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a b s t r a c t

The effects of different initial density distributions on the evolution of buoyancy-driven homogeneous
variable-density turbulence (HVDT) at low (0.05) and high (0.75) Atwood numbers are studied by using
high-resolution direct numerical simulations. HVDT aims to mimic the acceleration-driven Rayleigh–
Taylor and shock-driven Richtmyer–Meshkov instabilities and reveals new physics that arise from
variable-density effects on the turbulent mixing. Here, the initial amounts of pure light and pure heavy
flows are altered primarily to mimic the variable-density turbulence at the different locations of the
Rayleigh–Taylor and Richtmyer–Meshkov instabilities’ mixing layers where the amounts of the mixing
fluids are not equal. It is found that for the low Atwood number cases, the asymmetric initial density
distribution has limited effects on both global and local flow evolution for HVDT. However, at high
Atwood number, both global flow evolution and the local flow structures are strongly affected by the
initial composition ratio. The flow composed of more light fluid reaches higher turbulent levels and
the local statistics reach their fully-developed behavior earlier in the time evolution. During the late
time decay, where most of the flow is well-mixed, all parameters become independent of the initial
composition ratio for both low and high Atwood number cases.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this study, we investigate, using direct numerical simu-
lations (DNS), the mixing of two miscible fluids with differ-
ent densities (or molar masses) in the idealized flow termed
as homogeneous variable-density turbulence (HVDT) [1–5]. The
occurrence of the variable-density (VD) mixing in atmospheric
and oceanic flows [6–8], supernova formations [9,10], combustion
applications in ramjet engines [11–13] and high energy density
processes like inertial confinement fusion [14–17] makes HVDT a
fundamental flow to investigate VD dynamics. In HVDT, the triply
periodic domain contains the heterogeneous mixture of pure light
and pure heavy fluids as random patches [1–3,5]. When the
acceleration field is applied to the domain, these pure fluids start
to move in opposite directions, similar to the case of acceleration-
driven Rayleigh–Taylor Instability. These buoyancy-driven mo-
tions generate turbulent kinetic energy (ETKE) which significantly
enhances the molecular mixing of these two fluids. Eventually,
the flow becomes turbulent and, subsequently, the turbulent dis-
sipation starts to overcome ETKE generation while the flow mixes
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and buoyancy-forces weaken. HVDT evolution is thus highly non-
equilibrium and comprises birth, growth, and gradual decay of
the VD turbulence [1]. This dynamic behavior allows us to con-
nect this idealized flow to various engineering applications and
natural phenomena similar to the core region of the mixing layer
of acceleration driven Rayleigh–Taylor (RT/RTI) and shock driven
Richtmyer–Meshkov (RM/RMI) instabilities. Moreover, HVDT has
the capability to capture most of the important dynamics that are
observed in VD jets, VD mixing layers, Rayleigh–Bénard Instability
(RBI) and RTI with acceleration reversals [5,18–21].

We define the initial composition ratio (χ0) of the flow as:

χ0 =
⟨χh⟩0

⟨χl⟩0
(1)

where ⟨χh⟩0 and ⟨χl⟩0 are the initial mole fractions of the pure
heavy and pure light fluids, respectively. Most of the published
works in scientific literature [1,3,5,22] have only investigated
cases in which the initial amounts of pure light and pure heavy
fluids are equal (⟨χh⟩0 = ⟨χl⟩0 ≈ 0.5) and the initial composition
ratio is unity (χ0 ≈ 0.5/0.5 = 1). Most natural and engineering
applications seldom have balanced amounts of pure light and
heavy fluids. For example, in combustion applications, the initial
amounts of pure fluids can vary significantly from fuel rich to lean
conditions. Different initial amounts of heavy and light fluids also
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Fig. 1. Initial configuration of the density field for (a) heavy fluid dominated flow (χ0 = 3), (b) symmetric distribution (χ0 = 1), and (c) light fluid dominated flow
(χ0 = 1/3), where yellow color represents the pure light fluid (χh = 0, χl = 1) and blue color represents the pure heavy fluid (χh = 1, χl = 0). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

pose a new challenge for mix models, and have not been tested
before [23,24].

We thus choose to alter the initial composition ratio to iden-
tify possible effects of differential initial density distributions in
HVDT mixing with the low (1.1 : 1) and high (7 : 1) density
ratios. Atwood number (A) is another important non-dimensional
number, which represents the ratio of the densities of heavy and
light fluids and is defined as:

A =
ρ2 − ρ1

ρ2 + ρ1
⇒

ρ2

ρ1
=

1 + A
1 − A

(2)

where, ρ2 and ρ1 are the densities of the heavy and light fluids,
respectively. Here, we study the low A number case (A = 0.05),
which is close to the Boussinesq case, and the high A number case
(A = 0.75), which is the non-Boussinesq case. In VD turbulence, at
high A numbers, the mixing behavior and the turbulence features
of different density regions differ from each other [4,5,25–27]; for
example, pure light fluid mixes faster than pure heavy fluid [4].
Recently, Aslangil et al. [5] showed that, at high density ratios,
conditional expectations of ETKE , its dissipation, and the enstro-
phy also become asymmetric when with respect to the density
field. They also showed that during ETKE growth, the lighter fluid
regions move faster compared to the heavier fluid regions. This
asymmetric behavior has been attributed to the smaller inertia
of the lighter fluid regions. Here, we aim to test the generality of
such results by changing the initial amounts of heavy and light
fluids and to answer the following questions:

(1) Is it possible to achieve a more symmetric late time state,
or to enhance or suppress the turbulence growth starting with
asymmetric initial conditions?

(2) Are the local statistics of the flow and the flow topology
affected by the initial composition of the flow?

To answer these questions we have performed direct numer-
ical simulations (DNS) with (a) symmetric initial density distri-
bution , for comparison purposes, where the amounts of lighter
and heavier fluids are similar (χ0 ≈ 1) which we call initially
symmetric distributed flow (SF); and with (b) asymmetric ini-
tial density distributions (non-SF) (b–i) heavy-fluid dominated
flow (HF) where around three-quarters of the domain is initially
composed of heavier fluid (χ0 ≈ 3); as well as (b–ii) light-fluid
dominated flow (LF) where around three-quarters of the domain
is initially composed of lighter fluid (χ0 ≈ 1/3), as seen in Fig. 1.
(In this paper, the L–F and H–F cases are referred to as non-SF
as well.) Moreover, the influence of low (0.05) and high (0.75) A
number effects are investigated.

2. Governing equations and computational approach

The superscript ∗, in this paper, denotes instantaneous values,
capital Roman letters or angle brackets denote mean values, and

lower-case Roman letters or primes denote Reynolds fluctuations.
For example, the velocity decomposition in index notation is
written as: u∗

i = Ui + ui; while the density decomposition is
written as: ρ∗

= ρ + ρ. Moreover, to investigate VD effects,
the Favre (density weighted) averaged values are also presented,
denoted by the tilde ˜ for the Favre-averages and double primes
′′ for the Favre fluctuations; the velocity (Favre) decomposition is
written as: u∗

i = Ũi + u′′

i , with Ũi = ⟨ρ∗u∗

i ⟩/ρ.
The incompressible variable-density limit of the fully com-

pressible Navier–Stokes equations with two miscible fluids is
used to investigate the mixing of two fluids with different micro-
densities. The equations have full diffusion and heat flux oper-
ators, under the limitation of infinite speed of sound [18,27],
with the stress tensor being assumed to be Newtonian such that
τ ∗

ij = (ρ∗/Re0)(u∗

i,j +u∗

j,i − (2/3)u∗

k,kδij)). Non-dimensional forms of
these equations can be written as [3,18,28]:

ρ∗

,t + (ρ∗u∗

j ),j = 0, (3)

(ρ∗u∗

i ),t + (ρ∗u∗

i u
∗

j ),j = −p∗

,i + τ ∗

ij,j +
1
Fr2
ρ∗gi, (4)

where, u∗

i is the velocity in direction i, p∗ is the pressure, and
gi is the gravity (acceleration) in direction i. Assuming the speed
of sound to be infinite, in incompressible VD turbulence, specific
volume changes during mixing and the divergence of velocity is
non zero:

u∗

j,j = −
1

Re0Sc
lnρ∗

,jj. (5)

This relation can be derived by using either the mass fraction
transport equations or the incompressible energy transport equa-
tion, together with the requirement that the micro-densities, ρ2
and ρ1, of the fluids are constant, which leads to [29]:

1
ρ∗

=
Y ∗

1

ρ1
+

Y ∗

2

ρ2
, (6)

where Y1 and Y2 are the mass fractions of the two fluids. This
relation also represents the infinite speed of sound limit of the
equation of state for fluid mixtures obeying the ideal gas equation
of state [27]. Since Y ∗

1 +Y ∗

2 = 1, relation (6) becomes a diagnostic
equation for the mass fractions. A more general derivation is
given in Ref. [18]. Moreover, due to the homogeneity, the mean
pressure gradient, P,i, needs to be specified and it is chosen
to give the maximally unstable flow similarly to the previous
studies [3–5]:

P,i =
1
V

( 1
Fr2

gi − ⟨vp,i⟩ + ⟨uiuj,j⟩ + ⟨vτij,j⟩

)
, (7)

where V is the mean specific volume (v∗
= 1/ρ∗

= V + v). This
also leads to Ui = 0; hence, in this study u∗

i = ui.
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Fig. 2. Evolution of the EKE (dashed-lines), ETKE (solid lines), d(ETKE )/dt (dashed-
dots), and d2(ETKE )/dt2/4 (dots) for the (a) A = 0.05 and (b) A = 0.75
cases.

In Eqs. (4) and (5), Re0 is the computational Reynolds number,
Sc is the Schmidt number and Fr the Froude number, and are
defined as:
Re0 = ρ0L0U0/µ0,

Sc = µ0/ρ0D0,

Fr2 = U2
0/gL0.

(8)

where, ρ0 is the mean density [ρ0 = 1/V
∫
V ρ

∗dV], g is the
magnitude of acceleration field, µ0 is the reference dynamic vis-
cosity, D0 is the diffusion coefficient, L0 and U0 are the reference
length and velocity scales. The instantaneous dynamic viscosity
is defined as µ∗

= µ0ρ
∗/ρ0 = ν0ρ

∗, where ν0 is the kinematic
viscosity and equal to D0; as Sc = 1 for all the cases investigated
in this paper. In addition, Re0 equal to 4000 and 556 for the
cases with A = 0.05 and A = 0.75, respectively. Eqs. (3) and
(4), together with the divergence condition (5), are solved in a
triply periodic, (2π )3, domain using the CFDNS code [30], as de-
scribed in [3]. The spatial derivatives are evaluated using Fourier
transforms and the time advancement is performed with the vari-
able time step third order Adams–Bashforth–Moulton scheme,
coupled with a fractional time method. To minimize the aliasing
errors, the advection terms are written in the skew-symmetric
form.

Table 1 lists the various cases that were chosen to investigate
the influence of Atwood number and the initial composition ratio

Table 1
Parameters for the DNS cases.
Cases A χ0 ≈ Re0 Reλ,max

A005LF 0.05 1/3 4000 124
A005SF 0.05 1 4000 141
A005HF 0.05 3 4000 120
A075LF 0.75 1/3 556 80
A075SF 0.75 1 556 60
A075HF 0.75 3 556 48

on HVDT. In the nomenclature chosen for the case names, A005
denotes the low Atwood number 0.05 and A075 denotes the high
Atwood number 0.75. In addition, the initial flow composition is
represented by the last 2 letters: LF denotes χ0 = 1/3, SF, χ0 = 1
and HF, χ0 = 3; additionally, in all line plots in this paper, the red,
black and blue lines represent LF, SF and HF cases respectively.

The density field in all simulations is initialized as a Gaussian
random field with top-hat energy spectrum between wave num-
bers 3 to 5 similar to the previous studies [3,5]. After transforming
into the real space, for the S–F cases, the negative values are
assigned the value of ρ1(= 1), and the positive values are assigned
as (1 + A)/(1 − A) = ρ2. As a result, the pure fluid densities
yield the desired Atwood number. Similarly, in the real space,
the values larger than (1.5) and (−1.5) are assigned as ρ1(= 1),
and the values smaller than (1.5) and (−1.5) are assigned as
(1+A)/(1−A) = ρ2 to compose the H–F and L–F cases. In addition,
the initial density field is smoothed using a Gaussian filter with
a width of 1.1∆x, which ensures that the mixing layer between
the pure fluid regions is captured on the grid. The convergence
test is conducted with the same initial conditions but with a
higher resolution domain mesh 10243 for the large density ratio
case (A075SF) where the results from the 5123 and 10243 domain
meshes are similar. The resultant non-dimensional initial density
integral length-scale, which is calculated from the initial density
spectra [5], is 1.34–1.36 for all cases. The initial density variance
(ρ2) values are 0.002 and 6.55 for non-SF cases with A 0.05 and
0.75, respectively, and have values of 0.00258 and 8.4 for the
A005SF and A075SF cases. In order to keep the initial time steps
reasonably small, similar to our previous [5] study, a 5th order
polynomial equation is used to gradually apply non-dimensional
acceleration to the flow between t/tr = 0 to 0.1. Moreover, for
all simulations, ηkmax > 2 at all times during the flow evolution,
where η =

(
1/[Re30(ϵ/ρ0)]

)1/4 is the Kolmogorov microscale, and
kmax = πN/L = N/2 is the largest resolved wave number, which
indicates that all simulations are well resolved.

In HVDT, the time evolution of the global parameters collapses
better for the different cases if they are normalized by the follow-
ing normalizations [3,5]: time (t) is normalized by tr =

√
Fr2/A,

and so Ur =
√
A/Fr2. Thus, in time evolution figures, the x-axis,

which presents the time, is divided by tr .

3. Results

3.1. Flow evolution and regimes

In HVDT, triply periodic domain is initially occupied by pure
light and heavy fluids, which leads to differential buoyancy-forces
within the flow while the acceleration is applied to the domain.
These forces push the fluids in the opposite direction, which
generates turbulent kinetic energy. Aslangil et al. [5] showed that
for high A number cases with SF conditions, it is more difficult to
stir the flow and generate turbulence in the heavy fluid regions
due to larger inertia within those regions. In this paper, we have
altered the initial composition of the flow, leading to smaller or
larger regions of flow that are occupied by each pure fluid. The
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Fig. 3. Evolution of a1 for the (a) A = 0.05 and (b) A = 0.75 cases and evolution of a1ρ/ϵ for the (c) A = 0.05 and (d) A = 0.75 cases. The dotted vertical lines
present the end of the explosive growth regime.

Table 2
ETKE = ⟨ρ∗u

′′

i u
′′

i ⟩ behavior during different HVDT regimes.

dETKE
dt

d2ETKE
dt2

Explosive growth >0 >0
Saturated growth >0 <0
Fast decay <0 <0
Gradual decay <0 >0

flow evolution is divided into the four different regimes according
to the behavior of the ETKE (see Table 2) to streamline the flow
analysis and connect the idealized flow with the real applications
with different ETKE behavioral scenarios [5,31].

Explosive growth refers to the regime with rapid increase of
ETKE . During this regime, the motions of the large scales acceler-
ate, whereas the stirring is not adequately evolved to be able to
stir these large structures. Hence, due to the lack of wide range of
motions, the molecular mixing is relatively slow and localized at
the interface between the pure fluids [5]. Saturated growth starts
when the growth of the ETKE slows down. During this regime,
a wider range of scales starts to attend to the mixing process,
so mixing reaches its fastest rate. This leads to distinguishable
differences between the evolution of the density PDFs of the low
and high A number cases. Fast decay, on the other hand, refers to
the following regime, in which ETKE decays rapidly. During this
regime, the flow becomes fully-developed and is mostly well-
mixed at the end of this regime. Gradual decay is characterized
by a slower decay than the canonical isotropic turbulence decay
as in this case, the decay is assisted by continuous buoyancy-
production [5]. The turbulence generation continues to assist the
flow even as it is mostly mixed, as the production term never
becomes negligible compared to the dissipation term. Moreover,
our previous study [5] showed that both density and velocity
PDFs tend to reach symmetric shapes for both low and high A
number cases.

To further aid in understanding of HVDT evolution, the kinetic
energy (EKE) and the Favre averaged turbulent kinetic energy
(ETKE) are used and defined as:

EKE =
1
2
⟨ρ∗u∗

i u
∗

i ⟩; ETKE =
1
2
⟨ρ∗u′′

i u
′′

i ⟩. (9)

Fig. 2 presents the normalized EKE , ETKE and its time derivatives
(note that d2ETKE/dt2 is divided by 4 for better illustration) where
the energies are normalized by 0.5ρUrUr . As it is seen in Fig. 2,
at low A number, ETKE evolution reaches higher values for the SF
case compared to non-SF cases. This is attributed to the larger
initial mean variance of the density field (σ0 = ρ2) for the SF case.
Thus, σ0 reaches its maximum value for the initially symmetric
distributed flows where χ0 = 1 and is ≈1.28 times larger than
σ0 for both LF and HF cases, which reaches maximum values
where χ0 = 1/3 and χ0 = 3, respectively. Meanwhile, at high
A number, ETKE reaches much higher values for the LF compared
to the SF, whereas HF reaches much lower ETKE values compared
to SF cases. This is consistent with the notion that flows with
smaller inertia can be stirred more easily than flows with larger
inertia. As a result, for higher A numbers, the lighter flow regions
move much faster compared to the heavier flow regions. These
faster motions within the lighter fluid regions are able to generate
high enough ETKE to compensate the initial handicap of the flow
due to having smaller σ0. Thus, for the higher A number case,
even if σ0 is smaller than for the SF case, LF reaches the highest
ETKE levels during the flow evolution. In addition, compared to
the other two cases, explosive growth is observed for a longer
duration for the A075LF case. Meanwhile, the explosive growth
duration is the shortest for the A075HF case. For A075SF case,
explosive growth duration is intermediate, and is similar to the
cases with A = 0.05. However, ETKE maxima occur almost at
the same normalized time instant for all cases. Moreover, during
gradual decay, the time derivative of the ETKE converges for all A
number cases, indicating similar long time decay behavior for all
cases with different initial composition ratios.
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Transport equations for the ETKE and EKE can be written as [3]:

ETKE,t = aiP,i + ⟨pu′′

j,j⟩ − ϵ′′, (10)

EKE,t =
gi
Fr2
ρai + ⟨pu∗

j,j⟩ − ϵ∗, (11)

where ai = ⟨ρui⟩/ρ is the mass flux. ϵ′′ and ϵ∗ are the dissipation
of ETKE and EKE , respectively. Due to homogeneity, ϵ′′

= ϵ∗
=

⟨u∗

i,jτ
∗

ij ⟩ [5]. Similarly, ⟨pu∗

j,j⟩ = ⟨pu′′

j,j⟩ = ⟨puj,j⟩. In addition,
pressure-dilatation is not equal to zero in variable density tur-
bulence and is associated with the gain or loss of energy through
molecular mixing. The vertical mass flux [a1] has been demon-
strated to be the sole mechanism to convert potential energy to
the kinetic energy in buoyancy-driven HVDT [3]. Fig. 3 presents
the vertical mass flux [a1] and the production over dissipation
ratio [a1ρ/ϵ = P/ϵ] for low and high A number cases. As it is seen,
the mass flux term, which is proportional to the EKE production,
reaches slightly higher values for the A005SF case than the non-SF
cases at low Atwood number, a feature consistent to the behavior
of ETKE . In addition, mass flux has a maximum occurring at the end
of the explosive growth regime for all cases reported in this paper.
The differential duration of explosive growth regime for different
cases with A = 0.75 leads to differences in the time instants
where mass flux maximum occurs. For example, since the A075LF
case has the longest explosive growth, the mass flux maximum
occurs later for this case compared to the other cases of A = 0.75.
Due to this relation between the mass flux maximum and the
duration of the explosive growth, the mass flux maximum occurs
earlier for the A075HF case, as the explosive growth regime is
shorter. Similar to mass flux, the production over dissipation ratio
(ρai/ϵ) also remains at higher levels and for longer time for the
A075LF than the A075HF and A075SF cases (see Fig. 3(b) and (d)).
This behavior is similar for low A number (see Fig. 3(a) and (c))
cases and is also consistent with the higher EKE and ETKE values
for the A075LF case. It is also notable that the ratio never reaches
zero and stays at constant values even during gradual decay (the
time evolution is only plotted until t/tr = 6 for clarity) indicating
that production is always an active process during the decay stage
which noticeably slows downs the HVDT decay [5].

In addition to density variance, the density-specific volume
correlation parameter b is an important alternative way to mea-
sure the mixture state of the HVDT and appears in turbulence mix
models [4,32–37]:

b = −

⟨
ρ

( 1
ρ∗

)′⟩
. (12)

Fig. 4 presents the evolution of b normalized by (Aρ)2ρ2. As
it is seen, b behaves differently during explosive and saturated
growths. During explosive growth, the decay of b is slower com-
pared to its decay during saturated growth, for all cases. During
transition from explosive growth to saturated growth, as dis-
cussed above, a wider range of scales starts to attend mixing,
which leads to a faster decay in the behavior of b. The evolution
of the normalized b is similar for all cases with A = 0.05 as the
duration of explosive growth was also similar for those cases.
However, the differential duration of the explosive growth for
the cases with A = 0.75 is reflected to the behavior of b as well.
For example, for the A075LF case, transitional behavior of the
b occurs later than for the other two cases. Thus, capturing the
transition between the explosive to saturated growth becomes
even more important as it does not only represent the transitional
behavior of the momentum within the flow, but also reflects
the transitional behavior of the molecular mixing within HVDT.
In addition, during gradual decay, b becomes small (b < 0.1)
indicating that the flow is mostly mixed in this regime for all
cases. Minimal differences were observed in the behavior of the

Fig. 4. Evolution of the normalized b (a) for the A = 0.05 and A075SF cases,
and (b) evolution of the normalized b for the A = 0.75 cases. The dotted vertical
lines present the end of the explosive growth.

density variance (σ ) for the different cases and is not shown for
brevity.

The ratio of the time scales for ETKE and scalar energy (Eρ =

1/2⟨ρ2
⟩) as well as b can be written as [5,38,39]:

Υ =
ETKE
ϵ

/
Eρ
ξ

=
ETKEξ
Eρϵ

;

Υb =
ETKE
ϵ

/
b

db/dt
=

ETKEdb/dt
bϵ

,

(13)

where ξ is the scalar dissipation (ξ = D0⟨ρ,jρ,j⟩). In low order
turbulent mixing models, the scalar dissipation is not explicitly
calculated and is predicted by using the turbulent kinetic energy
dissipation (ϵ) considering that Υ is a constant [38–40]. However,
in HVDT evolution, Aslangil et al. [5] showed that it is a dynamic
quantity and both ETKE and scalar dissipation have to be captured
separately until the gradual decay [5]. Here, Fig. 5 presents Υ
and Υb values for the different cases with different initial density
distributions. At low A number, these ratios are similar and do
not show significant dependency on the initial composition of the
flow. However, the behaviors of Υb and Υ deviate slightly at high
A number; Υb is slightly larger for the HF case during saturated
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Fig. 5. Evolution of Υ (solid lines) and Υb (dashed lines) for the (a) A = 0.05
and (b) A = 0.75 cases.

growth, whereas Υ is almost insensitive to the initial composition
even at high A.

3.2. Initial composition and high-Atwood number effects on density
PDF

In the physics of VD turbulence with large density ratios, it is
now established that light fluid regions mix faster than the heavy
fluid regions, which leads to significant asymmetric evolution
of the density PDF and changes the local flow structure [4,5].
In this subsection, we explore the generality of an asymmetric
behavior for the flows with different initial compositions. To
better illustrate the mixing behavior of the different flow regions,
first, we present the time evolution of the volume fractions of
pure light fluid, where ρ∗

≤ ρ1 + 0.05(ρ2 − ρ1), pure heavy
fluid, where ρ∗

≥ ρ1 + 0.95(ρ2 − ρ1) and the fully-mixed flow
|ρ| ≤ ρ ± 0.025(ρ2 − ρ1). Due to differential initial compositions
of the flow, the initial volume fractions of the pure light fluid are
≈0.75, ≈0.5 and ≈0.25, and the initial volume fractions of the
pure heavy fluid are ≈0.25, ≈0.5 and ≈0.75 for the LF, SF and
HF cases, respectively. As shown in Fig. 6, the mixing rates of the
pure fluid regions are similar for the A005SF case, as seen by the
matching amounts of the pure fluids. Meanwhile, the amount of
the pure light fluid within A005LF case matches the amount of

Fig. 6. Evolution of the amounts of the pure light (solid line), pure heavy
(dashed line), and fully-mixed (dashed–dotted line) fluids for the cases with
(a) A = 0.05 and (b) A = 0.75. The dotted vertical lines present the end of the
explosive growth.

the pure heavy fluid within A005HF case, whereas their initial
amounts are ≈0.75, and so they vanish at the same time instant
(t/tr ≈ 4.8). This is also valid when we compare the amounts
of the pure heavy fluid of A005LF case with the pure light fluid
of A005HF case, where their initial amounts are ≈0.25. They also
vanish at the same time instant (t/tr ≈ 2.4). This indicates that
the mixing rates of the pure fluids are similar for all cases and are
independent of the initial composition of the flow for the low A
number cases.

At high A number, however, for all cases, the pure light fluid
mixes faster than the pure heavy fluid. In addition, the transition
from the slowest mixing rate to the fastest mixing rate for each
pure fluid occurs at the end of the explosive growth. This is
similar to the behavior of b, as these transitions occur at different
time instants consistently with explosive growth end times. There
is almost three times more pure light fluid than pure heavy fluid
by volume within the A075LF case; however, as the light fluid
mixes faster, both pure fluids vanish at almost the same time
instant (at around t/tr = 2.5), but the pure heavy fluid of the
A075HF case vanishes significantly later (at around t/tr = 4.8)
than the pure light fluid (which vanishes at around t/tr = 1.2).

The corresponding density PDFs are shown in Fig. 7 at different
normalized times running from t/tr = 1.2 (top row) to t/tr =

9.2 (bottom row); the low A cases are plotted on the left and
high A cases are on the right. In the figure, the density field is
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Fig. 7. Evolution of density PDFs at different time instants, where the red color represents the LF, blue color represents the HF, and black color represents the SF.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

represented by the mole fraction of the heavy fluid (χh) defined
as χh = (ρ∗

− ρ1)/(ρ2 − ρ1); for the pure heavy fluid and pure
light fluid χh is equal to 1 and 0, respectively. In addition, 3D
visualization of the density field for the cases with A = 0.75 at
three different time instants: t/tr = 1.2 (the first row), t/tr =

2.4 (the second row), and t/tr = 3.6 (the third row) can be
seen in Fig. 8. Density PDFs mostly conserve their initial shapes
during the explosive growth (at t/tr = 1/2) as mixing is mostly
localized [5]. For the low A number cases, the PDF of the A005SF
case remains almost symmetric throughout the flow evolution,
and the PDFs of both A005LF and A005HF cases are symmetric
to each other at the point where χ = 0.5, as both pure light
and pure heavy fluids have similar mixing rates during the flow
evolution for low A cases (see Fig. 6(a)).

The density PDFs of the high A cases are very different. During
the flow evolution, not only is the evolution of the PDF of the
A075SF case highly asymmetric (even though it starts with sym-
metric initial PDF), but also the PDF evolution of the density field
shows no similarity between the HF and LF cases (even though
they start with asymmetric PDFs, but similar to each other at χ =

0.5). During the ETKE peak, there is no pure light fluid remaining
for the A075HF case; however, there is still a sufficient amount of
pure heavy fluid left for the A075LF case, which indicates slower
mixing rates for the heavy fluid. The pure light fluid is also more
mixed for the A075LF case compared to the pure heavy fluid
for the A075HF case. At the end of saturated growth, there are
almost no pure fluids left for the A075LF case, but most of heavy
fluid remains until very late time for the A075HF case (see also
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Fig. 8. 3D visualization of the density field for the cases with A = 0.75 at three different time instants t/tr = 1.2 (the first row), t/tr = 2.4 (the second row), and
t/tr = 3.6 (the third row), where yellow color represents the pure light fluid (χh = 0, χl = 1) and light-blue color represents the pure heavy fluid (χh = 1, χl = 0).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6). During gradual decay, all cases tend to reach a symmetric
shape with different variance values. At late time (at t/tr = 9.2)
the small variations in the density PDFs between the cases are
attributed to the different amounts of the fully-mixed flow for
that time (see also Fig. 6).

3.2.1. Conditional expectation of turbulent kinetic energy
Fig. 9 presents the conditional expectation of the ETKE (⟨ETKE⟩|R)

where R is the given/chosen value of density. During explosive
growth, ETKE values are larger within lighter fluid regions for the
A075SF case, as it is easier to stir these regions due to their
smaller inertia [5] (see Fig. 9(a)). As it is seen in Fig. 9(b) and
(c), around ETKE peak time and at the end of fast decay, the
ETKE levels of the heavy fluid regions increase upon decrease in
initial amount of the pure heavy fluid. Since the initial volume
of heavy fluid regions is the smallest, it is easier to disturb and
comprehensively stir the heavy fluid regions for the A075LF case.
Also, compared to the A075HF case, the initial volume of heavy
fluid regions is smaller for the A075SF case. It is thus easier
to disturb and stir the heavy fluid regions for the A075SF case
compared to the A075HF case.

3.2.2. Strain-enstrophy angle
The strain-enstrophy angle is defined as [41]:

Ψ = tan−1 SijSij
WijWij

, (14)

where Sij =
1
2 (Aij + Aji) is the rate of strain tensor, and Wij =

1
2 (Aij −Aji) is the rate of rotation tensor, and the velocity gradient
tensor is Aij = u∗

i,j. Thus, Ψ > π/4 values represent the flow
regions where the strain effects are more dominant than the
rotation effects. Fig. 10(a) presents the PDF of Ψ for the A075SF
case at different time instants (note that y axis is in the log scale).
As seen in the figure, during both explosive and saturated growth
regimes, the PDF mostly accumulates at a value of π/2, which in-
dicates that the flow is largely strain dominated. However, while
the growth and mixing saturate, the peak of the PDF at the value
of π/2 starts to decrease indicating that more regions are being
affected by vorticity. Fig. 10(b), compares for the PDF of Ψ for the
high A cases during fast decay (at t/tr = 3.6). For the A075HF
case, the PDF reaches its asymptotic shape later compared to
the A075LF and A075SF cases. The delay in reaching the long
time behavior for the A075HF case is attributed to the absence
of turbulence within the heaviest fluid regions. This can be also
observed in Fig. 8, at t/tr = 3.6, the A075HF case still contains
pure heavy fluid regions that are not comprehensively stirred yet.
This is consistent with our earlier findings [5] as stirring heavy
fluid regions is more difficult due to their larger inertia. During
flow evolution, the behavior of ψ is similar for the low A cases
and are not shown here for brevity. Fig. 11 shows the conditional
expectation of Ψ (⟨Ψ ∥ R⟩) at around ETKE peak (at t/tr = 2.4). As
observed, Ψ has significantly lower values within slightly mixed
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Fig. 9. Conditional ETKE for the A = 0.75 cases at (a) t/tr = 1.2, (b) t/tr = 2.4,
(c) t/tr = 3.6.

light fluid regions, where strain and rotation are almost balanced.
On the contrary, within heavier than fluid regions, larger values
were observed.

Fig. 10. PDF of the strain-enstrophy angle for (a) A075SF at different time
instants, and (b) all cases with A = 0.75 at t/tr = 3.6.

Fig. 11. Conditional expectations of the strain-enstrophy angle (⟨Ψ ∥ R⟩) for the
cases with A = 0.75 at t/tr = 2.4.

3.3. Small scale features

3.3.1. Flow topology
Here, the topology of HVDT flow is investigated by using the

second (Q ∗) and third (R∗) invariants of the velocity gradient
tensor, which are defined as:

Q ∗
= −

1
2
AijAji; R∗

= −
1
3
AijAjkAki. (15)

The flow regions where Q ∗ is large indicate rotation dominant re-
gions, large values of R∗ indicate strain dominant regions. Fig. 12
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Fig. 12. Iso-contour lines of log10(jPDF)s of the normalized second and third invariants of the anisotropic part of the velocity gradient tensor, (Q ∗/⟨St⟩, Q ∗/⟨St⟩3/2)
for the (a) A075HF at t/tr = 2.4, (b) A075LF at t/tr = 2.4, (c) A075HF at t/tr = 4.8, and (d) A075HF at t/tr = 4.8.

presents the iso-contour lines of the joint-PDF of the normalized
second and third invariants of the anisotropic part of the velocity
gradient tensor [42]. Note that, in previous studies, Q ∗ and R∗

are normalized by ⟨Qω⟩ = ⟨WijWij/2⟩ and ⟨Qω⟩3/2, respectively.
For the current work, Q ∗ and R∗ are normalized by using ⟨QSt⟩ =

⟨SijSij/2⟩ and ⟨QSt⟩
3/2 as the flow is mostly dominated by strain

effects (see Figs. 10 and 11). As observed, jPDF of Q ∗ and R∗ has
a teardrop shape, similar to the canonical turbulent flows, with
some subtle variations among cases. However, jPDF of Q ∗ and
R∗ for the pure light and heavy fluid regions for the A075LF case
at ETKE peak time (t/tr = 2.4) show significant differences. This
time is chosen as it contains sufficient amounts of both pure light
and heavy fluids at the ETKE . The conditional expectation of the
⟨QSt⟩ at the pure fluid regions are used for normalization; for
example, in Fig. 13(a), Q ∗ is normalized by ⟨QSt |R = ρph⟩ where
ρph ≥ 0.95(ρ2 − ρ1). While the pure light fluid regions maintain
the tear-drop shape, within the heavy fluid regions, there are no
points above the characteristic lines, indicating that the velocity
gradient tensor has real eigenvalues. The absence of points in
the focal regions of the flows, which are associated with vorticity
production and attenuation is consistent with observations in the
conditional expectations of ψ (see Fig. 11) and also with our
recent findings [5], where it is seen that, for high A number cases,
turbulence is mostly generated within light fluid regions.

Finally, the time evolutions of the percentage of the points
that appear in region Q1 (above the zero discriminant line and
R∗ > 0), Q2 (above the zero discriminant line and R∗ < 0), Q3
(below the zero discriminant line and R∗ < 0) and Q4 (below
the zero discriminant line and R∗ > 0) within the pure heavy
and light fluid regions for A075LF and A075HF cases are plotted
in Fig. 14. The curves are shown up to the time instants when
the amounts of the pure fluids become too small for reliable
statistics. Regions Q1 and Q2 represent the focal regions (sta-
ble focus/contraction and stable focus/stretching, respectively)
where vorticity is produced and attenuated, whereas Q3 and Q4

represent the regions of stable node/saddle/saddle and unstable
node/saddle/saddle. For both cases, the pure fluids regions are
dominated by strain effects, which is consistent with Fig. 11. In
addition, there are almost no points that appear in Q1 and Q2
quadrants within the pure heavy fluid regions. This indicates a
lack of vortical activity. This observation is also consistent with
the behavior of Ψ in Fig. 10, where it also reaches its long time
asymptotic shape later for the A075HF case, as it contains more
regions with heavy fluid.

4. Discussions and conclusions

Effects of initial composition ratio on the evolution of the
HVDT have been explored for low A = 0.05 and high A 0.75
cases. Three different cases with different initial compositions
have been investigated for each Atwood number; these are the
initially symmetric case SF, and the initially non-symmetric cases
LF and HF. SF may be considered as the classical HVDT flow,
where the initial amounts of both the pure fluids are identical and
the initial density distribution is symmetric. LF is the light fluid
dominated flow and HF is the heavy fluid dominated flow; for LF,
≈3/4 of the flow is composed of pure light fluid and ≈1/4 of the
flow is composed of pure heavy fluid. The scenario is reversed
for HF case. The DNS results presented here represent new test
cases for turbulence models of variable density turbulence, which
complement the existent studies. The main findings based on our
simulations can be listed as:

• For low A number cases, ETKE reaches slightly larger values
for SF compared to non-SF cases, due to its larger initial
density variance. Meanwhile, the evolution of the global pa-
rameters such as turbulent kinetic production to dissipation
ratio, P/ϵ, density-specific volume correlation, b, time scale
ratio of mechanical to density variance dissipations, Υ , and
the mixing rates of the pure fluids are similar for all the
cases. In addition, the duration of each of the HVDT flow
regimes is not affected by different initial compositions.
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Fig. 13. Iso-contour lines of log10(jPDF)s of the normalized second and third
invariants of the anisotropic part of the velocity gradient tensor, (Q ∗/⟨St|R⟩,
Q ∗/⟨St|R⟩3/2) for the (a) pure heavy and (b) pure light fluid regions of the
A075LF at t/tr = 2.4.

• For high A number cases, due to large inertial differences
between the light and heavy fluids, the flow evolution dif-
fers between the SF case and the non-SF cases. The main
differences are:

– Upon increasing the initial amount of the pure light
fluid, the turbulence kinetic energy generation is en-
hanced, whereas upon increasing the initial amount
of the pure heavy fluid, the turbulence generation is
suppressed.

– Differential initial composition also changes the du-
ration of the flow regimes. It is found that explosive
growth is longer for the flows that are initially com-
posed of more pure light fluid compared to those of
more pure heavy fluid. For the A075LF case, having
longer explosive growth, not only drives the ETKE to
higher levels, but also postpones the time instant of
transitional behavior of parameters such as b and the
kinetic energy production to dissipation rate.

– It takes longer for turbulence to disperse into the re-
gions of heavy fluid compared to regions of light fluid.
When the amount of the pure heavy fluid is increased

Fig. 14. Evolution of the Q, R quadrant percentages with in pure light (red
lines) and pure heavy (blue lines) regions for (a) A075HF and (b) A075LF cases.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

within the flow (as in A075HF), turbulence is not ob-
served at the center of the pure heavy fluid regions
as no local stirring occurs in those regions. Hence, the
conditional expectation of the ETKE stays at lower levels
during the flow evolution, and it takes longer to reach
the asymptotic behavior of the strain-enstrophy angle.

• During gradual decay, the initial composition effects on the
flow are minimal for both A numbers. The flow becomes
well-mixed, the decay behavior converges and the small
scale features reach their long time self-similar stage for all
the cases investigated in this work.
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