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a b s t r a c t

The accumulative roll bonding process is one of the most prominent severe plastic deformation
processes for obtaining sheet materials with ultra-fine-grained microstructures and high strength. The
properties of such sheets differ significantly from those of conventionally rolled sheets. It is hence
desirable to have a simulation framework that can accurately predict the material properties, including
the evolving texture and anisotropy during processing. Here, we propose such a framework for multiple
pass rolling using explicit finite elements and embedding the visco-plastic self-consistent (VPSC)
polycrystal texture model for the material response. To facilitate multiple pass rolling, we propose a
novel solution mapping scheme that transfers the material state from the deformed finite element mesh
to a new one. Additionally, we implement a two-level parallelization scheme – with decomposition of
the FE domain using message passing interface (MPI) and thread based parallelization of the material
response using OPENMP – to ensure reduced simulation times. The predictive capabilities of the proposed
framework are demonstrated by simulating the accumulative roll bonding of aluminum alloy AA5754
sheets. The simulations validate the working of the solution mapping scheme, and clearly show the
development of a through thickness gradient of texture and anisotropy in the roll-bonded sheet after
two passes.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The adoption of new materials in the automotive, aerospace or
energy sectors hinges ever increasingly on the possibility to
reliably model their mechanical behavior during processing and
under typical usage conditions, as well as their failure when
subjected to catastrophic loading, e.g. during a car crash. Material
models have therefore become an essential ingredient for the
emerging discipline of integrated computational materials engineer-
ing (ICME), which promises to significantly shorten the materials
development cycle [1]. For example, the integration of computa-
tional material models in the product design process as well as in
manufacturing process simulation would allow engineers to
explore new ways of optimizing the properties of a component
through processing. The key for successful implementation of the
ICME paradigm is the availability of material models which
describe the multiple links among processing, microstructure,

properties and performance in a multiscale modeling framework.
However, for many innovative materials or processing routes
reliable material models are not yet available. In particular, the
accumulative roll bonding process to produce high strength metal
sheets, e.g. for automotive applications, would profit from a
reliable and robust material model to optimize the process para-
meters and describe the resulting microstructure and mechanical
properties.

Among the various severe plastic deformation (SPD) processes,
the accumulative roll bonding (ARB) process is most promising for
achieving ultra-fine-grained (UFG) microstructures in metallic
sheet materials. First proposed by Saito et al. [2], the ARB process
is based on the principle of stacking two sheets of materials and
subsequently feeding them to a rolling mill where the thickness is
reduced by 50%. As the geometrical dimensions of the processed
sheet remain more or less unchanged to the starting material, the
process can be easily repeated. Both sheets are initially degreased
and wire brushed to remove thick oxide layers; in the absence of
such oxide layers and driven by large plastic strains, the stacked
layers fuse at the interface to ensue good bonding properties. A
detailed overview on the principles of ARB-processing and the
properties of some processed materials is provided in Ref. [3]. A
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major advantage of the ARB process is that it can be easily
integrated/adapted into existing industrial rolling trains without
major modifications and can be scaled up to produce sheet
materials with UFG microstructures on an industrial scale [4].
Furthermore, the ARB process offers numerous possibilities to
tailor materials properties by producing laminated sheet materials
[5–7], graded structures [8], particulate [9,10] or fiber reinforced
composite sheet materials [11–13].

The repeated roll bonding of the sheets in the ARB process
leads to substantial accumulation of plastic deformation resulting
in a UFG microstructure. This UFG microstructure causes a sig-
nificant increase—by almost a factor of two—in the strength of the
material, in comparison to the coarse grained counterpart.
Although this is generally offset by a decrease in ductility, it has
recently been reported that application of ARB to low density
sheet materials, like aluminum alloys, can result in both high
strength and high ductility of the material [5] and has been
attributed to room temperature strain rate sensitivity of the
material (see also e.g. [14–16]).

The ARB process itself involves a multitude of parameters, e.g.
rolling speed, friction between the rolls and the feedstock, number
of rolling passes, and stacking and rolling direction, which can
have a considerable effect on the properties of the roll bonded
sheet. Although comparable to a conventional rolling process in
principle, the role of such process parameters is either significantly
enhanced or completely different in ARB due to the high thickness
reduction and repeated stacking of roll bonded sheets in every
pass. For instance, sheared surface layers (due to friction between
the rolls and the feedstock) give rise to a characteristic through
thickness strain gradient in the roll bonded sheet. With repeated
cutting and stacking, the shear profile changes substantially [14],
leading to different rates of microstructure evolution along the
thickness of the sheet. Consequently, the number of rolling passes
has a discernible effect on the through thickness strain gradient.
The anisotropy in the roll bonded sheet is thus not just a function
of texture/microstructure, but also the strain gradient and the
number of rolling passes [17]. It is thus to be expected that the
properties of ARB sheets differ appreciably from those of con-
ventionally rolled sheets [18], and additionally, can significantly
impact further applications (e.g. deep drawing) of the roll
bonded sheet.

In view of the aformentioned aspects, it is desirable to have a
computational framework to simulate and understand the ARB
process in order to obtain optimized process parameters, so as to
avoid trial-and-error experimental setups. To date, most studies on
ARB processed materials have been experimental investigations to
understand both the process and the enhanced properties of the
roll bonded sheet, as evident in the references mentioned above.
By contrast, few computational studies can be found in the
literature; these studies have been limited to understanding
individual aspects of the ARB process. For instance, texture
evolution which plays an important role during ARB has been
the subject of a few numerical investigations. Heason and Prang-
nell [19] performed EBSD and X-ray measurements on a roll
bonded AA1100 sheet, and analyzed the evolution of texture using
the Taylor [20] full constraints model with simple and idealized
textures. A similar study was performed on AA3003 by Pirgazi
et al. [21], but by using the ALAMEL model [22]. In contrast to the
idealized deformation paths assumed in the previous two studies,
Li et al. [23] used realistic strain histories to investigate the texture
evolution in commercially pure aluminum by means of the
ALAMEL model. Finite element (FE) simulations of a single-pass
rolling process were employed to obtain the relevant strain
histories; the FE simulations were calibrated to embedded pin
experiments in order to reasonably estimate the shear deforma-
tion [24] seen in ARB processed materials.

A primary goal of this work is to establish a computational
framework that enables the simulation of multiple pass ARB
process, while simultaneously accounting for the change in texture
and anisotropy of the material. The principal idea here is to obtain
the structural response using a FE calculation, while the material
response is obtained by “averaging” the constitutive behavior of
individual crystals in a defined polycrystal. Such “averaging”,
termed generally as numerical homogenization, is now a well
established technique to solve problems involving the micro-
mechanical behavior of polycrystalline materials. An excellent
review of such methods is provided in Ref. [25]. Although different
flavors of such a multi-scale framework are available, all boil down
essentially to two choices: (a) the polycrystal homogenization
theory to be used [26], i.e. full-field or mean-field theory, and
(b) implementation of the mesoscopic model within the multi-
scale analysis framework [22], i.e. whether the polycrystal model
is to be embedded in the FE computation, or merely used in a
hierarchical fashion.

Polycrystal homogenization theories can be broadly classified
into two categories, viz. full-field and mean-field methods. Full-
field methods provide a fairly accurate assessment of the intra-
granular stress and strain fields. Examples of such methods
include the crystal plasticity finite element method (CPFEM) and
crystal plasticity fast Fourier transform (CPFFT) method. CPFEM has
been extensively used with artificial microstructures (e.g. [27–29])
as well as experimental microstructures obtained typically from
EBSD measurements (e.g. [30–32]). The CPFFT method [33,34] is
identical to CPFEM with one major difference – the governing
equations are solved in the Fourier space. Although restricted to
periodic microstructures in principle, a major advantage of CPFFT
over CPFEM is the speed of computation [35]. The choice of such
full field methods for numerical homogenization, however, neces-
sitates the usage of FE2-type methods (e.g. [36]), which would
essentially result in lengthy computation times for multiple pass
ARB simulations.

In what concerns the implementation of the numerical homo-
genization model within the multiscale analysis framework [22],
choice must be made between embedding the model in the FE
computation—i.e. interrogating the polycrystal model during each
increment—and using it in a hierarchical fashion [37,38], where the
parameters for a macro-scale (anisotropic) phenomenological
yield criterion (e.g. [39,40]) are pre-computed by interrogating
the polycrystal model. This choice, as a result, is clearly a decision
on balancing accuracy and speed, since embedded models tend to
be more accurate but less efficient (in terms of computational
times) than hierarchical models. Nonetheless, it must be noted
that adaptive sampling strategies (e.g. [41]) can be used in
conjunction with embedded models to achieve results in shorter
lead times.

The fundamentals of our computational framework lie in the
aforementioned multiscale approach; we use a mean field homo-
genization model embedded in a FE computation. In particular, we
use the viscoplastic self-consistent (VPSC) model of Lebensohn
and Tomé [42] as our choice of the mean field model, since it has
been widely used for many studies involving both cubic (e.g. [43])
and hcp (e.g. [44–46]) materials and is known to provide fairly
accurate predictions of the texture and anisotropy [47,48]. The
VPSC model is embedded in an explicit finite element framework
using the commercial finite element software ABAQUS. It must be
pointed out that this embedded VPSC-FE model is not entirely
new, and has been the subject of previous studies (e.g. [44,49,50]).
However, such basic implementations are insufficient to overcome
the challenges posed by the ARB process.

A primary challenge in simulating the ARB process – as seen
from the discussion before – is the increase in number of elements,
by a factor of two, with each ARB pass. Additionally, due to the
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large thickness reduction in each rolling pass, distortion of the FE
mesh is a further problem that needs to be tackled. In view of this,
we propose a novel solution mapping scheme that helps map the
texture, grain shape and other relevant material state variables
from the deformed mesh to a new mesh, thus alleviating the
distortion related problems. Also, since the mapping can be done
to a completely new mesh, it allows us to circumvent the doubling
of elements with each pass. Furthermore, we strive to create an
implementation that is robust, fast and efficient. This is done by
exploiting the vectorized interface of the user material routine in
ABAQUS

s by using a multi-level parallelization, i.e. decomposition
of the FE domain for the structural response, and parallelization of
the material response inside each domain using multiple OPENMP
[51] threads. Additionally, we probe the polycrystal model only
periodically, thus ensuring further improvement in simulation
times. We point out that notwithstanding the results presented
in the current work, the proposed computational framework can be
used for the simulation of other forming processes like conventional
rolling and deep drawing.

The paper is organized as follows: following this introductory
section, we first present the constitutive framework used in this
work in Section 2, and subsequently its implementation as a user
material in Section 3. Results of ARB simulations are presented in
Section 4, wherein the working of the novel solution mapping
scheme is also demonstrated. The significance of the results is
discussed in Section 5. Finally, we conclude by providing a
summary of our results in Section 6.

2. Constitutive framework

2.1. Viscoplastic self-consistent formulation

The viscoplastic self-consistent (VPSC) model of Lebensohn and
Tomé [42] used in the current work, is a homogenization model
that treats each grain in a polycrystalline aggregrate as an
equivalent inclusion in a fully anisotropic visco-plastic matrix,
also referred to as the homogeneous equivalent medium (HEM).
The compatibility between the inclusion and matrix is enforced
using the Eshelby inclusion formalism [52]. In what follows, certain
key equations of the VPSC model are presented for completeness
and to facilitate easy understanding of the symbols/parameters
used in the model and its implementation as a user material
routine for finite elements.

Within the setting of the VPSC model, a polycrystal is modeled
as a set of discrete weighted orientations of ellipsoidal shape. Each
discrete orientation represents the average behavior of all grains
with the crystallographic orientation under consideration, but
embedded in different environments.

The constitutive response of a single crystal is assumed to be
rigid viscoplastic, with plasticity occurring as a consequence of
glide systems becoming active. Each system is defined by a glide
direction, s, and a normal to the glide plane, n. The geometry of the
slip system is described by the symmetric mα and antisymmetric
βα parts of the Schmid tensor:

mα ¼ 1
2 sα � nαþnα � sαð Þ

βα ¼ 1
2 sα � nα�nα � sαð Þ; ð1Þ

where �denotes the diadic product of two vectors. The shear rate
on any glide system is given by the following rate-sensitive
equation:

_γα ¼ _γ0
ταj j
gα

� �n

� sign ταð Þ

¼ _γ0
mα : σ 0j j

gα

� �n

� sign mα : σ 0ð Þ; ð2Þ

where τα is the resolved shear stress on the glide plane under
consideration, gα is the current strength of the glide system, _γ0 is a
reference shear rate, n is the rate sensitivity exponent and σ 0

denotes the deviatoric Cauchy stress tensor. The overall viscoplas-
tic strain rate of the crystal is given by the sum of individual
crystallographic shear rates [53,54]

_ϵpðxÞ ¼
XNs

α ¼ 1

mαðxÞ _γαðxÞ

¼ _γ0

XNs

α ¼ 1

mα mα : σ 0

gα

� �n

� sign mα : σ 0ð Þ; ð3Þ

where Ns denotes the number of active slip systems. Eq. (3) may be
rewritten in the pseudo-linear form

_ϵp ¼ _γ0

XNs

α ¼ 1

mα � mα

gα
mα : σ 0

gα

� �n�1
( )

σ 0

¼McðsecÞðσ 0Þ : σ 0; ð4Þ
where McðsecÞ denotes the so-called secant viscoplastic compliance
tensor of the grain. Another relation may be derived using a Taylor
expansion:

_ϵp ¼ _ϵp
0þ

∂ _ϵp

∂σ 0

����
σ 0 ¼ σ 0

σ 0 ¼McðtgÞðσ 0Þ : σ 0 þ _ϵp
0; ð5Þ

which defines the tangent modulus McðtgÞ and the back extra-
polated term _ϵp

0. From Eqs. (3)–(5), it follows that

McðtgÞ ¼ nMcðsecÞ: ð6Þ
We assume that the overall response of the polycrystal is
described by constitutive equations similar to those of the single
crystal (Eqs. (4) and (5)). The secant relation of the polycrystal is
given by

_E
p ¼MðsecÞðΣ0Þ : Σ0

; ð7Þ
where _E

p
and Σ0 are the strain rate and deviatoric stress,

respectively, of the polycrystal. The tangent relation, valid only
in the vicinity of ðΣ 0Þ adopts the form

_E
p ¼MðtgÞðΣ 0Þ : Σ0 þ _E

p
0: ð8Þ

The polycrystal tangent and secant moduli are related by the
same relation derived earlier for the single crystal moduli [55]

MðtgÞ ¼ nMðsecÞ: ð9Þ
Each grain in the polycrystal can be regarded as an ellipsoidal

inhomogeneity embedded in the HEM that induces eigenstrains
locally upon the application of a remote stress to the HEM. The link
between strain rates and stresses in the polycrystal and individual
grains is now established using the notion of an equivalent
inclusion [52,56]. In this context, the inhomogeneity (grain) is
replaced by an equivalent inclusion having the same moduli as
that of the HEM, but undergoing a fictitious transformation strain
rate _ϵn that induces the same stress in the inclusion and in the
HEM, as the inhomogeneity does. Hence Eq. (5) can be re-written
as

_ϵp ¼MðtgÞ : σ 0 þ _E
p
0þ _ϵn; ð10Þ

within the domain of the inclusion. The deviations in the stress
and strain rate fields in the inclusion with respect to the poly-
crystal are given by

~_ϵ
p ¼ _ϵp� _E

p

~σ 0 ¼ σ 0 �Σ0
: ð11Þ

Inserting Eq. (11) in Eq. (10) with Eq. (8) one obtains

~_ϵ� _ϵn ¼MðtgÞ : ~σ 0: ð12Þ
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The strain rate deviation in the inclusion is given by

~_ϵ
p ¼S : _ϵn; ð13Þ

where S, the symmetric viscoplastic Eshelby tensor, is a function
of the polycrystal tangent modulus and the grain shape, assumed
to be ellipsoidal in the VPSC model. Therefore, an accurate
description of the interaction between HEM and the grains
(governed by S), and consequently the state and response of the
polycrystal, requires deft handling of the grain shape evolution.
This is of particular importance when the state of the polycrystal is
transferred from one finite element mesh to another, as is the case
in the rolling simulations presented in this work. Aspects related
to the handling of grain shape evolution are provided subse-
quently in Section 2.2.2.

Let us now introduce the interaction equation, which is
obtained by replacing Eq. (13) in Eq. (12),

~_ϵ
p ¼ � ~M : σ 0: ð14Þ

This interaction equation formally links the fluctuations in stress
and strain. The interaction tensor ~M defined by

~M ¼ I�Sð Þ�1 � S �MðtgÞ; ð15Þ

where I is the fourth-order identity tensor.
What remains now is the evaluation of the viscoplastic moduli

of the HEM, which are not known a priori. The assumption that the
HEM describes the average behavior of the aggregate leads to the
condition that the weighted average of stress and strain rate over
all the grains must be equal to the stress and strain rates of the
HEM. This condition enforces the self-consistent nature of VPSC
and provides an expression from which the secant modulus of the
HEM and the interaction tensor can be calculated. Eq. (14) can be
reformulated using Eqs. (4) and (7) as follows:

Bc : Σ0 ¼ σ 0; ð16Þ

where

Bc ¼ McðsecÞ þ ~M
� ��1 � MðsecÞ þ ~M

� �
; ð17Þ

defines the so-called accommodation tensor. The secant relation
Eq. (4) for the grain is now given by

McðsecÞ � Bc� �
: Σ0 ¼ _ϵp: ð18Þ

Since the weighted average of the strain rate must be equal to the
strain rate of the HEM,

〈McðsecÞ � Bc〉 : Σ0 ¼MðsecÞ : Σ0
: ð19Þ

Eq. (19) is fulfilled when

MðsecÞ ¼ 〈McðsecÞ � Bc〉: ð20Þ

With MðsecÞ given by the fix-point Eq. (20), the interaction tensor
can be obtained as

~M ¼ n I�Sð Þ�1 : S : MðsecÞ: ð21Þ

The above expression corresponds to the original tangent formula-
tion of [57] and [42], and has the disadvantage of going to the
lower-bound (uniform-stress) in the rate sensitive limit ðn-1Þ.
The so-called n-effective variant of VPSC model [58] avoids this by
using a correction factor neff=n in the interaction tensor, which
yields

~M ¼ neff I�Sð Þ�1 : S : MðsecÞ: ð22Þ

The typical value neff ¼ 10 has been used in all cases that follow.

2.2. Evolution of microstructure

2.2.1. Texture
Upon convergence in the iterative procedure to compute the

state of the polycrystal, each grain is reoriented before proceeding
to the next deformation step. The reorientation is described by the
rate of spin and is given by [59]

_ω ¼ _Ωþ W � S�1
� �

: ~_ϵ� _ωp ; ð23Þ

where W denotes the rotational (skew-symmetric) Eshelby tensor.
_ωp is the antisymmetric part of the plastic distortion rate, _Ω is the

antisymmetric component of the macroscopic distortion rate
which can be obtained by the classical additive decomposition of
the velocity gradient L

L¼DþΩ; ð24Þ
and _ωp is the antisymmetric component of the plastic distortion
rate given by

_ωp ¼
X
α
βα _γα: ð25Þ

It must be pointed out that reorientation of grains can also occur
due to twinning, which is also a feature of the VPSC model.
However, deformation due to twinning is not a part of the current
work, and is hence not discussed here. Nevertheless, we empha-
size that the simulation framework provided in this work is not
restricted to dislocation plasticity alone, and can be used for
materials which evidence significant twinning activity.

2.2.2. Grain shape
As mentioned earlier, the Eshelby tensor S defines the solution

of the equivalent inclusion problem, and is a function of the
polycrystal tangent moduli MðtgÞ and the grain shape. The evolu-
tion of the average grain shape is calculated using the polycrystal's
velocity gradient L defined in Eq. (24) and an average deformation
gradient tensor F that characterizes the average shape of the
grains, which is initially assumed to be the identity tensor, thus
representing equiaxed grains before the ARB process. The rate of
variation of F and the velocity gradient L are related by

_F ¼ LF: ð26Þ
Hence, knowing F at time t, its value at time tþΔt is obtained as

F j tþΔt ¼ IþL Δt
� �

F j t : ð27Þ
The eigenvectors and the square root of the eigenvalues of F FT

define the direction and length of the axes of the ellipsoid which
represents the average shape of the grains.

2.2.3. Hardening
The evolution of the critical stress in Eq. (2) is determined by an

extended Voce-type hardening rule [60,61]

_gα ¼ dgα

dΓ

X
β

hαβ _γβ ; ð28Þ

with the hardening function

gα ¼ τα0 þ τα1 þθα1Γ
� �

1�exp �θα0Γ
τα1

� �	 

; ð29Þ

where hαβ is a hardening matrix whose diagonal elements denote
self-hardening and off-diagonal elements denote latent hardening.
The cumulative shear, Γ, in the grain is defined as

Γ ¼
Zt
0

X
α

_γα dt: ð30Þ
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3. Implementation as a user material subroutine

The commercial finite element software ABAQUS
s is used in this

work for the simulation of the ARB process. In particular, we use
the explicit version of the software since it has been reported to
perform well under complex loading conditions, including contact
[62]. Furthermore, ABAQUS/Explicit allows for a more efficient
domain decomposition and scales better with an increasing
number of domains in the simulation. Consequently, larger and
more complex geometries can be discretized with a fine mesh,
making it an appropriate tool for the analysis of metal forming
simulations.

An enterprising feature of ABAQUS/Explicit is the vectorized
interface of the user material subroutine (VUMAT), where the
constitutive update is expected for a block of integration points.
This facilitates a thread based parallelization of the user material
subroutine using OPENMP, and is described in more detail in
subsequent sections. Since a considerable portion of the simula-
tion dwells on the constitutive update, such a thread based
parallelization should lead to a significant reduction in computa-
tion times, and is evident in the results presented later in
this work.

At this juncture, it is worth reviewing previous implementa-
tions of the VPSC model into finite element codes. Tomé et al. [48]
formulated the VPSC model as a user material for the explicit finite
element code EPIC, and applied it to analyze the mechanical
behavior of zirconium [45]. The first implementation in the finite
element software ABAQUS was by Walde and Riedel [63] who later
applied it to study the earing behavior in magnesium alloy AZ31
[44], and anisotropy in molebdenum sheets [64]. More recently,
Segurado et al. [49] proposed the implementation of the VPSC
model in the framework of implicit finite elements as a UMAT,
which was later extended to include dislocation density based
hardening to model the anisotropic response of α-uranium [50].
Incidentally, these implementations fail to exploit the vectorized
interface of the VUMAT.

In what follows, we first review certain fundamental aspects
of ABAQUS/Explicit in general, and the VUMAT in particular, by
summarizing key equations [65]. Subsequently, we provide
details on the VUMAT interface for VPSC and the linear updating
scheme. Finally aspects related to parallelization of the VUMAT are
dealt with.

3.1. VPSC–VUMAT interface

As with any embedded polycrystal model, each integration
point in our FE mesh is assumed to be comprised of a polycrystal
whose mechanical response is provided by the VPSC model. The
VUMAT is called in a given time step for each integration point; it
provides the strain increment along with the current state of the
material. The user material routine is expected to provide the
updated material state, which consists of both stresses and
internal variables that describe the state of the polycrystal.

The constitutive update is required to be performed using the
Green–Nagdhi objective stress rate [65], which is defined as

σ
○ ¼ _σ�Ω � σþσ �Ω; ð31Þ

where Ω denotes the rate of spin and can be calculated using the
rotation tensor R obtained from the polar decomposition of the
deformation gradient F as follows:

Ω¼ _R � RT : ð32Þ

All input variables in the VUMAT are provided in a corotational
system defined by the Green–Nagdhi objective stress rate.

The strain increment (Δϵ) provided by the VUMAT is assumed
to undergo an additive decomposition, into an elastic (Δϵe) and an
inelastic/viscoplastic (Δϵp) part:

Δϵ¼ΔϵeþΔϵp ¼C�1 : ΔσþΔϵp; ð33Þ
where C is the elastic stiffness of the polycrystal defined at any
integration point and Δσ is the increment of the Cauchy stress. In
this work, we calculate C using an elastic self-consistent estimate
(cf. Eq. (20)) as

C¼ 〈Cc�1 : Bc〉�1; ð34Þ
where Cc and Bc are the elastic stiffness and the stress localization
tensors of individual grains. Such an approach effectively decou-
ples the elastic and viscoplastic self-consistent responses, as
suggested in Ref. [66], and must be deemed as a simplification
of more involved elasto-viscoplastic self-consistent approaches
(e.g. [67]).

The constitutive update of the stresses at any integration point
can now be written as follows:

σ j ðtþΔtÞ ¼ σ j tþC : Δϵ�Δϵp
� �

: ð35Þ
If Δϵp were to be known, it could be used to interrogate the VPSC
model to obtain the homogenized visco-plastic response of the
underlying polycrystal at a FE material point for the imposed
boundary conditions. However, since Δϵp is not known a priori,
we use a stress driven algorithm to interrogate the VPSC model.

The algorithmic structure of the stress driven approach to
interrogate VPSC is derived from Segurado et al. [49], and can be
seen as an alternative to the approach of Walde and Riedel [44].
We proceed by defining a residual χ as an implicit function of the
current stress increment such that

χ ¼Δϵ�ΔϵFE

¼C�1 : ΔσþΔt _E
p
σþΔσ
� ��ΔϵFE; ð36Þ

where ΔϵFE is the total strain increment provided by ABAQUS in the
VUMAT. The residual equation is minimized using the Newton–
Raphson procedure to obtain a new iterative stress state:

kþ1Δσ ¼ kΔσ� J �1
NR

kΔσ
� �

: χ kΔσ
� �

; ð37Þ

where the left superscript denotes the iteration. The Jacobian is
defined by

JNR ¼
∂χ ðΔσÞ
∂ðΔσÞ

¼C�1þΔt
∂ _E

p

∂ðΔσÞ
¼C�1þΔt Mtg σþΔσ

� �
; ð38Þ

where Mtg represents the polycrystal tangent moduli. Upon
convergence, the current stress increment is returned to the FE
solver. The algorithmic structure has the advantage that the
update of stresses follows an implicit time integration scheme.
Nonetheless, the update of other internal variables related to
hardening, texture and morphology is updated explicitly. Due to
the usage of a very small time increment in ABAQUS/Explicit, such
an explicit update of internal variables is not expected to lead to
major discrepancies.

3.2. Piecewise linear stress update

The conditional stability of the ABAQUS/Explicit solver necessi-
tates the usage of a very small time increment, leading to a very
high number of total time steps in the simulation. The VPSC
constitutive update, however, becomes no less simplified with the
usage of the small time increment. In fact, since the stress update
is a function of the polycrystal moduli (MðtgÞ), which itself needs to
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be obtained iteratively, a straightforward implementation of VPSC
as an embedded constitutive model would result in exorbitantly
high computation times. Furthermore, since MðtgÞ involves the
inversion of crystal moduli McðtgÞ which is a function of the
resolved shear stresses, a small initial time step from a stress free
state would result in individual components of the crystal moduli
McðtgÞ being close to zero resulting in an ill-conditioned matrix for
inversion.

To overcome these problems, we use a piecewise linear updat-
ing scheme which circumvents the VPSC call if certain criteria are
met. This linear stress update is defined by the following equation:

Δσ ¼C : ΔϵFE� _E
p Δt

� �
ð39Þ

where C denotes the polycrystal elastic moduli obtained from the
elastic self-consistent calculation and _E

p
denotes the plastic strain

rate of the polycrystal computed in the last VPSC call.
A two step criterion is employed to check if a linear update has

to be performed. At the beginning of each increment, we calculate
the ratio between the von Mises equivalent stress (σvm) and the
initial maximum critical resolved shear stress ðgα0;maxÞ:

snorm ¼ σvm

gα0;max
: ð40Þ

A linear update is enforced if this ratio is below a certain threshold
snorm
thres . If the condition is not satisfied, i.e. snorm4sthresnorm, then two
further quantities, viz. the accumulated equivalent stress
(Δσthres

acc;vm) and strain (Δϵthresacc;vm) since the last VPSC update, are
evaluated. If either of these two quantities, however, violate a
particular threshold, then a VPSC update is enforced. Table 1 lists
the numerical values of the thresholds used in the current work,
which have been chosen to best represent the material behavior
under consideration.

We note that grain shapes, orientations and hardening vari-
ables are not updated when a linear stress update is performed.
When the VUMAT decides to call VPSC, the values of the relevant
variables accumulated since the last VPSC call are provided as
input to the VPSC model. In effect, the evolution of the viscoplastic
polycrystal state is equivalent to a simulation with a larger time
increment but purely VPSC constitutive update.

3.3. Parallelization

In the VUMAT, the FE solver requests the constitutive response
for a block of integration points. Since the constitutive update of an
individual integration point is independent of any neighboring
integration points, one can envisage a loop based parallelization
using OPENMP [51]. Such a parallelization is independent of, and/or
in addition to, decomposition of the finite element domain into
subdomains – also referred to as domain decomposition based
parallelization. The resultant simulation scheme is hence essen-
tially a multi-level parallelized framework; the structural response
is obtained by domain decomposition of the FE mesh using message
passing interface (MPI) and the material response is obtained by
decomposing the constitutive update onto multiple cpus using
OPENMP threads.

Such a parallelization is, however, not completely straightfor-
ward. Care must be taken to ensure proper load balancing so that
both highly strained and unstrained regions are equally distrib-
uted among all processors. A dynamic schedule of the OPENMP
parallel loop over the block of integration points is hence preferred
over a completely static schedule because of the load imbalance
that is likely to occur during the simulation of the ARB process;
elements directly under the roller would essentially require
frequent calls to VPSC as against those far away from the roller.

3.4. Solution mapping of the polycrystal state

In order to facilitate the simulation of a multiple pass ARB
process, we propose a novel method to map the solution depen-
dent variables from the deformed mesh to a new mesh before the
subsequent pass. The procedure, in brief, works as follows. The
polycrystal material state at each integration point is saved at the
end of each rolling pass. The material state so obtained is then
mapped onto a new mesh by interpolating between the material
states of adjacent integration points.

The mapping procedure allows the user to use a FE mesh of
good quality for each pass, thus alleviating mesh deterioration
problems due to the high thickness reduction (50%) in each pass.
Furthermore, using the mapping procedure we can circumvent the
doubling of elements due to stacking of sheets before each pass; in
the limiting case, a constant number of elements can be used for
each pass. Thus the amount of book keeping necessary to store and
manipulate the underlying polycrystal state of the finite element
mesh can be kept to a minimum.

A primary requirement for any mapping of the finite element
solution from one mesh to another must be the equivalency of the
material state, i.e. the mapped material state must deliver the
same mechanical response as that of the original mesh. To this
extent, we first need to identify the variables in VPSC (and
VUMAT) that define the state of the polycrystal. Table 2 lists the
variables that need to be used in the mapping procedure. We
motivate these variables from the secant/tangent viscoplastic
compliance of a crystal, which in essence defines the state of the
grain. Upon investigation of Eq. (4), it is clear that the secant
moduli is a function of the grain orientation, making it a primary
variable to be accounted for in the mapping procedure. Since the
stress in a grain is accounted for by the critical resolved shear
stresses, we affix gα also to the solution mapping set. The
evolution of the critical resolved shear stresses depends on the
cumulative shear Γ in the grain, making it the third variable in the
solution mapping set. Note that Γ also defines the strain state of
the grain. Finally, we note that the evaluation of the Eshelby
tensor, which is required for computing the response of the
equivalent inclusion, is a function of the grain shape. Consequently,
we append the deformation gradient Fc that defines the grain
shape to the set.

We now take a look into the mapping procedure itself, which is
inherently a linear interpolation scheme. We note that the vari-
ables summarized in Table 2 are primarily of two types – scalars
and tensors. The linear interpolation of scalars (in this work,
cumulative shear and the critical resolved shear stresses of each

Table 1
Thresholds for the piecewise linear updating
scheme.

Parameter Threshold

snorm
thres 0.5
Δσthresacc;vm

15 MPa

Δϵthresacc;vm
0.001

Table 2
Set of variables for the solution mapping procedure.

Description Symbol Type

Cumulative shear Γ Scalar
Critical resolved shear stress gα Scalar
Grain deformation gradient Fc Tensor
Grain orientation gc Tensor
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grain) is straightforward and is not discussed here. Among the
tensorial variables, we first consider the grain orientation which is
represented using Euler angles in the VPSC code. Direct interpola-
tion/mapping of Euler angles, however, leads to spurious rotations
[68]. Consequently, we interpolate the grain orientation in the
quarternion representation using the spherical linear interpolation
(SLERP) algorithm [69] as follows:

qint ¼
sin 1�xintð ÞΘ� �

sin Θ
qaþ

sin xintΘ
� �
sin Θ

qb; ð41Þ

with

cos Θ¼ qa � qb; ð42Þ

where qa and qb are the quarternions corresponding to an
orientation at the reference points, qint denotes the quarternion
representing the orientation at the interpolated point, andΘ is the
angle of the arc between qa and qb on the unit sphere in four-
dimensional space. xint is a number between 0 and 1, and is the
relative position of the interpolation point with respect to the
reference points:

xint ¼
xint�xa
xb�xa

: ð43Þ

Direct transformation rules for converting quarternions to Euler
angles and vice versa are not provided here for the sake of brevity.
For more details on the same, the reader is referred to standard
literature on the subject, e.g. [70].

Finally we take a look into the mapping of the shape tensor Fc ,
which is basically the deformation gradient tensor of the grain
under consideration. Direct interpolation of the deformation
gradient tensor can result in artificial distortions. To avoid these
spurious effects, we exploit the polar decomposition of the
deformation gradient as follows:

Fc ¼ Rc � Uc; ð44Þ

where Uc and Rc represent the right stretch tensor and the
rotation tensor, respectively, of the crystal. The rotation tensors
of the reference points are transformed into quarternions and then
mapped onto the new point using the SLERP algorithm (Eq. (42)).
The stretch tensors, on the other hand, are interpolated linearly
onto the new point.

In view of the amount of book-keeping necessary for the storage
of individual grain shapes, and in order to ensure simulations in
reasonable time frames, we use only the average grain shape of the
polycrystal for the interpolation. The mapping procedure described
above is, however, a general framework that can also be used on
individual grains in the polycrystal.

4. ARB simulations

The accumulative roll bonding process was simulated using the
OPENMP parallelized VPSC VUMAT in combination with the linear
elastic update described in Section 3.2. The working of the VUMAT
was first verified by performing benchmark tests on a single
element and loading it in uniaxial tension, uniaxial compression
and simple shear. Comparison of the results with those from the
standalone version (ver.7) of the VPSC code [71] showed identical
stress strain responses and textures, indicating the correctness of
the VUMAT implementation. Further tests with multiple elements
were performed to ensure the sanity of the parallelized code.
These results of these benchmark tests are provided elsewhere
[72,73].

The simulations shown here consist of two rolling passes. To
model stacking of sheets before the second pass, the required internal
variables were mapped onto a new mesh using the procedure
described in Section 3.4.

4.1. Simulation setup

The FE model used for the ARB simulations is shown in Fig. 1.
The model is set up such that the rolling, transverse and normal
directions are parallel to the x-, y- and z-axis, respectively. The
feedstock consists of two Al5754 sheets, of length 5 mm and
thickness 1 mm, stacked upon each other. The Voce hardening
parameters for the material are taken from Ref. [74]. Symmetry
conditions are exploited by modeling only one half of the feed-
stock (i.e. only one of the two Al5754 sheets) in the simulations.
The above condition has the consequence that bonding between
the two sheets is essentially modeled as “hard” contact, with
debonding of the rolled sheets precluded. The modeled sheet is
discretized with 500 hexahedral elements; reduced integration
elements (C3D8R) with enhanced stiffness hourglass control are
used in the simulations.

In addition to symmetry, plane strain conditions are imposed in
the transverse direction, resulting effectively, in the simulation of a
thin slab of material in the center of a fairly wide sheet, as shown
in Fig. 1(b). Such a model provides a more accurate material
response – for which it is primarily set up, and allows additionally
for a relatively fine spatial discretization.

The rollers, modeled as rigid with a diameter of 32 mm, rotate
at a speed of 80 rpm. Contact between the roller and the feedstock
is imposed through an isotropic friction coefficient of μ ¼ 0.4.
Mass scaling is used to artificially increase the stable time incre-
ment, while taking care to keep the kinetic effects of such a scaling
to a minimum. The used stable time increment in the simulations
is Δt ¼ 4� 10�6 s. The simulations are carried out in parallel with
eight OPENMP threads, but without domain decomposition.

Fig. 1. Initial configuration used for simulations of the ARB process. The blue strip indicates the elements for which texture and polycrystal states are saved. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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For the first rolling pass, all elements in the feedstock are
initialized with identical texture comprising 250 spherical grains
of random orientation and equal volumes. Texture output, along
with additional internal variables (cf. Table 2) are requested as so-
called end-of-pass data for 10 elements along the cross Section of
the feedstock (marked in blue in Fig. 1). These elements have been
purposefully chosen along the center of feedstock, so as to avoid
boundary effects likely to be present around the ends of the roll
bonded sheet.

For the second rolling pass, the same finite element model is
retained. However, the modeled feedstock is now assumed to be a
roll bonded sheet obtained from the first rolling pass. To effec-
tively carry over the material state from the first rolling pass to the
second, we use the solution mapping procedure described pre-
viously in Section 3.4. To this end, we use the material state of the
ten elements marked in blue in Fig. 1.

The mapping is done as follows. Since the original thickness of
the sheet is 1 mm, and the thickness reduction imposed in the first
pass is 50%, the z-coordinate (normal direction) of the centroid of
all the ten elements (forming the top sheet in the first pass) may
be expected to lie between 0 mm and 0.5 mm. Now five evenly
spaced points at 0.05, 0.15, 0.25, 0.35 and 0.45 mm are selected in
this interval. If a neighborhood is now established based purely on
the z-coordinate, each new element may be considered to be in
the vicinity of two polycrystal states of the roll bonded sheet. A
new state is then generated for each of the five points by linearly
interpolating the two neighbor polycrystal states. This mapping
procedure is schematically represented in Fig. 2.

We note that each vertical slab of 10 elements in the new FE
mesh corresponds effectively to 20 polycrystal states (or stacking
of two sheets) in the ARB sheet obtained after the first pass. The
five newly generated polycrystal states are copied onto the lower
set of 5 elements, assuming a mirror symmetric stacking sequence.
The state of the polycrystal in this vertical stack of 10 elements is
now replicated along the length of the sheet. In effect, we have
now mapped the material state of the deformed FE mesh of the
first pass to the undistorted initial mesh of the second pass.

It must be pointed out that the usage of only 10 polycrystal
states for the mapping procedure is a matter of convenience. A
more elaborate schema could be envisaged, wherein the end-of-
pass data of all elements in the deformed finite element mesh
could be used for the mapping procedure, thus resulting in an

improved representation of the microstructural inhomogeneity.
The usage of such an extensive set would, however, necessitate
data throughput between individual computation processes and
physical memory storage leading to significant increase in
simulation times.

With the polycrystal states accounted for, the second rolling
pass can be simulated in a straightforward manner like the first
pass. The same process parameters as that of the first pass are
retained for the simulation of the second pass.

4.2. Results

Fig. 3 shows the distribution of von Mises equivalent stresses in
the deformed geometry after the first and second rolling pass.
Towards either end of the rolled sheet, the deformation is clearly
inhomogeneous. However, for a greater part of the sheet around
the center, a steady stress distribution is observed. It is exactly in
this region that we request the texture and end-of-pass data, in
order to obtain a material state that is by and large reflective of the
rolled sheet. The ten elements, numbered between 261 and 270,
from which the material state is used for the mapping procedure
are also indicated in Fig. 3.

The textures obtained from the aforementioned central stack of
elements after the first ARB pass is shown in Fig. 4. The pole
figures were computed using the Matlab toolbox MTEX [75]. A
clear gradient in the texture is evident through the thickness of
the sheet. The elements towards the center of the sheet exhibit a
texture close to typical rolling textures of face centered cubic (fcc)
materials, while those towards the surface of the sheet evidence
an additional shear component. This can be better understood by
looking at Fig. 5(a) which shows the components of textures in
individual elements. Towards the center of the sheet, the texture is
dominated by the S and Brass components, along with consider-
able contributions of the Copper and Taylor components indicating
a strong fcc rolling texture. With increasing distance from the
center, the relative volume fraction of these components
decreases, while that of the rotated cube component increases
reflecting a texture with significant shear deformation. This
dominance of the rotated cube component at the surface of the
sheet is noteworthy, particularly due to its relative absence at the
center of the sheet.

Fig. 2. A schematic of the solution mapping scheme that maps the polycrystal state after the first pass onto a new initial mesh for the second pass. Polycrystal states of ten
elements marked in blue are mapped onto five elements by interpolating the states of adjacent elements. The mapped solution state is then duplicated in five more elements
by assuming reflection symmetry. This new stack of ten elements with the mapped solution states is then replicated along the length of the FE mesh used for the subsequent
pass. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

A. Prakash et al. / Materials Science & Engineering A 631 (2015) 104–119 111



The textures of this central stack of ten elements are then
mapped onto the top five elements of the new mesh using the
mapping procedure described previously in detail. The mapped
textures are presented in Fig. 6. Essentially, the textures of two

adjacent elements (e.g. 270 and 269, or 268 and 267 in Fig. 6) in
the thickness of the rolled sheet are then mapped onto a single
element (cf. A or B in Fig. 6) in the new mesh. Similitude between
the mapped textures and the corresponding reference states can

Fig. 3. Stress distribution (von Mises equivalent stress) in the rolled sheet after the first and the second pass. A steady distribution can be appreciated in greater part of the
sheet, in which for a stack of ten elements the texture and end-of-pass data are requested as output. The close-up view shows the deformed shape of elements from which
output has been requested. In both rolling passes, a through-thickness shear gradient can be clearly observed.

Fig. 4. Textures in the central stack of ten elements (cf. Fig. 1) after rolling pass 1. A through-thickness gradient in texture is evident. Near the sheet surface, the rotated cube
component is dominant. Towards the center of the sheet stack, the texture shows typical rolling components.
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be easily appreciated. Indeed the mapped texture, along with
additional mapped variables that govern the state produce a
mechanical response that lies between those of the reference

states. The initial state of the bottom five elements in the new
mesh is then obtained by copying the state of the top five
elements, albeit by reflection, so as to obtain a stacking sequence
Roller-A-B-C-D-E–E-D-C-B-A. Consequently, the top sheet of the
feedstock for ARB pass 2 has a shear dominated texture at its
surface and a strong rolling texture at its center.

In addition to the textures, other variables defining the state
of the polycrystal are also mapped onto the top five elements of
the new mesh and copied onto the bottom five to obtain the
stacking sequence as mentioned above. Of the remaining three
solution variables (cf. Table 2), the mapping of critical resolved
shear stresses and the cumulative shear, which are scalars, is
straightforward and is not presented here for the sake of brevity.
Mapping of the grain shapes, by contrast, is non-trivial and
demands careful scrutiny. Fig. 7 shows the results of the grain
shape mapping. The average shape of the polycrystal is initially
a sphere and evolves into ellipsoids of varying shapes and
orientations in each of the central stack of ten elements. For
demonstration, the ellipsoids of four elements (numbered 261,
261, 269 and 270, and corresponding to two adjacent elements
near the center and surface of the top sheet) after the first
pass are shown in Fig. 7 (red ellipsoids). The mapped ellipsoids,
shown in green, share a strong resemblance to the reference
states in terms of not just the shape, but also the orientation. This
clearly indicates the soundness of the mapping procedure.
The mapped ellipsoids are then used as the initial average shape
of the polycrystal for the second rolling pass. For completeness,
the final shape of the two ellipsoids after the second pass is also
shown in Fig. 7.

Fig. 5. Texture components in the central stack of ten elements (cf. Fig. 1) after the
first and second rolling pass.

Fig. 6. Mapped textures, which serve as input for pass 2. Also shown is a schematic of the mapping between the reference stack of ten elements (numbered) and the top five
elements in a stack of ten elements in the new mesh, which are then copied onto the bottom five elements through reflection. Similitude between the mapped textures and
the corresponding reference states from pass 1 (Fig. 4) is evident.
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We note that for the second pass, further simulation parameters
from the first pass are retained. Symmetry boundary conditions are
once again exploited to reduce the size of the simulated domain.
This inevitably leads to rolling of two sheets, where the properties
of the bottom sheet are mirror symmetric to those of the top sheet.
For the current scenario, where the process involves roll bonding of
two sheets of the same material, this does not make a difference.
However, for the simulation of roll bonding of laminates, symmetry
boundary conditions must be used with caution.

The textures after the second rolling pass are presented in
Fig. 8, with the volume fractions of different texture components
plotted in Fig. 5(b). The output is again requested in the central
stack of elements, as in the first pass. Similar to the first pass,
elements close to the sheet surface show a texture with consider-
able amount of shear, characterized by a strong rotated cube
component. A reduction in the volume fraction of the rotated
cube component towards the center of the rolled sheet is simul-
taneously followed by an increase in the volume fraction of the S
and Brass components. However, in contrast to the first pass where
a gradual increase of the S-component towards the center of the
sheet was seen, a peak around apparently the center of top sheet is
seen. We ascribe this to the presence of a strong rolling texture at
the center of the roll bonded sheet after the first pass.

The gradient observed in the texture of the rolled sheet has
considerable influence on the yield behavior of the sheet. Fig. 9
shows the polycrystal yield surfaces of the central stack of ten
elements for which output of the material state was requested.
The yield surfaces are projected onto the σ11–σ22 plane, assuming
plane stress conditions (σ33 ¼ 0). In addition to the yield surfaces
after the first and second rolling passes, we also present the initial
yield surface (polycrystal with 250 randomly oriented grains) for
comparison. The yield surfaces after the first and second rolling
passes have been calculated with standalone VPSC by using the
texture and end-of-pass polycrystal states of the central stack of
ten elements as input.

The yield surface of the initial configuration is more or less
isotropic, and its shape can be approximately characterized by the
von Mises yield criterion. As expected, with each rolling pass,
isotropic hardening leads to an increase in the size of the yield
surface, with a higher hardening rate in the first pass than in the
second. Noticeably, this isotropic hardening leads to almost no
change in the shape of the yield surface in the element close to the
center of the rolled sheet and is evidently a consequence of the
underlying strong rolling texture. The domination of shear in the
elements close to the surface leads to an anisotropic evolution of
the shape of the yield surface, and the shape can no longer be
characterized by a simple von Mises type of yield criterion. A more
detailed discussion on the shape of the yield surfaces is presented
in Section 5.

4.3. Simulations with a 3D model

A further important aspect of the current work is the usage of
multi-level parallelization – domain decomposition using MPI and
parallelization of the VUMAT using OPENMP. To address this issue,
we performed full three dimensional simulations of the ARB
process, using different parallelization combinations and a mod-
erately fine mesh. The initial and deformed FE models are shown
in Fig. 10. It is clear from the stress distribution shown in Fig. 10b
that the stress levels reached in the full 3D model are comparable
to those in the plane strain rolling simulations, vindicating the
plausibility of the quasi-2D approach presented in Section 4.
However, more interesting are the computation times required
for these full 3D computations. A simulation with purely domain
decomposition based parallelization that uses 8 domains takes
approximately 105 h. By contrast, a simulation using the two level
parallelization, with 2 domains and 4 threads each takes merely
36 h. Note that in both these simulations the number of cpus used
is essentially the same.

Fig. 7. Front (a), side (b) and top (c) views of the average ellipsoids used in the ARB simulations. Gray: common initial grain shape; red: grain shape in elements 261, 262, 269
and 270 after the first rolling cycle; green: interpolated grain shapes for starting configuration of elements 265 and 270 in the second rolling pass. The interpolated shape of
265 is based on the shape in element 261 and 262; for the interpolated shape in 270 the reference states are 269 and 270. Blue: shape in elements 265 and 270 after the
second cycle. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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These simulation times unambiguously show the potential for
the novel computational framework proposed in the current work.
The true advantage of the two level parallelization is indeed visible
in simulations with larger domains where sufficient amount of
work can be parallelized using OPENMP threads. The OPENMP based
parallelization has the advantage of improved mitigation of load
imbalance that might occur during the simulation of complex
processes like ARB.

Nonetheless, it must be pointed out that load imbalance is still
likely to be a problem due to the linear update of the constitutive
response used in the current work. Recall that this is necessitated by
the small stable time increment in ABAQUS/Explicit. Consequently, an
embedded framework that calls the VPSC model in every increment
becomes computationally exorbitant with increasing complexity of
the FE model. Segurado et al. [49] show that the calculation of the
consistent tangent moduli for implicit finite elements requires the
mere addition of the elastic moduli (C) to the polycrystal tangent
moduli (M) obtained from VPSC, necessitating the usage of accel-
eration techniques that call the embedded model only when
required. The linear constitutive update is an example of such a
technique and can easily lead to load imbalance in the OPENMP
threads, but can be overcome by the usage of dynamic scheduling of
the computation performed by each thread.

5. Discussion

The results of the ARB simulations show the formation of a
texture gradient in the thickness of the sheet, after both rolling

passes. Although no experimental investigations were performed
in the current work, the simulation results are seemingly consis-
tent with experimental results of ARB processed aluminum alloys
available in the literature. Saito et al. [2] identify a surface shear
texture and a rolling texture in the bulk of an AA1100 sheets after
eight ARB cycles. A texture gradient has also been observed in
AA1100 (6 ARB cycles) [76] and in AA1070 (1,2,4 and 6 ARB cycles)
[77]. Indeed, the formation of such a texture gradient is not
exclusive to ARB processed alloys, and can be seen in conventional
rolling processes too, albeit to a lesser degree.

A primary reason for this gradient is the difference in the
imposed boundary conditions between elements on the surface of
the rolled sheet and those at the center. The friction conditions
between the roller and the feedstock results in a substantial
amount of shear deformation in the elements close to the surface.
This superposed shear deformation gradually reduces towards the
center of the rolled sheet, a consequence of which, elements close
to the center are subjected to almost pure plane strain compres-
sion boundary conditions. This is evident in both the predicted
texture (cf. Figs. 4 and 5) and the deformed mesh of rolled sheet,
as seen in Fig. 11 for a central stack of ten elements.

Since the ARB process involves stacking of two sheets before
each pass, the central region of the feedstock (consisting of two
sheets) before the second pass now essentially presents a shear
texture. After the second pass, this shear texture is reduced
considerably. Nevertheless, a gradient in texture is still evident,
although the center of the top sheet still shows a strong fcc rolling
texture.

Fig. 8. Textures in the central stack of ten elements (cf. Fig. 1) after rolling pass 2. A through-thickness texture gradient is evident. The rotated cube component is dominant
near the sheet surface. Rolling components are formed near the center of the sheet stack (see also Fig. 5).
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A direct consequence of the texture gradient in the thickness of
the sheet is the differential evolution of the yield surfaces, as seen
in Fig. 9. We take a closer look into the yield surfaces of two
elements, one corresponding to the surface, and the other corre-
sponding to the center of the ARB sheet. Fig. 12 shows the yield
surfaces in these two elements after the second pass. For compar-
ison, the yield contours of the classical Tresca [78] and von Mises
[79] criteria are also plotted. The yield surfaces have been normal-
ized using σ11, in order to facilitate the comparison of shapes of the

yield surfaces. The initial random texture of both elements results
effectively in a yield locus that is close to the von Mises criterion.
At the end of the second pass, however, there is a discernible
difference between the yield surfaces of the two elements. The
yield locus of the surface element is highly anisotropic which can
be attributed to the shear (accumulated with increasing number of
passes) caused by the friction between the roller and the sheet. In
comparison, the yield surface of the element close to the center
evolves with lesser amount of anisotropy. Although the two

Fig. 9. Polycrystalline yield surfaces in initial state and after ARB pass 1 and 2. Towards the center of the sheet stack and especially in element 261, the yield surface
undergoes a more or less isotropic evolution. At the sheet surface, in element 270, anisotropic evolution is observed.

Fig. 10. Initial (left) and deformed (right) FE models of the full 3D simulations of the ARB process. The deformed structure shows the von Mises stress state in the material. A
simulation with purely domain decomposition based parallelization that uses 8 domains takes approximately 105 h. By contrast, a simulation using the two level
parallelization, with 2 domains and four threads each takes merely 36 h.
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elements in question experience the same amount of shear in the
first pass, the element in the center experiences reduced or almost
no shear in the second pass, and is dominated by boundary
conditions close to plane strain compression.

This differential yield behavior is of significance for two
additional reasons. First, this behavior is different from what can
be expected in multiple pass direct rolling simulations. Or in other
words, the anisotropic evolution of the yield surfaces is a direct
consequence of the stacking of sheets in the ARB process. Second,
engineers aiming to simulate further processes like deep drawing
to determine component behavior and reliability must account for
this through thickness gradient of the material properties;
neglecting it may result in the incorrect estimation of the stress
and strain state in the simulations.

The proposed modeling framework successfully captures key
elements of the ARB process, namely rolling process along with the
large thickness reduction, and the evolving texture and anisotropy. It
also circumvents mesh deterioration problems in multiple pass
rolling. However, in the present form, the framework does not yet
include two further important aspects of the ARB process – interlayer

bonding strength and the refinement of grain size leading to UFG
microstructure after multiple rolling passes. The modeling frame-
work can, however, be easily extended to include additional features,
like e.g. cohesive zone elements, to account for interlayer bonding.

The VPSC model embedded in the current framework uses a
phenomenological description of the strain rate. This is clearly not
sufficient to account for the complex deformation mechanisms
and their temperature and strain rate dependence, which is of
particular importance in UFG materials. A more physics based
constitutive description is hence necessary to capture intricate
details of the mechanics at the small length scales, including
activation barriers [80], dislocation-defect interactions [81,82],
grain boundary mediated plasticity [83–85], amongst others.
These are aspects of current development involving physics based
constitutive models (e.g. [86–88], see Ref. [25] for a detailed
review on such models). The VPSC model can be directly extended
to include such physics based constitutive approaches [89]. Like-
wise, constitutive models for grain refinement (e.g. [90]) can also
be easily incorporated in the current framework to account for the
UFG microstructure.

Fig. 11. Initial and deformed shapes of the elements in the center cross-section (marked blue in Fig. 1) for ARB pass 1 and 2, and locations where shear or rolling texture
components are most pronounced. After the rolling pass, texture components are redistributed due to stacking of sheets. This results in a different through-thickness
variation of shear in pass 2.

Fig. 12. Normalized polycrystalline yield surfaces of the initial state and in elements 261 and 270 after pass 2. The isotropic yield stresses according to the criteria of Tresca
[78] and von Mises [79] are also included. Comparison shows that the yield stress is anisotropic after ARB pass 2. The anisotropy is more pronounced in case of the surface
element 270.
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Even with its current limitations, the present multiscale model-
ing framework is expected to significantly contribute to the estab-
lishment of the ARB process as an elegant way to produce metal
sheets with tailored properties. The framework can, for instance, be
used to optimize processing parameters and conditions required for
ARB. Having a reliable and robust simulation framework, which is
simultaneously efficient so as to provide results in realistic time
schedules, can help in upscaling the process to produce sheets of
large dimensions required for industrial usage. Furthermore, it can
also be used for subsequent forming processes like deep drawing,
thereby enabling the simulation of a process chain.

6. Conclusions

In this work, we have developed a computational framework
that facilitates the simulation of multiple pass ARB process. To this
end, we embed the VPSC model as a VUMAT in the explicit FE
formulation of ABAQUS. As a result the evolution of texture during
the process, and consequently the evolving anisotropy is seam-
lessly accounted for in the framework, and have a direct influence
on the processing conditions, like e.g. rolling forces.

The main aspects of our framework are as follows:

� To facilitate the simulation of multiple passes, we propose and
implement a novel solution mapping scheme. This scheme
essentially maps the texture, grain shapes and other relevant
material state variables from the deformed mesh onto a new
undistorted mesh. As a result, simulation of the subsequent
pass can be done with a mesh of good quality while retaining
the requisite solution variables of the previous pass. This has an
additional advantage of circumventing the problem associated
with an increase in number of finite elements with increasing
number of ARB passes, since the number of elements remains
constant with the usage of the solution mapping scheme.

� The framework implements multi-level parallelization of the
material response – decomposition of the finite element
domain using MPI and parallelization of the material response
using OPENMP threads – resulting in reduced simulation times.

� Acceleration techniques are made use of in the computational
framework to keep simulation times to a minimum. We
interrogate the polycrystal model only when certain criteria
are met; else a linear stress update using the elastic self-
consistent moduli is performed.

To the best of our knowledge, the proposed solution mapping
scheme and multi-level parallelization is entirely new and has
hitherto not been presented in the literature. We have demon-
strated the computational framework by simulating a two-pass
ARB process. The results clearly show a through thickness gradient
of texture and evolving anisotropy, which is a direct consequence
of the stacking of sheets.

The current computational framework can serve as an impor-
tant tool that facilitates the incorporation of the ARB process in
industry – the framework incorporates a robust and reliable
material model, and the two-level parallelization helps realize
simulations in realistic time schedules.

Finally, we point out that the current framework is not limited to
the ARB process. It can be used for the simulation of other forming
processes, including conventional rolling, deep drawing etc.
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