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a b s t r a c t

In this work a couple stress continuum based elasto-viscoplastic fast Fourier transform
model is developed with the intent to study the role of curvatures e gradient of rotation e

on the local meso scale and effective macro scale mechanical response of nanocrystalline
materials. Development of this model has led to the formulation of an extended periodic
Lippmann Schwinger equation that accounts for couple stress equilibrium. In addition to
the standard boundary conditions on strain rate and Cauchy stresses, the model allows
imposing non-standard couple stress and curvature rate boundary conditions. Application
to representative nanocrystalline microstructures reveals that elastic and plastic curva-
tures accommodate a part of the local and macroscopic Cauchy stresses. Next, grain
boundary interfaces are characterized using curvatures that are representative of their
structure and defect content. Depending on the magnitude and distribution of these
curvatures, local stresses in the grain boundary neighborhood are generated that activate
slip systems besides those fulfilling the Schmid criterion. Generation of both polar dislo-
cations and disclinations as a possible plasticity mechanism in nanocrystalline materials is
explored. At the macro scale, this results in a strain rate dependent “softening” or the
inverse Hall-Petch effect. The modeling framework naturally captures this grain size effect
without any ad hoc assumptions.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Plasticity in nanocrystalline (nc) metals and alloys occurs via an interplay between line crystal defects i.e. dislocations and
disclinations, and grain boundary (GB) mechanisms. The dynamics of these interactions is dependent on the local micro-
structure which for a typical nc material is composed of a large volume fraction of heterogeneously distributed low and high
angle GB interfaces (Gleiter, 1989, 2000). Molecular static simulations have indicated that the structure of these GB interfaces
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determines their energy (Hasson et al., 1972; Wolf and Kluge, 1990; Tschopp et al., 2007) which in conjunction with other
morphological and textural aspects such as grain size and orientation distribution, plays a major role in defining the energy
landscape of nc materials. These provide the driving forces for various non-conventional plasticity mechanisms (Kumar et al.,
2003; Dao et al., 2007) resulting in the typical nc macro scale mechanical properties such as improved strength (Hall-Petch
effect (Hall, 1951; Petch, 1953)) and increased strain rate sensitivity (Khan et al., 2015; Liu et al., 2015) in comparison with
their coarse grained counterparts (Kumar et al., 2003; Dao et al., 2007). Furthermore, below a critical grain size some nc
materials exhibit an inverse Hall-Petch or “softening” effect where the material strength decreases (Schiøtz and Jacobsen,
2003; Vliet et al., 2003; Schuh et al., 2002).

Modeling the mechanical response of polycrystalline materials is traditionally pursued using classical continuum based
meso-scale crystal plasticity models. Applications to nc materials have generally aimed at demonstrating the grain size effect
on the macroscopic response based either on phenomenological assumptions of mechanical behavior of GBs and grain in-
teriors (Carsley et al., 1995; Konstantinidis and Aifantis, 1998; Kim et al., 2000; Fu et al., 2001, 2004; Benson et al., 2001; Kim
and Estrin, 2005), GB evolution laws derived from GB mechanisms (Capolungo et al., 2005a, 2005b), or an elasto-viscoplastic
response of GBs (Wei and Anand, 2004; Zhu et al., 2005; Wei and Gao, 2008; Jiang and Weng, 2004; Lebensohn et al., 2007).
As a consequence of their size independent classical continuum framework, these models are unable to appropriately capture
the underlying GB structure. Therefore, thesemodels require introducing an ad hoc length scale parameter (typically the grain
size) to capture the grain size dependent response.

This problem can be alleviated with the help of distortion gradient plasticity models which intrinsically account for a
length scale. These include models that account for the role of strain gradients and rotational gradients i.e. curvatures. While
the role of strain gradients on plasticity in nc materials (Aifantis and Willis, 2005; Gurtin, 2008; Aifantis and Konstantinidis,
2009; Aifantis, 2011; Kim and Oh, 2012; Voyiadjis et al., 2014; Aoyagi et al., 2014; van Beers et al., 2015a, 2015b) has received
considerable interest over the past decade, the role of rotational gradients i.e. lattice curvatures has received dispropor-
tionately less attention. The origin of this imbalance may lie in the fact that only recently experimental characterization
techniques have achieved the resolutions to quantify lattice curvatures in nc materials (R€osner et al., 2011; Di Gioacchino and
Quinta da Fonseca, 2015; Carter et al., 2015). These studies have revealed that lattice curvatures manifest themselves at lo-
cations of GB interfaces, triple junctions, defect cell structures, activation of different slip systems and heterogeneity in slip
distribution and intensity on the same slip system. A series of continuum based studies at the nano scale on GBs (Fressengeas
et al., 2012) have highlighted that lattice curvatures are necessary to describe GB structure (Upadhyay et al., 2011; Taupin
et al., 2013) in order to obtain energy estimates that match those obtained from experiments and molecular statics simu-
lations (Fressengeas et al., 2014) and to model the structure sensitive non-local GB dynamics, for instance shear coupled
boundary migration (Taupin et al., 2014).

Deriving motivation from these studies, Taupin et al. (2015) recently proposed a strain and curvature based multi-scale
crystal plasticity model to study the role of incompatibilities in lattice curvature and strains on the mechanical response
of ncmaterials. Themodel, known as phenomenological field dislocation and disclinationmechanics (PMFDDM), accounts for
the nucleation and dynamics of polar and statistical dislocations and disclinations. It is numerically implemented using a
Galerkin-least square finite element approach (Taupin et al., 2015) to study the non-local and size dependent meso scale GB
dynamics in bi- and tri-crystalline structures (Taupin et al., 2015).

Modeling representative volume elements (RVEs) of nc materials, however, is difficult to achieve using a finite element
based approach; capturing the intricate details associated with GBs that occupy a large volume fraction of nc materials re-
quires employing very fine meshes resulting in a very large stiffness matrix. This, coupled with the numerical complexity
associated with solving the finite element problem, motivates the alternative use of fast Fourier transform (FFT) technique.
The full field FFT based numerical approach for periodic RVEs was originally developed in a classical continuum framework
for composites (Moulinec and Suquet, 1994, 1998) and later extended to viscoplastic (Lebensohn, 2001) and elasto-
viscoplastic (Lebensohn et al., 2012) materials. Its advantage is in solving the local problem with a time complexity of
O(NlogN).

In light of the above, the main objectives of this work are (a) to develop a numerical implementation of the PMFDDM
model using the FFT technique and (b) apply to RVEs of nc materials to understand the role of lattice curvatures on their local
and effectivemechanical response. In order to facilitate part (b), only themeso scale component of the PMFDDM i.e. evolution
of statistical dislocations and elasticity e will be considered. The resulting model is a couple stress continuum based elasto-
viscoplastic (CSEVP) model. A couple stress based Green's function is proposed to analytically solve the CSEVP problem. A
combined continuum and discrete FFT approach is developed for application to nc RVEs. The CSEVP FFT model allows
characterizing initial microstructures using curvatures. This is developed and explored in detail. The role of using a curvature
based approach on the local and bulk mechanical response of nc materials is then studied. As will be demonstrated later,
characterizing the initial microstructure using curvatures captures the grain size dependent macroscopic strain rate sensi-
tivity and “softening” effect often observed in nc materials.

The paper is divided into sections as follows. Section 2 describes the notations used throughout this work. In Section 3, the
governing equations of the CSEVP model are presented along with the technique used to characterize initial microstructures
using lattice curvatures. Section 4 develops the FFT implementation of the CSEVP model. The numerical implementation is
achieved using a discrete Fourier transform (DFT) technique. Section 5 describes the microstructure, elastic plastic properties
and test conditions to study the role of curvatures. In Section 6, the CSEVP DFTmodel is first benchmarked with respect to the
EVP FFT model (Lebensohn et al., 2012) for nc microstructures. Then, the role of initial lattice curvatures on the local and
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effective response of nc aggregates is studied. Section 7 provides a perspective on the predictive capabilities of the CSEVP DFT
model. Main conclusions of this study are summarized in Section 8 followed by references and appendix.

2. Notations

The following notations are used everywhere in this paper. A bold symbol denotes a tensor. When theremay be ambiguity,
an arrow is superposed to represent a vector: V

!
. The symmetric part of tensor A is denoted As. Its skew-symmetric or anti-

symmetric part is Aa. The tensor A.B, with rectangular Cartesian components AikBkj, results from the dot product of tensors A
and B, and A5B is their tensorial product, with components AijBkl. A: represents the trace inner product of the two second
order tensors A:B ¼ AijBij, in rectangular Cartesian components, or the product of a higher order tensor with a second order
tensor, e.g., A:B ¼ AijklBkl. The cross product of a second-order tensor A and a vector V, the div and curl operations for second-
order tensors are defined row by row, in analogy with the vectorial case. For any base vector ei of the reference frame:

ðA � VÞt$ei ¼
�
At$ei

�� V (1)

ðdiv AÞt$ei ¼ div
�
At$ei

�
(2)
ðcurl AÞt$e ¼ curl
�
At$e

�
: (3)
i i
In rectangular Cartesian components:

ðA � VÞij ¼ ejklAikVl (4)

ðdiv AÞi ¼ Aij;j (5)
ðcurl AÞij ¼ ejklAil;k: (6)
!

where ejkl is a component of the third-order alternating Levi-Civita tensorX. A vector A is associatedwith tensor A by using its
trace inner product with tensor X:�

A
!�

k
¼ �1

2
ðA : XÞk ¼ �1

2
eijkAij: (7)
In the component representation, the spatial derivative with respect to a Cartesian coordinate is indicated by a comma
followed by the component index. A superposed dot represents a material time derivative.

3. A couple stress elasto-viscoplastic model

In this section, the statistical component of the PMFDDM model, i.e. CSEVP model, is briefly recalled. For the complete
PMFDDM model one is directed towards the work of Taupin et al. (2015).

3.1. Kinematics

A polycrystalline crack/void free material (volume V) is treated as a heterogeneous body containing an arbitrary distri-
bution of line crystal defects e dislocations and disclinations ewithin the bulk of each granular domain and at GB interfaces.

The total displacement field u! is continuously defined everywhere in the domain. This allows for the definition of the total
distortion field U ¼ grad u! as the gradient of the displacement, giving the compatibility condition curlU¼ 0. The symmetric
and anti-symmetric components of the compatible (curl free) total distortion (U) are the compatible total strain e and rotation
u tensors, respectively. The rotation tensor can be represented in the form of a vector as u!¼ �1=2u : Xwhich is related to the
total displacement as u!¼ 1=2curl u!. The gradient of total rotation vector is the compatible total curvature k ¼ grad u!.

In presence of an ensemble of dislocations and disclinations, the total strain and curvature can be decomposed into elastic
and plastic components as,

e ¼ ee þ ep (8)

k ¼ ke þ kp (9)

where the superscripts ‘e’ and ‘p’ correspond to the elastic and plastic components, respectively.
The polar dislocation (a) and disclination (q) densities are defined as (deWit et al., 1970; deWit, 1973a, 1973b, 1973c),
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a ¼ curl ee � keT þ trðkeÞI ¼ �curl ep þ kpT � trðkpÞI (10)

q ¼ curl ke ¼ �curl kp (11)
Note that in the work of Nye (1953), the dislocation density tensor is obtained by neglecting the curl of the elastic/plastic
strain field in Eq. (10).

3.2. Elasticity

During elastic deformation under the action of traction ( t
!
) and moment (m!) boundary conditions (on surface S),

asymmetric force (s) and couple (M) stresses are generated.

t
!¼ s$n! (12)

m!¼ M$n! (13)

where n! is the normal to the S. In the absence of body forces and couples, the higher order equilibrium equation (Mindlin and
Tiersten, 1962) is:

div ss þ 1
2
div curl MD ¼ 0 or ssij;j þ

1
2
eijkM

D
kl;lj ¼ 0 (14)

where the superscripts s and D correspond to the symmetric and deviatoric components, respectively.
Assuming centrosymmetry everywhere in the domain, the Helmholtz free energy density is defined as (Upadhyay et al.,

2013): j ¼ 1=2ee : C : ee þ 1=2ke : A : ke; where A and C are elasticity tensors. The Cauchy and couple stresses are defined as
(Mindlin and Tiersten, 1962; Upadhyay et al., 2013; Toupin, 1962),

ss ¼ C : ee (15)

MD ¼ A : ke (16)
Elastic constant C is the well-known stiffness tensor from classical elasticity. Elastic constant A has a magnitude of the
order G(shear modulus) � (r2); r is a length scale measure. In the literature, its estimates are limited and sometimes differ by
an order of 10 in magnitude. Kr€oner (1963) proposed a magnitude of A ¼ Gb2 at the length scale of individual dislocations,
where b is the Burgers vector magnitude. The meaning of Kr€oners choice is that the Burgers vector magnitude is a plausible
characteristic length scale for the extent of areas where non-local effects arising from the presence of dislocations are sig-
nificant.Whereas, in recent works, a length scale of 0.05 nmwas proposed for Copper (Maranganti and Sharma, 2007) and 0.3
times the lattice spacing for a-iron (Seif et al., 2015). Taupin et al. (2015) proposed a multi-scale law for the magnitude of A. In
the present work, Kr€oner's estimate of A ¼ Gb2 is used to highlight the importance of curvatures.

3.3. Plasticity

Now let the heterogeneous crack/void free body undergo plastic deformation under the action of traction and moment
boundary conditions. This results in the evolution of statistical and geometrically necessary ensembles of defects. From a
meso scale perspective, this contributes to the evolution of plastic strain and curvature rates. In the present work the motion
of geometrically necessary ensembles of line crystal defects e described with the help of transport equations (Taupin et al.,
2015; Fressengeas et al., 2011) e and statistical ensemble of disclinations (Taupin et al., 2015) e described with the help of
couple stress based plastic curvature rate e is neglected. Evolution of statistical ensembles of dislocations is described using
the statistical plastic slip rate tensor (Lp) as,

Lp ¼
X
a

_gpama ¼
X
a

ma _g
p
0

�jss : maj
ta

�n

sgnðss : maÞ (17)

where the subscript a represents the slip system, ta is the critical resolved shear stress in the slip system a, n is the exponent! ! ! !
for the plastic slip rate.m ¼ b a5n a is the Schmid tensor where b a and n a are respectively the Burgers vector and normal
to the slip plane for slip system a. The plastic strain rate _ep is defined as the symmetric part of the plastic slip rate

_ep ¼ Lsp ¼
X
a

_gp
aPa (18)

! ! ! !

Pa ¼ 1=2ð b a5n a þ n a5 b aÞ is the symmetric slip orientation tensor.
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Temporal evolution of statistical dislocations results in a local change in the plastic curvatures. The plastic curvature rate
( _kp) is given as,

_kp ¼ �1
2
grad

�
Lap : X

�
¼ �1

2
grad

 X
a

_gpaQa : X

!
(19)

where Qa is the anti-symmetric orientation tensor 1=2ð b!a5n!a � n!a5 b
!

aÞ for slip system a and X is the third order Levi-
Civita permutation tensor. Plastic curvature rates similar to Eq. (19) have been proposed in the dislocation based Cosserat
(Forest et al., 1997) and micropolar (Mayeur et al., 2011) single crystal plasticity theories.

3.4. Characterizing GB interface using curvatures

The classical continuum approach to study polycrystalline materials is capable of capturing the differences in elastic and
plastic properties of each grain and their mismatch at the GB interface. With the couple stress continuum based approach it is
possible to capture a part of the initial microstructure by explicitly accounting for the GBmisorientation, plane orientation, its
symmetric/asymmetric nature, and tilt/twist nature. This is done by characterizing GBs using initial curvature fields kiniij .

As a first attempt to define kiniij , these are taken to be equal to the ratio of the variation of rigid body rotation Duini
i over a

distance Dxj across the boundary:

kiniij ¼ Duini
i

Dxj
(20)
Here Duini
i would depend on the difference in initial rigid body rotations of the grains across the boundary while the

magnitude of Dxj would correspond to the mesh resolution. This first approximation is in accordance with the definition of
compatible curvatures as the gradient of rotation vector defined in Section 3.1.

4. Fourier transform based couple stress elasto-viscoplastic formulation for heterogeneous materials

4.1. An extended periodic Lippmann Schwinger formulation for couple stress media

In the pioneering work of Moulinec and Suquet (1994, 1998), a classical continuum framework was adopted to obtain the
effective response of a composite material along a path defined by macroscopic Cauchy stresses and strains by solving the
local problem in an RVE. In this work, the classical framework is extended to account for couple stress continuum. Since this is
a new development, it is described in detail in the following.

It is assumed that all grains are perfectly bonded i.e. displacements, tractions and moments are continuous across GB
interfaces. Periodic boundary conditions are imposed along the microstructure reference directions. Let the total displace-
ment field ðu!ð x!ÞÞ be split into a mean field (U

!
) and a fluctuation field ~uð x!Þ. The total strain ðeð x!ÞÞ and curvature ðkð x!ÞÞ

fields can also be split into their volume averages E and K along with fluctuations in local fields ~eð x!Þ and ~kð x!Þ, respectively.

eð x!Þ ¼ E þ ~eð x!Þ
kð x!Þ ¼ K þ ~kð x!Þ (21)
Periodic boundary conditions imply that the fluctuating displacement ~uð x!Þ, is periodic on parallel surfaces. In order to
satisfy the equilibrium equations the traction and moment vectors i.e. s$n! andM$n!, respectively, have the same magnitude
but opposite direction for parallel surfaces.

Let Cο and Aο be the 4th order elasticity tensors of a reference linear medium. These are defined as the Voigt average of the
stiffness tensors, Ci and Ai, of all grains i in the polycrystal i.e. Cο ¼ 〈C i〉 and Aο ¼ 〈Ai〉. Although not proven to be the optimum
choice for the linear reference medium, Voigt averages are usually adopted for their simplicity and convergent behavior
(Lebensohn, 2001; Lebensohn et al., 2012). Recalling that the total strain and curvatures are defined as gradients of total
displacements, the Cauchy and deviatoric couple stresses at a material point x! can be written as,

ssijð x!Þ ¼ ssijð x!Þþ Cο
ijkluk;lð x

!Þ � Cο
ijkluk;lð x

!Þ (22)

D ! D ! 1 ο ! 1 ο !
Mij ð x Þ ¼ Mij ð x Þ þ 2
Aijklekmnun;mlð x Þ � 2

Aijklekmnun;mlð x Þ (23)
Defining the Cauchy stress polarization (tij) and couple stress polarization (mij) tensors as,
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tijð x!Þ ¼ ssijð x!Þ� Cο
ijkluk;lð x

!Þ (24)

! D ! 1 ο !

mijð x Þ ¼ Mij ð x Þ � 2

Aijklekmnun;mlð x Þ (25)

the local Cauchy and couple stresses can be redefined as,
ssijð x!Þ ¼ tijð x!Þþ Cο
ijkluk;lð x

!Þ (26)

D ! ! 1 ο !
Mij ð x Þ ¼ mijð x Þ þ 2
Aijklekmnun;mlð x Þ (27)
The polarization tensors indicate the fluctuation, from the volume average, of the local stress fields. Substituting (26) and
(27) in the equilibrium Eq. (14) gives

ssij;jð x!Þ þ 1
2
eijkM

D
kl;ljð x

!Þ ¼ Cο
ijkluk;ljð x

!Þ þ 1
4
eijkA

ο
klmnemopup;onljð x!Þþ tij;jð x!Þþ 1

2
eijkmkl;ljð x!Þ ¼ 0 (28)

!

Let a fictitious body force f be defined as,

fið x!Þ ¼ tij;jð x!Þ þ 1
2
eijkmkl;ljð x!Þ (29)

then the displacement can be defined as a convolution of the Green's function G and the fictitious body force as,
ukð x!Þ ¼
Z

Gki
�
x!� x!0�

fi
�
x!0�

d x!0
(30)

ο 1 ο
Defining Fijlnop ¼ 4eijkAklmnemop and substituting the displacement by the Green's function in the equilibrium Eq. (28) gives,

Cο
ijklGkq;lj

�
x!� x!0�þ FοijlnopGpq;onlj

�
x!� x!0�þ diqd

�
x!� x!0� ¼ 0 (31)

where d is the Dirac delta function and diq is the Kronecker delta. This equation represents a couple stress based extension of
the periodic Lippmann Schwinger equation where the Green's tensor Gijð x!� x!0Þ represents the displacement ui at point x!
due to a unit force fj at point x!0

arising from the local polarization of Cauchy and couple stress fields in a homogeneous
medium.

Replacing the index p by k, performing the Fourier transform and rearranging the terms gives the following expression for
the Green's tensor,

bGki

�
k
!� ¼

�
klkjC

ο
ijkl � koknklkjF

ο
ijlnok

��1
(32)

where the superscript ∧ represents the Fourier transform of a spatial function and k
!

represents a point in the Fourier space

whose magnitude is equal to the angular frequency. Taking the Fourier transform of the fictitious body force in Eq. (29) gives,

bf i� k!� ¼ ikjbtij�k!�� 1
2
eijkklkjbmkl

�
k
!�

(33)
Finally, the compatible local total strain and curvature are

eijð x!Þ ¼ Eij þ
1
2
FT�1

�
ikj
�bGik

�
k
!�þ bGki

�
k
!��bf k�k!�� (34)

kijð x!Þ ¼ Kij �
1
2
eiklFT

�1
�
kjkkbGlm

�
k
!�bf m� k!�� (35)

where FT�1 is the inverse Fourier transform operator. The terms associated with this operator are the fluctuating terms from
Eq. (21).

4.2. Iterative procedure

An Euler implicit time discretization scheme is employed to solve the local problem. The Cauchy and deviatoric couple
stresses at a material point x! at time t þ Dt are expressed as:
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ssðtþDtÞð x!Þ ¼ Cð x!Þ :
�
eðtþDtÞð x!Þ � epðtÞð x!Þ� _epðtþDtÞð x!ÞDt

�
(36)

MDðtþDtÞð x!Þ ¼ Að x!Þ :
�
kðtþDtÞð x!Þ � kpðtÞð x!Þ � _kpðtþDtÞð x!ÞDt

�
(37)
At the zeroth time step, initialization of the curvatures (elastic, plastic and total) can be done using two techniques: (a) let
the estimate of initial curvatures be equal to the initial elastic curvatures and neglect the plastic curvature history of the
material. Therefore, total curvatures are equal to the elastic curvatures. (b) Prescribe these initial curvatures as negative
plastic curvatures or ‘eigencurvatures’ (in the sense of eigenstrains). The total curvatures are initialized to zero and the elastic
curvatures are the outcome of the numerical procedure. The latter approach is chosen in this work for the following reasons:
(i) at the first iteration of the first time step, the couple stresses generated using the former approach do not respect equi-
librium condition, (ii) the eigencurvature approach computes the elastic curvatures that respect the kinematic conditions
associated with the evolving GB structure which is not the case with the former technique where initial elastic curvatures do
not evolve. The eigencurvature approach allows defining initial polar densities in a manner that is phenomenologically
consistent; it captures the GB defect content due to prior deformation. All the stresses and strains are initialized to zero.

After initialization, the solution algorithm follows steps similar to the EVP FFT model of Lebensohn et al. (2012). The first
step involves computing t and m. If e(i), 8ðiÞ, l(i) and fðiÞ are the guesses for strain, curvature, Cauchy stress, and couple stress,
respectively, at the iteration i then,

t
ðiÞ
ij ð x

!Þ ¼ l
ðiÞ
ij ð x

!Þ� Cο
ijkle

ðiÞ
kl ð x

!Þ (38)

m
ðiÞð x!Þ ¼ f

ðiÞð x!Þ� Aο 8
ðiÞð x!Þ (39)
ij ij ijkl kl
Green's tensor and the i þ 1 guess for the fictive body force in Fourier space are then computed using Eqs. (32) and (33).
These equations along with the polarization tensors in Eqs. (38) and (39) give the (i þ 1) guesses for compatible total strain
and curvature:

eðiþ1Þ
ij ðxÞ ¼ Eij þ

1
2
FT�1

�
ikj
�bGik

�
k
!�þ bGki

�
k
!��bf ðiÞk � k!�� (40)

ðiþ1Þ 1 �1
� b �!�bðiÞ�!��
8ij ðxÞ ¼ Kij � 2

eiklFT kjkkGlm k f m k (41)
The stresses can then be computed using Eqs. (36) and (37). However, such a direct computation does not ensure that the
constitutively obtained stresses fulfill the equilibrium conditions, thus taking a lot of iterations to converge.

In order to achieve a faster convergence, an augmented Lagrangian scheme proposed in the work of Michel et al. (2000,
2001) is employed. The original scheme based on classical continuum adjusts two strain and Cauchy stress fields such that
one strain field is compatible (e) (similar to the one in Eq. (34) but in classical elasticity) and one Cauchy stress field (l)
satisfies equilibrium (only the components related to Cauchy stresses in Eq. (28)). The other strain (e) and Cauchy stress (s) are
constitutively related. The iterative procedure, a non-linear NewtoneRaphson scheme, is designed such that the two strains
and two stresses converge to each other. Following convergence, the compatible strain field is constitutively related to an
equilibrated stress field. In the following, an extension of this augmented Lagrangian technique is employedwhere alongwith
the strains and stresses, constitutively related curvature (k) and couple stress (M) are adjusted to compatible curvatures (8)
and equilibrated couple stresses (f), respectively.

This procedure involves transforming the Cauchy and couple stresses, strain, curvature, and stiffness tensors A and C into a
new basis obtained using the Kelvin decomposition. For Cauchy stresses, strains and stiffness tensor C, a 6-dimensional basis
(B6) is typically used due to the symmetry of the former two tensors (Lebensohn, 2001; Dellinger et al., 1998). For the case of
couple stresses, curvatures and stiffness tensor A, which have 9 independent components (8 if deviatoric couple stresses and
curvatures are considered), a 9-dimensional basis (B9) is used. Detailed derivation for the Kelvin decomposition to obtain (B9)
basis is shown in Appendix A.

For each material point x!, the enhanced augmented Lagrangian scheme requires minimizing the residual Ri:
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The eigencurvatures are introduced at the first iteration of the first time step as plastic curvatures in Eq. (42) which are
incorporated in kl along with the elastic curvatures.

The 15 non-linear equations in (42) are solved using the NewtoneRaphson iterative procedure as follows:
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where the residual computed at (j þ 1) iteration of the NewtoneRaphson loop is used to obtain (j þ 1) guess for the stresses.
The inverse term is the 15�15 Jacobianmatrix obtained by taking the partial derivative of the residual with respect to Cauchy
and couple stresses gives the following expression for the Jacobian:
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where the terms associated with Dt, i.e. v_e
p
m

vss
l
, v _k

p
m

vss
l
and v _kpm

vMs
l
, are the tangent compliance in classical viscoplasticity, curvature based

compliance in classical continuum and couple stress based compliance in higher order continuum, respectively. Note that in
the present work we are only concerned in studying the nucleation of disclinations and not their evolution, the higher order
continuum compliance tensor v _kpm

vMs
l
is taken equal zero. Also, the contribution of v _k

p
m

vss
l
is neglected. Apart from the complexity of

the expression, its contractionwith the couple stress component of the residual in Eq. (42) results in a negligible contribution
to the Cauchy stress. This assumption also complements the Cauchy stress elastic constitutive relationship (15) which is
assumed to be independent of the elastic curvatures.

The critical resolved shear stress (CRSS) t0, which is a function of the stress dependent plastic strain, is taken as a function
of stress ts0ðepðsÞÞ ¼ ts0ðsÞ such that:

v_epi
vssj

zn _g0

X
a¼1

N ma
i m

a
j

ts0
�
ssðiþ1;jÞ�

 
jma$ssj

ts0
�
ssðiþ1;jÞ�

!n�1

(46)

wherema is the symmetric Schmid tensor Pa in basis B. Note here that the multiplicant associated with the partial derivative

of CRSS is omitted. Indeed this results in an approximate form of the Jacobian, but has a negligible effect on the convergence
rate (Lebensohn et al., 2012). Once convergence is achieved, the new guess for auxiliary Cauchy and couple stress fields is
given by,

lðiþ1Þð x!Þ ¼ lðiÞð x!Þþ C0 :
�
eðiþ1Þð x!Þ � eðiþ1Þð x!Þ

�
(47)

fðiþ1Þð x!Þ ¼ fðiÞð x!Þ þ A0 :
�
8ðiþ1Þð x!Þ � kðiþ1Þð x!Þ

�
(48)
! ! ! ! ! !
The iterations are repeated until normalized average differences between sð x Þ and lð x Þ,Mð x Þ and fð x Þ, eð x Þ and eð x Þ,
and kð x!Þ and 8ð x!Þ, are smaller than a threshold.

Higher order boundary conditions in the form of macroscopic total strain and curvature rate are imposed on the periodic
microstructure such that at time step t þ 1 the macroscopic strain and curvature are given as,

Eðtþ1Þ
ij ¼ EðtÞij þ _EijDt (49)

Kðtþ1Þ ¼ KðtÞ þ _K Dt (50)
ij ij ij
In addition to these, macroscopic Cauchy S and couple F stresses can also be imposed. These boundary conditions allow
for the simulation of pure tension/compression, pure shear, pure bending, pure torsion, creep (in tension, bending or torsion)
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and complex loading scenarios. Prescribing themacroscopic stresses requiresmodifying themacroscopic strain and curvature
at each iteration i þ 1 by the following:
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ijkl a
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ijkl b
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kl ðxÞ〉
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_KijDt (52)

where akl ¼ 1 and bkl ¼ 1 if components Skl and Fkl are imposed, respectively, and zero otherwise. A flow chart/block diagram
for the CSEVP FFT model is shown in Appendix C.
4.3. Gibbs phenomenon and its discrete Fourier transform based numerical correction

In the FFT approach, the continuous Fourier transform of a piecewise continuous function (say [) is approximated as a
discrete sum of a Fourier series defined using sine and cosine functions. The domain, in which the piecewise continuous
functions are defined, is divided into a grid of equidistant points, known as Fourier points, at which the governing equations
are solved.

If a local discontinuity exists in an otherwise piecewise continuous function [, using the FFT approach results in spurious
oscillations in b[ the vicinity of this discontinuity. The formation of these spurious oscillations is known as the Gibbs phe-
nomenon. In the context of present work, this phenomenon would be incurred in computing the strains (Cauchy stress) and
curvatures (couple stress) using Eqs. (34) and (35), respectively, due to discontinuous initial curvatures and inhomogeneous
elastic constants C at the interface.

The Gibbs phenomenon is demonstrated using two bicrystalline microstructures having crystals forming an asymmetric
mixed tilt and twist high angle GB (i) without initial curvatures and (ii) with initial curvatures. The bicrystal and associated
Euler angles are shown in Fig. 1(a) and (b). In both cases the inter Fourier point distance in all directions is 0.7252 nm, the
shortest distance used in this work. This gives large magnitudes of initial curvatures. An exaggerated estimate of initial
Fig. 1. (a) Microstructure of bicrystal with planar (b) mixed tilt and twist high angle GB, plotted along the GB normal direction. (c) Elastic curvature component
ke32 (N/micron) and (d) Cauchy stress s12 (MPa) plotted along line CD for bicrystal-b configuration, respectively, at 1.2% applied strain along GB normal using CFT
and DFT-I procedures. The thickness of gray lines is representative of the GB interface thickness i.e. number of Fourier points which are assigned the initial
curvature.
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curvatures is used to characterize the bi-crystal; the first and second neighbor Fourier points to the interface are assigned
three times the actual value of estimated curvatures. A detailed explanation on assigning the initial curvatures is given in
Section 5. Both bicrystals are loaded in uniaxial tension along the direction perpendicular to GB plane up to 1.2% strain while
disallowing plasticity. Gibbs phenomenon due to inhomogeneity in stiffness matrix C is found to be negligible compared to
the one introduced by initial curvatures. Focusing on the effect of latter, the evolution of ke32 and s12 in the direction
perpendicular to GB interfaces are shown in Fig. 1(c) and (d). The large spurious fluctuations confirm the occurrence of the
Gibbs phenomenon.

A correction to the Gibbs phenomenon is possible by replacing continuous Fourier transforms (CFTs) of partial derivatives
of field quantities with their discrete Fourier transforms (DFTs). The DFTs are obtained by Fourier transforming centered
difference approximation of the partial derivatives (Müller, 1998; Press et al., 2002; Berbenni et al., 2014; Lebensohn and
Needleman, 2016). In the present work, the DFTs of first and second order partial derivatives are of interest; the procedure
to obtain the 3-dimensional derivatives is detailed in Appendix B. Using Eq. (33) for the fictitious body force and defining a
modified Green's tensor bGijkl ¼ kjklbGikð k

!Þ, Eqs. (40) and (41) can be rewritten as:
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In Eqs. (53) and (54), continuous frequencies obtained from Fourier transforming first and second order partial derivatives
are replaced by their DFT counterparts defined by Eqs. (B.5) and (B.6). The modified Green's tensor, however, is computed
using the CFT procedure. This procedure, henceforth named as DFT-I, gave the largest reductions in Gibbs phenomenon as is
shown in Fig. 1(c) and (d). Using the DFT procedure for the modified Green's tensor (called DFT-2) resulted in additional
inaccuracies and therefore not used. Furthermore, stresses computed using DFT-I better respect local equilibrium than the
ones predicted using the CFT. This can be appreciated from the comparison of the norm of higher order equilibrium vector
ssij;j þ 1

2eijkM
D
kl;lj, shown in Fig. 2, predicted by the CFT and DFT-I techniques.

5. Simulation setup

5.1. Microstructure

The microstructure is a periodic Voronoi cube with 100 randomly oriented grains. It is discretized into a Fourier grid of
64 � 64 � 64 points; on average each grain has 2621 Fourier points associated to it. Fig. 3 shows the microstructure with
grains colored according to their Euler angles. Kinematic quantities and stress fields are studied along the line shown in
Fig. 3(b). For the sake of simplicity, the line is oriented along the y axis, in general though it is randomly chosen. The numbers
represent intersection of the line with interfaces (1, 2, 3, 5, 6, 9), grains protruding from the normal direction (4, 7, 8) and a
triple junction (10).

Initial curvatures are computed using Eq. (20). The rigid body rotation field is obtained from the Euler angles of grains
forming the boundary. The distance Dxj is assigned the inter-Fourier point distance in each direction. Three cases for GBwidth
are considered: (a) the first case corresponds to a classical continuum approach with no initial curvatures. The GB interface is
Fig. 2. Comparison of the equilibrium vector magnitude computed from CFT and DFT-1 approaches at 1.2% tensile strain along the line shown in Fig. 1(a) for
bicrystal-a configuration.



Fig. 3. Simulated microstructure with 100 randomly oriented grains and 64 � 64 � 64 Fourier points. The colors represent different grains. The stress and
kinematic fields are plotted along the line parallel to the y direction. Numbers indicate the points of intersection of the line with an interface. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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assumed to be infinitesimally thin along the bisector of two Fourier points belonging to different grains. This case is identified
as t0 as shown in Fig. 4. (b) In the second case, Fourier points that are immediate neighbors on either side of the GB are
attributed an initial curvature kiniij according to Eq. (20). The interface has a finite thickness dwith amaximumvalue of t1 along
any sample axis as shown in Fig. 4. (c) In the third case, second neighbor Fourier points are considered to be part of GB
interface whose largest thickness is equal to 3d. This is identified as the t2 configuration in Fig. 4. The corresponding initial
curvatures attributed to the GB are kiniij =3 in order to maintain the grain orientation across the boundary. Initial curvatures for
Fourier points in the vicinity of multiple GBs have an additive contribution from all the boundaries. For the microstructure
considered, the volume fraction occupied by the so-formed GBs are 0% for t0, 31% for t1, and 55% for t2. Finally, eigencurvatures
are defined as the negative of these initial curvatures.

Simulations are performed for different average grain sizes viz. 10 nm, 20 nm, 40 nm, 50 nm and 100 nm. Assuming that
each grain is cubic shaped and the inter Fourier point distances are same in each direction, then the latter are 0.7252 nm,
1.4504 nm and 2.9008 nm, 3.626 nm and 7.252 nm, respectively. From Eq. (20), the magnitude of initial curvatures strongly
depend on the values ofDxj corresponding to the inter Fourier point distance. For example, electron back scattering diffraction
techniques used to compute curvatures (Pantleon, 2008; Beausir and Fressengeas, 2013) typically have a resolution of a few
microns to a few tens of microns (recent advances have better resolution on the order of hundred nanometers (Landon et al.,
2008; Birosca et al., 2014)), while the resolution of automated crystal orientation mapping using transmission electron



Fig. 4. A 2-dimensional illustration of infinitesimally thin t0 (in red), thickness t1 ¼ d (in green), and thickness t2 ¼ 3d (in blue), interfaces in the discretized
Fourier grid consisting of evenly spaced Fourier points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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microscopy is a few nanometers (Rauch and V�eron, 2014). For the same microstructure, curvatures obtained from these two
techniques would have very different magnitudes. Assuming that the source of the curvatures is unknown it can be justified
to use the full magnitude of kiniij as shown in Eq. (20) or a fraction of it to characterize GBs. In the present work, initial mi-
crostructures are characterized with the full magnitude of kiniij unless mentioned otherwise.
5.2. Material properties

All the microstructures are attributed material properties of FCC Cu at room temperature. The components of C in Voigt
notation are: C11 ¼170.2 GPa, C12 ¼ 114.9 GPa and C44 ¼ 61.0 GPa (Lebensohn et al., 2012; Simmons and Wang, 1971). For the
Cauchy stress visco-plastic constitutive relationship in Eq. (18), the reference plastic shear rate is taken as _g0 ¼ 0:1=sec and
the power exponent is n ¼ 10. An FCC material has 12 {111}<110> slip systems available. An elastic-perfectly plastic strain
response is modeled. An arbitrarily chosen CRSS of 330 MPa is used for all the simulations. Stiffness matrix A is assumed to
have an isotropic form. Using Kr€oner's (1963) estimate, in Voigt notation the diagonal values of A are all equal to
Gb2 ¼ 3.967�10�9N. Since A is a diagonal matrix with one independent eigenvalue, it is invariant to rotational trans-
formations. Therefore, Aο ¼ 〈Ai〉 ¼ A. This renders the polycrystal elastically homogeneous in A, thus having no contribution
to couple stress polarity; this will help highlight the contribution of initial curvatures.
5.3. Boundary conditions

The boundary conditions are chosen to mimic a uniaxial tensile test on dog bone shaped samples. The microstructure is
loaded along the y direction. A macroscopic strain rate of _E22 is imposed along with a no shear condition i.e.
_E12 ¼ _E13 ¼ _E23 ¼ 0. Studies are performed for two strain rates, _E22 ¼ 1s�1 and _E22 ¼ 0:001s�1. The material is loaded to
E22 ¼ 2% strain in 100 steps for both these strain rates. Surfaces normal to x and z directions are traction free, therefore
macroscopic Cauchy stress components S11 ¼ S33 ¼ 0. These surfaces are allowed to bend, therefore, the macro couple stress
componentsF12¼F32¼ 0. In a dog bone sample, the arms are clamped typically constrained such that the gauge area doesn't
twist _K22 ¼ 0 or bend in the direction normal to y such that _K21 ¼ _K23 ¼ 0. Also, it is assumed that the traction free surfaces in
the gauge area do not twist, therefore _K11 ¼ _K33 ¼ 0. Finally, surfaces normal to directions x and z are assumed to not bend
implying that _K13 ¼ _K31 ¼ 0.

There are two possibilities for imposing the boundary conditions. The first one is to impose the eigencurvatures and allow
the local stresses to plastically relax freely before imposing the load. This approach is typically followed for the cases when
eigenstrains are imposed. The extent of resultingmicrostructure evolution is governed by the stresses generated and duration
of the relaxation process. This will be different for different magnitudes and distributions of initial curvatures. In the present
work the intention is to compare the loading response with the same initial grain orientations and plastic history. For this
reason we propose to use the second possibility which is to skip the intermediate relaxation step and impose the
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eigencurvatures and loading conditions at the same instant. This does not prevent the stress relaxations to occur at the initial
steps of loading, but ensures that the microstructure configuration before loading is always the same.
6. Results

6.1. Effects of a higher order model: role of curvatures in accommodating plasticity

The CSEVP DFT-I and EVP FFT models are now applied to study the local and effective mechanical response of the
microstructure without initial curvatures i.e. t0 configuration. The macroscopic Cauchy stress v/s strain response for the
10 nm, 20 nm, 30 nm, 50 nm and 100 nm microstructures are found to be very similar. Fig. 5 shows the VM Cauchy stress vs.
strain plots predicted by both the models for the 20 nm microstructure for the two strain rates.

Both themodels predict a similar strain rate dependence. Interestingly, the CSEVP DFT-I model predicts a size independent
response. This is because the magnitude of local couple stresses generated are not sufficiently large to affect the Cauchy stress
through the equilibrium equation, even for the case of the 10 nm grain size microstructure. To understand this, consider the
first equilibrium Eq. (14) s11,1 þ s12,2 þ s13,3 þ 0.5(M31,12 þ M32,22 þ M33,32 � M21,13 � M22,23 � M23,33). Neglecting all the
negative signs, assigning couple stress components their globally maximum value and all the Cauchy stresses their global
minimum value. It is found that the contribution of couple stresses to the equilibrium equation is 10% for this hypothetical
case. Note that the global maximum in couple stress magnitude occurs uniquely at one Fourier point close to an interface
where the Cauchy stresses are significantly larger than their global minimumvalue. Therefore, although the grain size effect is
captured by the CSEVP DFT-I model, it has a negligible effect on the macroscopic response.

The models differ in their prediction of the effective elastic moduli and equivalent strain at the end of loading. Focusing on
the elastic response, CSEVP DFT-I always predicts a larger elastic modulus. Furthermore, for a lower applied strain, EVP FFT
predicts a larger equivalent strain than CSEVP DFT-I. Furthermore, these differences are found to be relatively similar for all
the grain sizes studied. The effect of macroscopic couple stresses and curvatures on the VM Cauchy stress vs equivalent total
strain response is found to be negligible for all the different grain sizes. Then the origin of these differences should occur at the
microscopic level.

Fig. 6(a) and (b) show the plot over line AB (from Fig. 3) and the distribution of elastic and total strain along the loading
direction for the microstructure loaded at 1/s predicted by the CSEVP DFT-I and EVP FFT models at 0.37335% equivalent strain
(an average between the equivalent strains predicted by EVP FFTe 0.003726e at E22¼ 0.0038 and by CSEVP DFT-Ie 0.003741
e at E22 ¼ 0.004). The histogram reveals two very sharp peaks with overlapping total and elastic strains. The average value of
these strains corresponds to their volume averaged (macroscopic) counterparts. Similar sharp peaks are obtained for the
shear stresses with their average at zero, in accordance with the BCs. These results imply that for CSEVP DFT-I to obtain the
same equivalent strain at E22 ¼ 0.004 as predicted by EVP FFT at E22 ¼ 0.0038, the former model should predict a relatively
lower magnitude of average strain components in the transverse directions with respect to the latter model. At applied
E22 ¼ 0.004, CSEVP DFT-I predicts E11 ¼ E33 ¼ �0.001612, whereas at E22 ¼ 0.0038 EVP FFT predicts E11 ¼ E33 ¼ �0.001789.
Consequently, this gives a smaller effective transverse/axial strain ratio for CSEVP DFT-I compared to EVP FFT. According to the
classical theory of elasticity, for an FCC material such a difference can only occur if the Poisson's ratio is modified. However,
since the elastic constants are always kept the same for both the models, therefore this change in the transverse/axial strain
ratio should be a result of the higher order framework.
Fig. 5. Comparison of VM Cauchy stress vs equivalent total strain curves predicted for t0 microstructure by the EVP FFT and CSEVP DFT-I methods for strain rates
_E22 ¼ 0:001=s and _E22 ¼ 1=s upto a total strain E22 ¼ 2%. The response is same for all the grain sizes studied.



Fig. 6. Comparison between EVP FFT and CSEVP DFT-I using plots over line AB for (a) e22 and ee22 , (c) k
e
32 , (e) s

s
22 . (b), (d) and (f) show their respective histograms

for the 20 nm microstructure loaded to 0.4% strain at _E22 ¼ 1=s.
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At the first iteration of the first time step, the applied strain results in formation of local Cauchy stress polarization field
within each grain. Gradients in Cauchy stress polarization field are generated across the GB interface due to the elastic in-
homogeneity of the polycrystal. On the other hand, the polarization field in couple stresses is uniformly zero everywhere in
the microstructure due to the isotropic form of A (Eq. (A.7)). Then the differences in elastic moduli could arise from two
possibilities (i) formulation of Green's tensor (32) used in Eqs. (53) and (54), and (ii) Cauchy stress polarization resulting in
generation of the compatible total curvatures. The first term in Eq. (32) corresponds to the Green's tensor in classical elasticity
formulation. The second term in Eq. (32) is associated with the higher order elasticity tensor Fο (dependent on Aο) and two
additional frequencies which introduce a length scale dependence. As the grain size reduces, the second term in Eq. (32) has
an increasingly significant effect on the magnitude of modified Green's tensor G in Eq. (53) with respect to its classical
description. However, since the macroscopic elastic modulus remains the same for all grain sizes the contribution of this term
to both compatible strains and curvatures should be negligible. Then a significant contribution towards accommodating the
Cauchy stresses would be through the generation of compatible total curvatures from Eq. (54).

Fig. 6(c) shows the plot over line AB for elastic and total compatible curvatures generated at 0.4% strain. As expected in the
elastic regime, the total and elastic curvatures are equal. The fluctuations about the imposed macroscopic value of K32 ¼ 0 are
much larger in the vicinity of a GB or TJ compared to grain interiors. Note that the fluctuations seemingly occurring in grain
interiors are due to their proximity to a GB. During loading, local Cauchy stress polarizations generated across GB interfaces
result in the generation of local compatible elastic curvatures. These local curvatures induce a transient, and fully recoverable,
change in the local elastic rotations. This predominantly occurs in the vicinity of the GB and can be interpreted as a transient
change in GB misorientation, thus accommodating a part of the applied load.

Relatively larger values of Cauchy stresses predicted by CSEVP DFT-I (see Fig. 6(d)) for the same equivalent strain result in
earlier yielding in comparison to EVP FFT. At 0.8% equivalent total strain, CSEVP DFT-I predicts the equivalent plastic strain to
be 0.03646%. This is 65% higher than the one obtained using EVP FFT (0.02209%). Interestingly though, at 1.31% equivalent
total strain the VM plastic strain predicted by CSEVP DFT-I (0.1962%) is lower than the one obtained using EVP FFT (0.1974%)
for the same VM Cauchy stress of 920 MPa. This difference continues to increase till the end of loading where the VM Cauchy
stress predicted by both the models is the same (986.6 MPa) but the VM plastic strains are 0.7303% and 0.7393%, respectively,
for CSEVP DFT-I and EVP FFT. This is because part of the Cauchy stresses are accommodated by elastic and plastic (following
on-set of plasticity) curvatures resulting in a relative reduction of the accumulated VMplastic strain predicted by CSEVP DFT-I.



Fig. 7. Couple stress norm jjMjj histograms with (a) linear and (b) semi-logarithmic axes for the 20 nm microstructure loaded from E22 ¼ 0%e2% strain at _E22 1/s.
Each histogram is computed using 256 bins, taking values from every Fourier point in the domain.
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Fig. 7 shows the evolution of distribution of local couple stress norm (jjMjj) during deformation of the 20 nm micro-
structure loaded at a rate of 1/s. In the elastic regime, the distribution is skewed right i.e. the peak has a right shoulder. The
intensity remains the same in the elastic regime, however, the variance increases. This is due to the elastic inhomogeneity of
tensor Cwhich locally contributes to the couple stresses through the higher order equilibrium condition. Following the onset
of plasticity, mean and variance of couple stress norm continue to increase, however, now the intensities increase too.
Furthermore, a distinct secondary peak with a lower intensity begins to appear. The magnitudes of couple stresses
contributing to these secondary peaks are exclusively found in the neighborhood of GBs and TJs.

With further deformation the mean value of jjMjj appears to converge to a threshold. This is because couple stresses are
generated as a direct consequence of local perturbations of Cauchy stresses and, therefore, depend on their evolution; as the
latter converges to a threshold value, the former follows it. At the end of loading, the right shoulder evolves into multiple
shorter peaks which appear to converge into a distinct secondary peak. The incompatibility of slip across the GBs results in
accumulation of plastic curvature in their vicinity resulting in the formation of polar dislocations and disclinations (shown in
Fig. 8). In addition to elastic curvatures due to lattice mismatch across the GB, the generation of these defects contributes to
the local elastic curvatures and hence the couple stresses. These couple stresses contribute to the formation of the second
peak. For the cases where VM Cauchy stress approaches its saturation value, for examplemicrostructures loaded at 10�3/s, the
increase in intensity of the primary peak in jjMjj (not shown here) is found to reduce and the secondary peak tends to
assimilate into the primary peak forming the right shoulder originally seen in the elastic regime. This indicates that with
larger plastic deformation the grain interiors observe an increase in magnitude of couple stresses and curvatures faster than
those in the vicinity of GBs where Cauchy stresses have saturated.

Fig. 8(a) shows the comparison of norm of density of polar dislocations jjajj generated for the 20 nmmicrostructure loaded
to E22 ¼ 2% strain at 10�3/s. The largest percentage difference in jjajj predicted by both models is 16.667%, indicating that
plastic strains have a dominant contribution to polar dislocation density over plastic curvatures. However, this difference is
non-negligible and noting that CSEVP DFT-I predicts a lower jjajj than EVP FFT, it underlines the importance of plastic cur-
vatures in reducing long range stress inducing polar dislocations with the formation of polar disclinations. Fig. 8(b) shows the
polar disclination density generated due to the accumulation of plastic curvatures (from Eq. (11)). As can be expected, local
maxima in polar disclination densities exist in the vicinity of GBs. Non-zero polar disclination densities are also found in grain
interiors. This indicates that sub-grain boundaries must be forming due to plastic curvature accumulation in grain interiors.
This result in combination with the macroscopic response shown in Fig. 5 strongly indicate that disclination nucleation is a
possible mechanism to accommodate stresses in the medium.

6.2. Role of initial GB curvatures on local and effective mechanical response of nc microstructures

In the previous section it was seen that accumulation of plastic strain and curvature results in the increase of polar defects
in vicinity of GBs and TJs. In this section, the effect of presence of these polar defects, captured through initial curvatures, on
the mechanical response of nc materials is studied. The study is performed for the three configurations t0, t1 and t2 described
in Section 5.

Fig. 9(a) and (b) show the comparison between VM Cauchy stress and equivalent strains obtained for the t0, t1 and t2
configurations of 20 nm and 40 nmmicrostructures, respectively, for two loading rates. For all the cases studied, the softening
effect is the highest for the t1 configuration followed by t2 while the t0 configuration has negligible softening. This is because
the t1 configuration, which has a three times higher magnitude of initial curvatures in comparison with t2, results in the
generation of local Cauchy stresses with larger magnitudes. This results in earlier initiation of plasticity in the t1 configuration.
The macroscopic effect of this is a softer response for the t1 configuration in comparison with the t2 configuration.
Furthermore, magnitudes of initial curvatures for both t1 and t2 configurations are two times larger in the 20 nm



Fig. 8. (a) Comparison of norm of polar dislocation density jjajj predicted by CSEVP DFT-I and EVP FFT, and (b) norm of polar disclination density jjqjj predicted by
CSEVP DFT-I for the 20 nm microstructure loaded to E22 ¼ 2% at 10�3/s.

Fig. 9. Comparison of VM Cauchy stress vs equivalent strain curves predicted for t0, t1 and t2 microstructures with average grain size (a) 20 nm and (b) 40 nm for
strain rates _E22 ¼ 0:001=s and _E22 ¼ 1=s.
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microstructure than in the 40 nm microstructure. Hence, for both t1 and t2, the macroscopic response is softer for the 20 nm
microstructure in comparisonwith the 40 nmmicrostructure. Since bothmicrostructures are loaded to the samemacroscopic
strain but at different loading rates, the relaxation of local Cauchy stresses generated from initial curvatures occurs at different
rates for each configuration. This results in a variation in the spread in macroscopic Cauchy stress saturation values between
t0, t1 and t2 configurations for the same microstructure loaded at different rates. While for the t0 configuration, the strain rate
sensitivity effect does not vary with grain size, there are some variations observed for the t1 and t2 configurations. For the
20 nm and 40 nm microstructure the difference in macroscopic Cauchy stress at E22 ¼ 2% is 430.4 MPa and 478.8 MPa,
respectively. From these results, it can be deduced that the spread in macroscopic Cauchy stress saturation values increases
with decreasing grain size and strain rate.

Inhomogeneous distribution of eigencurvatures results in generation of local fluctuations in couple stresses which in turn
result in Cauchy stress fluctuations in order to maintain the local equilibrium. Fig. 10(a) and (b) show the plot over line AB
from Fig. 3 of s22 at the first time step for t0, t1 and t2 configurations loaded at 1/s and 0.001/s. For a given inter Fourier point
distance, the magnitude of Cauchy stress fluctuations is strongly influenced by the magnitude and distribution of GB cur-
vatures. For both the loading rates, these fluctuations have the highest amplitude for the t1 configuration. Furthermore, with
decreasing inter Fourier point distance, or average grain size, the role of strain rate on the local Cauchy stress fluctuations
becomes increasingly important.

Fig. 11 compares the grain-averaged plastic shear from a randomly selected grain during loading (the same grain is used
from all configurations). Without initial curvatures, the plastic activity is governed by the crystallographic orientation of the
grain as seen in Fig. 11(a) for the t0 configuration. However, Fig. 11(b) and (c) show an earlier initiation of plasticity in the t1
and t2 configurations due to the Cauchy stresses generated from the initial curvatures. Moreover, for the t1 configuration,
additional slip systems are activated. Note that the amount of plastic shear generated is governed by the power law in Eq. (17).
This law is derived assuming continuous shearing events in large crystals and may not be appropriate to describe discrete
dislocation or GB plasticity events that are typically observed in nc materials (Li et al., 2009; Van Petegem et al., 2013).



Fig. 10. Plot-over-line AB from Fig. 3 of Cauchy stress ss22 for t0, t1 and t2 loaded at 1/s along with t1 loaded at 0.001/s at the initial time step for (a) 20 nm and (b)
40 nm microstructures.

Fig. 11. Averaged plastic shear from a randomly chosen grain in the 20 nm microstructure for the t0, t2 and t1 configurations.
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Fig.12(a) and (b) shows the plot over line AB from Fig. 3 of s22 at 0.8% and 2% applied strains, respectively, at a rate of 1/s for
the 20 nm t0, t1 and t2 configurations. In conjunctionwith Fig. 11, at 0.8% applied strain, plastic accommodation for t1 and t2 is
found to be governed dominantly by the local Cauchy stress fluctuations induced via initial GB curvatures. At 2% strain, the
Cauchy stress evolution for t2 configuration is found to be closer to the plastic anisotropic response. However, for the t1
configuration, Cauchy stresses persistently evolve as a function of GB neighborhood. This is also reflected in the different
magnitudes of slip activity for the three configurations in Fig. 11.

For the 20 nm t1 configuration, the large local Cauchy stresses generated result in an unstable initial nc microstructure
configuration. Suchmagnitudes and distributions of polar defects (captured through eigencurvatures) are unlikely to occur in
these materials. One way to stabilize the response of the 20 nm t1 configuration is to take different fractions of initial cur-
vatures as the negative eigencurvatures as discussed in Section 5.1. The macroscopic VM Cauchy stress vs strain response,



Fig. 12. Plot-over-line AB from Fig. 3 of Cauchy stress ss22 for t0, t1 and t2 loaded at 1/s to (a) E22 ¼ 0.8% and (b) E22 ¼ 2.0% strain for the 20 nm microstructure.
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local Cauchy stress plot-over-line AB at 2% applied strain and slip activity for four different fractions of the initial curvature for
20 nm t1 configuration are shown in Fig. 13. As the magnitude of eigencurvatures decreases, the local and macroscopic
mechanical response converges towards the plastic anisotropic response. Interestingly, the macroscopic response of 20 nm t2
configuration (Fig. 9) and average shear evolution (Fig. 11) follow a similar trend as the t1 0:4kini configuration, however, the
local Cauchy stress (Fig. 12) evolution is different. This indicates that the magnitude and distribution of initial curvatures is
crucial in capturing the local stress state of the medium that governs the activation of plasticity mechanisms in nc materials.

Fig. 14(a) shows the polar dislocation densities for the t0, t1 and t2 configurations. Plastic strains are found to have a
dominant contribution to the polar dislocation densities in comparisonwith plastic curvatures. This is also indicated through
the close match in the trends, although the magnitudes of these densities are different for the three microstructure con-
figurations (highest to lowest in the order t1, t2 and t0). This indicates that plastic anisotropy governs the evolution of polar
dislocation densities. This match in the trends indicates that plastic anisotropy governs the evolution of polar dislocation
densities. This is to be expected since the plastic strain evolution is modeled as a function of the Schmid tensor in Eq. (17), and
as mentioned earlier it may not be appropriate for modeling nc plasticity.

Plastic curvatures generated due to dislocation activity result in the generation of polar disclination densities. These are a
consequence of dislocation interactions with GBs; note here that these are not numerical artifacts such as the ones arising
from prescribing initial curvatures. Comparing Figs. 9, 12 and 14(b), it is found that the decrease in average values of Cauchy
stresses for the t1, t2 and t0 microstructure is related to an increase in both polar dislocation and disclination densities.
Combined nucleation of polar disclinations and dislocations could be a potential mechanism to accommodate plasticity in nc
materials.
7. Discussion

7.1. Curvature based description of GBs

In applications of classical continuum crystal plasticity models to nc materials, GB interfaces were treated as a separate
phase from grain interiors. For example, following a pressure dependent response based on Drucker type yield criterion (Jiang
andWeng, 2004) or Mohr Coulomb type yield criterion (Lebensohn et al., 2007; Bringa et al., 2005). In the present work, GBs
and grain interiors are considered as the same phase respecting the same higher order continuum equilibrium and consti-
tutive laws.

The curvature based characterization of the GB has the potential for reinforcing the synergy between FFT based ap-
proaches and orientation mapping techniques which is why they were initially designed. The initial curvatures can be taken
as an input directly from technique based on electron back scattering diffraction (Pantleon, 2008; Beausir and Fressengeas,
2013). Prior to this, however, it is important to tackle the problem of appropriately computing the magnitude and distri-
bution of these curvatures in nc materials.

Meso-scale GBs are typically treated as singular interfaces and are traditionally modeled with the help of surface dislo-
cations and disclinations (Frank,1950; Bilby et al., 1955; Li, 1972). In reality, however, the transition from one grain orientation
to another is a gradual change across a region of finite thickness. Capturing the non-singularity of the GB region requires
surrendering the concept of surface dislocations and disclinations by fulfilling tangential continuity conditions on the elastic/
plastic strains and curvatures and their rates (Fressengeas et al., 2012) along the GB interface. Treating these tangential
continuity conditions, however, is beyond the scope of the present work. Therefore, characterizing GB interfaces using the
technique described in Section 3.4 entails the presence of surface defects.



Fig. 13. Comparison of different fraction of initial curvatures taken as eigencurvatures for the 20 nm t1 configuration loaded at _E22 ¼ 1=s: (a) VM Cauchy stress vs
strain response (b) Plot-over-line AB from Fig. 3 of Cauchy stress ss22 at E22 ¼ 2%. Average plastic shear in a randomly chosen grain for eigencurvatures equal
negative of (c) 0.2 kini, (d) 0.4 kini, (e) 0.6 kini and (f) 0.8 kini.
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7.2. GB structure based local stresses and slip activity

Characterizing the initial microstructure using GB curvatures results in the generation of local Cauchy stresses in the
vicinity of these GBs. These stresses are different from those generated due to the crystallographic orientation of grains under
the action of applied loads. As a consequence, dislocations may nucleate on slip systems which are crystallographically not
favoredwith respect to the applied load. Furthermore, themagnitude of these stresses depends on themagnitude of initial GB
curvatures. This could help explain why the nucleation and propagation of dislocations occurs in a very few grains within a
grain family of the same crystallographic orientation.

The macro scale “softening” effect predicted by the present model is also a function of the magnitude and distribution of
initial GB curvature. As the grain size increases (i.e. the inter Fourier point distance is increased while keeping their number
constant), themagnitude of initial GB curvatures decreases. Consequently themagnitude of local Cauchy stresses are reduced.



Fig. 14. Log normal plot-over-line AB from Fig. 3 of (a) jjajj (mm�1) and (b) jjqjj (m�2) for t0, t1 and t2 loaded to 2% strain at a rate of 1/s for the 20 nm
microstructure.
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Macroscopically, this results in a lower strain rate sensitivity and reduced softening effect. In other words, the role of cur-
vatures in determining the local and macroscopic stress state becomes crucial when the average grain size of nc materials are
of the order of the critical size below which the inverse Hall-Petch effect is observed (Kumar et al., 2003; Dao et al., 2007;
Schiøtz and Jacobsen, 2003; Vliet et al., 2003; Schuh et al., 2002).
7.3. Prospective work

In the present work, the importance of characterizing initial microstructures using lattice curvature was highlighted,
however, there are several other important factors that need to be addressed before expecting a reliable prediction of the
mechanical behavior of nc materials. A few of the crucial ones are listed in the following:

(1) Couple stress constitutive relationship and incompatibility: the influence of elastic curvatures and couple stresses is
highly dependent on the elastic constant A. In this work, it is assumed to be isotropic linear elastic (Upadhyay et al.,
2013) and estimated as A ¼ Gb2. However, an accurate value for this constant is yet to be determined. Increasing (or
decreasing) the magnitude of A from Gb2, while using the same magnitude of initial curvature, will increase (or
decrease) the magnitudes of Cauchy stresses generated. Thus, producing an increased (or decreased) “softening” effect.

In order to capture the non-local behavior of GBs, it is important to first appropriately distinguish between compatible and
incompatible components of elastic curvatures and account for the cross terms in the elastic constitutive relationship
(Upadhyay et al., 2013).

(2) Boundary conditions: The CSEVP DFT-I model allows prescribing higher order BCs in the form of curvature and couple
stresses alongwith the Cauchy stress and strain BCs. These can be used to study the effect of bending/torsion alongwith
complex mixed boundary conditions on the local and effective response of polycrystalline materials. However, special
care must be taken when prescribing higher order boundary conditions on the periodic microstructure. For example,
the displacements resulting from prescribing curvatures on the boundaries of a microstructure are non-homogeneous
and their consequence on periodic representative microstructures needs to be better understood (Forest and Trinh,
2011).

(3) Mechanism based plasticity: the transport of dislocations and disclinations should be incorporated to study interplay
between diffusion related and stress driven GB and dislocation based mechanisms. Prior to this, however, the physical
understanding of disclination mobility needs to be addressed.

(4) Disclination based understanding of GB mechanisms: The CSEVP DFT-I approach allows explicit kinematic charac-
terization of GBs using disclinations in addition to dislocations. Its application in the present work has highlighted that
the nucleation of both polar disclinations along with dislocations could result in further lowering of Cauchy stresses
than from just dislocation based model. At the fine scale, Fressengeas and co-workers (Taupin et al., 2013; Fressengeas
et al., 2014) have shown that capturing the appropriate dynamics of GBs requires going beyond the conventional
dislocation based approach to include disclinations. Loosely supporting these simulations are a scant collection of
experimental observations of disclinations in the vicinity of GBs and TJs (R€osner et al., 2011; Murayama et al., 2002).
The disclination based characterization of GBs needs to be rigorously pursued.

(5) Material specific plasticity: Mechanisms based on material properties such as the stacking fault energy, should be
appropriately incorporated. For example, the quantized crystal plasticity model of Li et al. (Li et al., 2009) can be
incorporated for the initial stages of deformation in some nc FCC materials, while for later stages when dynamic grain
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growth is activated in some materials, the Schmid law criterion can be used for grains above a certain grain size (Van
Petegem et al., 2013).

(6) Incorporating strain gradient plasticity: The CSEVP DFT-I model falls in a general category of higher order crystal
plasticity models (Lebensohn and Needleman, 2016; Acharya and Bassani, 2000; Forest et al., 2000; Gurtin, 2002;
Clayton et al., 2006; Ma et al., 2006; Gerken, 2007) and should be extended to account for strain gradient plasticity
effects in order to appropriately capture the local microstructure, polar defect content and hardening behavior of nc
materials.

However, from a kinematic point of view the purely strain gradient plasticity framework is unable to handle curvature
incompatibilities at the interface. These can be treated using a curvature basedmodel such as the one proposed in the present
work or a generalized distortion gradient plasticity model such as the proposed by Acharya and Fressengeas (Acharya and
Fressengeas, 2012) that accounts for both strain and curvature incompatibilities.

8. Conclusion

In the present work, the CSEVP DFT-I model is developed to highlight the role of lattice curvatures on the meso and macro
scale mechanical response of nc materials. The CSEVP problem involves solving a couple stress continuum based elasto-
viscoplastic problem for periodic RVEs. A couple stress based Green's function formulation is proposed to analytically
solve this problem. Its numerical formulation uses the DFT-I technique which is a combination of continuous and discrete FFT
approaches. This is developed to stabilize the Gibbs oscillations arising from discontinuous curvature fields.

The CSEVP DFT-I model is then applied to nc RVEs of different grain sizes. The GBs in the initial microstructure are either
treated as singular interfaces or characterized using a curvature based approach. The main findings from this study are: (1)
Elastic curvatures accommodate a part of the Cauchy stresses generated during loading, although elastic and plastic strains
play a dominant role. (2) At the meso scale, GB lattice curvatures could lead to the generation of localized stresses driving
plastic activity on slip systems that are crystallographically not favored under the action of applied stresses. (3) At the macro
scale, this results in the size and strain rate dependent “softening” effect, i.e. inverse Hall-Petch effect that is characteristic of
fine grained nc materials. (4) The combined effect of generating dislocations and disclinations could result in significant
lowering of local stresses, and capturing these effects requires a higher order model accounting for curvatures and couple
stresses in incompatible media.
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Appendix A. Kelvin decomposition of an elasticity tensor

In this section, the basis tensors obtained from the Kelvin decomposition of the elasticity tensor A is developed. The
original methodology for the classical elastic framework is proposed in the work of Desmorat and Marull (Desmorat, 2009;
Marull et al., 2013), to which the interested readers are directed. In the following, the superscripts D and e for the deviatoric
couple stress and elastic curvatures tensor are dropped.

Appendix A.1. Kelvin decomposition in couple stress theory

The couple stress elastic constitutive law relates the generally asymmetric and deviatoric couple stresses and elastic
curvatures. Therefore, the equivalent Kelvin and Voigt vector and tensor representations will have 9 components, in lieu of 6
for the classical elasticity (Desmorat, 2009) case.

The elasticity fourth rank tensor A (the corresponding Voigt matrix representation is [A]) has eigenvalues F(I) and cor-
responding second rank symmetric eigentensors e(I) (with eigenvectors beðIÞ) solutions of the eigenproblem

A : eðIÞ ¼ FðIÞeðIÞ; eðIÞ : eðJÞ ¼ dIJ

½A�beðIÞ ¼ FðIÞbeðIÞ; beðIÞ$beðJÞ ¼ dIJ
(A.1)
The eigenvalues F(I) can at most attain nine different values. The extended Kelvin decomposition of the elasticity tensor A
is then given as

A ¼
X9
I¼1

FðIÞeðIÞ5eðIÞ⇔½A� ¼
X9
I¼1

FðIÞbeðIÞ5�beðIÞ�T (A.2)
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While a family of nine orthogonal eigentensors e(I) is always existing, some of the eigenvalues can be repeated e making
the family of eigentensors, non-uniquee depending on thematerial symmetry. The terms of identical moduliF(I)¼FK can be
conveniently grouped as,

A ¼
XN�9

K¼1

FKPK QK ¼
X

I=FðIÞ¼FK

eðIÞ5eðIÞ (A.3)
The projectors QK are unique for a given elasticity tensor A and they naturally lead to the definition of Kelvin couple
stresses,

MK ¼ QK : M (A.4)
For a given material symmetry, the above equation defines the Kelvin couple stress MK as the projection of the couple
stress tensor on the Kth Kelvinmode in a unique and objective manner. If the same projection is made for the elastic curvature,
i.e. kK ¼ QK : e, the elasticity law M ¼ A:k is equivalent to

MK ¼ FKQK cK (A.5)
Appendix A.2. Kelvin decomposition for isotropic symmetry

Due to limited knowledge on the symmetries of the elasticity tensor A, the eigenvectors and tensors related to the couple
stresses and elastic curvatures are developed in the case of isotropic symmetry.

Let the couple stresses and elastic curvatures be written in the Voigt notation as follows:

bM ¼ �Mxx;Myy;Mzz;Myz;Mxz;Mxy;Mzy;Mzx;Myx
�T

bk ¼ �kxx; kyy; kzz; kyz; kxz; kxy; kzy; kzx; kyx�T (A.6)

the elasticity law M ¼ A:k takes the isotropic form (in the natural anisotropy basis),
bM ¼ ½A�bk ½A��1 ¼

26666666666664

A1 0 0 0 0 0 0 0 0
0 A1 0 0 0 0 0 0 0
0 0 A1 0 0 0 0 0 0
0 0 0 A1 0 0 0 0 0
0 0 0 0 A1 0 0 0 0
0 0 0 0 0 A1 0 0 0
0 0 0 0 0 0 A1 0 0
0 0 0 0 0 0 0 A1 0
0 0 0 0 0 0 0 0 A1

37777777777775�
b
!

1; b
!

2 ; b
!

3

�
(A.7)

here A2 is assumed to be zero in the isotropic case. Also note that both couple stress and elastic curvature in the constitutive

relationship are deviatoric in nature, therefore the above form of the tensor automatically deals with these. There is only one
non-zero Kelvin moduli,

FK¼1 ¼ Fð1Þ ¼ Fð2Þ ¼ Fð3Þ ¼ Fð4Þ ¼ Fð5Þ ¼ Fð6Þ ¼ Fð7Þ ¼ Fð8Þ ¼ Fð9Þ ¼ A1 (A.8)

! ! !

The 9 corresponding eigentensors in the basis ð b 1; b 2; b 3Þ are

eð1Þ ¼ 1ffiffiffi
3

p I; eð2Þ ¼ b
!

15 b
!

1 � b
!

25 b
!

2ffiffiffi
2

p ; eð3Þ ¼ b
!

15 b
!

1 þ b
!

25 b
!

2 � 2 b
!

35 b
!

3ffiffiffi
6

p

eð4Þ ¼ b
!

25 b
!

3; eð5Þ ¼ b
!

15 b
!

3; eð6Þ ¼ b
!

15 b
!

2;

eð7Þ ¼ b
!

35 b
!

2; eð8Þ ¼ b
!

35 b
!

1; eð9Þ ¼ b
!

25 b
!

1

(A.9)
These can be represented in tensorial forms using nine basis B2 tensors. In the following these tensors are renamed such
that the first 8 tensors upon performing an inner product with the couple stress tensor, extract its deviatoric component and
the ninth one extracts it hydrostatic component (which is zero) as,
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Bð1Þ2 ¼ 1ffiffiffi
2

p

2664
�1 0 0

0 1 0

0 0 0

3775;Bð2Þ2 ¼ 1ffiffiffi
6

p

2664
�1 0 0

0 �1 0

0 0 2

3775; Bð3Þ2 ¼

2664
0 0 0

0 0 1

0 0 0

3775;

Bð4Þ2 ¼

2664
0 0 1

0 0 0

0 0 0

3775;Bð5Þ2 ¼

2664
0 1 0

0 0 0

0 0 0

3775;Bð6Þ2 ¼

2664
0 0 0

0 0 0

0 1 0

3775;

Bð7Þ2 ¼

2664
0 0 0

0 0 0

1 0 0

3775;Bð8Þ2 ¼

2664
0 0 0

1 0 0

0 0 0

3775;Bð9Þ2 ¼ 1ffiffiffi
3

p

2664
1 0 0

0 1 0

0 0 1

3775

(A.10)
The projectors can be defined as

QK¼1 ¼ eð1Þ5eð1Þ

QK¼2 ¼ eð2Þ5eð2Þ þ eð3Þ5eð3Þ

QK¼3 ¼ eð4Þ5eð4Þ þ eð5Þ5eð5Þ þ eð6Þ5eð6Þ þ eð7Þ5eð7Þ þ eð8Þ5eð8Þ þ eð9Þ5eð9Þ
(A.11)

K K
The Kelvin stresses M ¼ Q :M are then obtained as:

1) MK¼1 ¼ MH is the hydrostatic component of the deviatoric couple stress and is therefore equal to zero.
2) MK¼2 ¼ Md is the diagonal part of the deviatoric couple stress in natural anisotropy basis and is associated to the Kelvin

modulus A1.
3) MK¼3 ¼ Md is the off-diagonal deviatoric couple stress in this same basis and is also associated to the Kelvin modulus A1.

The two deviatoric tensors are then naturally obtained from the Kelvin analysis as

M ¼ MD ¼ Md þMd (A.12)
It should be noted that while the Kelvin moduli (eigenvalues) are dependent on the type of elastic anisotropy, the basis
tensors remain same irrespective of the anisotropy.

Appendix B. Discrete Fourier transforms

In this section, a 3-dimensional DFT based framework is proposed to overcome the Gibbs phenomenon. This work is a
generalization of the existing 2-dimensional implementations of the approach (Müller, 1998; Press et al., 2002; Berbenni
et al., 2014). The cubic microstructure is discretized into a regular grid of N1 � N2 � N3 voxels with periodic boundary
conditions along all the surfaces. The position vectors are defined as x!¼ ððl� 1Þd1; ðm� 1Þd2; ðn� 1Þd3Þ, where l ¼ 1/N1,
m ¼ 1/N2, n ¼ 1/N3 and d1, d2 and d3 are the voxel sizes in directions 1, 2 and 3 respectively. The total number of voxels are
Ntot ¼ N1N2N3.

In the following, derivations are performed adopting the convention used by “fourn” FORTRAN subroutine (Press et al.,
1997). In the convention adopted by the book, DFTs are defined as:

bf ðx1; x2; x3Þ ¼XN1

l¼1

XN2

m¼1

XN3

n¼1

f ði; j; kÞe2piðl�1Þðx1�1Þ=N1e2piðm�1Þðx2�1Þ=N2e2piðn�1Þðx3�1Þ=N3 (B.1)

and

f ðl;m;nÞ ¼
XN1

l¼1

XN2

m¼1

XN3

n¼1

bf ðx1; x2; x3Þe�2piðl�1Þðx1�1Þ=N1e�2piðm�1Þðx2�1Þ=N2e�2piðn�1Þðx3�1Þ=N3

Ntot
(B.2)

where i ¼
ffiffiffiffiffiffiffi
�1

p
. x1, x2 and x3 are the frequencies corresponding to l, m and n, respectively.

Using the shift theorem for Fourier transforms gives:

FTðf ðlþ P;mþ Q ; nþ RÞÞ ¼ e�2piPx1=N1e�2piQx2=N2e�2piRx3=N3FTðf ðl;m;nÞÞ (B.3)
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where FT represents the Fourier transform operator and P, Q, R are some integers.
Also, the partial derivative in the adopted convention is given as:

FT

 
v3f ðl;m;nÞ
vx1vx2vx3

!
¼ ð�ik1Þð�ik2Þð�ik3ÞFTðf ðl;m; nÞÞ (B.4)

where k1 ¼ 2px1, k2 ¼ 2px2 and k3 ¼ 2px3 are the angular frequencies.
Appendix B.1. Differentiation rules

Let vaþbþcf ðl;m;nÞ=vxa1vxb2vxc3 correspond to the ath, bth and cth partial derivative of a function f(l,m,n) with respect to x1, x2
and x3, respectively. In the present work, only the partial derivatives corresponding to a þ b þ c¼ 1, 2, 3 and 4 are considered.
The first and second order partial derivatives are computed on the discrete grid based on the 27-voxel finite difference
approximation of partial derivatives using centered differences. The accuracy achieved is of the order Oðd21; d22; d23Þ.

Appendix B.1.1. First order partial derivatives
The continuous Fourier transforms of first order partial derivatives are the above equations are �ik1, �ik2 and �ik3.

Approximating the first order partial derivatives using the central difference approach, their equivalent discrete Fourier
transforms are given as:

�ik1↔
e�2piðx1�1Þ=N1 � e2piðx1�1Þ=N1

2d1
¼ � i

d1
sin
�
2pðx1 � 1Þ

N1

�

�ik2↔
e�2piðx2�1Þ=N2 � e2piðx2�1Þ=N2

2d2
¼ � i

d2
sin
�
2pðx2 � 1Þ

N2

�

�ik3↔
e�2piðx3�1Þ=N3 � e2piðx3�1Þ=N3

2d3
¼ � i

d3
sin
�
2pðx3 � 1Þ

N3

�
(B.5)
Appendix B.1.2. Second order partial derivatives
Similarly, approximating the second order partial derivatives using the central difference scheme, the continuous Fourier

transform and the corresponding discrete Fourier transform are:

�k21↔
2

d21

�
1� cos

�
2pðx1 � 1Þ

N1

��

�k22↔
2

d22

�
1� cos

�
2pðx2 � 1Þ

N2

��

�k23↔
2

d23

�
1� cos

�
2pðx3 � 1Þ

N3

��

�k1k2↔� 1
d1d2

sin
�
2pðx1 � 1Þ

N1

�
sin
�
2pðx2 � 1Þ

N2

�
�k1k3↔� 1

d1d3
sin
�
2pðx1 � 1Þ

N1

�
sin
�
2pðx3 � 1Þ

N3

�
�k2k3↔� 1

d2d3
sin
�
2pðx2 � 1Þ

N2

�
sin
�
2pðx3 � 1Þ

N3

�

(B.6)
Formulas for third and fourth order derivatives, along with a generic formula for nth order derivative have also been
derived elsewhere (Upadhyay, 2014) but are not presented here for the sake of brevity.

Appendix C. Algorithm

Figure C.15 shows the algorithm for the CSEVP DFT-I procedure described in Section 4.2.
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Fig. C.15. Algorithm for CSEVP DFT-I.
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