applying the cut-cell approach to moving objects. In the present work, we focus exclusively on item 1 (known 
as the “small-cell problem”) as this is the foundation on which a complete cut-cell method can successfully address items 
2 and 3.

A comparison of a finite volume (FV) representation of a cut-cell with a finite difference (FD) representation is illustrated 
in Fig. 1, where an otherwise uniform mesh of constant spacing, h, is intersected with an embedded objected bounded by 
�s . An FV scheme will typically require integrating over faces and volumes and thus requires the computation of fluid face 
area fractions (indicated as αA

1 and αA
2 in Fig. 1) and the fluid volume fractions (α in Fig. 1) associated with cut-cells. An FD 

scheme stemming from a typical method of lines discretization only requires a single 1D geometric quantity, the fluid line 
fraction (ψ in Fig. 1), to characterize the boundary induced by the embedded object. Although FV type cut-cell methods 
have dominated the literature, the FD approach is pursued in this work due to its geometric simplicity.

Regardless of the approach chosen, the small-cell problem manifests as a prohibitive increase in the stiffness of the 
discrete system as ψ → 0 (or α → 0). As ψ → 0, the embedded wall approaches the first fluid point in the domain leading 
to a degenerate mesh. Small cells leading to stiff systems have also been a problem for finite element approaches (termed 
cut-element methods), requiring novel stabilization techniques [11]. With the exception of preliminary work reported in [7,
36], to the best of the authors’ knowledge, every cut-cell scheme that has been devised for unsteady flows, attempts to 
alleviate this problem through either geometric manipulations to remove the small cells or some kind of stabilizing dynamic 
procedure which depends on the value of the solution at any given time [1,3,4,9,10,13–18,20,22,24,25,27–30,32–35,39–45]. 
That is, it is the conventional wisdom that something must be done about small cells. In this work, we pursue a different 
strategy and devise schemes which are stable over the range ψ ∈ [0, 1] (with ψ → 0 representing the strongest challenge 
to stability and accuracy) without any geometric modifications or dynamic procedures or stabilizing source terms. In other 
words, small cells are not a problem for the cut-cell discretizations presented in this paper.

The order of accuracy of cut-cell schemes for unsteady problems has been largely limited to 2nd order [1,3,4,13–18,
20,22,24,25,27,29,30,32–35,39–45]. To the best of our knowledge, the scheme of [9] for incompressible flows (which was 
extended to compressible flows in [10]) is the only one which has demonstrated 3rd order accuracy for unsteady problems. 
However, Ref. [9] mentions that the dynamic correction procedure yields schemes which are unstable in the inviscid limit. 
To remedy this, dissipative schemes are used in [10] to extend the method to compressible flow.

In this paper, it is shown that pursuing a fundamentally different strategy for constructing stable schemes, based on trun-
cation error matching and optimization (hence TEMO), allows for the development of 8th order explicit and compact finite 
differences for parabolic and elliptic equations and conservative 4th order discretizations which are stable for hyperbolic 
problems.

The paper is organized as follows. The formulation of a finite-differences based cut-cell scheme is described in Sec-
tion 2. The construction of these novel cut-cell stencils is described in detail in Section 3. Their construction is driven by 
2
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two intuitive and simple design principles which outline the desired behavior of the cut-cell schemes in the limiting cases 
of ψ = 0, 1 through truncation error matching. These are described in Section 3.1. The application of these principles to 
the construction of schemes that are valid over ψ ∈ [0, 1] and have the desired behavior at ψ = 0, 1 is described in Sec-
tion 3.2. Conservative, stable approximations to hyperbolic equations require that certain constraints be satisfied. Discrete 
conservation constraints and their impact on the construction of cut-cell stencils are described in Section 3.3. The work of 
Ref. [6] was focused exclusively on uniform mesh boundary stencils. Specifically, the optimization procedure of Ref. [6] was 
not designed with cut-cell discretizations in mind. Here, it is extended to cut-cell stencils and used to determine the free 
parameters, allowed by the design principles, in the cut-cell discretizations. This procedure is described in Section 3.4. The 
result of this procedure is a set of coefficients which are polynomial functions of ψ . These closed form polynomials used for 
the discretizations in this manuscript are given in the supplementary material described in Appendix B. Two examples of 
discretizations using these coefficients are given in Appendix A. The schemes are subjected to a variety of tests in Section 4
to demonstrate their stability and accuracy, even for very challenging non-linear hyperbolic problems. In all tests consid-
ered, the schemes demonstrate the advertised order of accuracy and excellent stability properties over the whole range of 
ψ ∈ [0, 1] without any small-cell corrections or numerical dissipation.

2. Formulation of finite difference based cut-cell approach

The majority of cut-cell literature has been based on finite-volume formulations, with the work of [9] and [10] as 
notable exceptions. A consequence of this choice is the need for advanced computational geometry functionality to handle 
the volume/volume intersections of the embedded objects and the Cartesian mesh cells. For example, as shown in Fig. 1, 
a finite volume approach will require intersecting an embedded geometry with a Cartesian mesh cell and also with all 
the faces of the cell to compute relevant volume and area fractions. However, a finite difference scheme only requires the 
intersection of the embedded object with a mesh line. It is our conjecture that a cut-cell method based on finite differences 
will be simpler to implement and not require expensive computational geometry routines. As such, finite differences are 
used as the basis for the present approach.

Consider a continuous Cartesian domain, Dc , defined by 3 orthogonal vectors: Lx , L y , and Lz , with respective lengths: 
Lx , L y , and Lz , such that

Dc = X c ×Yc ×Zc , (1)

where × denotes the Cartesian product and

X c = {x | x ∈ [0, Lx]} ,

Yc = {y | y ∈ [0, L y]} ,

Zc = {z | z ∈ [0, Lz]} .

For a node-based scheme, the domain is discretized by first defining

I = {0,1, . . . , Nx − 1} ,

J = {0,1, . . . , N y − 1} ,

K = {0,1, . . . , Nz − 1} ,

where Nx , N y , and Nz are specified based on resolution requirements. These are used to write the ordered, discrete sets

X = {xi | i ∈ I} ⊂ X c ,

Y = {y j | j ∈ J } ⊂ Yc ,

Z = {zk | k ∈ K} ⊂ Zc ,

where in the present case only uniform meshes are considered (i.e. xi = iLx/(Nx − 1)). Thus, the discrete Cartesian domain, 
D, is given by

D = X ×Y ×Z . (2)

Note that this is the standard definition for a discrete Cartesian domain that would be arrived at following a method of 
lines spatial discretization. However, the above discussion is necessary since the description of the cut-cell approach will 
make use of the various constituents of D.

Generalizing on Fig. 1, M embedded objects are introduced into Dc . Associated with the mth object are �s,m and �s,m , 
which are continuous sets describing the embedded volume and bounding area, respectively. The total solid volume, Sc , is 
given by
3
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Fig. 2. The introduction of 3 embedded objects into the domain, D. The discrete sets, S0, S1, and S2, which contain the points in the domain that are 
inside each solid, are shown. The points making up each set is highlighted in gray. The remaining nodes in the domain belong to the set of fluid nodes, F , 
and are highlighted in blue. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Sc =
⋃

m∈M
�s,m ,

where M = {0, 1, . . . , M − 1} is an indexing set for the embedded objects. The discrete version of this set is then,

S = Sc ∩D .

It is also possible to group the solid points according to their embedded object index:

Sm = �s,m ∩D =⇒ S =
⋃

m∈M
Sm .

The corresponding set of fluid points is then F = D − S . An example of this is shown in Fig. 2 with M = 3. The individual 
contributions to the set of solid points are labeled S0, S1, and S2. It is important to note that the points in S are not used 
in the cut-cell method. That is, the governing equations are not solved in S . Nor are they included in the solution procedure 
as a means of indirectly imposing boundary conditions. However, an implementation of the method may use the storage 
associated with those points (if any).

Splitting the domain, D, into its disjoint constituents, F and S is not enough to fully describe a finite differences based 
cut-cell method. The intersections of mesh lines with the embedded objects also need to be accounted for. To this end, one 
dimensional rays coincident with the mesh lines are given by,

Rx
jk = {(x, y j, zk) | x ∈ X c} ,

Ry
ik = {(xi, y, zk) | y ∈ Yc}

Rz
i j = {(xi, y j, z) | z ∈ Zc} ,

where xi , y j , and zk are the elements of X , Y , and Z , respectively. The intersection of these rays with the mth embedded 
object is given by,

Rx
m =

⋃
k∈K

⋃
j∈J

Rx
jk ∩ �s,m ,

Ry
m =

⋃
k∈K

⋃
i∈I

Ry
ik ∩ �s,m ,

Rz
m =

⋃
j∈J

⋃
i∈I

Rz
i j ∩ �s,m .

As each embedded object may be associated with different physical boundary conditions, it is necessary to form the sets 
of intersection points associated with each object. The full set of extra boundary points in each direction, induced by the 
embedded objects are
4
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Fig. 3. The intersection of the boundary sets �s,0, �s,1, and �s,2, with rays in the x direction are shown. The points in the ray/object intersection sets, Rx
0, 

Rx
1, and Rx

2, are shown in green, blue, and red, respectively. The thicker black arrow is an example of a ray in the x direction at a given ( j, k) position, 
Rx

jk . The intersection points of this particular ray with the embedded objects are indicated with larger node sizes. The full set of intersection points can 
be constructed by marching such rays over all available ( j, k) positions.

Rx =
⋃

m∈M
Rx

m ,

Ry =
⋃

m∈M
Ry

m ,

Rz =
⋃

m∈M
Rz

m .

Fig. 3 shows an example of the construction of Rx
m for 3 embedded objects arrayed on a domain. The intersection of a 

ray in the x-direction, Rx
jk , with the embedded objects is shown. Constructing the full set of intersection points involves 

marching this ray over J ×K. These intersection calculations are one dimensional calculations and are therefore relatively 
fast compared to the three dimensional volume intersection calculations required for finite volume cut-cell schemes. The 
construction of Ry and Rz follow similarly but are not drawn.

The points F and Rx/y/z are all that is needed when Dirichlet boundary conditions are associated with each embedded 
object. However, when Neumann conditions are encountered on an embedded object, or when there is no boundary condi-
tion and the value is allowed to float, then the governing equations must be solved on Rx/y/z which requires another set 
of points.

To describe this required final set of points, first consider the set Px
m which can be used to label (or index) all the points 

of Rx
m . Utilizing the same idea for the y and z directions:

Px
m = {0, . . . , |Rx

m|} ,

P y
m = {0, . . . , |Ry

m|} ,

P z
m = {0, . . . , |Rz

m|} ,

where | · | is used to indicate the size of the set. An example of this labeling for Rx
0 and Ry

0 is shown in Fig. 4 which 
focuses on the m = 0th shape from Fig. 3. To motivate the construction of the final set of points, consider the data required 
to evaluate (∂/∂x, ∂/∂ y) at point 6 in Rx

0 on the left side of Fig. 4. By construction, the point is on a mesh line in the 
x direction, making it straightforward to write a FD discretization of ∂/∂x. However, point 6 is not on a mesh line in the 
y direction. Thus, formulating a FD discretization of ∂/∂ y at point 6, requires another ray of data originating from 6 and 
proceeding in the y direction. This auxiliary ray is denoted by Rxy

0,6 in Fig. 4 and will be explained next.
By construction, the pth element of Rx

m is the tuple of spatial coordinates, (x, y j, zk)p , recording the intersection of 
a mesh line ray with the embedded object. To isolate different elements of the spatial coordinates in the following de-
scriptions, the p subscript will be distributed to each component such that (x, y j, zk)p = (xp, y jp , zkp ). The ray/object 
intersections are then written,

Rx
m =

⋃
p∈Px

m

{(xp, y jp , z jp )} ,

Ry
m =

⋃
y

{(xip , yp, z jp )} ,
p∈Pm

5
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Fig. 4. An examination of the construction of the auxiliary line sets, Lx
m , and Ly

m , for the m = 0 embedded object in the domain. The labeled points in 
Rx

0 and Ry
0 are shown on the left and right, respectively. The collection of points in Lx

m,p , are the intersection points of the Cartesian mesh and a ray 
originating from the pth point in Rx

m and extending in the ±y and ±z directions as appropriate.

Rz
m =

⋃
p∈P z

m

{(xip , y jp , zp)} .

The set Rxy
m,p is introduced to describe the ray in the y direction, originating from the pth point of Rx

m . Likewise, Rxz
m,p

describes the ray in the z direction, originating from the pth point of Rx
m . It is clear that the auxiliary ray sets, Ryx

m,p and 
Ryz

m,p associated with Ry
m as well as Rzx

m,p and Rzy
m,p associated with Rz

m are needed. They are formulated:

Rxy
m,p = {(xp, y j, zkp ) | j ∈ [ jp ± 1, jp ± q]} ,

Rxz
m,p = {(xp, y jp , zk) | k ∈ [kp ± 1,kp ± q]} ,

Ryx
m,p = {(xi, yp, zkp ) | i ∈ [ip ± 1, ip ± q]} ,

Ryz
m,p = {(xip , yp, zk) | k ∈ [kp ± 1,kp ± q]} ,

Rzx
m,p = {(xi, y jp , zp) | i ∈ [ip ± 1, ip ± q]} ,

Rzy
m,p = {(xip , y j, zp) | j ∈ [ jp ± 1, jp ± q]} ,

where the q is chosen based on accuracy and stability requirements, and the choice of ± in the index range is dictated by 
the embedded object normal vector. For suitably aligned objects, both index ranges may be equally applicable. Fig. 4 shows 
the construction of the auxiliary ray sets Rxy

0,p and Ryx
0,p , and gives an example of 4 of the rays to highlight the geometric 

interpretation of the notation. It can be convenient to group the auxiliary ray sets for an object into auxiliary line sets:

Lx
m =

⋃
p∈Px

m

Rxy
m,p ∪Rxz

m,p ,

Ly
m =

⋃
p∈P y

m

Ryx
m,p ∪Ryz

m,p ,

Lz
m =

⋃
p∈P z

m

Rzx
m,p ∪Rzy

m,p .

Solving systems of equations with general boundary conditions and embedded object shapes, using the present finite dif-
ferences based cut-cell method, requires knowledge of F , Rx

m , Ry
m , Rz

m , Lx
m , Ly

m , and Lz
m . In the spirit of finite differences, 

all of these sets are constructed via simple one dimensional geometry operations and do not require any volume/volume 
intersections that are typical of finite volume based schemes. Neumann boundary conditions do require information about 
the surface normal and moving objects will require geometric information such as center-of-mass and orientation angles. 
Efficient generation of this data is outside the scope of this manuscript.

It should be noted that the auxiliary line sets, Lx/y/z
m are not on an equal footing with the points in F or the ray/object 

intersections, Rx/y/z . That is, the governing equations are solved on F and Rx/y/z but never on Lx/y/z . Rather, Lx/y/z

represent convenient placeholders for one dimensional interpolation operations. In some sense, Lx/y/z could be referred to 
6
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as “ghost points”. However, this terminology has been avoided since the typical use of ghost points is to avoid solving the 
equations directly on Rx/y/z rather than to provide supplemental information to facilitate the discretization of the system 
on Rx/y/z .

This manuscript will not address the fully general case where Lx/y/z ∩ Rx/y/z 	= ∅. Instead, a proof of concept for 
stable finite differences based cut-cell discretizations will be explored for general shapes with Dirichlet boundary conditions 
(i.e. Lx/y/z is not needed) or for planar shapes with Neumann and outflow conditions (i.e. Lx/y/z ⊂ Rx/y/z). With these 
simplifications for the Neumann and outflow conditions, solving the governing equations on the boundary does not require 
any interpolation operations as the lines of data required by the derivative approximations are aligned with the mesh. This 
approach allows for the cut-cell scheme to be parameterized by a single one dimensional value, ψ , the fluid line fraction (as 
shown in Fig. 1). Thus, the FD stencils on and near Rx/y/z can be written as functions of ψ . The stability of these schemes 
can be systematically assessed over the range of ψ ∈ [0, 1]. This systematic assessment can be used to optimize the cut-cell 
schemes for stability over the full range of ψ ∈ [0, 1] such that no small-cell corrections or any in-situ dynamic procedures 
are necessary.

3. Construction of embedded stencils

The procedure for generating FD cut-cell stencils can be best understood when contrasted with the procedure for gen-
erating FD derivative approximations on Cartesian meshes which do not contain any embedded objects, that is, D = F . For 
example, if a two dimensional domain, D, is discretized with Nx, N y points in each direction, the approximation to ∂/∂x
over the whole domain is given by the Kronecker product,

∂

∂x
≈ Ox = Ox

1 ⊗ IN y , (3)

where IN y denotes the identity matrix with N y elements and Ox
1 is an (Nx × Nx) matrix describing the FD discretization 

along a mesh line in the x direction. The choice of Ox
1 ⊗ IN y or IN y ⊗ Ox

1 is arbitrary from a mathematical standpoint and 
should be chosen based on the layout of the data to which the operator, Ox , will be applied. For the central finite differences 
considered in this paper, the sparse structure of Ox

1 is:

Ox
1 =

⎡
⎣Bl(α)

C
Br(α)

⎤
⎦ ,

where C is a narrow band circulant matrix describing the interior discretization, and Bl/r(α) are the small block matrices 
describing the lopsided boundary stencils needed to evaluate the derivative to high accuracy near the left, (l), and right, 
(r), walls. They are written as functions of free coefficients, α. Standard central/compact finite differences are used in the 
interior in of the domain. The details of the these schemes can be found many places, including Refs. [6,23]. The exact form 
of the boundary schemes are given later in equation (5a).

In the cut-cell case where D 	= F , the full operator Ox can no longer be constructed by repeating the one dimensional 
operator, Ox

1, N y times along the diagonal. Instead, a new one dimensional operator is defined:

Ox,n
1 =

⎡
⎣Bl(ψl,n,α)

C
Br(ψr,n,α)

⎤
⎦ ,

where Bl/r are now functions of a one dimensional fluid line fraction ψl/r . The n superscript and subscript are for labeling. 
In the cut-cell case, the discrete operator, Ox , is no longer given by equation (3) but rather by,

Ox =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ox,0
1

Ox,1
1

Ox,2
1

. . .

Ox,Q x

1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4)

where Q x is the total number of one dimensional operators required. In the case where the embedded objects do not 
intersect with the domain boundary, Q x = N y Nz + |Rx|/2. This operator has been written as if there are no “holes” in the 
data, that is, the data in F and Rx have been appropriately interleaved. Operators for the y and z spacial derivatives, Oy

and Oz can be similarly defined. Note that the sizes of the operators will not necessarily be equivalent since Ox is defined 
over F ∪Rx , Oy is defined over F ∪Ry , and Oz is defined over F ∪Rz . One could define mappings between these various 
spaces and write the operators assuming a data layout as in equation (4), or one could formulate the operators using a 
block diagonal matrix similar to (4) but only over F , augmented with a more general sparse matrix over Rx/y/z . Such 
implementation issues will not be explored but are worth noting.

Therefore, formulating cut-cell stencils in the FD framework, is equivalent to designing the boundary schemes, Bl/r(ψ, α).
7
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Fig. 5. Uniform mesh with N equidistant points and a corresponding degenerate mesh with degenerate point xd collocated with the left wall at x0.

3.1. Design principles

To design the general cut-cell boundary matrix, B(ψ, α), attention is first focused on the limiting cases of the uniform 
mesh, Bu(α) = B(1, α) and the degenerate mesh, Bd(α) = B(0, α). In the ensuing discussion, the dependence on the free 
parameters, α, is not relevant and is dropped from the notation for brevity.

The width of the scheme used in the interior of the domain sets a minimum value on the number of required boundary 
stencils. Likewise, the desired order of accuracy of the boundary stencils sets a minimum requirement on their width. How-
ever, the number of boundary stencils and their respective widths may be arbitrarily large. Additional rows and columns 
of coefficients can be added above these baseline requirements to satisfy additional properties, such as discrete conser-
vation [6], or energy stability [36]. Thus, two principles (in addition to discrete conservation) were selected to drive the 
formulation of the cut-cell boundary stencils, under the assumption that such constraints could be satisfied for suitable 
sizes of Bu/d

l :

1. Given a uniform mesh with ψ = 1, the addition of a degenerate point at a wall, such that ψ = 0, should not change the 
truncation error at any point.

2. Do not violate the assumptions of continuity embedded in the FD formulation.

The first principle of truncation error matching is based on the observation of Schneiders et al. [33], described in the 
context of moving �s: the solution deteriorates (i.e. oscillations develop) when small changes in �s result in abrupt changes 
to the discrete operator which then result in abrupt changes in truncation error acting as essentially discontinuous forcing 
terms. The abrupt changes to the discrete operator are associated with 2 events: cell-crossing and cell-classification changes. 
In the context of [33], a cell-classification change is when a cut-cell changes from a “regular” cell requiring no corrections 
to a “small” cell which requires corrections. A cell-crossing event is when the geometry of a cell changes over the course of 
a timestep such that ψ ≈ 1 → ψ ≈ 0 (or vice-versa). The events can be triggered by small changes �s . This observation has 
also been made by other cut-cell researchers, for example, Brehm et al. [8]. The cut-cell method presented here does not 
do any small cell corrections so there are no cell-classification changes. The goal of the first principle is to avoid the abrupt 
changes to the discrete operator caused by cell crossing events, ensuring that small changes in �s result in small changes 
in the truncation error of the scheme. Note that a full mitigation of cell-crossing events require a robust treatment of the 
“fresh-cell”/“dead-cell” problem for moving �s and is beyond the scope of the present work which is focused on stationary 
objects.

To focus the discussion of principle 1, (the ‘TEM’ of TEMO), consider a domain of length L subject to two different dis-
cretizations as shown in Fig. 5. The first discretization uses N equidistant points resulting in a uniform mesh of spacing h
(labeled “Uniform Mesh” in Fig. 5). The second uses the same N points as the uniform case but contains an additional de-
generate point, xd , collocated with the left wall at x0 (labeled “Degenerate Mesh” in Fig. 5). We will focus the derivations on 
the boundary stencils making up Bu/d

l since the corresponding right wall stencils can be computed from a simple mapping 
applied to Bu/d

l [6]. If each stencil in Bu/d
l is of length t , a discrete approximation of order q of the νth order derivative of 

some function, f , defined on the grid and evaluated at a point, i, near the boundary, is given by:

f (ν)
i = 1

hν

t−1∑
j=0

αu
i j f j + τ u

q , (5a)

f (ν)
i = 1

hν

⎡
⎣αd

id fd +
t−1∑
j=0

αd
i j f j

⎤
⎦ + τ d

q , (5b)

where τ is the truncation error and the d and u superscripts indicate terms on the degenerate and uniform meshes, 
respectively. To discover the form of τ , consider the Taylor series expansion of f j about f i in equation (5):

f j = f i + ( j − i)hf ′
i + (( j − i)h)2

2! f ′′
i + ... + (( j − i)h)n

n! f (n)
i + ...

Expanding each f j in such a manner in equation (5) yields the truncation errors associated with a qth order approximation 
on the uniform, τ u

q , and degenerate, τ d
q , meshes:
8
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τ u
q = 1

hν

∑
k=q+ν

f (k)
i

k!

⎡
⎣t−1∑

j=0

αu
i j (( j − i)h)k

⎤
⎦ ,

τ d
q = 1

hν

∑
k=q+ν

f (k)
i

k!

⎡
⎣(−ih)kαd

id +
t−1∑
j=0

αd
i j (( j − i)h)k

⎤
⎦ .

Associated with each truncation error is the q + ν system of equations, with t unknowns, describing the FD stencils:

f (ν)
i − 1

hν

q+ν−1∑
k=0

f (k)
i

k!

⎡
⎣t−1∑

j=0

αu
i j (( j − i)h)k

⎤
⎦ = 0 ,

f (ν)
i − 1

hν

q+ν−1∑
k=0

f (k)
i

k!

⎡
⎣(−ih)kαd

id +
t−1∑
j=0

αd
i j (( j − i)h)k

⎤
⎦ = 0 ,

for the uniform and degenerate meshes, respectively. Satisfying the first design principle requires τ u
q = τ d

q . This can be 
accomplished with the r × t constraints:

αd
id + αd

i0 = αu
i0, (6a)

αd
i j = αu

i j, for all j ∈ [1, t). (6b)

Note that this principle also constrains the coefficients required to evaluate the discrete derivative at the degenerate point, 
f (ν)

d . Since this point is collocated with x0, the discrete derivatives must have the same truncation error (i.e. the same 
coefficients).

The second design principle: do not violate the assumptions of continuity inherent in the FD formulation, is used to 
supply one more relation and thus allow for the determination of all αd in terms of αu , or equivalently, writing Bd

l in 
terms of Bu

l . To illustrate the implications of this constraint, consider a degenerate mesh initialized with some solution, 
f (x). At this initial time, f (x0) = f (xd) since x0 = xd . Suppose that the temporal evolution of f is governed by some sort 
of PDE such that the change in f between timesteps is governed by the discrete spatial derivatives constructed according 
to the first principle. The update to f0 and fd will be identical since the discrete derivatives are equal. However, f0 will 
be subject to discrete boundary conditions and fd will not. This will result in a small difference between f0 and fd . Thus, 
the assumption of continuity is violated in any discretization that is constructed based on a Taylor series approximation 
and includes both of these points. It can be seen that by the formulation of the truncation error given in equation (5), 
the discrete approximations on the uniform and degenerate meshes are only strictly equal if f0 = fd . The application of 
boundary conditions (specifically, Dirichlet) at only x0, makes them only approximately equal.

In order to avoid this violation, no stencil uses data from both x0 and xd as ψ → 0. Thus, the second principle refines 
equation (6a) and requires:

αd
id = αu

i0 or αd
i0 = αu

i0. (7)

Recall that Bd
l operates on [ f0, fd, f1, . . . ]T . Therefore, this constraint impacts the first two columns of every row of Bd

l . 
If there are r rows in Bd

l , this constraint leaves 2r combinations of parameters to be explored. All combinations meet the 
desired accuracy constraints by construction, and are judged, in this work, by their stability characteristics on various test 
problems. These considerations lead to 3 of the possible 2r combinations being selected. To explore the 3 combinations of 
parameters, consider B̄u

l , the 3 × 3 submatrix of Bu
l :

B̄u
l =

⎡
⎣αu

00 αu
01 αu

02
αu

10 αu
11 αu

12
αu

20 αu
21 αu

22

⎤
⎦ .

If the choices for the degenerate boundary matrices are written as Bd,0
l , Bd,1

l , and Bd,2
l , their respective 3 × 3 submatrices 

are:

B̄d,0
l =

⎡
⎣αu

00 0 αu
01

αu
00 0 αu

01
0 αu

10 αu
11

⎤
⎦ , B̄d,1

l =
⎡
⎣αu

00 0 αu
01

0 αu
00 αu

01
0 αu

10 αu
11

⎤
⎦ , B̄d,2

l =
⎡
⎣ 0 αu

00 αu
01

αu
00 0 αu

01
0 αu

10 αu
11

⎤
⎦ .

Note that the last row is the same in all submatrices. All schemes in this paper use αd
i0 = 0 for all i ≥ 1.

It was found that Bd,0
l is suitable for first derivative approximations (as found in hyperbolic problems). Second derivative 

operators, found in parabolic and elliptic problems, were best discretized with Bd,1 when Neumann boundary conditions are 
l

9
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used and Bd,2
l when Dirichlet or floating conditions are encountered. Boundary stencils to be used with Neumann conditions 

are of the form:

f (ν)
i = 1

hν−1 ηi f ′
0 + 1

hν

j=t−1∑
j=0

αi j f j +O
(
hq) , (8)

where the value f ′
0 is prescribed. In addition to the constraints on α previously discussed, the design principles dictate:

ηd
0 = ηd

d = ηu
0 ,

ηd
i = ηu

i for all i ≥ 1 .

This paper also considers compact finite differences [23] for the 2nd derivative approximations. As opposed to the typical 
formulations, these boundary schemes use central differences at the first point, that is, equation (5a) at i = 0, augmented 
with:

k=1∑
k=−1

βik f (ν)

i+k = 1

hν

j=t−1∑
j=0

αi j f j +O
(
hq) for i > 0, (9)

where βi0 = 1. On the degenerate mesh, the stencil evaluating f (ν)

d uses an explicit FD formulation as well which is con-

strained according to Bd,1
l or Bd,2

l . In addition to the constraints on α already discussed, the design principles dictate 
constraints on β: βd

ik = βu
ik .

3.2. Application of design principles

The two design principles determine the relationship between the boundary operators on a uniform mesh, Bu
l , and a 

degenerate mesh, Bd
l . The construction of cut-cell boundary schemes, Bl(ψ), which are valid over the range ψ ∈ [0, 1], and 

have the limiting behavior: Bl(1) = Bu
l and Bl(0) = Bd

l , are now considered.
If the size of Bu

l is given by r × t , the size of Bd
l must be (r +1) × (t +1) Therefore, the size of the general Bl(ψ) must also 

be (r + 1) × (t + 1), with its final row being equivalent to the interior scheme when ψ = 1. Assuming the order of accuracy 
constraints were satisfied with only t points, the extra width, t + 1, brings with it a free parameter. The design principles 
inform the choices of the free parameter. Recall that the second principle requires that as ψ → 0 either the coefficient 
modifying the wall or the degenerate point also has to approach zero. The free parameter choices are therefore:

αiδ = ψαu
iδ for i < r

αr,r−p = ψγ−p

where δ indicates the appropriate coefficient to send to zero which is selected according to the choice of Bd,0/1/2
l , and γ−p

is the left most coefficient of the centered interior scheme described by the p + 1 coefficients, {γ−p, · · · , γp}. Details on 
the interior schemes can be found in Ref. [6]. It is possible (and even necessary when enforcing conservation) that there 
will be more than one free parameter in a given boundary stencil. In such cases, the extra free parameters are written as 
first degree polynomials in ψ in terms of the uniform mesh coefficients, αi j = ψαu

i j + (1 − ψ)αu
i−1, j−1. This ensures that the 

correct behavior is achieved at ψ = 0, 1. This choice of polynomial is not unique but has proved effective.
Consider again the discrete approximation of order q of the νth order derivative of some function, f , defined on the grid 

and evaluated at a point, i, near the boundary (i.e. i ≤ r) written with the constraints imposed by the design principles:

f (ν)
i = 1

hν

⎡
⎣ψαu

iδ fδ +
t∑

j=0, j!=δ

αi j f j

⎤
⎦ + τq ,

where δ is again used to select the index of the coefficient that will be zeroed out in Bd
l . The data is defined on the cut-cell 

mesh with x0 on �s and

xi+1 − xi =
{

ψh, for i = 0
h, for i > 0

.

With i j = (x j − xi), the system of (q + ν) equations for the accuracy requirements is given by

f (ν)
i − 1

hν

q+ν−1∑
k=0

f (k)
i

k!

⎡
⎣ψαu

iδ
k
iδ +

j=t∑
j=0, j!=δ

αi j
k
i j

⎤
⎦ = 0 .
10
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Note that the αu terms are specified rather than solved for. This avoids any singularities in the coefficients in the range 
ψ ∈ [0, 1] and satisfies the design principles by construction. The interested reader can easily verify this property of all 
schemes presented in this paper.

At this point, it is worthwhile to highlight that any free parameters in Bl(ψ) will be functions of the uniform mesh 
coefficients, αu , by virtue of the above construction. Thus, when writing the full boundary stencil matrix, Bl(ψ, α), it is 
understood that the vector of free coefficients, α coefficients are the free coefficients in Bu

l . Some of the free coefficients are 
further constrained by discrete conservation and removed from α. The remaining coefficients play a critical role in stability 
optimization procedure discussed in the following sections.

3.3. Discrete conservation constraints

Discrete conservation is enforced for the first derivative operators. An involved discussion of the constraints which must 
be satisfied by the boundary stencils to be discretely conservative for hyperbolic systems is given in [6]. In the interest of 
conciseness, the discussion that follows assumes the reader is familiar with the constraints and will only present the single 
additional constraint introduced by the cut-cell boundary schemes.

To define a “conservative” approximation, consider a scalar hyperbolic conservation law with the form:

∂u

∂t
+ ∂ f

∂x
= 0 ,

for x ∈ [0, L] where f = f (u) is some flux function. Integrating this equation over the domain gives:

d

dt

L∫
0

u(x, t) dx = f |x=0,t=t − f |x=L,t=t .

Thus, the solution to this equation has the property that the total change of u as a function of time is driven solely by the 
flux function, f , at the domain boundaries. Therefore a conservative approximation is one which satisfies a discrete version 
of the above integral for some choice of quadrature. It can be shown that the one dimensional operator, O, is discretely 
conservative if one can derive a set of quadratures, w, such that

wT Oi = 0 , for i ∈ (0, N − 1) , (10)

where Oi is the ith column of O and w is the column vector of quadratures. This does not constrain the first column, O0

(thus B0), of the operator. However, an examination of the boundary stencil matrices on uniform and degenerate meshes 
shows that the coefficients in the first column of Bu

l move into the second column of Bd
l . Thus, the coefficients are not 

constrained by equation (10) on the uniform mesh, but are constrained in the degenerate case. This behavior makes it 
difficult to properly impose the constraint on Bl(ψ). To address this problem, another constraint is introduced to ensure the 
proper limiting behavior:

w0α00 = wT
u Bu

l 0 ,

where the u subscript denotes quantities on the uniform mesh and Bu
l 0 indicates the first column of the uniform mesh 

boundary matrix, Bu
l . Therefore the conservation constraints considered in this paper form a system of t + 1 equations and 

r + 1 unknowns.
As discussed in [6], the size of Bl determines the solvability of the system. Following the guidelines therein, for a set of 

r + 1 boundary stencils of order q and length t + 1 to be coupled with an interior scheme of order 2p, r and t are given by:

t = p + q + 1 + nextra, (11a)

r = q + 1 + nextra , (11b)

where nextra allows for the addition of extra rows and columns to provide additional free parameters in α. This allows for 
the construction of boundary schemes of any order q < 2p which satisfy conservation constraints. The cut-cell schemes 
generated in this way will have a number of free parameters which are written as polynomials of ψ and α. Note that the 
conservation constraints must also be solved on the uniform mesh to provide appropriately constrained αu . In the next 
section, we discuss how to tune the free α for stability.

3.4. Optimization for stability

The optimization procedure (the ‘O’ of TEMO) was successfully carried out for 2 families of schemes: E21 and E41. 
The E prefix indicates the schemes are using explicit (as opposed to compact) finite differences. The number indicates 
the global order of the method, and the subscript indicates the derivative order. Stability optimization is limited to first 
derivative operators because in the context of fluid dynamics, the second derivative operators are associated with dissipative 
11
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Table 1
Conservative cut-cell schemes, for 1st derivatives, described in terms of the 
interior discretization, p, order of boundary schemes, q, extra rows/columns 
added for optimization, nextra , free parameters, α, and zeroed parameters.

Scheme p q nextra α zeros

E21 1 1 1 αu
02, αu

03, αu
12, αu

13

E41 2 3 0 αu
04, αu

14, αu
24, αu

25 αu
05, αu

15

phenomena. The form of the conservative cut-cell schemes for 1st derivative operators, constructed according to the design 
principles, are given in Table 1. The table lists the width, p, of the interior scheme of order 2p, the boundary scheme order, 
q, the number of extra rows/columns that were added to facilitate optimization, nextra and the resulting free parameters 
in the scheme, α. The footprint of the boundary scheme can be computed according to equation (11). Schemes E21 and 
E41 utilize boundary schemes that are one order less than the interior scheme, resulting in globally 2nd and 4th order 
discretizations [19], respectively.

We label a system as “naturally” stable if the boundary and interior schemes can be successfully used in a variety of 
numerical tests with the free parameters set to 0. These tests will be described in section 4. None of the schemes described 
in Table 1 have this property. That is, the values of the free parameters must be carefully chosen to ensure stability. To 
address this issue, we apply a slightly modified version of the optimization strategy presented in [6]. As a brief recap, that 
strategy consists of:

1. Evaluate the objective function, θ , at N random points in α space.
2. Use the best α as a starting point for a gradient ascent method using a line search approach to take the largest possible 

steps
3. Record α in a database for further processing once θ reaches a critical value
4. Go back to step 1 when it is no long possible to find a better α

The most important aspect of the optimization procedure is the use of an objective function which can serve as a proxy 
for a stability estimate. The differences in the present optimization procedure and that of Ref. [6] consist of a change in 
the objective function, specifically, the addition of the ψ parameter to Algorithms 1–3 and its impact on mesh and operator 
construction. One could follow the same procedure of adding more parameters to the objective function if optimizations 
over a different (or larger) space were desired. Adding ψ in the present case is sufficient to make the algorithm “cut-cell 
aware”. In contrast to the uniform mesh used in [6], the unoptimized base versions of the cut-cell stencils are far too large 
to print.

The optimization process to find suitable α, such that the resulting operator, O, yields a stable discretization of relevant 
systems, is based directly on the compressible Euler equations:

∂ρ

∂t
+ ∂ρui

∂xi
= 0 ,

∂ρui

∂t
+ ∂ρuiu j

∂x j
= − ∂ p

∂xi
,

∂ρE

∂t
+ ∂ρEui

∂xi
= −∂ pui

∂xi
,

where ρ is the density, p the pressure, E the total energy, ui the ith component of the velocity vector, and the Einstein 
summation convention is assumed. The system is then closed by an equation of state assuming a calorically perfect gas,

p = (γ − 1) (ρE − ρuiui/2) .

The speed of sound is a0 = √
γ p/ρ . For the numerical tests, the ratio of specific heats, γ , is assumed equal to 1.4, corre-

sponding to air.
The test problem is one-dimensional and starts with an initially quiescent fluid with a Gaussian density distribution:

ρI = ρ(x,0) = 1 + exp(− (x−μ)2

2σ )√
2πσ

, (12a)

E I = E(x,0) = ργ −1

γ − 1
, (12b)

where the energy has been initialized using isentropic relations. The one dimensional computational domain is depicted in 
Fig. 6. The mesh has a uniform grid spacing, h, excepting the spacing between the embedded objects and first/last fluid 
nodes in F , with respective spacings ψlh and ψrh. The embedded objects form the boundaries of the domain such that 
12
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Fig. 6. One dimensional domain with N points and regular spacing h, used in optimization simulations. There are two intersection points near the left 
and right boundaries of the domain, indicated with the sets Rx

0 and Rx
1, respectively. The interior N − 2 points make up the fluid node set, F . The 

one dimensional fluid line fractions, ψl and ψr are varied independently. A uniform mesh is achieved when ψ = 1, a degenerate mesh when ψ = 0. In 
contrast to the domain in Fig. 5, the fully degenerate mesh will be 2h shorter than the uniform mesh in the present case. This allows for the optimization 
simulations to easily explore the full range ψ ∈ [0, 1].

Fig. 7. Maximum energy, |ρE|∞ , over the domain as a function of time, t , for cut-cell meshes with ψl = 1 and the indicated value of ψr for scheme E41

with α = 0. The domain is discretized with N = 121 points. The RK4 method is used to integrate the equations in time with C = 0.5. The simulation is not 
stable for ψr = 0.6.

cut-cell boundary schemes are relevant at both ends of the domain. The fluid line fraction between the embedded wall on 
the left and first fluid point is ψl . Likewise, ψr is the fluid line fraction between the last point in F and the embedded 
right wall. Both ψl and ψr are varied independently. The only physical boundary condition for this inviscid flow is that the 
normal component of the velocity be zero at the walls [2]. In the one-dimensional case this becomes:

u(x1 − ψlh, t) = u(xN−2 + ψrh, t) = 0 .

The boundary conditions for this problem lead to the conservation of the total mass and energy within the domain:

d

dt

∫
ρ dx = 0,

d

dt

∫
ρE dx = 0 .

The use of conservative schemes ensures that these relations are satisfied discretely (to within machine precision). This is 
verified using the quadrature weights, w, derived with each scheme. The timestep restriction is given by the well-known 
CFL constraint,

t = C h

max(|u| + a0)
, (13)

where typically C ≤ 1. Note that the timestep restriction is written in terms of the uniform mesh spacing, h, and makes 
no reference to ψ . Since the equations are non-linear and there is no dissipation, infinitely thin shocks will develop. The 
simulations are stopped before this happens when there are still about 15 points resolving the wavefront on the coarsest 
grid. The maximum energy at a given time, |ρE|∞ , is shown in Fig. 7 for E41 with α = 0 and parameters: L = xN−1 − x0 = 5, 
μ = 5, σ = 2, N = 121, C = 0.5, for the cases of (ψl = 1, ψr = 0.9) and (ψl = 1, ψr = 0.6). The simulation becomes unstable 
for decreasing ψ , highlighting the need for an optimization procedure to chose α that yield stable schemes over the range 
ψ ∈ [0, 1].

As in Ref. [6], the objective function, θ , is chosen so as to provided a reasonable quantification of numerical stability, such 
that maximizing θ yields stable discretizations for systems of interest. It is split into two helper functions. The first of these, 
T (O,α, N, C ,ψ, I, tc) → tr , quantifies the run time, tr , of a set of simulations of the desired equations with a particular 
boundary and interior scheme described by O and a particular set of free parameters α for a set of grid resolutions, CFL 
numbers, embedded wall distances, and initial conditions given by N , C , ψ and I , respectively. The computation of tr is 
described in Algorithm 1. Using this algorithm, it is clear that tr ∈ (0, tc].

The second helper function, E (O ,α, N, C ,ψ, I, tc, R) → ε , quantifies the solution smoothness for the time and space 
interval specified by R . We make use of the monotonic nature of the energy per unit volume, ρE , near the walls at a late 
13
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Fig. 8. Energy, ρE at times t = ts = 9.5 and t = tc = 10.5 over the spacial domain. The areas near the left and right boundaries delimited by the black 
vertical lines correspond to the boundary domains used for the monotonicity error when m = 10 in equation (14).

input : Boundary and interior scheme, O
input : Set of free parameters, α
input : Set of grid resolutions for spatial discretization, N
input : Set of time constraints for temporal discretization, C
input : Set of embedded wall distances, ψ
input : Initial conditions, I
input : Completion time, tc

output : Average run time: tr

tr ← 0;
foreach {ψ , N, C } of ψ × N × C do

Initialize simulation of N grid points and initial conditions I;
Set coefficients for derivative operator, O(α, ψl = ψr = ψ);
Integrate equations in time using time constraint, C , until a time of td where td = tc if the simulation completed successfully or td < tc if the 

simulation diverged at td;
tr ← tr + td ;

end
tr ← tr/(|N ||C ||ψ |);

Algorithm 1: T (O ,α, N, C ,ψ, I, tc) → tr .

time (t ∈ [9.5, 10.5]) when the initial density, ρI and energy, E I , are given by equation (12), with σ = 2 and μ = L = 5. 
The monotonicity of the energy at times t = 9.5 and t = 10.5 can be seen in Fig. 8. Thus, for a grid with N points, the 
monotonicity error on the left and right boundaries is:

Mm
L ( f ) = ∣∣T V m

0 ( f ) − ( fm+1 − f0)
∣∣ (14a)

Mm
R ( f ) =

∣∣∣T V N
N−m( f ) − ( f N−m−2 − f N−1)

∣∣∣ , (14b)

where total variation is given by:

T V k
j ( f ) =

i=k∑
i= j

| f i+1 − f i | , (15)

and f i is the computed solution at point i. In equations (14) and (15), f0 and f N−1 refer to f evaluated at the left and 
right embedded wall: Rx

0,0 and Rx
1,0, respectively, rather than at the points x0 and xN−1 which are in S . Note that Mm

L has 
been defined for a monotonically increasing function and Mm

R has been defined for a monotonically decreasing function to 
reflect the different behavior of ρE near the left and right boundaries, respectively. With these definitions, the procedure 
for computing ε is given in Algorithm 2.

The objective function θ (O ,α, N, C ,ψ, I, tc, R) → ν (where ν is a measure of the error ε) can then be defined in terms 
of T and E and is given in Algorithm 3. With this, the optimization problem is stated as: For a given stencil, O , set of grid 
resolutions, N , set of temporal resolutions C , set of embedded wall distances, ψ , initial conditions, I , completion time, tc

and interval for smoothness calculations, R , choose α such that θ is maximized for the desired equations. The parameters 
used for optimization in the present paper are:

N = {121,151,201}
C = {0.8,0.1}
14
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input : Boundary and interior scheme, O
input : Set of free parameters, α
input : Set of grid resolutions for spatial discretization, N
input : Set of time constraints for temporal discretization, C
input : Set of embedded wall distances, ψ
input : Initial conditions, I
input : Completion time, tc

input : Space-time interval for smoothness calculations, R = (ts, te, m)

output : Maximum error: ε
ε ← 0;
foreach {ψ , N, C } of ψ × N × C do

Initialize simulation with N grid points and initial conditions I;
Set coefficients for derivative operator, O(α, ψl = ψr = ψ);
Integrate equations in time using time constraint, C , until a time of td where td = tc if the simulation completed successfully or td < tc if the 

simulation diverged at td;
if td < tc then

ε ← SENTINEL;
return;

end
Write α to database;
εL ← temporal average of Mm

L (ρE) over time interval t ∈ [ts, te];
εR ← temporal average of Mm

R (ρE) over time interval t ∈ [ts, te];
ε ← max(ε, εL + εR );

end

Algorithm 2: E (O ,α, N,ψ, C , I, tc, R) → ε .

input : Boundary and interior scheme, O
input : Set of free parameters, α
input : Set of grid resolutions for spatial discretization, N
input : Set of CFL constraints for temporal discretization, C
input : Set of embedded wall distances, ψ
input : Initial conditions, I
input : Completion time, tc

input : Space-time interval for smoothness calculations, R = (ts, te, m)

output : Quantification of stability: ν
ν ← T (O ,α, N , C ,ψ , I, tc);
ε ← E (O ,α, N , C ,ψ , I, tc , R);
if ε 	= SENTINEL then ν ← ν + log(1/ε);

Algorithm 3: θ (O ,α, N, C ,ψ, I, tc, R) → ν .

ψ = {10−6,10−3,10−2,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}
I = (ρI , E I ,σ = 2,μ = 5, L = 5)

tc = 10.5

R = (ts = 9.5, te = tc,m = 10)

A gradient ascent method is applied to move through α space using a line search approach and arrive at suitable schemes. 
It should be noted that the objective function described here is not unique but has proven effective in finding schemes that 
behave well in systems that are similar to those encountered in studying fluid dynamics. The optimization that is done here 
is based on solving the compressible Euler equations. This tends to yield a great number of candidate boundary stencils 
which are then further refined by the stability tests in the next section. The candidate boundary stencils are all written to a 
database for further processing via the stability tests in the next section. Note that all α for which td == tc are written to 
the database rather than just those which maximize θ . This is done because θ is not an exact quantification of stability, and 
so, beyond a certain threshold, it is not clear that the α which yield the largest values of θ are strictly better than those 
which yield slightly lower values. Thus, the “effective” objective function is a combination of all these tests, and provides 
a reasonable proxy for stability over a range of systems. Software limitations prevented this “effective” objective function 
from being directly implemented as such. The benefits of combining the present method of separate objective function and 
refining steps into a single objective function are being explored.

It is worthwhile to discuss the nextra parameter in Table 1. The most obvious choice for this parameter is 0. However, 
during the course of optimizing E21, no schemes with nextra = 0 were found to be stable over the whole range of hyper-
bolic tests considered in Section 4. Adding one extra row and column to the boundary scheme was enough to enable the 
optimization process to find stable E21 schemes. If other systems of equations were found for which the present batch of 
cut-cell schemes were unstable, one could increase nextra until stable schemes were found.
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The optimization and refining process discovered 5300 stable E21 schemes and 2 stable E41 schemes. These are included 
in a database in the supplementary materials. The first scheme for each family in the database is shown in Appendix A. In 
terms of accuracy on the test problems of Section 4, the schemes are roughly equivalent. Choosing the “best” scheme for a 
particular application would involve using the schemes directly for the desired application or designing a test problem to 
use a proxy for the application and sorting the schemes based on whichever criteria is deemed most important.

The optimization process was unnecessary for constructing second derivative approximations in parabolic and elliptic 
equations. The schemes labeled: E2d

2, E4d
2, E6d

2, and E8d
2 refer to approximations of the second derivative using explicit 

(central) differences such that the global orders are 2, 4, 6, and 8, respectively, for Dirichlet or floating boundaries. Likewise, 
E2n

2, E4n
2, E6n

2, and E8n
2 are boundary closures designed for Neumann boundary conditions. Compact differences are also 

used for second derivative approximations resulting the T 4d
2, T 6d

2, and T 8d
2 of orders 4, 6, and 8, respectively. Similarly, 

the boundary schemes for Neumann conditions are: T 4n
2, T 6n

2, T 8n
2. The coefficients for each scheme are given in the 

supplementary material described in Appendix B.

4. Results

The stability and accuracy of the schemes for parabolic and hyperbolic equations is demonstrated through a variety of 
tests and analysis. The asymptotic stability of the second derivative approximations is explored through an eigenvalue anal-
ysis in Section 4.1. The accuracy and stability of these schemes is demonstrated by solving the unsteady heat equation in 
Section 4.2 for a variety of embedded wall distances to highlight the behavior of the schemes on degenerate meshes. The 
behavior of the schemes for convex geometries is explored in Section 4.3. The behavior of the schemes when applied to 
elliptic problems is examined in Sections 4.4 and 4.5. The asymptotic stability of the conservative first derivative approxi-
mations given in Appendix A are also explored through an eigenvalue analysis presented in Section 4.6. The accuracy and 
long-time stability of the conservative cut-cell discretizations is assessed through two challenging hyperbolic problems. In 
the first, in Section 4.7, a varying coefficient advection equation is simulated for long times over a convex geometry. For 
the second test, in Section 4.8, the compressible Euler equations are solved with a moving (supersonic) isentropic vortex. 
The embedded wall distances are again varied at the supersonic inflow/outflow boundaries. Centered differences are used 
in the interior of the domain. These non-dissipative interior schemes make the hyperbolic tests especially difficult. In all 
tests considered, the schemes demonstrate the advertised order of accuracy and excellent stability properties over the whole 
range of ψ ∈ [0, 1].

4.1. Asymptotic stability: eigenvalue analysis for parabolic terms

An asymptotically stable scheme is one for which the error does not grow unphysically with time [12]. To illustrate, 
consider the linear parabolic equation,

∂u

∂t
= k

∂2u

∂x2
,

defined on the cut-cell mesh given in Fig. 6. As a notational convenience, xl is the x-coordinate of the point describing the 
left embedded wall, Rx

0,0. Similarly, xr is the x-coordinate of the right embedded wall, Rx
1,0. With this notation, the initial 

and boundary conditions for u = u(x, t) are:

u(x,0) = f (x) , u(xl, t) = a(t) ,
∂u

∂x

∣∣∣∣
x=xr

= b(t) ,

where it is assumed that the boundary conditions are consistent with the initial conditions. In its typical formulation, the 
discrete second derivative operator, Ox,2, allows,

U ′′ = Ox,2U ,

where Ox,2 has dimensions N × N and U , U ′′ are column vectors of length N . However, the derivative information at xl

is not needed due to Dirichlet boundary conditions. Therefore, let the (N − 1) × (N − 1) submatrix of Ox,2, which does 
not include the first row or column of Ox,2, be denoted as Q and let Û = [u1, u2, . . . , uN−2, ur]T . With this notation, the 
semi-discrete parabolic equation can be written as,

∂ Û

∂t
= k

h2
Q Û + G , (16)

where G is a column vector of length N − 1 giving the appropriate weights of the stencils on the boundary data, a(t) and 
b(t). The stability of this semi-discrete system is governed by the eigenvalues, λ, of the spatial discretization matrix, Q . If 
the real part of an eigenvalue is given by re(λ) and the maximum real part of all the eigenvalues is given by maxλ re(λ), 
the semi-discrete system is then stable if [37],
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Table 2
For the 8th order tridiagonal compact 
scheme, T 82, with a given resolution, N , 
the maximum value of maxλ re(λ) over 169 
combinations of (ψl, ψr) is given in the 
second column.

N maxψ (maxλ re(λ))

31 −2.74 · 10−3

41 −1.54 · 10−3

51 −9.87 · 10−4

61 −6.85 · 10−4

71 −5.04 · 10−4

81 −3.86 · 10−4

91 −3.05 · 10−4

max
λ

re(λ) ≤ 0 . (17)

The discretization matrix Q can be constructed for any scheme by consulting Appendix B. The compact schemes require 
solving a system in order to form O and, consequently, Q. The stability of each scheme is assessed by examining the 
eigenvalues of 1183 cases defined by the parameter space, {N × ψ l × ψr}. The set of discretizations examined is N =
{31, 41, 51, 61, 71, 81, 91}. The ψ values considered are: ψ l = ψr = {0, 0.001, 0.01, 0.1, 0.2, . . . , 1.0}. Recall that ψl affects 
the Dirichlet boundary stencil, while ψr impacts the Neumann boundary stencil. A summary of the results for T 82 are given 
in Table 2. Similar results demonstrating stability can be shown for all schemes and cases. The data for every case is in the 
supplementary material.

4.2. Two-dimensional concave geometry: constant coefficient heat equation

The stability and accuracy of the discretizations for the 2nd derivatives given in the appendix for Dirichlet and Neumann 
boundary conditions are demonstrated by considering the heat equation:

∂T

∂t
= k∇2T ,

on the domain (x, y) for x ∈ [xl, xr], y ∈ [yl, yr], where

xl = h(1 − ψl) yl = h(1 − ψl)

xr = L − h(1 − ψr) yr = L − h(1 − ψr) .

This domain is a two dimensional extension of that shown in Fig. 6. The length of the domain is L = 2 and the uniform 
mesh spacing is given by h = L/(N − 1). A manufactured solution, T M , was chosen for this test:

T M(x, y, t) =
∑

n

An cos( fnt)exp

(
− (x − μn,x)

2

2σ 2
n,x

− (y − μn,y)
2

2σ 2
n,y

)
(18)

with parameters:

n An fn μn σn

0 2 0.5 (0.4,0.5) (0.5,0.2)

1 0.5 1 (0.2,2) (1/3,0.8)

2 −1.2 0.8 (1.5,1.6) (0.3,0.8)

3 3 0.2 (1.8,0.3) (2/3,0.9)

Following the method of manufactured solutions [5,31], the modified governing equation for this problem becomes:

∂T

∂t
= k∇2T + ∂T M

∂t
− k∇2T M (19)

The boundary conditions are given by:

T (xl, y, t) = T M(xl, y, t) , T (x, yl, t) = T M(x, yl, t) ,

∂T

∂x

∣∣∣∣
x=xr

= ∂T M

∂x

∣∣∣∣
x=xr

,
∂T

∂ y

∣∣∣∣
y=yr

= ∂T M

∂ y

∣∣∣∣
y=yr

.
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Fig. 9. Time history of L∞ for N = 31 and (ψl,ψr) = (0,0) for (left) central schemes and (right) compact schemes when solving the heat equation (19).

Fig. 10. Maximum L∞ for t > 50 as a function of ψl and ψr for N = 31, 71 and 111 using the 8th order E82 and T 82 schemes when solving the heat 
equation (19).

This set of conditions was chosen to ensure that all combinations of corner boundary conditions would be encountered. The 
discretized heat equation is advanced in time using the standard 4th order Runge-Kutta (RK4) method with the timestep 
constraint given by the well known parabolic stability constraint:

t = C
h2

4k
.

For schemes E22, E42, E62, and T 42, C = 0.4 was chosen. The stiffness of the higher order schemes necessitated slightly 
smaller timesteps with C = 0.2 for E82 and T 62, and C = 0.1 for T 82. A thermal diffusivity of k = 1/30 was used. An im-
plicit time integration scheme could have been used to circumvent the parabolic timestep restrictions. However, an explicit 
integration scheme has been used to highlight the fact that small cells do not lead to an excessively stiff system.

Fig. 9 shows the evolution of the L∞ error norm for all second derivative operators with N = 31 and ψl = ψr = 0. As can 
be seen, the operators result in stable discretizations even for this very challenging case and require no reduction in the 
timestep compared to the uniform mesh case.

Fig. 10 shows the maximum L∞ error for t > 50 for the 8th order second derivative operators E82 and T 82 as functions 
of ψl and ψr for N = 31, 71, and 111. The set of sampled values for (ψl, ψr), is adopted from the eigenvalue examination 
in Section 4.1. There is some variation in the measured L∞ error with ψl and ψr . The supplementary material contains the 
results for N = {31, 51, 71, 91, 111}, for all schemes. The schemes remain well behaved in all cases.

The accuracy of the schemes is demonstrated in Fig. 11, which shows the maximum L∞ error for t > 50 for all second 
derivative operators at N = 31, 51, 71, 91, 111 in the fully degenerate case of ψl = ψr = 0 (filled symbols) and the uniform 
case with ψl = ψr = 1 (open symbols). The labeled solid black lines indicate the observed order of convergence for each 
scheme on the degenerate mesh. It can be observed that under mesh refinement the 2nd and 4th order schemes yield the 
same results in the uniform and degenerate cases while small differences persist for the 6th and 8th order schemes. The 
cause of this discrepancy is twofold. Firstly, the domain size and the location of boundary condition application are functions 
of ψ and are therefore different on the two meshes. Secondly, according to the discussion in Section 3.1, the application 
of boundary conditions leads to discrete operators with slightly different truncation errors in the uniform and degenerate 
cases. The sum of these differences is washed out by the truncation errors of the 2nd and 4th order schemes but does 
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Fig. 11. Maximum L∞ for t > 50 for the central and compact second derivative operators applied to equation (19). The filled data points correspond to 
ψl = ψr = 0. For comparison, the open data points correspond to ψl = ψr = 1. The shapes of the open data points match the shapes (and therefore schemes) 
of the filled points. A line (on the log-log plot) is fit to the ψ = 0 data and annotated with its slope, indicating the convergence of the scheme.

have an impact on the higher order schemes. All schemes demonstrate the expected convergence on both the uniform and 
degenerate cases under grid refinement.

This test case has allowed for fully characterizing the behavior of the cut-cell operators over the full range ψ ∈ [0, 1], 
for both Dirichlet and Neumann boundary conditions. In the next test case, a convex geometry is considered to explore the 
impact of having stencils with different values ψ throughout their neighborhood.

4.3. Two-dimensional convex geometry: constant coefficient heat equation

In this section, the constant coefficient heat equation with the manufactured solution term given by equation (19) is 
again solved but on a different domain. Rather than planes of varying ψ , the embedded portion of the domain is described 
by,

G(x, y) =
√

(x − xc)2 + (y − yc)2 − r , (20a)

�s = {(x, y) | G(x, y) < 0} , (20b)

�s = {(x, y) | G(x, y) = 0} , (20c)

where the object subscript has been dropped since there is only one object. The initial conditions are given by the manu-
factured solution field. The boundary conditions are:

T (x, y, t)
∣∣
(x,y)∈�s

= T M(x, y, t) ,

∂T (x, y, t)

∂x

∣∣∣∣
x=0|2

= ∂T M(x, y, t)

∂x

∣∣∣∣
x=0|2

,

∂T (x, y, t)

∂ y

∣∣∣∣
y=0|2

= ∂T M(x, y, t)

∂ y

∣∣∣∣
y=0|2

.

To avoid any fortuitous cancellation of errors due to problem symmetry, the embedded object is placed off-center with 
respect to the mesh with xc = 16/17, yc = 25/22, and r = √

3/10. The initial conditions for this geometry and manufactured 
solution are shown in Fig. 12. With the given initial conditions, and the timestepping described in the previous section, the 
solution is advanced in time until t = 65. An equidistant uniform mesh is used with Nx = N y = N . Fig. 13 shows the L∞
error norm as a function of time for all second derivative operators with N = 51. The operators are all well behaved and 
yield stable simulations.

The order of accuracy of the schemes is examined by observing the maximum L∞ error norm for t > 50 for N = 51, 71, 
91, 111. The number of points per diameter, Np , for the grid sizes are: Np = 8.7, 12.1, 15.6, and 19.1. The error for the 
different schemes is shown in Fig. 14. The observed order of each schemes is given by a labeled solid black line. In all cases, 
the schemes achieve or are very close to their design order of accuracy. Note again that this is accomplished without any 
geometry modifications or in-situ correction procedure.
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Fig. 12. Initial conditions for convex geometry test in Section 4.3.

Fig. 13. Time history of L∞ for test case in Section 4.3 with Nx = N y = 51 for (left) central schemes and (right) compact schemes.

Fig. 14. Maximum L∞ for t > 50 for all second derivative operators for the concave geometry test in Section 4.3. The filled points correspond to the central 
schemes. The open points correspond to the compact schemes. A line (on the log-log plot) is fit to the data for the central schemes and annotated with its 
slope, indicating the observed convergence of the schemes over the range of grids.

4.4. Two-dimensional concave geometry: constant coefficient Poisson equation

In this section we examine the behavior of the second derivative cut-cell operators in the context of a Poisson equation 
with walls offset by ψl and ψr as in Section 4.2. The equation to be solved is:
20
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Fig. 15. L∞ error norm as a function of ψl and ψr for N = 31, 71 and 111 using the 8th order E82 and T 82 schemes.

Fig. 16. L∞ error norm for (left) central differences and (right) compact differences applied to equation (21). The filled data points correspond to ψl = ψr =
0. For comparison, the open data points correspond to ψl = ψr = 1. The shapes of the open data points match the shapes (and therefore schemes) of the 
filled points. A line (on the log-log plots) is fit to the ψ = 0 data and annotated with its slope, indicating the convergence of the scheme.

∇2T = ∇2T M(x, y,0) (21)

where T M is given by equation (18). As in Section 4.2, the domain is given by (x, y) for x ∈ [xl, xr], y ∈ [yl, yr] where

xl = h(1 − ψl) , yl = h(1 − ψl) ,

xr = L − h(1 − ψr) , yr = L − h(1 − ψr) .

The boundary conditions are:

T (xl, y) = T M(xl, y,0) , T (x, yl) = T M(x, yl,0) ,

∂T (x, y)

∂x

∣∣∣∣
x=xr

= ∂T M(x, y,0)

∂x

∣∣∣∣
x=xr

,
∂T (x, y)

∂ y

∣∣∣∣
y=yr

= ∂T M(x, y,0)

∂ y

∣∣∣∣
y=yr

.

A systematic study of the behavior of the schemes is conducted by solving equation (21) and examining the L∞ errors of 
845 cases defined by the parameter space, {N × ψ l × ψr}. The set of discretizations examined is N = {31, 51, 71, 91, 111}. 
As in Sections 4.1 and 4.2, the ψ values considered are ψ l = ψr = {0, 0.001, 0.01, 0.1, 0.2, . . . , 1.0}. This is done to force the 
small-cell issue.

Fig. 15 shows the L∞ error for the 8th order second derivative operators E82 and T 82 as functions of ψl and ψr for 
N = 31, 71, and 111. Compared to the results for the heat equation in Fig. 10, there is more variation with the observed 
L∞ error with ψl and ψr , but the errors remain well-behaved in all cases. Similar results for all schemes can be seen by 
examining the supplementary materials.

The accuracy of the schemes is demonstrated in Fig. 16, which shows the L∞ error norm for all second derivative 
operators for all N in the fully degenerate case of ψl = ψr = 0 (filled points), as well as the uniform case with ψl = ψr = 1
(open point). The variation of L∞ with ψ is not as strong with the 2nd and 4th order methods so the filled and open points 
21
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Fig. 17. L∞ error norm for all second derivative operators as a function of points-per-diameter, Np , applied to the Poisson equation for the concave geometry 
test in Section 4.5. The filled points correspond to the central schemes. The open points correspond to the compact schemes. A line (on the log-log plot) is 
fit to the data for the central schemes and annotated with its slope, indicating the observed converged of the schemes over the range of grids.

are largely collocated. There is a noticeable difference in the error magnitude between the uniform and degenerate cases for 
the 6th and 8th order schemes as per the discussion in Section 4.2, however, the order of the convergence of the schemes 
is as expected in all cases.

4.5. Two-dimensional convex geometry: constant coefficient Poisson equation

In this section, the constant coefficient Poisson equation with the manufactured solution term given by equation (21) is 
solved but on a domain described by equation (20), allowing for a circle in the domain centered at (xc, yc). The boundary 
conditions are:

T (x, y)
∣∣
(x,y)∈�s

= T M(x, y,0) ,

∂T (x, y)

∂x

∣∣∣∣
x=0|2

= ∂T M(x, y,0)

∂x

∣∣∣∣
x=0|2

∂T (x, y)

∂ y

∣∣∣∣
y=0|2

= ∂T M(x, y,0)

∂ y

∣∣∣∣
y=0|2

.

As before, the embedded object is placed off-center with respect to the mesh with xc = 16/17, yc = 25/22, and r = √
3/10. 

The solution for this geometry and manufactured solution are given by the initial conditions of the problem described in 
Section 4.3 and shown in Fig. 12.

The order of accuracy of the schemes is examined by computing the L∞ error norm for N = 51, 71, 91, 111, 131, 151. 
The number of points per diameter, Np , for each of the grid sizes are: Np = 8.7, 12.1, 15.6, 19.1, 22.5, and 26. The error 
for the different schemes is shown in Fig. 17. The data corresponding the central schemes: E22, E42, E62 and E82 are 
shown with filled points. The compact schemes make use of the same stencil for first point and are therefore not very 
different. The open data points are used to indicate the L∞ error for T 42, T 62, and T 82. A least squares line fit is done for 
the central schemes and is annotated with the slope. While E22 converges with the desired accuracy, the 4th, 6th and 8th
order schemes converge with one order less than expected. The intended order could be achieved by increasing the order 
of the cut-cell boundary schemes by 1, but such schemes are unstable for parabolic problems. Future work may explore 
optimizing such schemes for stability following the procedure in Section 3.4. It should again be noted that there were no 
geometry modifications to avoid the small cell problem or any other corrective procedure.

4.6. Asymptotic stability: eigenvalue analysis for hyperbolic terms

Similar to the eigenvalue analysis performed on the heat equation, the asymptotic stability of the E21 and E41 schemes 
is assessed in the context of the linear hyperbolic equation:

∂u

∂t
+ ∂u

∂x
= 0 , for xl ≤ x ≤ xr, and t ≥ 0 ,

where the domain is once again given by Fig. 6, with a uniform mesh spacing of h throughout the domain excepting the 
near wall distances of ψlh and ψrh. The initial and boundary conditions are:
22
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Fig. 18. Eigenvalue spectrum for E41 applied to equation (22) at the indicated (ψl/ψr) combinations and grid resolutions. The left boundary, ψl , is associated 
with an inflow boundary condition. The right boundary, ψr is associated with an outflow boundary condition. For each plot, maxλ re(λ) is indicated by the 
right most tick mark. It remains negative, indicating stability.

u(x,0) = f (x) , u(xl, t) = a(t) .

In its typical formulation, the discrete first derivative operator, Ox,1, allows,

U ′ = Ox,1U ,

where Ox,1 has dimensions N × N and U , U ′ are column vectors of length N . However, the derivative information at xl is 
not needed due to Dirichlet (inflow) boundary conditions. Therefore, let the (N − 1) × (N − 1) submatrix of −Ox,1, which 
does not include the first row or column of Ox,1, be denoted as Q and let Û = [u1, u2, . . . , uN−2, ur]T . With this notation, 
the semi-discrete linear hyperbolic equation can be written as:

∂ Û

∂t
= 1

h
QÛ + G , (22)

where G is a column vector of length N − 1 giving the appropriate weights of the stencils on the boundary data, a(t). 
The stability of this semi-discrete system is governed by the eigenvalues, λ, of the spatial discretization matrix, Q and is 
stable if condition (17) is satisfied. The supplementary material contains the information for constructing 5302 discretization 
matrices. Fig. 18 highlights the eigenvalue spectrum for the E41 scheme given in Table A.4. The real (re) and imaginary (im) 
components of the eigenvalues are shown for ψl = ψr = 1 and ψl = 0, ψr = 10−6. Both plots indicate the largest real part 
of the eigenvalue spectra with the right most tick label. In both cases the stability condition (17) is satisfied. Note that the 
outflow stencil will contain a repeated row at ψr = 0, yielding λ = 0. Fig. 18 demonstrates that the scheme approaches this 
limit in a stable manner.

The stability of the 5302 schemes is assessed by examining the eigenvalues of 676 cases defined by the parame-
ter space, {N × ψ l × ψr}. The set of discretizations examined is N = {31, 61, 91, 121}. The ψ considered are ψ l = ψr =
{10−6, 0.001, 0.01, 0.1, 0.2, . . . , 1.0} Recall that ψl impacts the inflow stencil while ψr impacts the outflow stencil. The sup-
plementary material records maxλ re(λ) for all cases and shows that no eigenvalues with positive real parts are found.

4.7. Two-dimensional convex geometry: varying coefficient hyperbolic equation

In this section, the accuracy and time stability of the conservative cut-cell schemes are demonstrated by solving a varying 
coefficient hyperbolic equation:

∂u

∂t
+ ∇G · ∇u = 0 , Lx = L y = 2 , (23)

where G(x, y) and the embedded object are given by equation (20). For this test, 4 different embedded circles, ln = (xcn , ycn ), 
are used in order to trigger different geometry errors. Each object has a radius of r = 0.2 and centers: l0 = (1.053, 0.901), 
l1 = (1.033, 1.101), l2 = (0.989, 1.037), l3 = (0.933, 0.999). The initial and boundary conditions for each shape are given by:

u(x, y,0) = sin(2πG) , u(x, y, t)
∣∣

G=0 = − sin(2πt)

where (xc, yc) in G are taken from the particular ln being used. Fig. 19 shows the initial conditions for geometry l0. The 
exact solution is a circular pulse radiating out from the embedded object with a period of 1:
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Fig. 19. Initial conditions hyperbolic scalar equation (23) for geometry l0. The circular pulse radiates out from the embedded object as time evolves.

Fig. 20. L∞ error as a function of time for E21 (top 3 curves) and E41 (bottom 3 curves) for grid sizes N = 51, 91, 131 with time step constraint C = 0.5. 
The break in the graph allows for focusing on the initial and final times of the simulation.

u(x, y, t) = sin (2π(G − t))

This series of tests consisted of constant CFL tests with C = 0.5 and constant timestep tests with t = 8 · 10−4. The 
constant CFL tests allow for demonstrating that the cut-cell schemes do not require special timestep restrictions or implicit 
integration when compared to the uniform mesh case. However, larger timesteps (in the context of the RK4 time integration 
scheme) introduce numerical dissipation. The very small constant timestep series of tests minimizes this dissipation and 
allows for demonstrating the order of accuracy through convergence studies on an unsteady problem.

The constant CFL tests are carried out for all 5302 schemes over 32 cases defined by the parameter space, {N × l}. 
The set of discretizations examined is N = {51, 61, 71, 81, 91, 111, 131, 151}. The set of geometries is l = {l0, l1, l2, l3}. To 
demonstrate the asymptotic stability of the schemes, the simulations are run for a full 1000 periods (until t = 1000). Fig. 20
shows the L∞ error as a function of time for the E21 and E41 schemes in the appendix. The plot is broken to highlight the 
early time behavior, t ∈ [0, 4], and the late time behavior, t ∈ [996, 1000]. The L∞ error norm settles into a periodic steady 
state around t ≈ 2 after brief transient. The curve continues, unchanged, for the duration of the simulation, demonstrating 
the time stability of the schemes. Integration in time is done using the standard RK4 method. The supplementary material 
records the maximum L∞ over the time t ∈ [980, 1000] for all schemes and cases. The constant t tests are carried out 
for all 5302 schemes over 24 cases defined by the parameter space, {N × l}. The set of discretizations examined is N = {51, 
71, 91, 111, 131, 151}. The set of geometries is l = {l0, l1, l2, l3}. Once again, the schemes are run until a time of t = 1000
and the maximum L∞ over the time t ∈ [980, 1000] is recorded for all schemes in the supplementary material. Fig. 21
shows the L∞ error as a function of the number of points per diameter, Np , for each geometry using the E21 and E41
schemes in the appendix. There is no apparent impact of the geometry on the behavior of E21, which converges with 
second order accuracy. There is some spread in the observed L∞ for E41 at the finest two meshes but approximately 
4th order convergence is still observed. This was achieved through the design principles and offline optimization process 
without any geometry corrections or in-situ procedures.
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Fig. 21. Maximum error, L∞ , over 980 ≤ t ≤ 1000 plotted against points-per-diameter, Np , for t = 8 ·10−4 and the indicated schemes/geometries in solving 
equation (23). A line (on the log-log plot) is fit to the results for l0 and annotated with its slope, indicating the convergence of the scheme. The 2nd order 
E21 is very insensitive to changes in geometry. The 4th order E41 shows some sensitivity but remains well-behaved over long times.

4.8. Two-dimensional nonlinear test: inviscid vortex / numerical reflection

In this section the two-dimensional compressible Euler equations are solved to examine the transport of an inviscid 
vortex through a domain and it’s numerical collision with a supersonic outflow boundary. This collision with the outflow 
boundary generates very high frequency errors which propagate back into the domain with the potential to destabilize 
the simulation over long periods of time. The transport of an inviscid vortex through a periodic domain has been studied 
to quantify the impact of dissipation in upwind schemes [46]. The supersonic inflow/outflow case has been examined in 
Refs. [21] and [38] for relatively short times (1.5 flow through times based on the background streamwise velocity). In more 
recent work, this challenging case was run for 50 flow through times to highlight the stability of high order boundary 
schemes on uniform meshes [6]. In the present case, the conservative cut-cell schemes are used at the inflow/outflow 
boundaries and periodic boundary conditions are imposed in the cross-stream direction.

We adopt the notations from Ref. [38] to describe the analytic solution for a vortex of non-dimensional circulation, ε , 
centered at (xc, yc) at time t = 0 and propagating in the x direction. The solutions are repeated below for convenience:

ρ

ρ∞
=

(
1 − γ − 1

2
f 2

)1/(γ −1)

,

u

a∞
= M∞ + K y f ,

v

a∞
= −K x f ,

p

p∞
=

(
ρ

ρ∞

)γ

,

where f = ε
2π exp((1 − K 2(x2 + y2))/2), M∞ is the free stream Mach number, and γ = cp/cv = 1.4. As with the previous 

tests, time integration is carried out using a standard RK4 method. The tests were run on a computational domain of 
x ∈ [xl, xr], y ∈ [0, 10] with (xc, yc) = (10, 5), K = 1, ε = 1.5 and M∞ = 2.0. The meshes are chosen such that the grid 
spacing in the x and y directions are equivalent. The x-direction mesh is once again described by Fig. 6, with uniform mesh 
spacing, h, throughout the domain excepting the near wall distances of ψlh and ψrh. When ψl = ψr = 1, x ∈ [0, 20]. Fig. 22
shows contours of the pressure at t = 0, 5, 10. On the coarsest mesh, the vortex represented by these contours is resolved 
by 8 points. Constant CFL tests with C = 0.5, are carried out for all 5302 schemes over 6 cases defined by the parameter 
space, {N × ψ}. The set of discretizations examined is N = {51 × 26, 101 × 51, 201 × 101}. The set of ψ values considered 
is ψ = {ψl = ψr = 1, ψl = ψr = 0}. The reduced parameter space of the present test is due to the larger simulation cost 
compared to previous tests. The supplementary material records maximum L∞ error in pressure (which occurs as the 
vortex leaves the domain through the outflow boundary) as well as the final L∞ pressure error for all schemes and cases.

To illustrate the robustness of the conservative cut-cell schemes, Fig. 23 shows the evolution of L∞ error of the pressure 
for E21 and E41 over the parameter space. The colored lines are used to indicate the degenerate mesh results. The light 
gray lines are used to indicate the results for the uniform mesh. Note that degenerate mesh results track very closely to the 
uniform mesh results. The spikes in error around t = 10 correspond to the vortex leaving the domain. The cut-cell schemes 
remain well behaved even when encountering this difficult non-linear event on a degenerate mesh.
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Fig. 22. Pressure contours of the solution at times t = 0, 5, 10 as the vortex moves from left to right. The vortex has completely left the domain by a time 
of t = 12.

Fig. 23. L∞ norm of error in pressure as a function of time, t , for the indicated conservative cut-cell scheme. The color lines correspond to the degenerate 
mesh simulations with ψl = ψr = 0. The light gray lines correspond to the uniform mesh simulation with ψl = ψr = 1. The uniform mesh simulations tend 
to closely follow the path of the degenerate mesh simulations. Large spikes in error occur around t = 10, when the vortex is leaving the domain.

5. Conclusions

The numerical challenges facing cut-cell methods stem from the highly irregular grids which naturally arise near the 
embedded boundaries of a non-Cartesian object embedded in a Cartesian mesh. This paper has focused exclusively on the 
stability issues that result from approximating derivatives on this irregular, and at times, degenerate mesh. This has been 
termed the “small-cell problem” in the literature. Previous attempts to solve this classic problem have employed either 
geometric manipulation algorithms to redistribute the irregularities or some kind of dynamic correction procedure which 
often results in numerical source terms being added to the governing equations. These approaches have been largely limited 
to 2nd order accuracy for unsteady problems.

In this paper, a fundamentally different approach, TEMO (truncation error matching and optimization), has been taken. 
This method is based on the intuitive design principles that a degenerate mesh ought to yield the same solution as the 
equivalent uniform mesh and that the assumptions of continuity, which form the foundation of finite differences, ought not 
be violated in the process. These two principles are all that is needed to construct the stable 4th, 6th and 8th order accurate 
approximations to parabolic and elliptic equations using both explicit and compact finite differences.

The construction of stable and conservative approximations to hyperbolic problems requires that these two design prin-
ciples be supplemented with discrete conservation constraints and a novel non-linear optimization strategy. This process 
produced stable and conservative approximations of 2nd and 4th order.

The stability and accuracy of the schemes for parabolic, elliptic, and hyperbolic equations is demonstrated through a 
variety of tests and analysis. Asymptotic stability is explored through an eigenvalue analysis in which all schemes yielded 
stable eigenvalues. The accuracy and stability of the second derivative approximations was demonstrated by solving the 
Poisson equation and the unsteady heat equation for a variety of embedded wall distances as well as an embedded circle test 
case. The accuracy and long-time stability of the conservative cut-cell discretizations was assessed through two challenging 
hyperbolic problems. In the first, a varying coefficient advection equation is simulated for very long times with an interior, 
embedded circle serving as the inflow boundary. For the second test, the compressible Euler equations are solved (without 
any numerical dissipation) for a moving (supersonic) isentropic vortex. The embedded wall distances are again varied at 
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the supersonic inflow/outflow boundaries. In all tests considered, the schemes demonstrate the advertised order of accuracy 
and excellent stability properties over the whole range of geometries, from uniform to degenerate meshes.
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Appendix A. Conservative cut-cell discretizations for first derivatives

The conservative cut-cell discretizations are given by the elements of the boundary matrix, B(ψ, α). The general form of 
this matrix is too large to print but is available in the supplementary material. Tables A.3 and A.4 give specific instances of 
the E21 and E41 families that were found by the optimization procedure and used in the test cases in this paper.

Table A.3
Scheme E21: explicit conservative cut-cell boundary closures for first derivatives with 2nd order interior scheme.

α0,0 = −2.769707867422022
α0,1 = 4.394343202305503ψ

α0,2 = 4.394343202305503 − 5.873906004650443ψ

α0,3 = −1.47956280234494 + 1.3344902698063992ψ

α0,4 = −0.145072532538541 + 0.145072532538541ψ

α1,0 = (−2.769707867422022 + 0.3948457470551643ψ) / (1 + ψ)

α1,1 = 1.150196406378214ψ

α1,2 = (
4.394343202305503 − 2.5501660272730517ψ2 − 1.3203764394447342ψ

)
/ (1 + ψ)

α1,3 = −1.47956280234494 + 1.2548970883562962ψ

α1,4 = −0.145072532538541 + 0.145072532538541ψ

α2,0 = 0.17185962499047314ψ

α2,1 = −1.187431060183429 + 0.34371181020248276ψ − 0.17185962499047316ψ2

α2,2 = 1.150196406378214 + 0.17185962499047314ψ2 − 0.8064771563972674ψ

α2,3 = 0.261900367793859 + 0.06624000721566786ψ

α2,4 = −0.224665713988644 + 0.224665713988644ψ

α3,0 = 0
α3,1 = (−5.854968681519409 + 7.238307504438035ψ + 0.6392337735764906ψ3 + 0.36877946535523365ψ4 − 2.391352061850366ψ2

)
/e0

α3,2 = (
34.59906599295791 + 6.190942468885872ψ2 − 1.6063383960657007ψ4 − 2.6066103934877307ψ3 − 30.765971981157694ψ

)
/e0

α3,3 = (−17.564906044558235 + 21.71492251331414ψ + 1.9177013207294775ψ3 + 1.1063383960657005ψ4 − 7.174056185551086ψ2
)
/e0

α3,4 = (−11.17919126688027 + 1.8127419634055244ψ + 3.3744657785155803ψ2 + 0.04967529918176233ψ3 + 0.13122053464476655ψ4
)
/e0

e0 = −34.068319896799366 + 18.102098935687152ψ + 1.9662274333304404ψ2 + 1.3778181455165115ψ3 + ψ4

Table A.4
Scheme E41: explicit conservative cut-cell boundary closures for first derivatives with 4th order interior scheme.

α0,0 = (−19.877376814069642 − 3.ψ2 − 56.63213044220892ψ
)
/ (6. + 11.ψ + 6.ψ2 + ψ3

)
α0,1 = 8.918251209379761ψ

α0,2 = (
8.918251209379761 − 27.73431643048422ψ2 − 1.93868840703482ψ

)
/ (1. + ψ)

α0,3 = (−20.75475362813928 + 9.316065221104461ψ + 30.1934420351741ψ2
)
/ (2 + ψ)

α0,4 = (
18.75475362813928 − 12.85693961641458ψ2 − 11.816065221104461ψ

)
/ (3. + ψ)

α0,5 = −1.47956280234494 + 1.47956280234494ψ

α0,6 = 0
α1,0 = (−19.877376814069642 + 18.162985641122255ψ) / (6 + 11ψ + 6ψ2 + ψ3

)
α1,1 = −1.547601471175436ψ

α1,2 = (
8.918251209379761 + 3.163241611181368ψ2 − 6.938688407034821ψ

)
/ (1. + ψ)

α1,3 = (−20.75475362813928 + 17.31606522110446ψ − 0.2041160064914882ψ2
)
/ (2. + ψ)

α1,4 = (
18.75475362813928 − 2.8910869358593843ψ2 − 14.816065221104461ψ

)
/ (3. + ψ)

α1,5 = −1.47956280234494 + 1.47956280234494ψ

α1,6 = 0
α2,0 = −0.8770687218264502ψ
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Table A.4 (continued)

α2,1 = −0.07143296553947431 + 0.3905026400439473ψ + 1.6079593233484921ψ2 + 0.8770687218264505ψ3 + 0.14617812030440838ψ4

α2,2 = −1.547601471175436 + 1.946264327130012ψ − 0.4385343609132251ψ4 − 2.1926718045661255ψ3 − 2.6312061654793513ψ2

α2,3 = 2.571402206763154 + 1.3156030827396754ψ2 + 1.7541374436529005ψ3 + 0.4385343609132251ψ4 − 2.919396490695018ψ

α2,4 = −1.2142681378421027 + 1.946264327130012ψ − 0.14617812030440838ψ4 − 0.43853436091322523ψ3 − 0.29235624060881676ψ2

α2,5 = 0.261900367793859 − 0.486566081782503ψ

α2,6 = 0
α3,0 = 0.6961450379207412ψ

α3,1 = −0.8770687218264502 + 0.42462426012860605ψ − 0.11602417298679019ψ4 − 0.6961450379207411ψ3 − 1.2762659028546923ψ2

α3,2 = 2.9502758399838243 + 2.0884351137622237ψ2 + 1.740362594801853ψ3 + 0.3480725189603706ψ4 − 4.258411478208746ψ

α3,3 = −4.863749475004126 + 5.825952932341509ψ − 0.34807251896037056ψ4 − 1.3922900758414822ψ3 − 1.0442175568811118ψ2

α3,4 = 3.1602806033739372 + 0.2320483459735804ψ2 + 0.34807251896037056ψ3 + 0.1160241729867902ψ4 − 3.135082908265525ψ

α3,5 = −0.145072532538541 + 0.22210644209477137ψ

α3,6 = −0.224665713988644 + 0.224665713988644ψ

α4,0 = 0
α4,1 = (−17.540945247724775 + 136.8872106322367ψ + 332.657888919291ψ2 + 13.474345105867513ψ3 − 0.6778464862382794ψ9

− 10.817315419280217ψ8 − 66.55351613252738ψ7 − 174.35167249687643ψ6 − 166.11737202522914ψ5 − 46.96077684951908ψ4)
/e0

α4,2 = (
64.02319500448931 + 158.33667525651526ψ4 + 653.4217049549081ψ5 + 703.0444457818155ψ6 + 273.9984433548364ψ7

+ 45.79767101871374ψ8 + 2.9639178813369282ψ9 − 66.08934182445557ψ3 − 1258.2734987586696ψ2 − 533.2984309736585ψ
)
/e0

α4,3 = (−72.28424196120802 + 776.9504344019497ψ + 1651.5251149385265ψ2 + 62.84926186977691ψ3 − 5.077206662964922ψ9

− 75.35086321538616ψ8 − 433.28173917411794ψ7 − 1077.3359887996094ψ6 − 971.2160503086135ψ5 − 208.1769746550032ψ4)
/e0

α4,4 = (
45.918893441692546 + 570.1283631129575ψ5 + 718.2208287916981ψ6 + 308.68564685840187ψ7 + 57.93971772667819ψ8

+ 4.2265775632559865ψ9 − 55.85254863749133ψ4 − 227.1961303834413ψ3 − 978.96820052106ψ2 − 443.10314795269153ψ
)
/e0

α4,5 = (−18.175858040589983 + 41.99911392203342ψ + 208.19563395503837ψ2 + 262.53615381792383ψ3 + 204.37907808912647ψ4

− 1.6879742317735251ψ9 − 19.930952785651765ψ8 − 89.22165019129679ψ7 − 170.8779037507821ψ6 − 65.81738721737831ψ5)
/e0

α4,6 = (−1.9410431966590622 + 20.56481997013003ψ + 44.863061466873575ψ2 + 1.3002904737542476ψ6 + 6.3728152847038775ψ7

+ 2.3617426749262207ψ8 + 0.25253193638381144ψ9 − 20.39925851664461ψ5 − 51.72545320362801ψ4 − 45.5742885856713ψ3)
/e0

e0 = −25.197256738504368 − 37.8864504890495ψ + 164.96997270972506ψ2 + 200.2939631081134ψ3 + 133.31412637240055ψ4

+ 56.108852223817124ψ5 + 26.024791923333847ψ6 + 8.469381240138295ψ7 + ψ8

Table B.5
Each scheme (or family of schemes) is associated with an ascii 
text file for the corresponding boundary conditions as well a sqlite 
database recording the performance of the schemes on the appropri-
ate tests in Section 4.

Scheme Dirichlet/Floating Neumann Database

E21 E2_1D.txt E2_1.db
E41 E4_1D.txt E4_1.db
E22 E2_2D.txt E2_2N.txt E2_2.db
E42 E4_2D.txt E4_2N.txt E4_2.db
E62 E6_2D.txt E6_2N.txt E6_2.db
E82 E8_2D.txt E8_2N.txt E8_2.db
T 42 T4_2D.txt T4_2N.txt T4_2.db
T 62 T6_2D.txt T6_2N.txt T6_2.db
T 82 T8_2D.txt T8_2N.txt T8_2.db

Appendix B. Supplementary material

Included with this manuscript are two types of supplementary data. The first are ascii text files containing the αi j
of the cut-cell boundary schemes for both first and second derivatives that can be easily parsed and implemented in a 
particular programming language. The second are sqlite databases recording the performance of the schemes over the
relevant parameter spaces for the various tests listed in Section 4. The relationship between the schemes, text files and 
databases are given in Table B.5.

The text files associated with the second derivative operators contain the coefficients as functions of ψ in a format that 
is easy to copy/paste or parse. The text files associated with the first derivative operators are the general coefficients written 
in terms of their free parameters, α, and the cut-cell distance, ψ . The general forms are too large to include directly in the 
text but can be easily parsed from the included “.txt” files. Values for the free parameters, α are given the “nbs” table in the 
databases. The given id is unique to each scheme. Tables A.3 and A.4 use schemes with an id of 1 from the appropriate table 
to generate particular instances of the E21 and E41 families. An example of using python to read a row of free parameters 
from the database and generate boundary scheme coefficients for a particular ψ is shown in Listing 1.

Table B.6 lists the relationship between the stability and accuracy tests for the second derivative operators in Section 4
and the corresponding sqlite tables that contain the results of the tests over the appropriate parameter space. The tables are 
normalized, such that the parameter space id, “pid”, is used as a foreign key in the results tables. The “eigenvalues” table 
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Table B.6
Relationship between the sqlite tables recording the results and pa-
rameter space for the indicated parabolic and elliptic equation tests 
in Section 4.

Test Results Parameters

Section 4.1: eigenvalues eigenvalues eigen_p
Section 4.2: embedded planes heat_planes heat_planes_p
Section 4.3: embedded circle heat_circle heat_circle_p
Section 4.4: embedded planes elliptic_planes elliptic_planes_p
Section 4.5: embedded circle elliptic_circle elliptic_circle_p

Table B.7
Relationship between the sqlite tables recording the results and pa-
rameter space for the indicated hyperbolic tests in Section 4.

Test Results Parameters

Section 4.6: eigenvalues eigenvalues eigen_p
Section 4.7: constant CFL scalar_wave_cfl scalar_wave_cfl_p
Section 4.7: constant t scalar_wave_dt scalar_wave_dt_p
Section 4.8: vortex advection vortex_cfl vortex_cfl_p

records maxλ re(λ) as “lambda”. The other tables record the L∞ error norm for the indicated simulation (the maximum 
error over the time interval specified in the appropriate section) as “Linf”.

Table B.7 lists the relationship between the stability and accuracy tests for the first derivative operators in Section 4 and 
the corresponding sqlite tables that contain the results of the tests over the appropriate parameter space. The tables are 
normalized, such that the scheme id, “id”, and parameter space id, “pid”, are used as a foreign key in the results tables. The 
data is encoded as for the second derivative tests with the exception of the vortex advection tests. The “vortex_cfl” table 
records the maximum L∞ error in the pressure as “Linf” and the final observed L∞ error in the pressure as “Linf_final”.

from fractions import Fraction as F
import sqlite3 as db

# connect to database and read free parameters for scheme with id=1
scheme_id = 1
conn = db.connect("E2_1.db")
conn.row_factory = db.Row
cur = conn.cursor()
cur.execute("select * from nbs where id=?", (scheme_id, ))
row = cur.fetchone()

# choose a particular psi value to evaluate all coefficients
params = {"psi" : 0}

# add free parameters from database to params dictionary
# this will serve as the local environment for eval
for k, v in zip(row.keys()[1:], row[1:]):

params[k] = F(v) # use rationals to avoid roundoff errors

with open("E2_1D.txt") as f:
for line in f:

k, v = line.split(’=’)
params[k] = eval(v.strip(), globals(), params)

# print coefficients
for k, v in sorted(params.items()):

print("{:10s} = {:10f}".format(k, float(v)))

Listing 1: Example python script to use free parameters from database to generate coefficients.
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Description of E2_1D.txt1

Ascii text description of the 2nd order E21 family of cut-cell schemes for first derivative approximations as functions 
of ψ . The free parameters are listed as alphau_0_2, alphau_0_3, alphau_1_2, and alphau_1_3, corresponding to 
the column names of the nbs table in the associated database E2_1.db

Description of E2_1.db1

Sqlite3 database for the E21 family of cut-cell schemes containing the tables listed in Table B.7. The scheme used for the 
paper and given in Table A.3 corresponds to the choice free parameters recorded in the nbs table with id=1:

alphau_0_2=-1.47956280234494
alphau_0_3=-0.145072532538541
alphau_1_2=0.261900367793859
alphau_1_3=-0.224665713988644

Description of E4_1D.txt1

Ascii text description of the 4th order E41 family of cut-cell schemes for first derivative approximations as functions 
of ψ . The free parameters are listed as alphau_0_4, alphau_1_4, alphau_2_4, and alphau_2_5, corresponding to 
the column names of the nbs table in the associated database E4_1.db

Description of E4_1.db1

Sqlite3 database for the E41 family of cut-cell schemes containing the tables listed in Table B.7. The scheme used for the 
paper and given in Table A.4 corresponds to the choice free parameters recorded in the nbs table with id=1:

alphau_0_4=-0.0228413686378388
alphau_1_4=-0.0582315114712024
alphau_2_4=0.0258161783004396
alphau_2_5=-0.0111107179663226

Description of E2_2D.txt1

Ascii text description of the 2nd order E2d
2 family of cut-cell schemes for second derivative approximations as functions 

of ψ when Dirichlet boundary conditions are required.

Description of E2_2N.txt1

Ascii text description of the 2nd order E2n
2 family of cut-cell schemes for second derivative approximations as functions 

of ψ when Neumann boundary conditions are required.

Description of E2_2.db1

Sqlite3 database for the E22 family of cut-cell schemes containing the result tables listed in Table B.6.

Description of E4_2D.txt1

Ascii text description of the 4th order E4d
2 family of cut-cell schemes for second derivative approximations as functions 

of ψ when Dirichlet boundary conditions are required.

Description of E4_2N.txt1

Ascii text description of the 4th order E4n
2 family of cut-cell schemes for second derivative approximations as functions 

of ψ when Neumann boundary conditions are required.

Description of E4_2.db1

Sqlite3 database for the E42 family of cut-cell schemes containing the result tables listed in Table B.6.

1 Please see https://data .mendeley.com /datasets /x5z98g7mz7 /1.
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Description of E6_2D.txt1

Ascii text description of the 6th order E6d
2 family of cut-cell schemes for second derivative approximations as functions 

of ψ when Dirichlet boundary conditions are required.

Description of E6_2N.txt1

Ascii text description of the 6th order E6n
2 family of cut-cell schemes for second derivative approximations as functions 

of ψ when Neumann boundary conditions are required.

Description of E6_2.db1

Sqlite3 database for the E62 family of cut-cell schemes containing the result tables listed in Table B.6.

Description of E8_2D.txt1

Ascii text description of the 8th order E8d
2 family of cut-cell schemes for second derivative approximations as functions 

of ψ when Dirichlet boundary conditions are required.

Description of E8_2N.txt1

Ascii text description of the 8th order E8n
2 family of cut-cell schemes for second derivative approximations as functions 

of ψ when Neumann boundary conditions are required.

Description of E8_2.db1

Sqlite3 database for the E82 family of cut-cell schemes containing the result tables listed in Table B.6.

Description of T4_2D.txt1

Ascii text description of the 4th order compact T 4d
2 family of cut-cell schemes for second derivative approximations as 

functions of ψ when Dirichlet boundary conditions are required.

Description of T4_2N.txt1

Ascii text description of the 4th order compact T 4n
2 family of cut-cell schemes for second derivative approximations as 

functions of ψ when Neumann boundary conditions are required.

Description of T4_2.db1

Sqlite3 database for the T 42 family of cut-cell schemes containing the result tables listed in Table B.6.

Description of T6_2D.txt1

Ascii text description of the 6th order compact T 6d
2 family of cut-cell schemes for second derivative approximations as 

functions of ψ when Dirichlet boundary conditions are required.

Description of T6_2N.txt1

Ascii text description of the 6th order compact T 6n
2 family of cut-cell schemes for second derivative approximations as 

functions of ψ when Neumann boundary conditions are required.

Description of T6_2.db1

Sqlite3 database for the T 62 family of cut-cell schemes containing the result tables listed in Table B.6.

Description of T8_2D.txt1

Ascii text description of the 8th order compact T 8d
2 family of cut-cell schemes for second derivative approximations as 

functions of ψ when Dirichlet boundary conditions are required.
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Description of T8_2N.txt1

Ascii text description of the 8th order compact T 8n
2 family of cut-cell schemes for second derivative approximations as 

functions of ψ when Neumann boundary conditions are required.

Description of T8_2.db1

Sqlite3 database for the T 82 family of cut-cell schemes containing the result tables listed in Table B.6.
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