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a b s t r a c t

Stable and conservative numerical boundary schemes, for both
compact and explicit (central) finite differences require a number
of parameters that must be tuned for stability. Values of these
coefficients for 4th, 6th, and 8th boundary schemes are given in
this article. The stability of the schemes is demonstrated through a
series of numerical tests in “High-Order, Stable, and Conservative
Boundary Schemes for Central and Compact Finite Differences”
Brady and Livescu, 2019. These tests include: a neutrally stable
constant coefficient hyperbolic system, a two-dimensional varying
coefficient hyperbolic scalar equation and, examining the transport
of an inviscid vortex using the compressible Euler equations. The
error norms for the variety of tests associated with different the
schemes for different grid resolutions and time-step constraints
are given in the accompanying databases.

© 2019 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Data

There are two types of data presented in this article. The first type is an ascii representation of the
constraints on the coefficients for each numerical boundary scheme. There are six schemes in total.
Explicit (central) differencing schemes of 4th, 6th, and 8th order are labeled “E4.txt”, “E6.txt”, and
j.compfluid.2018.12.010.
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Specifications table

Subject area Computational physics
More specific subject
area

Numerical methods

Type of data ASCII-text files and sqlite3 databases
How data was
acquired

Numerical simulation

Data format analyzed
Experimental factors A large number of numerical simulations were performed
Experimental
features

Stable numerical schemes located using a gradient ascent approach

Data source location Los Alamos National Laboratory
Data accessibility Data is with the article
Related research
article

Brady, P. T& Livescu, D.; High-Order, Stable, and Conservative Boundary Schemes for Central and Compact
Finite Differences; Computers & Fluids, Vol 183 (2019) pp. 84-101

Value of the data
� With this data, any researcher may easily choose a high-order, stable numerical boundary scheme to couple with their

choice of interior scheme.
� Researchers may also try out different free parameters to generate their own numerical boundary schemes, which

automatically satisfy discrete conservation constraints.
� Analysis of these datasets may provide insight into the development of novel stability theories.
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“E8.txt”, respectively. Compact differencing schemes of 4th, 6th, and 8th order are labeled “T4.txt”,
“T6.txt”, and “T8.txt”, where the “T” prefix indicates a compact schemewith tri-diagonal structure. The
equations are placed in an ascii format because their length can make copy/paste from a pdf document
error prone. The variable names in txt files assumes that a stencil of length “t”, approximating the first
derivative, at a point “i”, near the left boundary can be written as:

Xk¼s

k¼�s1

bik f
0
iþk ¼

1
h

Xj¼t�1

j¼0

aijfj

Where s ¼ 0 for the explicit (central) differencing schemes and s ¼ 1 for the tridiagonal compact
schemes. For all schemes, bi0 ¼ 1: To ease the processing of the txt files, the coefficients, bi;±1are
represented as “beta_i_p1/m1”. Each numerical boundary scheme is designed to be coupled to the
appropriate centered differencing scheme in the interior of the domain.

The second type of data is a sqlite3 database for each of the schemes. Each sqlite database con-
tains 6 tables. The most important table is “nbs”, for which the columns are a unique “id” followed by
the free parameters for the scheme. The 5 other tables record the performance of the numerical
boundary scheme on a variety of numerical experiments, which will be described in the next section.
The full set of coefficients for any numerical boundary scheme can be computed by substituting the
free parameters associated with an “id” from the nbs table into the constraints given in the corre-
sponding txt file. As an example, the following python script (requires python 3) prints the co-
efficients associated with 15th T6 scheme. Note that this assumes the files “T6.db” and “T6.txt” are in
the current directory.
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2. Experimental design, materials, and methods

The values of the free parameters contained in the “nbs” table were arrived at via the optimization
procedure described in [1]. The schemes were subjected to a variety of numerical tests to verify their
stability properties. The error norms of these numerical experiments are recorded in the remaining
tables in each database. In all numerical tests described below, the spacial discretization is done a
uniform Cartesian mesh and time integration is carried out using a standard RK4 method.

The first numerical experiment is recorded in section 4.2 of [1] and is reproduced here for
completeness. It consists of solving the hyperbolic system:

vu
vt

¼ vv

vx
;

vv

vt
¼ vu

vx
; x2½0;1�

with boundary and initial conditions:

uð0; tÞ¼ vð1; tÞ ¼ 0

uðx;0Þ¼ � 3p
2

sin
3px
2

; vðx;0Þ ¼ 0
In the table “linear_system_cfl”, the simulations are run to a time of 500 for a large and small CFL at
various grid resolutions (denoted by the “nx” column) and the maximum error in u and v are recorded
in the “Linf_u” and “Linf_v” columns, respectively.

The table “linear_system_dt” records the same data but with constant timestep simulations so that
the order of accuracy of the simulations can be computed. These are recorded in the “order_u” and
“order_v” columns.
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The second numerical experiment is described in section 4.3 of [1] and is reproduced here for
completeness. It consists of solving the two-dimensional, varying coefficient scalar wave equation:

vu
vt

þ v4

vx
vu
vx

þ v4

vy
vu
vy

¼ 0; 0 � ðx; yÞ �
ffiffiffi
2

p

Where 4ðx;yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx� 0:25Þ2þðy� 0:25Þ2

q
, and with initial and boundary conditions:

uðx; y;0Þ ¼ sin 2 p4

uð0; y; tÞ ¼ sin 2 pð4ð0; yÞ � tÞ

uðx;0; tÞ ¼ sin 2 pð4ðx;0Þ � tÞ

In the table “linear_wave2d_cfl”, the simulations are run to a time of 1000 for a large and small CFL
at various grid resolutions and the maximum error in u is recorded as “Linf_u”.

The table “linear_wave2d_dt” records the same data but with constant timestep simulations so that
the order of accuracy of the simulations can be computed. This is recorded in the “order_u” column.

The final numerical experiment is also described in section 4.4 of [1]. In this test, the two-
dimensional Euler equations are solved to examine the transport of vortex through a domain. A vor-
tex of nondimensional circulation, ε ¼ 1:5; is placed in the center of a computational domain of length
x2½0;20�; y2½0;10� discretized withNxNy grid points, whereNy ¼ ðNx þ 1Þ=2. The background flow is
a uniform flow in the x-direction with a Mach number of 2. The simulations are run to a non-
dimensional time of 1000 at various grid resolutions and CFL's. The maximum and final error in
pressure is recorded in the “vortex” table in the “Linf_p”, and “Linf_p_final” columns, respectively.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104086.
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