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In this paper it is demonstrated that only by accounting for the combined effects of anisotropy and ten-
sion-compression asymmetry at polycrystal level, it is possible to explain and accurately predict the
room-temperature torsional response of a strongly textured AZ31 Mg material. This is shown by using
two modeling frameworks, namely: a viscoplastic self-consistent (VPSC) polycrystal model, and a macro-
scopic plasticity model based on an yield criterion, developed by Cazacu et al. (2006), that accounts for

geyt‘;"ords-' both orthotropy and tension-compression asymmetry in plastic flow. It is shown that unlike Hill's
rthotropy . (1948) criterion, the latter macroscopic criterion quantitatively predicts the experimental results,

Strength differential effects R . . . . . . X .

Twinning namely: that the sample with axial direction along the rolling direction contracts, while the sample with

axial direction along the normal direction elongates. Moreover, it is demonstrated that these experimen-
tally observed axial strain effects can be quantitatively predicted with the VPSC polycrystal model, only if
both slip and twinning are considered operational at single crystal level. On the other hand, if it is
assumed that the plastic deformation is fully accommodated by crystallographic slip, the axial strains
predicted by VPSC are very close with that predicted with Hill (1948) criterion, which largely underesti-
mates the measured axial strain in the rolling direction, and predicts zero axial strain in the normal
direction.

Swift effects
Magnesium (AZ31)

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Swift effect refers to the occurrence of plastic axial strains
in a metallic specimen when subjected to free-end torsion. This
phenomenon was first experimentally observed by Swift (1947),
who reported plastic elongation of cylindrical specimens (solid
rods and tubes) made of different materials with cubic crystal
structure (e.g. stainless steel, aluminum, brass). Swift (1947) con-
jectured that strain hardening is the cause for the development
of axial effects under torsional loadings. As stated by the author
himself, this explanation is largely speculative and was later inval-
idated by Billington, 1977a,b,c. Hill (1950) stated that if a material
is isotropic the specimen should not change its length under tor-
sion and that the Swift effect is the result of texture-induced
anisotropy. This remains the prevalent view. Nowadays, it is
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generally accepted that the development of axial strain under
free-end torsion is due to texture-induced anisotropy.

Moreover, from a theoretical standpoint the Swift effect is
mainly modeled in the framework of crystal plasticity, and the
majority of studies are devoted to materials with cubic crystal
structure for which it is assumed that the plastic deformation is
fully accommodated by crystallographic slip. The homogenized
response of the polycrystal is obtained using the upper-bound Tay-
lor approximation (deformation gradient within each grain has a
uniform value throughout the aggregate), or a viscoplastic self-
consistent formulation (e.g. Lebensohn and Tome (1993)). For
example, Toth et al. (1990) used a rate-sensitive Taylor-type crys-
tal plasticity model to simulate length changes and the texture
developed during unconstrained deformation of thin-walled tubes
of pure copper. Axial effects were qualitatively predicted for very
large shear strains, the simulations indicating a strong influence
of the strain-rate sensitivity parameter involved in the description
of the single crystal behavior. Habraken and Duchene (2004) and
Duchene et al. (2007) have also confirmed the significant influence
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of this strain-rate sensitivity parameter on the magnitude of pre-
dicted axial strains in copper under free-end torsion. Nevertheless,
the predicted axial strains largely underestimate the experimental
ones. Some other studies have been devoted to modeling cyclic
Swift effect at large strains using phenomenological models. Gen-
erally, yielding and hardening are considered anisotropic (see, for
example, Kuroda (1999)) who used the orthotropic Hill's (1948)
yield criterion in conjunction with anisotropic hardening).

Regarding polycrystalline materials with hexagonal closed
packed (hcp) crystal structure, the past decade has witnessed a
renewed interest in improving the fundamental understanding of
their plastic behavior. In particular, a large number of experimental
studies have been conducted on magnesium alloys in order to
identify the crystallographic plastic deformation mechanisms at
room temperature and their effects on the macroscopic response
in uniaxial tension and compression, as well as in simple shear
along different orientations (e.g. Barnett (2007a,b), Jiang et al.
(2008), Khan et al. (2011), etc.). In comparison, there is little infor-
mation concerning the mechanical behavior of Mg and its alloys in
torsion. Free-end torsion tests at room temperature, 150, and
250 °C on solid bars of pure Mg and Mg alloy AZ71 with the axis
along the rolling direction were reported by Beausir et al. (2009)
and Biswas et al. (2013). While at room temperature both materi-
als developed very little shear strain, at 250 °C the maximum plas-
tic shear reached in the test was much larger (e.g. for the pure Mg
y =1.7 as compared to ~0.2 at room temperature). For all temper-
atures, shortening of the specimens was observed. In the simula-
tions presented using the viscoplastic self-consistent model and
code VPSC (Lebensohn and Tome, 1993), deformation twinning
was not considered. Very recently, Guo et al. (2013) reported
room-temperature torsion tests on AZ31 Mg alloy cylindrical solid
bars machined from a rolled plate with a very strong initial basal
texture. Specimens with longitudinal axis oriented along the roll-
ing direction, and the through-thickness (normal direction) of the
plate were tested. It was found that while the sample with longitu-
dinal axis along the rolling direction contracts, the sample with
longitudinal axis along the normal direction elongates. The occur-
rence of axial strains under torsion were attributed to tensile twin-
ning, which, in turn, induces texture evolution in the material.
However, for an hcp titanium with basal texture, elongation of
the specimens is observed irrespective of the orientation of the
long axis of the specimen as evidenced by the analysis of tubes
obtained by flow-forming (see Scutti (2001)).

In summary, initial anisotropy and texture-induced anisotropy
associated to either slip or deformation twinning have been con-
sidered to be the only causes of Swift effect in polycrystalline
metals. However, Billington (1977a,b,c) reported that there are
metals with cubic crystal structure that display a significant
Swift effect, but remain isotropic over the entire range of plastic
deformation. Very recently, a new interpretation of the Swift
phenomenon in isotropic materials was provided by Cazacu
et al. (2013) for monotonic torsion and by Cazacu et al. (2014)
for cyclic torsion using a macroscopic modeling framework.
Moreover, analytical calculations using the isotropic form of
Cazacu et al. (2006) criterion showed that the occurrence of axial
strains in isotropic materials is related to a slight difference
between the uniaxial yield in tension and compression of the
given material. For initially anisotropic materials (e.g. Ti and
Mg alloys), Revil-Baudard et al. (2014) demonstrated that the
orthotropic form of Cazacu et al. (2006) criterion in conjunction
with isotropic hardening explains and predicts the type (elonga-
tion or contraction) of the axial strains that develop. More specif-
ically, if the uniaxial yield stress in tension is larger than that in
compression, the specimen will contract when twisted, while, if
the yield stress in uniaxial compression is larger than that in uni-
axial tension, it will elongate.

This paper is devoted to the modeling of the torsional response
of an orthotropic AZ31 Mg alloy. For this purpose two approaches
will be considered: (i) the polycrystalline VPSC homogenization
approach (Lebensohn and Tomé, 1993), and (ii) an elastic/plastic
approach based on the orthotropic yield criterion form of Cazacu
et al. (2006). For comparison purposes, Hill's (1948) orthotropic
criterion will be also applied to the same material. These models
are presented in Section 2. Mechanical tests data on polycrystalline
AZ31 Mg reported in Khan et al. (2011) will be used for calibration
of the material’s parameters involved in the VPSC and the macro-
scopic models (see Section 3). Next, these models will be applied
to the description of the torsional response of specimens cut from
an AZ31 Mg plate reported in Guo et al., 2013 (see Section 4). It is
to be noted that this plate is made of the same alloy (same compo-
sition) and similar initial texture as the AZ31 Mg sheet tested by
Khan et al. (2011). Comparison between the prediction of axial
strain vs. shear strain for torsion in the RD direction obtained using
the VPSC model (with crystallographic twinning considered
active), and the orthotropic form of Cazacu et al. (2006) yield crite-
rion, in conjunction with appropriate evolution laws for the anisot-
ropy coefficients and the strength differential parameter, and the
experimental data from Guo et al. (2013) show that both the
macroscopic and polycrystalline models capture the unusual
behavior in torsion of Mg AZ31. Concluding remarks are presented
in Section 5.

Regarding notations, vectors and tensors are denoted by bold-
face characters. If A and B are second-order tensors, the contracted
tensor product between such tensors is defined as: A : B = A;By, i,
j=1...3;if uand v are two vectors, their dyadic product is the sec-
ond rank tensor (u®v); = u;v;.

2. Constitutive models
2.1. Polycrystal model

The VPSC model will be used to gain insights into the role of
specific single-crystal plastic deformation mechanisms on the
macroscopic response of AZ31 Mg. This model is only briefly pre-
sented in what follows (a detailed description can be found in
the review article by Tomé and Lebensohn (2004)). The polycrystal
is represented by a finite set of orientations, each one representing
a given volume fraction chosen to reproduce the initial texture. The
total deformation of the polycrystal is obtained by imposing suc-
cessive strain increments and calculating the resulting strains in
the grains. The grain reorientations associated with these plastic
strains lead to texture evolution. A self-consistent approach is used
to model the interaction of a grain with its surroundings. Each
grain is treated as an anisotropic, viscoplastic, ellipsoidal inclusion
embedded in a uniform matrix having the unknown properties (to
be determined) of the polycrystal. Elastic deformations are
neglected. Each deformation system (s) is characterized by a vector
n’ (normal to the slip or twinning plane) and a vector b° (Burgers
vector or twinning shear direction). The local constitutive behavior
(at the grain level) is described by:

S . g\
dé = ZS:mS")S = j)azs:ms ('mriiao x sgn(m’ : g¥), (1)

where m* = (b’ ® 0 + n* ® b°) and }* are the Schmid tensor and
the shear rate of system (s), d®* and 6% are the local averages of
the strain rate and stress fields in grain (g), Jo is a reference shear
rate and n is a rate sensitivity parameter. Eq. (1) expresses that
the deformation rate is given by the sum over all the shear rates
contributed by all systems. For both slip and twinning, the activa-
tion criterion is given by the expression in parenthesis, which
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expresses that the activity on each deformation system (s) increases
when the resolved shear on that system (given by m°: g?8)
approaches a threshold value 5. Strain-hardening is incorporated
by allowing the threshold stress ¢ to evolve according to:

S

=T+ (1 + 01 - e () @)

where 1§, 75, 6} and 0] are constants, and I" = >} At is the accu-
mulated shear in all active deformation systems. In addition, it is
possible to incorporate self and latent hardening. More specifically,
the increase in the threshold stress is calculated as:

sr) dT*S(r) o' (1)
AT = 0 > B 0AL, 3)
=

where the coefficients h* empirically account for the obstacles that
new dislocations (or twins) associated with system s’ create for the
propagation of dislocations (or twins) on system s. Following the
approach proposed by Van Houtte (1978), twinning is treated as a
pseudo-slip mechanism. Specifically, it differs from slip in its direc-
tionality, which means that activation of twinning is allowed only if
the resolved shear stress is positive. The twinning contribution to
texture development is accounted for by means of the so-called Pre-
dominant Twin Reorientation (PTR) scheme (Tomé et al., 1991). In
this scheme, the grains where twinning is most active are deter-
mined. The fixed number of orientations that represent the poly-
crystal is maintained throughout the deformation history. The
volumetric effect of twinning reorientation on texture development
is modeled by reorienting some of these grains completely into the
orientation of their most active twinning systems.

2.2. Macroscopic elastic/plastic model based on Cazacu et al. (2006)
yield criterion

To explain and model Swift effects in AZ31 Mg, an elastic-plas-
tic modeling approach in the framework of the mathematical the-
ory of plasticity is also considered. The yield condition is based on
the orthotropic form of Cazacu et al. (2006) yield function. For
comparison purposes, Hill (1948) criterion will also be applied. In
both cases hardening is considered isotropic. The general form of
the governing equations are first presented and followed by the
specific expressions of these yield criteria.

Tensile strains and stresses are considered positive. The total rate
of deformation D is the sum of the elastic part (D — D”), and the plas-
tic part, D”. The elastic stress—strain relationship is given by

6=C:(D-D", (4)
where 6 is the Green-Naghdi rate, which is an objective rate of the
Cauchy stress tensor ¢ (see Green and Naghdi (1965), ABAQUS
(2009)). In this work we assume linear-elastic isotropy, so with
respect to any Cartesian coordinate system, C° is expressed as

e 2
i = 2G owdj — (K - §G> ;0. (5)

where i, j, k, I=1...3, §; is the Kronecker delta tensor, and G and K
are the shear and bulk moduli, respectively. The rate of deformation
tensor is given by the associated flow rule:
. OF

D’ =,—, 6

o (6)
where F is the yield function and 1> 0 is the plastic multiplier.
Strain hardening is considered isotropic and governed by the accu-
mulated plastic strain. Thus, the plastic potential F in Eq. (6) is of the
general form:

F(6,8) = 6(6,8") — Y(2"), (7)

where ¢ is the effective stress associated with the given yield crite-
rion, &° is the equivalent plastic strain which is calculated based on
the plastic work equivalence principle (i.e. it is the work-conjugate
of 0), while Y = Y(¢,) is the hardening law. Specifically, a Voce-type
hardening law is considered:

Y(@) = Ay — A1 exp(—Az ), (8)

where Ay, A;, A, are constants.
The effective stress ¢ associated with the orthotropic form of
Cazacu et al. (2006) criterion is:

& = B[(1Z1] — kIZ1])" + (|Z2| — k|Z2])" + (3] — k[Zs])]"", 9)
where a is a homogeneity constant (usually, a=2). In Eq. (9)
¥1,%5,%5 are the principal values of the transformed stress X
defined as:

=C:0, (10)

where ¢’ is the deviator of the Cauchy stress tensor ¢, and C is a
fourth-order symmetric tensor characterizing the plastic anisotropy
of the material. For example, in the coordinate system associated
with the orthotropy axes (x, y, z) (for a plate material these axes
of symmetry are the rolling (RD), transverse (TD), and normal direc-
tion (ND) or through-thickness plate direction, respectively) the
transformed stress tensor X is given by:

T Ch Cp C3 0 0 07[0d,
S Cb C» Gz 0 0 0 ||a,
To| _|Cs Cs Gz 0 0 0o a1
Ty 0 0 0 Cu 0 O/||a,
% 0 0 0 0 Cs O ||ad,
S 0 0 0 0 0 Cello,

In Eq. (9) B is a constant defined such that ¢ reduces to the tensile
yield stress in the RD direction or X, i.e.

B=1/[(|®1] — k)" + (|@2] — k®,)* + (|| — kd3)"] ", (12)

where (D1 = (2C]1 — C]z — C]g)/3,
O3 = (2Cy3 — C3 — C33)/3.

If a material has the same response in uniaxial tension and uni-
axial compression, the parameter k involved in the yield criterion
given by Eq. (9) is automatically zero. If the material displays ten-
sion-compression asymmetry, this material parameter is different
from zero (for more details, see Cazacu et al. (2006)).

The equivalent stress associated to Hill (1948) criterion is
expressed as:

D, = (2C12 — Cpp — C23)/3;

it = \/F<ayy ~02)" +G(0z — 0)’ +H(0w — 0yy)° +2L(0%) +2M(0%) +2N(62,),  (13)

where F, G, H, L, M and N are material parameters (anisotropy
coefficients).

3. Identification of the constitutive models for AZ31 Mg
3.1. Identification of material parameters of the VPSC model

The polycrystal model VPSC has been previously used to simu-
late the plastic deformation of AZ31 Mg at room temperature. The
focus of these studies was on modeling the deformation behavior
under uniaxial tension or compression (e.g. Proust et al. (2009),
Wang et al. (2010), etc.). Concerning simulation of the shear
response, most of the efforts have been focused on understanding
and modeling the high-temperature behavior of Mg and its alloys.
It was established that at high temperature twinning activity is
negligible, the plastic deformation being accommodated by pyra-
midal (a) and pyramidal (c+a) slip (e.g. for simulation of pure
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Mg, see Agnew et al. (2005); for pure Mg and AZ71 Mg, see Beausir
et al. (2009)).

To the best of our knowledge, modeling of the microstructure
evolution and its effects on the macroscopic stress-strain response
in simple shear of AZ31 Mg at room temperature were not
reported. As already mentioned, the identification of the material
parameters of VPSC will be based on the room-temperature
quasi-static mechanical test data (strain rate of 1072/s) reported
by Khan et al. (2011) on polycrystalline AZ31 Mg (3 wt%Al,
1 wt%Zn, Mg bal.). These uniaxial tensile and compression tests
data reported in Khan et al. (2011) on specimens cut along the
RD, TD, and 45° to the rolling direction of the sheet, and in the
through-thickness direction compression showed that the material
is plastically orthotropic. Moreover, irrespective of the loading
direction the material displays a very strong tension-compression
asymmetry in the macroscopic stress—strain response (see also
Fig. 2).

The strong difference between the yield in tension and com-
pression at the onset of plastic deformation (0.002 strain) and
the unusual hardening behavior in uniaxial compression in RD
(S-shape sigmoidal appearance of the stress—strain curve, see also
Fig. 2) was attributed to the occurrence of tensile twinning (similar
data and interpretation of the results have been also reported by
Lou et al., 2007). It is to be noted that in simple shear along RD,
Khan et al. (2011) reported that the volume fraction of tensile
twins at 20% equivalent strain is of 0.506. The shear specimen
has a higher volume fraction of twins as compared to the tension
specimens, but much lower than in compression (80% at the same
level of equivalent plastic strain).

Since in a typical polycrystal plasticity simulation, the polycrys-
tal is represented with a discrete set of grains, in order to correctly
capture the initial texture of the material it is necessary to consider
a sufficiently large number of grains. Thus, we used the entire EBSD
scan (784 x 808 um area) to generate 2762 weighted orientations.
The corresponding initial texture used in the simulations (Fig. 1(b))
is similar to that reported by Khan et al. (Fig. 1(a)). Note that the
material displays a strong basal texture with an almost equal frac-
tion of grains having their c-axes slightly tilted away (around +30°)
from the sheet normal towards +RD and —RD, respectively.

Based on the experimental evidence provided by Khan et al.
(2011), it can be assumed that basal, prismatic, and pyramidal
(c+a) slip systems as well as tensile twinning are potentially
active. For these deformation systems, the set of material parame-
ters that characterize the plastic deformation at grain level was
obtained using a step-by-step procedure. Specifically, the parame-
ters associated with basal and prismatic slip systems were
identified based on the stress-strain mechanical response in
uniaxial tension along RD. Next, using the uniaxial compression

o S ——
00.09 e 9.59 00.11 o 3.14

stress-strain data in the ND direction, the parameters associated
with the pyramidal (c+a) slip system were calibrated. Finally,
from the uniaxial compression test along RD, the parameters asso-
ciated to the tensile twinning system were determined. In addition
to these four modes, the pyramidal (a) slip mode was also consid-
ered to be active in simple shear. The hardening parameters asso-
ciated with this system were calibrated based on the reported
shear stress vs. shear strain curve in the RD direction. The values
of the parameters associated to all five deformation modes are
given in Table 1. The reference shear rate, },, and the rate-sensitiv-
ity parameter n (see Eq. (1)) were prescribed to be the same for all
deformation systems: J, = 0.001 s~ ! and n = 20. The latent harden-

ing coefficients h* (see Eq. (3)) associated with the interaction
between basal slip and tensile twinning, and respectively non-
basal (a) slip and tensile twinning were set to a value of 2. On

the other hand, the hardening coefficient h* associated with inter-
action between pyramidal (c + a) slip and tensile twinning was set
to unity in order to capture the very little twinning activity
observed in ND compression.

Comparison between the polycrystalline model predictions of
the stress-strain response in uniaxial tension and compression
along the axes of orthotropy of the material (solid line) and all
available data (symbols) are shown in Fig. 2. It can be concluded
that the model describes very well both the strong anisotropy
and the tension-compression asymmetry of the material for uniax-
ial loading in each orientation. To calibrate the parameters associ-
ated with the pyramidal (a) slip, we will use the shear stress—shear
strain data in simple shear along RD (see Fig. 3). Predictions of the
volume fraction of tensile twins and the texture evolution for the
same test will serve for validation. If simple shear is applied in
the (x-y) plane (or (RD-TD) plane, in the positive RD (x direction)
the only non-zero velocity component is ¢, = yx (see also Fig. 3), so
the imposed velocity gradient tensor L are such that:

Ly =7 (14)

Simulation results are shown in Fig. 4. The calculations were termi-
nated when the shear strain reached the value of y=0.2. All five
deformation modes were considered to be active.

Fig. 4(a) shows a comparison between the predicted shear
stress vs. shear strain response according to the polycrystal model
(solid line), and mechanical data reported in Khan et al. (2011),
along with the predicted textures corresponding to different levels
of the shear strain, and the predicted evolution of the twin volume
fraction (inset). Note that the VPSC model describes well the shear
stress vs. shear strain response and predicts a final value of the
twin volume fraction in agreement with that reported in Khan
et al. (2011). The predicted relative slip/twinning activities are

(b) 0002 1010
TD TD

/ 4 7\\“
//’\\x

\\\\J/

RD

— 3.065
= 0.200

—11.940
= 0.200

Fig. 1. Pole figures showing the initial texture of the AZ31 Mg sheet: (a) reported in Khan et al. (2011); (b) measured from the entire EBSD scan and used as input for the VPSC

polycrystalline model.
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Table 1
Material parameters involved in the hardening laws of various deformation modes for
AZ31 Mg.
Mode To [MPa] 71 [MPa] 0o 0,
Basal {0001}(1210) 17.5 5 3000 35
Prismatic {1100}(1120) 85 33 550 70
Pyramidal (a) {1011}(1210) 100 30 30 10
Pyramidal (c+a) {1011}(1123) 148 50 8500 0
Tensile Twinning {1012}(1101) 52 0 0 0
400 " ;
£ J S A —— S  — L
| ROTENSION | :
300 --------- b = s i e i e i Yt

Stress (MPa)

0.06

0.08

Plastic Strain

Stress (MPa)

0.12

shown in Fig. 4(b). The activity plot shows that tensile twinning
activity is highest at approximately 0.05 von Mises equivalent
strain (y/sqrt3). At this strain level, there is a slight kink in the
macroscopic stress-strain response (Fig. 4(a)), indicating a change
in the strain-hardening rate. It is important to note that the kink in
the stress-strain curve was also observed experimentally at
approximately 0.025 equivalent strain (see also Lou et al. (2007)),
which was attributed to tensile twinning. Comparison
between the only available measured texture and that predicted
by the model is shown in Fig. 5. The final texture observed in

400

350

300

250

200

Stress (MPa)

150

0.06 0.08

Plastic Strain

(b)

0.04

0.06 0.12

Plastic Strain

(c)

Fig. 2. Anisotropy of the stress—strain response in uniaxial tension and compression predicted with the VPSC model (lines) in comparison with data (symbols): (a) rolling
direction (RD), (b) transverse direction (TD), and (c) normal direction (ND). Data after Khan et al. (2011).

Fig. 3. Element subjected to a simple shear deformation y in the plane (x-y), x being along RD and y along TD.
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Fig. 4. (a) Predicted stress-strain, texture using the polycrystalline VPSC model for RD simple shear. Inset shows the predicted twin volume fraction evolution; and the only
available experimental measurement (symbol) reported by Khan et al. (2011)); (b) predicted relative activities of each deformation mode contributing to plastic deformation.

mechanical tests in RD simple shear is very close to that predicted
by VPSC.

To gain understanding of the role played by individual plastic
deformation mechanisms, two additional simulations were
conducted. More specifically, simulation of the shear response
was also done considering that plastic deformation is accommo-
dated only by the four slip modes, i.e. neglecting tensile twinning

activity. The predicted macroscopic response and evolving micro-
structure is given in Fig. 6(a). It is worth noting that up to now
in all the studies devoted to modeling the deformation response
of AZ31 Mg using the VPSC model (Jain and Agnew, 2007; Wang
et al., 2010; Guo et al., 2013) only basal, prismatic, and pyramidal
(c+a) slip modes we considered active. However, pyramidal (a)
slip mode appears to be necessary to explain microstructure
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2011 @419 016 @ 2.89

(a)

D D
RD RD
0002 1070
— 4,100 — 3.007
— 0.400 — 0.500

(b)

Fig. 5. Pole figures of AZ31 Mg sheet in RD simple shear test corresponding to a
strain y/v/3 = 20%: (a) measured by Khan et al. (2011); (b) predicted by the VPSC
model.

evolution in simple shear. In order to understand the role played
by pyramidal (a) slip, simulation of the shear response was con-
ducted considering that plastic deformation is accommodated by
three slip systems, namely basal, prismatic, and pyramidal (c + a)
slip (i.e. both pyramidal (a) slip and tensile twinning was
neglected). The simulation results in comparison with available
data are shown in Fig. 6(b). Note that if twining activity is
neglected, but all four slip models are considered active, the strains
are slightly underestimated for y>0.173 (compare results in
Fig. 6(a) with those in Fig. 4(a)); if both tensile twining and
pyramidal (a) slip are neglected, the strains are overestimated for
the entire strain path history (compare results in Fig. 6(b) with
those in Fig. 4(a))). While the results presented indicate that the
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overall agreement between simulated and experimental shear
stress vs. shear strain response is relatively good irrespective of
which plastic deformation mechanisms are considered to be oper-
ational, it turns out that when twinning and pyramidal (a) slip are
neglected, texture evolution is not correctly captured (compare
texture evolution predicted in each case, i.e. Fig 4(a) with Fig. 6).

To further demonstrate this point, the experimental and pre-
dicted final textures in each case are compared in Fig. 7. Indeed,
when tensile twinning and all the four slip modes (basal, prismatic,
pyramidal (a) and pyramidal (c + a) slip) are considered active, the
final observed and predicted textures match extremely well. How-
ever, if twinning is not operating, it is predicted that only a rotation
of the initial texture occurs when the material is subjected to sim-
ple shear. More specifically, the polycrystal model predicts that the
basal pole intensity is elongated 45° away from the shear direction
(which is the RD direction), and the experimentally observed rota-
tion of the (c)-axes is not captured at all. Furthermore, comparison
between Fig. 7(c) and (d), shows the specific role played by pyra-
midal (a) slip, i.e. inhibiting the rotation of the basal planes along
the two mutually perpendicular directions at 45° to RD.

3.2. Identification of the material parameters involved in the
orthotropic yield criteria

As already mentioned, Cazacu et al. (2006) criterion (see Eq. (9))
accounts for both anisotropy and strength differential effects (ten-
sion-compression asymmetry). To identify the material parame-
ters used in this criterion, only the mechanical tests in uniaxial
tension and compression reported in Khan et al. (2011) were used.
To model the difference in hardening rates between tension and
compression loadings observed experimentally, the respective
material parameters were considered to evolve with the accumu-
lated plastic deformation. The numerical values of the model
parameters corresponding to &€ = 0.05 and three other individual
levels of equivalent plastic strains (up to 0.1 strain) are listed in
Table 2, the values corresponding to any given level of plastic

strain Zz{; <Eé< éi,“ are obtained by linear interpolation, i.e.:

Ci(8) = a(€)Cyi(8)) + (1 — () Cy (&)
k(&)

T S (15)
k(€) = a(8) k(&) + (1 — au(e))k(EM).

J
p

The interpolation parameter o involved in Eq. (15) is defined as:
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Fig. 6. Predicted effective stress vs. effective strain response and evolution of the microstructure in RD simple shear using the VPSC model (solid line): (a) all slip modes
considered active, twinning neglected; (b) three slip modes considered active while pyramidal (a) and tensile twinning neglected.
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Fig. 8 shows the projection in the biaxial plane (o, ay,), with ¥
being along RD and y being along TD, of the theoretical yield sur-
faces according to the orthotropic Cazacu et al. (2006) at different
strain levels é{;, (up to 10%) along with the experimental data (sym-
bols) for the given orthotropic AZ31 Mg alloy. The model correctly
predicts that at initial yielding and below 8% strain, the tension-
compression asymmetry is very pronounced (compare the ten-
sion-tension and compression—-compression quadrants) while, for
8% strain and beyond, the difference in response between tension
and compression becomes small, as observed experimentally (see
also the experimental stress-strain curves of Fig. 2).

Table 2
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Fig. 8. Comparison between the theoretical yield surfaces, according to the
orthotropic Cazacu et al. (2006) criterion, corresponding to different levels of
accumulated plastic strain and data for an AZ31 Mg alloy. Note that the shape of the
yield locus evolves from a triangle at lower strains to an ellipse at larger strains.
Stresses are in MPa. Data from Khan et al. (2011).

Table 3
Orthotropy coefficients involved in Hill's (1948) yield criterion (Eq. (13)) for AZ31
magnesium alloy corresponding to different values of plastic strain.

& F G H N M L

0.03 0.195 0.276 0.724 2.09 11.186 12.43
0.05 0.206 0.288 0712 2.167 11.813 15.245
0.06 0217 0.297 0.703 2.184 12,184 15.873
0.08 0.228 0.298 0.702 2.165 12210 16.136
0.10 0.246 0312 0.688 2.167 11.816 15.725

Since according to Hill (1948) criterion the mechanical response
is the same in tension and compression, only the experimental
flow stress data in uniaxial tension were used for the identification
of the material parameters. The numerical values of all the anisot-
ropy coefficients involved in Hill (1948) criterion (see Eq. (13)) are
given in Table 3.

The yield surfaces associated with Hill (1948) yield criterion
corresponding to different levels of equivalent plastic strains are
plotted in Fig. 9. Note that the shape of Hill's (1948) yield surface
is always elliptical and does not capture the tension-compression
asymmetry of the material.

The parameters involved in the isotropic hardening law (Eq. (8))
that will be used in conjunction with each yield criterion were
identified from the uniaxial tension stress—strain response along
RD, the numerical values being Ag=315.4 MPa, A; = 140.6 MPa,
A;=16.3.

4. Prediction of the mechanical response of AZ31 Mg in free-end
torsion

4.1. Simulation of free-end torsion of AZ31 Mg in the framework of
crystal plasticity

It is to be noted that all the parameters involved in the VPSC
crystal plasticity model (CRSS, and hardening coefficients, see

Material parameters (orthotropy coefficients Cj; and strength-differential parameter k) involved in Cazacu et al. (2006) yield criterion for AZ31 Mg alloy corresponding to different

values of plastic strain, & ; for any strain level C;; is set to unity.

& Ca2 Cs3 Ciz Cis Ca3 Caa Css Cos k

0.05 1.090 3.342 -0.168 0.098 0.243 0.730 7.30 7.74 -0.625
0.06 1.072 2.905 -0.595 -0.279 —0.096 1.039 10.2 11.02 -0.520
0.08 1.099 1.439 -0.817 -0.516 -0.350 1.128 11.21 11.95 -0.215
0.10 1.082 0.885 -0.762 -0.657 —-0.509 1.058 10.12 11.21 -0.169
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Fig. 9. Yield surfaces of AZ31 Mg corresponding to fixed levels of accumulated
plastic strain according to Hill (1948) orthotropic criterion against mechanical test
data (symbols). Stresses are in MPa. Data from Khan et al. (2011).

Table 1), characterize single-crystal deformation mechanisms. It is
expected that the VPSC model can be further used to predict the
polycrsytalline response of an AZ31 Mg of similar initial texture
(strongly basal). The AZ31 Mg plate material tested by Guo et al.
(2013) has the same chemical composition, and a strongly basal
initial texture similar to that of the AZ31 Mg sheet used for calibra-
tion of the model parameters. In the following, we will apply the
VPSC model with the values of the parameters given in Table 1
to simulate the torsional response of specimens with long axis
either along RD or ND, reported by Guo et al. (2013).

For the simulations using VPSC, we make the usual hypothesis
that locally the state of deformation is that of simple shear (see
Beausir et al. (2009)). It is also to be noted that this approximation
is generally made by experimentalists when analyzing torsion test
data (e.g. Holtom et al. (2013)). Fig. 10 shows a comparison
between the axial strain vs. shear strain predicted by the VPSC
model and data for the RD specimen. It is important to note that
irrespective of the deformation modes that are considered to be
active, shortening (i.e. axial strains negative) of the specimen along
the direction of twist is qualitatively predicted. However, only in
the case when tensile twinning is considered active, there is quan-
titative agreement with the data, in particular the slope of the
experimental curve is correctly predicted. Fig. 11 shows a compar-
ison between the axial strain vs. shear strain predicted by the VPSC
model for both the RD and ND specimens. For the simulations pre-
sented in this figure it was assumed that tensile twinning and all
four slip modes are active. Note that the polycrystalline model pre-
dicts correctly the nature of axial strains that develop, i.e. that in
ND torsion the axial strains are positive (elongation of the sample)
while the RD specimen shortens (axial strains negative).

4.2. FE simulation of the torsional response of AZ31 Mg using the
macroscopic models

For anisotropic materials, the boundary value problem associ-
ated to torsional loading cannot be solved analytically. Hence, it
was solved numerically using the finite-element (FE) method. All
the simulations were carried out with the commercial FE code
ABAQUS, using user material routines (UMAT) that we developed
for the anisotropic elastic-plastic model with yielding described
by Cazacu et al. (2006) criterion and Hill (1948) criterion, respec-
tively. A fully implicit integration algorithm was used for solving
the governing equations. The geometry of the specimen and FE
mesh used in all the calculations is shown in Fig. 12. The FE mesh
consists of 1290 hexahedral elements with reduced integration
(ABAQUS C3DS8R). The initial minimal section was meshed with
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Fig. 10. Comparison of the axial strain vs. shear strain curve according to the VPSC

model (lines) and that observed experimentally (symbols) for free-end torsion of
AZ31 Mg alloy of a specimen with axis along RD. Data from Guo et al. (2013).
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Fig. 11. Comparison between the experimental variation and VPSC predictions of
the axial strain vs. shear strain for free-end torsion of AZ31 Mg specimens with axis
along RD and ND directions. VPSC predictions are obtained assuming that all slip
modes and tensile twinning are initially active. Data from Guo et al. (2013).

Fig. 12. Sample geometry and dimensions (mm) and finite-element mesh.

10 layers of elements. Three elements were used in the thickness
of the specimen such as to reproduce as closely as possible the
boundary conditions corresponding to the simulations using the
VPSC model. The usual definitions of the axial and shear strains
are used, namely:

u Or
8:ll‘1<1+5) and y:m, (17)
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Fig. 13. Comparison between the experimental variation of the axial strain with the shear strain (symbols) during free-end torsion of an AZ31 Mg specimen with axis along
RD and the predictions: (a) according to the orthotropic Cazacu et al. (2006) criterion and the VPSC model assuming that all slip modes and twinning are active; (b) according
to the orthotropic Hill's (1948) criterion, and the VPSC model assuming that only slip modes are active and twinning neglected. Data from Guo et al. (2013).
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Fig. 14. Comparison between the experimental variation of the axial strain with the shear strain (symbols) during free-end torsion of an AZ31 Mg specimen with axis along
ND and the predictions: (a) according to the orthotropic Cazacu et al. (2006) criterion and the VPSC model assuming that all slip modes and twinning are active; (b) according
to the orthotropic Hill's (1948) criterion, and the VPSC model assuming that only slip modes are active and twinning neglected. Note that Hill's (1948) criterion predicts no

axial strain. Data from Guo et al. (2013).

where r is the current radius, Lo is the initial length, u is the axial
displacement, and ® is the twist angle. The lower nodes (z = 0) were
pinned, i.e., no displacement was allowed, while the upper nodes
(z=Lo) were tied to a rigid tool. Torsion was imposed by the rota-
tion of this tool around the tube axis. The use of a rigid tool ensured
that all the upper nodes experience the same boundary conditions.
Note that the rigid tool allows free displacement along the speci-
men axis while all the other displacements (i.e. in plane displace-
ments) and rotations were constrained.

Between five and six iterations per increment were necessary
for convergence in the return mapping algorithm, the tolerance
in satisfying the yield criterion being 107 (0.1 Pa). The Young
modulus and Poisson coefficient used are: E =45 GPa and v =0.3,
respectively.

Comparisons between FE simulations using the macroscopic
models with yielding according to Cazacu et al. (2006) criterion
and Hill (1948) criterion in conjunction with the isotropic harden-
ing law of Eq. (8), and the data for Mg AZ31 under free-end torsion
along the RD are presented in Fig. 13. Note that all models predict

that the specimen contracts axially in the RD direction. However,
only using Cazacu et al. (2006) criterion (which accounts for
anisotropy and tension-compression asymmetry in yielding) both
the level of axial strains and the slope of the axial vs. shear strain
curve are accurately predicted (see Fig. 13(a)). On the other hand,
Hill (1948) criterion largely underestimates the axial strains that
develop in RD (see Fig. 13(b)).

It is worth noting that the predictions according to Cazacu et al.
(2006) criterion are very close to these obtained using the VPSC
polycrystal model when all slip modes and tensile twinning are
considered operational (see Fig. 13(a)). However, the axial effects
predicted by Hill's (1948) are very close with the VPSC polycrystal
model predictions obtained when twinning activity is neglected
(see Fig. 13(b)). Comparisons between FE simulations using the
macroscopic models with yielding according to Cazacu et al.
(2006) criterion and Hill (1948) criterion in conjunction with the
isotropic hardening law of Eq. (8), and the data for Mg AZ31 under
free-end torsion along ND are presented in Fig. 14. It is very impor-
tant to note that while Cazacu et al. (2006) criterion describes the
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elongation of the specimen observed experimentally (see
Fig. 14(a)), Hill (1948) criterion cannot capture any Swift effects
in ND torsion (see Fig. 14(b)). In summary, these results show for
the first time that unless tension—compression asymmetry in plas-
tic flow is captured at every scale, the peculiarities of the torsional
response of polycrystalline Mg AZ31 cannot be predicted. It was
also demonstrated that only by considering that all slip modes
(basal, prismatic and pyramidal (c + a), and pyramidal (a)) and ten-
sile twinning are active, both the mechanical behavior and the
microstructure evolution of the Mg AZ31 alloy in shear can be pre-
dicted with accuracy using VPSC.

5. Conclusions

In this paper, the understanding of Swift effect in Mg AZ31 has
been improved at different scales, using both a macroscopic plas-
ticity and a crystal plasticity approach. Independent of the model-
ing framework used, it was shown that Swift effects in AZ31 Mg are
due to the combined effects of anisotropy and tension-compres-
sion asymmetry: Only if a macroscopic criterion that accounts for
both tension-compression asymmetry and anisotropy is used,
Swift effects can be predicted in both RD and ND directions. Like-
wise, only if tensile twinning and all four slip modes are considered
operational at single-crystal level, Swift effects in both orientations
can be captured. Specifically, comparison between the prediction
of axial strain vs. shear strain for torsion in the RD direction
obtained using the VPSC model (with twinning considered active),
and Cazacu et al. (2006) yield criterion, and experimental data
show that both models capture the experimental trends irrespec-
tive of the twist axis. Moreover, the predictions of the initial slopes
of the axial strain vs. shear strain curves obtained with the macro-
scopic model and the VPSC model are very close and in quantita-
tive agreement with the experimental data. Even at large shear
strains, e.g. at y = 0.2, both the VPSC model with twinning opera-
tional and Cazacu et al. (2006) macroscopic model provide signifi-
cant improvement over existing models. In RD, the difference
between the latter models prediction and data is of 25% while
the difference between data and the predictions of Hill (1948)
and VPSC model with twinning neglected (only slip systems oper-
ational) is larger than 60%. In ND direction, Hill (1948) predicts
zero strains while VPSC model (only slip systems operational) lar-
gely under-predicts axial effects.
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