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In experiment-based validation, uncertainties and systematic biases in model predictions are reduced by either increasing the amount
of experimental evidence available for model calibration—thereby mitigating prediction uncertainty—or increasing the rigor in
the definition of physics and/or engineering principles—thereby mitigating prediction bias. Hence, decision makers must regularly
choose between either allocating resources for experimentation or further code development. The authors propose a decision-making
framework to assist in resource allocation strictly from the perspective of predictive maturity and demonstrate the application of this
framework on a nontrivial problem of predicting the plastic deformation of polycrystals.

Keywords: Bayesian inference, model calibration, uncertainty quantification, predictive maturity, viscoplastic self-consistent, material
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1. Introduction

Numerical models are approximate representations of real-
world phenomena and, thus, simulations invariably suffer
from a degree of inaccuracy and imprecision that can be at-
tributed to: (i) incomplete modeling of physics and/or engi-
neering principles, (ii) imprecisely known model input param-
eters, and (iii) numerical uncertainties incurred while solving
the mathematical equations [1, 2].

Incomplete modeling of physics and/or engineering prin-
ciples, the first factor, refers to the physical phenomena that
are either completely unforeseen or that are known, but too
complex to incorporate in the model. This incompleteness in-
variably causes systematic bias in predictions [3–7] and often
leads to missing input parameters [8]. Imprecise model param-
eters, the second factor, are identified by the analyst; however,
their precise values (or distributions) remain unknown [9, 10].
These imprecise model parameters are typically the main con-
tributors to the uncertainty in predictions. Numerical uncer-
tainties, the third factor, can be treated by code and solution
verification activities that ensure the mathematical equations
are solved correctly [11–13]. Verification is a prerequisite to
experiment-based validation [14] and, thus, the third factor,
which involves numerical uncertainties, is excluded from the
scope of the present article.

Address correspondence to S. Atamturktur, Glenn Department
of Civil Engineering, Clemson University, Lowry Hall, Clemson,
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The primary aim of the model developer then becomes
one of reducing the parameter uncertainty and systematic
bias in model predictions. These objectives can be achieved
by allocating resources to either (i) undertake experimenta-
tion to increase the number of physical observations used in
the model calibration process or (ii) code development to im-
prove the manner in which physics and/or engineering princi-
ples are defined. Expanding the experimental campaign by
conducting new experiments can reduce parameter uncer-
tainty and produce a more refined estimate of systematic bias,
while improvement in the description of physics and/or en-
gineering principles can lead to a reduction in the system-
atic bias. An improved, more detailed model may, however,
lead to a higher number of uncertain input parameters and
increase the prediction uncertainty [8]. Thus, reducing pre-
diction uncertainty and prediction bias are often conflicting
objectives [15]. Therefore, the relative benefits of these two
routes, further experimentation versus further code develop-
ment, vary depending upon available experimental measure-
ments and the existing predictive capability of the numerical
model.

Considering the finite resources, effectively choosing one
approach over the other becomes an issue of efficient alloca-
tion of available resources. By focusing on the relative benefits
of each approach strictly from the perspective of predictive
capability, the authors propose a resource allocation frame-
work that aids in the selection between further experimenta-
tion and code development. The application of this proposed
framework is demonstrated on the viscoplastic self-consistent
(VPSC) material code for modeling plastic deformation.
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642 S. Atamturktur et al.

2. Resource Allocation Framework

Figure 1 illustrates the proposed framework, which begins
with an initial numerical model and a starting set of physi-
cal measurements. This initial model is imprecise due to pa-
rameter uncertainties and, thus, must be calibrated against
experiments. Such calibration is possible using a variety of
back-calculation techniques. In this study, a statistical infer-
ence procedure originally proposed by Kennedy and O’Hagan
[7] and formulated into a standard model calibration pro-
cedure by Higdon et al. [5] is adopted. This calibration
procedure conditions the probability distributions of input
parameters to the experimental evidence reducing the uncer-
tainties in the input parameters, and thus leading to a re-
duction in prediction uncertainty. An increased availability
of experiments results in a greater reduction in prediction
uncertainty. In the framework proposed herein, this reduc-
tion is traced by quantifying the information gained using an
entropy-based metric.

Aside from prediction uncertainty, the initial numerical
model in Figure 1 also has a prediction bias, i.e., funda-
mental inability to reproduce the reality that cannot be reme-
died solely by calibrating the input parameters. According to
Kennedy and O’Hagan [7], prediction bias can be determined
by quantifying the deviations between the experiments and
the model predictions obtained with ‘best fitted’ parameter
values. Since experiments are only available at discrete set-
tings, empirically training an error model becomes necessary
to estimate the systematic bias at the untested settings [5]. As
more experiments become available, the prediction bias can
be estimated with greater fidelity, ultimately converging to the
“true” bias of the model. In the framework proposed herein,
the convergence of prediction bias is traced by calculating an
averaged bias for the entire domain of applicability through
the independently trained empirical error model, henceforth
referred to as discrepancy.

At the decision node in the framework, the decision maker
must assess the predictive capability of the numerical model by
evaluating the stabilization of the discrepancy and the infor-
mation gain metrics throughout the domain of applicability.
For a sound model developed based on well-founded physics
or engineering principles, the absence of stabilization of the in-
formation gain metric indicates that the prediction uncertainty
has not yet been fully mitigated, while the absence of stabiliza-
tion of the discrepancy indicates that prediction bias has not
yet been properly defined. In this case, resources must be allo-
cated for experimentation. Poorly built models fail to exhibit
stabilization in discrepancy even after a significant number
of experiments are conducted; therefore, at this point in the
framework, a measure of how well the current experiments
explore the domain of applicability (referred to as coverage) is
compared to a maximum coverage limit [16–18]. Exceeding the
maximum coverage limit without stabilization indicates that
the model is too crude for its purposes and resources must be
allocated for code development.

If stabilization is observed, however, then the ability of the
available experiments to sufficiently explore the domain is an-
alyzed. Stabilization, when only a small portion of the domain
is explored by experiments, cannot ensure that the prediction

Fig. 1. Predictive capability framework.

bias is properly defined throughout the entire domain. There-
fore, a minimum coverage limit needs to be reached; otherwise,
more experiments must be conducted to explore the domain
of applicability.

If stabilization is observed and the minimum coverage
threshold is met, then the epistemic component of parame-
ter uncertainty can be expected to be adequately reduced, and
the inferred prediction bias can be considered a proper repre-
sentation of the incompleteness and inexactness of the model.
In this case, further experimentation would only marginally
improve the inference of the systematic bias, and allocating re-
sources to experiments cannot be justified. The decision maker
must then evaluate if the remaining prediction bias is at an ac-
ceptably low level for the application of interest.

If the prediction bias is sufficiently low, the model is consid-
ered valid for the particular application. If the prediction bias
is unacceptably high for the specific purposes of model predic-
tions, the physics and/or engineering principles in the model
must be improved. An improved model may have a larger
number of uncertain parameters and may require a more ex-
tensive experimental campaign to mitigate the increased pre-
diction uncertainty [8]. Therefore, it becomes necessary to
check the stabilization of both information gain metric and
discrepancy simultaneously. The framework in Figure 1 there-
fore loops through the aforementioned steps until the formu-
lated discrepancy and information gain metrics converge to the
acceptable levels.

3. Metrics for Prediction Uncertainty and Bias

3.1. Prediction Uncertainty: Information Gain

As the information gain is equal to the amount of uncer-
tainty removed, entropy, defined as a measure of uncertainty,
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is equivalent to the amount of information [19]. Herein, an in-
formation gain metric based on Shannon entropy is utilized to
quantify the prediction uncertainty as additional experiments
become available to condition the posterior distributions of
input parameters. For a discrete random variable, z, with a
probability mass function, p(z), the entropy is expressed as:

H (z) = −
∑
z∈Z

p(z) log p(z), (1)

where the logarithm to base 2 is used to measure entropy in
bits and z represents the calibrated model predictions. As an
increasing number of experiments are used in the calibration
process, the information gain metric, expressed in percentages,
is calculated using the following relationship:

Info − Gain(i)(%) =
(Href − Hexpt(i)

Href

)
∗ 100, (2)

where Href is the entropy calculated for the model predictions
obtained with the initial distributions of the calibration pa-
rameters prior to the availability of experiments. Hexpt(i) is the
entropy of the calibrated model predictions, in which i is the
number of experiments used in the calibration process.

While the information gain metric is an excellent tool for
quantifying the reduction in prediction uncertainty, it does
not make any assertions about the prediction bias. Therefore,
both the convergence of systematic bias and information gain
must be evaluated while discerning the necessity of additional
experiments or further code development.

3.2. Prediction Bias: Model Form Error

A multivariate generalization [5, 6] of a model calibration
approach formulated by Kennedy and O’Hagan [7] is imple-
mented, in which experiments are exploited to infer uncertain
input parameters while simultaneously considering the incom-
pleteness of the model. Here, the experimental observation,
y(x), is given by:

y(x) = �(x, �) + �(x) + ε(x), (3)

where �(x, �) denotes the model predictions, �(x) represents
the estimated systematic bias between reality and the predic-
tions, and ε(x) denotes the experimental error. Here, x rep-
resents settings at which observations are made (i.e., control
parameters), and � denotes the best values for the calibration
parameters, t.

For many practical problems, the complexity and compu-
tational demands of numerical models limit the number of
possible runs. To obtain predictions at untried settings, an in-
expensive surrogate (also known as emulator) can be trained as
a substitute for the numerical model. Here, a Gaussian process
(GP) emulator is used to represent the numerical model pre-
dictions, �(x, t), which is specified by a mean function, �(x, t),

and a covariance function [5]:

Cov((x, t), (x′, t′)) = 1
��

∏px

k=1
�

4(xk−x′
k)

2

�k

×
∏pt

k=1
(��k,px+k)4

(
tk−x

′
k

)2

, (4)

where �� and ��k vectors are the so-called hyper-parameters
for the GP emulator for model predictions, which control
the marginal precision of �(x, t) and the dependence strength
in the components of the x and t directions, respectively. In
Eq. (4), px and pt are the number of control and calibration
parameters, respectively.

Similarly, for the estimated systematic bias, �(x), a GP emu-
lator is employed with a zero mean and a covariance function
[5]:

Cov((x, x′)) = 1
��

∏px

k=1
�

4(xk−x′
k)

2

�k , (5)

where �� and ��k are hyper-parameters for the GP emulator
for prediction bias, which control the marginal precision of
�(x) and the dependence strength in the components of the x
direction, respectively. The hyper-parameters ensure a smooth
and differentiable form for both �(x, t) and �(x).

In the Bayesian calibration framework, the true but un-
known values of the calibration parameters, �, are inferred ex-
ploiting the availability of the experimental data, where the ex-
isting knowledge about calibration parameters and the hyper-
parameters of the GP emulators are incorporated through
prior distributions. The posterior distribution conditioned on
experimental data is given by:

�(�, �, ��, ��, ��, ��|D) 	

L(D|�, �, ��, ��, ��, ��,
∑

y

) × �(�) × �(�) × �(��)

×�(��) × �(��) × �(��), (6)

where D is the joint vector of experimental data and numerical
model outputs, L(D|�, ·) is the likelihood function,

∑
y is the

observation covariance matrix, and �(·) is the prior distribu-
tions (for detailed discussion see Higdon et al. [5]).

A Markov chain Monte Carlo (MCMC) algorithm, specifi-
cally Metropolis–Hasting algorithm [20, 21], is used to explore
the posterior distributions for both the calibration param-
eters and the aforementioned hyper-parameters. During the
MCMC random walk, calibration parameter values that gen-
erate predictions with greater agreement with the experimental
data over the domain of applicability are accepted based on
the established maximum likelihood criteria [20, 21].

Upon obtaining the hyper-parameters of the GP model, the
discrepancy �(x∗) can be estimated at untested input settings,
x∗ throughout the entire domain of applicability. This empir-
ically trained discrepancy model can then be aggregated to
obtain an average representation of prediction bias through-
out the domain.
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644 S. Atamturktur et al.

Table 1. Stress and texture intensity experimental results for 5182 Al

Experiment
Temperature

(◦C)

Strain
rate
(s−1)

Stress (MPa) @
strain = 0.6

Texture intensity
(001)

Texture intensity
(101)

A 200 10−3 226.2 1.00–1.41 4.00–6.00
B 300 10−3 91.4 0.58–0.71 4.00–6.00
C 350 10−3 50.0 2.00–2.83 2.83–4.00
D 400 10−3 30.6 NA NA
E 500 10−3 14.9 4.00–6.00 2.00–2.83
F 550 10−3 7.0 NA NA
G 200 1 280.0 NA NA
H 300 1 193.7 NA NA
I 400 1 121.3 1.41–2.00 4.00–6.00
J 500 1 65.5 2.00–2.83 0.00–0.58
K 550 1 43.0 2.83–4.00 0.58–0.71

4. Viscoplastic Self-Consistent (VPSC) Material Model

Lebensohn and Tomé [22] developed a VPSC material model
for modeling the plastic deformation of polycrystals. A poly-
crystal is modeled by a set of single crystals (grains) with
initial crystallographic orientations that represent the initial
texture of the aggregate and evolve during plastic deforma-
tion. In turn, each grain is treated as an ellipsoidal inclu-
sion with anisotropic viscoplastic properties, deforming in
a homogenous equivalent medium that has the a priori un-
known average properties of the aggregate. This leads to a
relation between the strain-rate and stress in each individ-
ual grain with the global stress and strain-rate of the ag-
gregate through localization equations. The viscoplastic de-
formation of the crystals occurs by dislocation motion and
can be modeled in terms of constitutive relations between
the deviatoric stress and strain-rate tensors. Viscoplastic de-
formation will occur when a slip system activates and dis-
locations move under an applied stress. The final deforma-
tion is obtained in the VPSC formulation through imposing
a macroscopic strain-rate during each incremental deforma-
tion step. The strain-rate and stress from each previous step
is used as the starting values for the next step. Stress–strain
curves and texture development constitute the typical output
of a VPSC calculation. Recall that the numerical uncertainty
must be verified prior to validation (see Lebensohn et al. [23]
for verification of the VPSC code against “exact” full-field
formulations).

In the present study, two versions of the VPSC code are uti-
lized: the original glide-only (G) version, used for predictions
of plasticity of polycrystals; and the climb-and-glide (C&G)
version, with improved physics for the prediction of polycrys-
tal response under creep conditions.

4.1. Glide VPSC

In the G version of the VPSC code, a Schmid-type constitutive
behavior is used to describe the dislocation motion in the
constituent single-crystals [22]. As such, dislocations lie and
move within the slip plane and are activated by shear stresses;
their motion can only accommodate simple shear deformation

on this plane. Glide activity in several slip planes is able to
accommodate an arbitrary deformation applied to the crystal.
The constitutive equation at the single crystal level is expressed
as:

ε̇ = 
̇o

Ns∑
s=1

ms

(∣∣ms : �
∣∣

� s
o

)ng

sgn (ms : �) , (7)

where � is the stress applied to the crystal and ε̇ is the strain
rate, accommodated by glide; ms and � s

o are the Schmid tensor
and the critical resolved shear stress associated with glide in the
system(s), respectively. The stress exponent, ng, represents the
inverse of rate sensitivity for the glide activity, and 
̇o denotes
a normalization factor. The single crystal equation for strain
rate is summed over all active slip systems, Ns.

4.2. Climb-and-Glide VPSC

Lebensohn et al.’s [24] constitutive model for aggregates of sin-
gle crystals deforming by climb and glide is an improvement
to the original VPSC approach that considers deformations
by glide only. At temperatures below 50% of the melting tem-
perature, glide-controlled creep dominates; however, at higher
temperatures, local nonequilibrium concentrations of point
defects interacting with dislocations allow for dislocations to
climb in addition to glide. Dislocation climb becomes very
relevant in high-temperature plasticity and irradiation creep.
The direction of dislocation motion is determined by the ve-
locity vector composed of two components: the glide velocity
(lies in glide plane) and the climb velocity (normal to the glide
plane). The glide component depends upon the shear stress
component acting on the glide plane while the climb compo-
nent depends on the full stress tensor. The extension of Eq. (7)
to the C&G case is expressed as:

ε̇ = 
̇o

Ns∑
s=1

{
ms

(∣∣ms : �
∣∣

� s
o

)ng

× sgn (ms : �)

+cs

(∣∣cs : �
∣∣

�s
o

)nc

× sgn (cs : �)
}
, (8)
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Experiment-Based Validation of Numerical Models 645

Fig. 2. 5182 Al stress-strain curves for various temperatures and strain rates.

where cs and �s
o are, respectively, the climb tensor and a critical

stress associated with climb in the system(s), and nc is the stress
exponent associated with climb. In Eq. (8), ng and � s

o (glide
stress exponent and critical resolved shear stress associated
with glide) are temperature, strain-rate, and microstructure-
dependent [24]. Likewise, nc and �s

o (climb stress exponent
and critical stress associated with climb) are dependent of the
same variables. This latter dependency however, is much more
complex due to the dynamics and interactions of dislocations
and the interactions between point defects and dislocations.
Additional versions of the VPSC code, including an improved
C&G model [25] and an atomistic scale coupled model, are
currently being developed and will be added to future analysis.

5. Application of the VPSC Code to 5182
Aluminum Alloy

Experiments performed on 5182 aluminum samples with an
initial (001) (“cube”) texture deformed in compression have
been reported in Stout et al. [26, 27]. Stress–strain curves and
final textures (in terms of inverse pole figures) are measured
for varying levels of the two control parameters: temperature
and strain rate (Table 1). The experiments are performed until
the specimens reach a true strain of 0.6. Final textures are also
available for 7 of the 11 stress–strain curves shown in Figure 2.

The stress corresponding to the maximum measured strain
of 0.6 and the intensities of the textures corresponding to
the (001) and (101) corners of the inverse pole figure are
extracted as low-dimensional data for the calibration of the
VPSC model. Although a complete, quantitative description
of crystallographic textures requires, in general, a large num-
ber of parameters (e.g., weights associated with a partition of
a 3D orientation space), the final compression textures of the
5182 Al samples can be characterized by, at most, two compo-
nents with associated intensities, corresponding to a retained
(001) cube texture and/or a (101) compression texture. These
chosen features offer a low-dimensional yet highly informative
metric for model calibration.

5.1. Experimental Observations

The initial results by Stout et al. [26] show typical stress–strain
behaviors, in which yielding is followed by strain-hardening
at low temperatures. At higher temperatures, however, very
little work hardening and lower yield stresses are observed.
Additionally, for yield stresses below 50 MPa, negative work
hardening occurs with a clear upper/lower yield point; for
stresses above 50 MPa, a yield point is not observable, how-
ever [26]. Textures at elevated temperatures are likewise incon-
sistent with standard glide-only deformation textures, while
textures at lower temperatures develop a (101) fiber texture,
typical of uniaxial compression applied to a FCC polycrys-
tal. Experiments run at 500 and 550◦C with a strain rate of
10−3 s−1 display a (001) cube component (generally thought of
as a recrystallization texture not a deformation texture) and
almost no (101) deformation component. For 400, 500, and
550◦C with 1 s−1 strain-rate, both (001) and (101) textures are
observed [27]. To explain the difference in the combination
of textures, Stout et al. [27] assumes a sharp decrease in rate
sensitivity as strain rate increases.

5.2. Prior Work

Utilizing the VPSC model to predict texture measurements re-
ported by Stout et al. [27], Lebensohn et al. [24] observes that
the (001) cube component at high temperatures and low strain

Table 2. Control and uncertain model parameter values

Parameter Minimum Maximum

Control parameters Temperature (◦C) 180 570
Strain-rate (s−1) 0.0005 1.05

Uncertain model
parameters

ng 1 5

� s
o (MPa) 1.2 1343.4

nc 1 5
�s

o (MPa) 1.2 6045.4
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646 S. Atamturktur et al.

Fig. 3. Optimized point estimates for rate sensitivity (ng) (top)
and critical stress (� 0) (bottom) for the G model.

rates are due to an increase in climb activity. Seven differ-
ent VPSC simulations of texture evolution are computed for
various glide-only and climb-and-glide scenarios. An analysis
of these simulations shows that an increase in rate-sensitivity
contributes to prevalence of the (001) cube component. The
texture simulated using an equal climb-to-glide activity ra-
tio most accurately predicts the experimental texture for the
400◦C and 10−3 s−1 experimental case, however. As proposed
in Lebensohn et al. [24], the final retained (001) cube com-
ponent is achieved by means of an increase in climb activity,
which can be explained by climb mechanism accommodating
plastic deformation applied to a single crystal involving a re-
duced plastic spin (crystal rotation) as compared with glide
(see Lebensohn et al. [24] for details). Hereafter, the response
features of interest (stress at the maximum measured strain of
0.6, (001) cube texture, and (101) compression texture) will be

Fig. 4. Optimized point estimates for rate sensitivities (ng and
nc) (top) and critical stresses (� 0 and �0) (bottom) for the C&G
model.

Table 3. Calibration parameters for the G model

Parameter Optimized/mean value Min Max

ag 4577.1 3432.8 5721.4
bg −0.01 −0.008 −0.012
cg 372.48 279.36 465.60
dg −0.005 −0.004 −0.006
ng 3.5 2.5 4.5

referred to as maximum stress, texture 001, and texture 101,
respectively.

6. Calibration Against Experimental Data

The critical stresses and the stress exponents from Eqs. (7) and
(8) are uncertain and, thus, will be calibrated against experi-
mental data. As the initial strain hardening is not of interest,
the critical stresses are assumed constant. For the G model,
the two parameters that need to be calibrated are then (i) the
glide stress exponent, ng, and (ii) the initial critical resolved
shear stress for glide, � s

o . For the C&G model, in addition to
the two parameters corresponding to the glide mechanism,
parameters that need calibration include two more parame-
ters: (iii) the climb stress exponent, nc, and (iv) critical stress
associated with climb, �s

o . The plausible upper and lower lim-
its for these uncertain parameters are determined by expert
opinion and are listed in Table 2.

6.1. Correlation Function

There is a potential dependency of the stress exponent(s), n,
and initial critical shear stress(es), � , on the control param-
eters (temperature and strain rate) making it implausible to
search for a single set of input parameter values for stress ex-
ponent and critical stress that can yield satisfactory agreement
with experiments throughout the entire domain of applicabil-
ity. Therefore, it becomes necessary to construct a correlation
function to investigate and if present represent the dependency
of these uncertain input parameters on control parameters.

Table 4. Calibration parameters for the C&G model

Parameter
Optimized/
mean value Min Max

ag 2970.2 2227.65 3712.75
bg −0.008 −0.0064 −0.0096
cg 281.7 211.275 352.125
dg −0.004 −0.0032 −0.0048
ng 3.5 2.5 4.5
ac 24,727 18,545.25 30,908.75
bc −0.012 −0.0096 −0.0144
cc 1595.2 1196.4 1994
dc −0.008 −0.0064 −0.0096
nc 3.5 2.5 4.5
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Experiment-Based Validation of Numerical Models 647

Table 5. Calibration experiments used in each case (see Table 1
for the experimental settings)

Case Experiments

1 A
2 A,B
3 A,B,C
4 A,B,C,E
5 A,B,C,E,I
6 A,B,C,E,I,J
7 A,B,C,E,I,J,K
8 A,B,C,E,I,J,K,D
9 A,B,C,E,I,J,K,D,E

10 A,B,C,E,I,J,K,D,E,G
11 A,B,C,E,I,J,K,D,E,G,H

Such a function can be constructed by exploiting the available
experimental data.

Optimal values for stress exponent, n, and critical stress,
� , are obtained by minimizing the disagreement between the
measured stress and texture values using a nonlinear con-
strained optimization algorithm, exploiting the experimental
measurements available at settings given in Table 1. Sequen-
tial quadratic programming (SQP) through the fmincon com-
mand in MATLAB is implemented [28, 29] (also see [30] for a
complete description of the gradient-based SQP algorithm).

In optimization of the G model, the stress exponents are
allowed to vary between 1 and 5, with starting values of
3 and 3.3 for the glide and climb stress exponents, respec-
tively. The lower bound and upper bound of the range for
the critical stresses corresponding to the settings of each ex-
perimental measurement are determined using Eq. (9) and
Eq. (10), respectively.

�min = 0.5 × �e

3 × ε̇(1/3.5)
, (9)

� s
0max = 2.0 × �e

3 × ε̇(1/3.5)
, (10)

where �e represents the stress at the maximum measured
strain. When the range identified for these parameters is nor-
malized between 0 and 1, the starting value for the critical
stress is set to 0.33.

For optimization of the C&G model, the stress exponents
are allowed to vary between 1.5 and 4.5 with the same start-
ing values as the G model. The bounds on the critical stress
associated with glide and the lower bound of the critical stress
associated with climb are determined according to Eqs. (9)
and (10). The upper bound of the critical stress associated
with climb is determined from Eq. (11):

�s
0max = 9.0 × �e

3 × ε̇(1/3.5)
. (11)

When the range identified for these parameters is normal-
ized between 0 and 1, the starting value for the critical stress
associated with glide is 0.4 and the initial critical stress asso-
ciated with climb is 0.9.

The function to be minimized is given by the least-squares
objective function in Eq. (12):

O =

√√√√( |�s(n, � ) − �e|
�e

)2

+
( | (n, � )s

(001) −  e
(001)|

 e
(001)

)2

+
( | (n, � )s

(101) −  e
(101)|

 e
(101)

)2

, (12)

where �s represents the predicted stress at the maximum mea-
sured strain. In Eq. (12),  e

(001) and  (n, � )s
(001) denote the

measured and predicted texture 001 intensities, respectively;
while  e

(101) and  (n, � )s
(101) represent the measured and pre-

dicted texture 101 intensities, respectively. Note that for each
experimental setting given in Table 1, the  e

(001) and  e
(101)

values are given as ranges due to the experimental uncertainty.
Therefore, the following relationships are imposed on the

Fig. 5. Posterior distribution for the G model (Left: 1 experiment, Right: 11 experiments) (Inner contour: 90th percentile, Outer
contour: 50th percentile).
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648 S. Atamturktur et al.

second and third terms in Eq. (12):

(∣∣ s −  e
∣∣

 e

)2

= 0 for ( e)L ≤  s ≤ ( e)U, (13)

(∣∣ s −  e
∣∣

 e

)2

=
(∣∣ s − ( e)L

∣∣
( e)L

)2

for  s < ( e)L,(14)

(∣∣ s −  e
∣∣

 e

)2

=
(∣∣ s − ( e)U

∣∣
( e)U

)2

for  s > ( e)U . (15)

In Eqs. (13)–(15), the subscripts U and L denote the up-
per and lower bounds for texture data from Table 1. Because
increased stress leads to an increase in glide at the expense
of climb, the constraint nc < ng is imposed for all control
parameter settings.

Representative plots of the optimized, deterministic point
estimates for stress exponent(s) and critical stress(es) are
plotted in Figures 3 and 4 for G and C&G models, respec-
tively. In these figures, the starting values are 3 and 3.3 for the
glide and climb stress exponents, respectively. Other starting
values between 1.8 and 4.2 for the G model and between 2.1

Fig. 6. Model prediction bias and uncertainty for the G model (Left: Experiment K, Right: Experiment E).
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Experiment-Based Validation of Numerical Models 649

Fig. 7. Systematic bias corresponding to maximum stress for each experiment: (a) G model, (b) C&G model.

and 3.9 for the C&G model yield similar results, demonstrat-
ing that the optimized stress exponent(s), n, are independent
of temperature and strain rate and, thus, must be treated as
calibration parameters. Furthermore, the optimization pro-
cess indicates that bounds for the stress exponents can be
restricted further (see the gray band on Figures 3 and 4) from
the ranges identified by the expert (recall Table 2). The fur-
ther constrained ranges for the stress exponents are listed in
Tables 3 and 4.

On the other hand, the optimized critical stress, � , exhibits
an exponential relationship with temperature and a linear re-
lationship with strain rate, which can be expressed as:

� = aebT + (ε̇ − ε̇1) cedT − (ε̇ − ε̇1) aebT

(ε̇2 − ε̇1)
, (16)

where ε̇ is the strain rate and T is the temperature. The vari-
ables a and c are the leading intercept coefficients for the ex-
ponential fit for the critical stress at a strain rate of ε̇1 = 0.001
and ε̇2 = 1, respectively. Likewise, b and d are the decay rate
coefficients for the exponential fit. In lieu of critical stresses,
the coefficients a, b, c, and d are treated as calibration pa-
rameters, for which posterior distributions are inferred. The
optimal values for the coefficients computed from Eq. (12)

and shown in Tables 3 and 4 for the two models, are treated
as starting values during model calibration (discussed in the
next section).

The aforementioned analysis yields 5 calibration param-
eters for the G model and 10 for the C&G model as listed
in Tables 3 and 4, along with the ranges, within which these
parameters are allowed to vary to encompass available exper-
imental data.

6.2. Model Calibration

Latin-hypercube designs with 140 and 240 samples are used
to construct the GP emulators for the model predictions of
the G model and the C&G model, respectively. For the cali-
bration parameters, a uniform prior distribution is assumed
between the ranges given in Tables 3 and 4. Further, 10,000
accepted MCMC iterations are generated to estimate the pos-
terior distribution of the calibration parameters. Exercising
the GP emulators, predictions are obtained for 500 linearly
spaced samples from the posterior distributions of the cal-
ibration parameters and GP hyper-parameters. To compare
the calibrated model predictions against experimental data,
predictions, �(x, �), are generated at experimental settings
shown in Table 1.

Fig. 8. Systematic bias corresponding to texture 001 for each experiment: (a) G model, (b) C&G model.
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650 S. Atamturktur et al.

Fig. 9. Systematic bias corresponding to texture 101 for each experiment: (a) G model, (b) C&G model.

7. Results and Discussion

This section demonstrates the resource allocation framework
and provides a discussion on the computed systematic bias
and information gain as the two versions of the VPSC model
are calibrated using one through 11 available experiments in
the sequence shown in Table 5. When all 11 experiments are
used, coverage of the domain reaches over 85% according to
the coverage metric proposed in Hemez et al. [17]. It is assumed
that the minimum coverage threshold is set at 80% for this ap-
plication; therefore, the 11 experiments satisfactorily explore
the domain of applicability. The calibrated VPSC models are
executed to predict maximum stress along with texture 001
and 101 intensities at the settings of these 11 experiments.
This section ultimately concludes by comparing the tradeoff

of bias and uncertainty reduction between the two models
through divergence information criterion.

7.1. Initial Numerical Model: G Model

A reduction in uncertainty in the calibration parameters of
the G model can be observed by the narrowing of the distribu-
tions in Figure 5, which compares the posterior distributions
of input parameters obtained using all 11 experiments to those
obtained using only one experiment (with the exception of dg,
which can be explained by the relative insensitivity of this pa-
rameter). In Figure 6, the stress and texture predictions depict
convergent behavior with consistently reduced uncertainty as
the number of experiments used in the analysis increases. Also
evident in Figure 6 is the constant systematic bias remaining

Fig. 10. Information gain from experiments used for calibration of G model: (a) Experiment E, (b) Experiment K.
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Experiment-Based Validation of Numerical Models 651

after the convergence of predictions. The remaining systematic
bias is measured to the nearest dashed horizontal line, which
reflects the experimental uncertainty.

Figures 7a–9a depict the prediction bias for the maximum
stress, texture 001, and texture 101 predictions at each ex-
perimental setting, as a function of the number of experi-
ments used in the calibration process. For the maximum stress
output shown in Figure 7a, little convergent behavior is evi-
dent; while for the texture outputs, upon addition of the fourth

experiment, the inferred prediction bias of the textures con-
verges for all prediction settings, as shown in Figures 8a and
9a.

The information gain is also computed for the model
predictions at all experimental settings (recall Table 5). For
brevity, however, Figure 10 shows the information gain
plots for the maximum stress, texture 001, and texture
101 predictions at settings E and K, respectively. The re-
maining experimental settings show similar trends. For stress

Fig. 11. Model prediction bias and uncertainty for the C&G model (Left: Experiment K, Right: Experiment E).
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652 S. Atamturktur et al.

predictions, the information gain monotonically increases and
ultimately converges. Slight fluctuations are expected given the
stochastic nature of the inference approach. For the texture
predictions, a convergent behavior is not observed, indicating
the G model’s inability to reproduce texture experiments at
certain regions in the domain of applicability. Furthermore,
Figures 8 and 9 depict a prediction bias well in excess of 100%
for the texture predictions demonstrating that uncertainty
reduction alone is insufficient to warrant accurate predictions.
In fact, Figure 9 reveals a systematic bias for texture 101 over
400% for setting K, and as high as 1000% for setting J.

Referring back to Figure 1, the G model’s systematic bias
is unacceptably high. The resource allocation framework then
suggests that the rigor in which the physics principles are mod-
eled must be improved, which leads to the C&G model.

7.2. Improved Numerical Model: C&G Model

In Figure 11, it can be observed that the uncertainties in stress
and texture predictions of the C&G model reduce and the
prediction bias converges to a constant value as the num-
ber of experiments available for model calibration increases.
Comparing Figures 6 and 11, the more sophisticated, C&G
model has significantly less prediction bias compared to the G
model. However, the C&G model requires an increased num-
ber of experiments to reach convergence. For the C&G model,
from Figures 8 and 9, seven experiments are necessary for the
prediction bias of the texture to converge; while convergence
is achieved with only four experiments for the G model. An
increased need for experiments to mitigate parameter uncer-
tainty is expected for the C&G model, which has twice as many
calibration parameters as the G model (see Tables 3 and 4).

Figure 12 shows the convergence of information gain after
a sufficient number of experiments are used in the calibra-

tion process for experimental settings E and K. Note that
since information gain is calculated with respect to the initial
uncertainty in input parameters, the specific level of infor-
mation gain, at which convergence is achieved, is irrelevant.
The convergence of both the systematic bias and informa-
tion gain indicates that prediction uncertainty is remedied.
For the C&G model, the systematic bias converges to below
10% for the maximum stress prediction and below 50% for
the texture predictions. Should this level of systematic bias be
deemed acceptable for the intended purposes, the model may
be considered validated, as the coverage exceeds the minimum
coverage threshold. If additional reduction in systematic bias
is required, however, a further physics sophistication of the
model should be considered.

7.3. A Comparative Analysis: Divergence Information
Criterion

In summary, according to the framework presented herein,
the C&G is the preferred model for making predictions, as the
G model is not validated. The lower converged discrepancy
of the C&G model confirms that reduction in systematic bias
can be achieved through physics sophistication of the code.
However, note that due to increased complexity and a larger
number of calibration parameters, the C&G model requires
more experiments to reach convergence. Therefore, earlier dis-
cussion on the calibration of G and C&G models reveals a
trade-off relationship between the prediction uncertainty and
bias. Provided that both models are validated, preference of
one model or the other can be reversed depending on the avail-
able experimental data. This section demonstrates this concept
on the G and C&G models using the divergence information
criterion (DIC), a statistical metric for evaluating preferable
models [31].

Fig. 12. Information gain from experiments used for calibration of C&G model: (a) Experiment E, (b) Experiment K.
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Experiment-Based Validation of Numerical Models 653

The DIC operates on the model input parameters and their
distributions to create a metric that rewards a model for pre-
dicting closer to the experiments and penalizes a model for
having a larger effective number of parameters. The DIC is
computed according to Eqs. (17)–(19):

p̃ j = −2
∫

log[ f ( j )(y|�( j ))]�( j )(�( j )|y)d�( j )

+2 log[ f ( j )(y|�̃( j )(y))], (17)

Dj (�( j )) = −2 log[ f ( j )(y|�( j ))] + 2 log[g( j )(y)], (18)

DIC = Dj (�̄( j )) + 2 p̄ j . (19)

In Eq. (17), p̃ j is the proposed number of effective model
parameters, f ( j )(y|�( j )) represents the probability density
function for the experimental data y for a given � for the
jth model, �( j )represents the prior distribution of emulator
parameters, and �̃( j )(y) estimates �( j ) based upon the experi-
mental data y [32]. In Eq. (18), 2 log[g( j )(y)] is a standardizing
term dependent on the observed data. In Eq. (19), p̄ j repre-
sents p̃ j when �̃( j )(y) is equal to the posterior mean �̄( j ). When
comparing two models, a smaller value for DIC indicates a
preferable model. As the DIC is used for comparison pur-
poses only, the actual DIC values are only relevant relative to
another model.

Figure 13 plots the DIC values computed for G and C&G
models for an increasing number of experiments. Until the
fourth experiment, the less sophisticated G model has a lower
DIC value and, thus, the prediction bias outweighs the un-
certainty in the parameters. If more than four experiments
are available, however, then the C&G model yields a smaller
DIC value than that of the G model indicating that the lower
prediction bias of the C&G model outweighs the penalty
in higher prediction uncertainty due to a larger number of
parameters.

Fig. 13. DIC comparison of the G and C&G models with varying
levels of experimental data.

8. Conclusions

It is a routine practice that numerical models are being vali-
dated against experiments [33, 34]. In this article, we present
a framework to guide the allocation of resources for the val-
idation of numerical models. Improvement in the predictive
capabilities of a numerical model can be achieved through the
reduction of prediction uncertainty and bias. The prediction
uncertainty can be reduced through calibration of model pa-
rameters against experimental data. An increase in the number
of experiments used in the model calibration results in a de-
crease in prediction uncertainty, indicated by the convergence
of the information gain to a stable level throughout the domain
resulting in diminishing returns from additional experiments.
In this case, improvements to predictive capabilities are only
possible by reducing prediction bias, which can be achieved
by improving the physics and/or engineering principles of the
given model.

The proposed framework is demonstrated on a nontrivial
application of the VPSC code to predict stress and texture be-
havior of 5182 aluminum alloy. The availability of two versions
of the VPSC code, G and C&G models, presents a unique op-
portunity to demonstrate the fundamental concepts behind
the proposed resource allocation framework. In this example,
for the G model, the systematic bias of the texture predictions
converges while the systematic bias of the stress predictions
fails to converge as more experimental data is utilized in the
calibration process. The analysis of the information gain shows
that parameter uncertainty cannot be further reduced. As the
prediction bias for stress fails to converge and the prediction
bias for texture converges to an unacceptably high value, the
C&G model, with an improved constitutive law, is employed.
The convergence of the systematic bias and information gain
of the C&G model is observed as the number of experiments
available for model calibration increases. The prediction bias
of the more sophisticated C&G model converges to a smaller
value than that of the G model, but requires a higher number
of experiments for convergence, demonstrating the trade-off
between reducing prediction bias and uncertainty in model
validation. The logical thought process of the proposed frame-
work can provide a science-based, quantifiable, and defendable
rationale for allocating resources between code development
and experimentation to reduce both uncertainty and bias in
the predictions of complex numerical models.
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