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A significant improvement over existing models for the prediction of the macromechanical 
response of structural materials can be achieved by means of a more refined treatment of 
the underlying mic romechanics. For this, achieving the highest possible spatial resolution 
is advantageous, in order to capture the intricate details of complex microstructures.
Spectral methods, as an efficient alternative to the widely used finite element method 
(FEM), have been established during the last decade and their applicability to the case of 
polycrystalline materials has already been demonstrated . However, until now, the existing 
implementations were limited to infinitesimal strain and phenomenol ogical crystal elasto- 
viscoplasticity. This work presents the extension of the existing spectral formulation for 
polycrystals to the case of finite strains, not limited to a particular constitutive law, by con- 
sidering a general material model implementation. By interfacing the exact same material 
model to both, the new spectral implementation as well as a FEM-based solver, a direct 
comparison of both numerical strategies is possible. Carrying out this comparison, and 
using a phenomenological constitutive law as example, we demonstrate that the spectral 
method solution converges much fa ster with mesh/grid resolution, fulfills stress equilib- 
rium and strain compatibility much better, and is able to solve the micromechanical prob- 
lem for, e.g., a 256 3 grid in comparab le times as required by a 64 3 mesh of linear finite
elements.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction 

The development of increasingly complex tools for knowled ge-based design of structural materials with improved prop- 
erties is a trend observed in the materials science and solid mechanics communities. The three essential requiremen ts for 
such tools are the proper descriptions of (i) the physical mechanisms governing plastic deformation and evolution of micro- 
structure, (ii) the mechanical behavior including fracture initiation at the microstru ctural scale, and (iii) the homogen ized 
deformation and fracture resistance. While the development of physically appropriate models of the underlying (deforma-
tion) mechanism s is a formidable but essentially separate problem, one feasible solution to the latter two challenges is given 
by the use of full-field numerical simulatio ns of volume elements that represent the microstructur es in question. In order to 
perform such simulations, two numerical strategies are predominantly employed. In the field of crystal plasticity, a large 
number of investiga tions are based on finite element (FE) analysis (Zienkiewicz , 1967 ) of polycrystalline volume elements 
that are meshed either shape-conform ing to grain boundaries or by means of regular grids, see, for instance (Cailletaud
et al., 2003; Mika and Dawson, 1999; Venkataraman i et al., 2008; Delannay et al., 2009; Kim et al., 2010; Clayton and McDo- 
well, 2003; Kraska et al., 2009; Rossiter et al., 2011 ). An alternativ e to the finite element method (FEM) for solving the system 
of partial differential equations resulting from compatibility and static equilibrium has been introduced by Moulinec and 
. All rights reserved.
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Suquet (1994, 1998) in the context of computational homogenizatio n. This spectral method operates in FOURIER space and is 
very efficient compare d to FEM due to the repetitive use of a fast FOURIER transforms (FFT) as part of an iterative solution algo- 
rithm. Lebensohn (2001) extended this FFT-based method to the context of crystal viscoplastic ity, and applied it to a number 
of studies (Lebensohn et al., 2005, 2008, 2009; Lee et al., 2011; Lebensohn et al., 2011; Lefebvre et al., 2012 ) for which the use 
of FEM-bas ed approach es would have been preclusive (Prakash and Lebensohn, 2009 ). Very recently, an extension of this 
spectral method to the case of crystal elasto-viscopla sticity has been reported (Lebensohn et al., 2012; Kanjarla et al.,
2012; Suquet et al., 2012; Grennerat et al., 2012 ), however restricted to the kinematic framework of infinitesimal strains.
The feasibilit y of extending the FFT-based methodology to finite strains was first elaborated by Lahellec et al. (2001) for
the case of composites with isotropic phases, from which the present work draws upon.

The aim of the present contribution is to merge the spectral method formulated for finite strain kinematics with a very 
general constitutive description of the material behavior. A flexible implementati on of a material constitutive response for 
finite-strain crystal elasto-vis coplasticity, which can be interfaced with different FEM solvers, has been recently develope d
by the authors (Roters, 2011; Roters et al., 2012 ) and is used here to enable an unbiased comparison, both in terms of quality 
of the solution and computational cost, between the FE and FFT-based methods applied to full-field simulations of synthetic 
polycrystall ine structure s.

The paper is structure d as follows. In Section 2 the solution strategy is described. Additional details of the simulations are 
given in Section 3. In Section 4 the results and performance of the proposed spectral method extension are compared to cor- 
responding FEM simulations . We present a summary on our findings and draw our conclusions in Section 5.

2. Model 

2.1. Kinematics 

The deformation map vðxÞ : x 2 B0 ! y 2 B maps points x in the reference configuration B0 of a microstructural patch of 
interest to points y in its current configuration B. This deformation map can be expresse d as a sum of a homogeneous defor- 
mation, characterized by a constant deformation gradient F, and a superimpos ed displacemen t fluctuation field ew,
1 Not
vðxÞ ¼ Fxþ ewðxÞ; ð1Þ
for which periodicity conditions are enforced in the sense that ew� ¼ ewþ on correspond ing surfaces @B� and @Bþ.
The total deformation gradient is given by F ¼ @v=@x ¼ v�r ¼ Gradv and follows from Eq. (1) as the sum of the spatially 

homogeneous deformation gradient, F, and the locally fluctuating displacemen t gradient, eF, reading:
F ¼ Fþ eF with eF ¼ @ ew
@x
¼ ew �r ¼ Grad ew: ð2Þ
2.2. Linear reference material 

We consider the material to be governed by an arbitrary rate-dependen t constitutive law that connects the deformat ion 
gradient to the first PIOLA–KIRCHHOFF stress, P, at every material point in the reference configuration:
PðxÞ ¼ fðx;F; _F;vÞ ð3Þ
based on an evolving set of chosen internal variables v.1 By introduc ing, in the spirit of Eshelby and Mura (1987), a linear com- 
parison materi al of stiffness A we can reformul ate the spatial heterogenei ty of stress as 
PðxÞ ¼ AFðxÞ þ PðxÞ �AFðxÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼ AFðxÞ þ sðxÞ

ð4Þ
with sðxÞ being the polarization field.

2.3. Static equilibrium 

Static equilibriu m (excluding body forces) with respect to the reference configuration requires (see for instance Malvern,
1969; Mura, 1987 )
0 ¼ DivPðxÞ ¼ Div AFðxÞ þ sðxÞð Þ ¼ A vðxÞ � r½ � þ sðxÞf gr; ð5aÞ
e that a locality assumption is not required. P at x may be a function of more spatial locations than x.
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which reads, after applicati on of the inverse FOURIER transform2
2 Qua
in FOURI

3 The
that are
nomenc

4 Stre
0 ¼ 1

ð2pÞ3
Z

ei k�x A vðkÞ � ik½ � þ sðkÞf g ikdk ¼ F�1 A vðkÞ � ik½ � þ sðkÞf g ikð Þ: ð5bÞ
Hence, equilibrium is fulfilled if 
0 ¼ A vðkÞ � ik½ � þ sðkÞf g ik;
which is equivalent to 
A vðkÞ � k½ �k ¼ sðkÞ ik
AðkÞvðkÞ ¼ sðkÞ ik for all k – 0

ð6Þ
with the so-called ‘acoustic tensor’ AðkÞ being introduced as shorthand notation and defined such that AðkÞa ¼ A a� k½ �k.
The equilibrium deformation field (in FOURIER space) is consequently found to be 
vðkÞ ¼ AðkÞ�1sðkÞ ik if k – 0
vð0Þ if k ¼ 0:

(
ð7Þ
The deformation gradient field is straightfo rwardly derived from this result as 
FðkÞ ¼
(
�AðkÞ�1sðkÞ k� kð Þ
Fð0Þ

¼
(
� ðkÞsðkÞ if k – 0;
F if k ¼ 0;

ð8Þ
with the shorthand notation ðkÞ ¼ AðkÞ�1
�ðk� kÞ using a tensor product as defined in Appendix A. The ‘Gamma operator’

of Eq. (8) is identical to the one introduced in component form by Lahellec et al. (2001).
Since the polarization field s depends on F (see Eq. (4)) the implicit Eq. (8) has to be solved iteratively .

2.4. Numerical algorithm 

A periodic hexahedral volume element with side lengths dx; dy; dz is discretized into a regular grid of Nx � Ny � Nz ¼ N
points. The volume element has to satisfy static equilibriu m as well as the external boundary condition s applied during a
given period of time that is subdivided into consecut ive incremen ts. At each incremen t an iterative strategy is employed un- 
til both of these conditions are met within a given level of tolerance. An overview of the algorithm is presente d in Appendix C
and explained in more detail in the following.

2.4.1. Boundary conditions 
Within a single time increment of Dt the volume element is subjected to a set of complemen tary boundary 3 conditions

(BCs) in terms of deform ation rate _FBC and stress PBC.4 Compone nts of both are mutually exclusive and, when not defined,
set to zero in the following. These mixed boundary conditions are translated into pure deform ation boundary conditions at iter- 
ation nþ 1 by setting 
fFBCgnþ1 ¼ fFg0 þ _FBC Dt � @F
@P

( )
n

fPgn � PBC
� �

; ð9Þ
where the subscript 0 indicates quantities at the beginning of the increment. The last term in Eq. (9) corrects for deviations 
from the prescribed stress boundary conditions. The average compliance @F=@P required for this is calculated as follows: (i)
spatially average the tangent modulus @P=@F known at each grid point; (ii) transform the fourth-orde r tensor h@P=@Fi into a
9� 9 matrix; (iii) drop all rows ij and columns kl for which no stress boundary conditions are defined at ij or kl; (iv) invert the 
reduced square matrix; (v) re-insert zero-filled rows and columns at ij and kl that were dropped before; (vi) transform the 
9� 9 matrix back to a regular fourth-orde r tensor.

2.4.2. Static equilibriu m using spectral method 
Inserting the definition of the polarization field given by Eq. (4) into Eq. (8) and transforming back to real space yields 
eFðxÞ ¼ � ðxÞ � PðFðxÞÞ �AFðxÞ½ �

¼ � ðxÞ � PðFðxÞÞ þ ðxÞ � AFðxÞ½ �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼ � ðxÞ � PðFðxÞÞ þ eFðxÞ: ð10Þ
ntities in real space and FOURIER space are distinguished by notation QðxÞ and QðkÞ, respe ctively, with x the position in real space, k the frequency vector 
ER space, and i2 ¼ �1. F�1 denotes inverse FOUR IER transform.
 term ‘boundary’ is here not used in its literary sense, since the periodicity inherent to the spectral method actually only allows to specify conditions 
 fulfilled in a volume-averaged sense. Hence, speaking of ‘volume conditi ons’ might be more appropriate but was not introduced to avoid additional 
lature.
ss boundary conditions must not allow for rigid body rotations.
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The last simplification, ðxÞ � AFðxÞ½ � � eFðxÞ, introduced in Eq. (10) is based on the assumption that the properties of in the 
finite strain case are analogou s to that of the infinitesimal strain case given by Michel et al. (2001). Eq. (10) can be solved by 
an iterative fix-point scheme to update the deformation gradient field at iteration nþ 1 as 
fFðxÞgnþ1 ¼ fFðxÞgn � F�1 ðkÞfPðkÞgn if k – 0;
fFgn � fFBCgnþ1 if k ¼ 0;

( !
ð11Þ
which is the basis for the updated constitutive response fPðxÞgnþ1 in the next iteration. A sufficient condition for the conver- 
gence of such a scheme is that the spectral radius of its operator is <1. For the case of isotropic elasticity , Michel et al. (2001)
could show that stability is guarante ed when setting the reference stiffness A to the mean of the highest and lowest stiffness 
value from the domain. In our situation of anisotropi c elasto-plasticity , however, it is difficult to find an analogous procedure.
For that reason, we choose the volume average of elastic stiffnesses over the entire domain as our reference stiffness:
A ¼ hCðxÞi: ð12Þ
With this choice, it turns out that the fix-point scheme converges within a reasonable number of iterations.

2.4.3. Convergence criterion 
The refinement of FðxÞ through iterating Eq. (11) brings the divergence of the associate d stress field PðxÞ closer to zero.

Convergence of the stress-diver gence field, PðxÞr, to zero is checked by requiring an associate d energy term to reduce below 
a given threshold. Using PARSEVAL’s theorem, this energy can be conveniently formulated for a discrete FOURIER transform as 
1
N

XN

j¼1

PðxjÞr
�� ��2 ¼ 1

N2

XN

j¼1

PðkjÞ ikj

�� ��2: ð13Þ
Relating the square root of Eq. (13), i.e., the root mean square (RMS) of the divergence of stress, to the magnitud e of the aver- 
age stress we arrive at the convergence criterion 
eeq �m P
RMSðDivPðxÞÞ

kPk2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1 PðkjÞ ikj

�� ��2=N2
q

kPð0Þk2
; ð14Þ
where eeq is the equilibrium tolerance. This criterion is the same as that proposed by Moulinec and Suquet (1998), but here 
properly scaled by the unit of length (m).

A second (relative) convergence criterion, which is evaluated in addition to Eq. (14), is used to ensure the fulfillment of 
potential stress boundary conditions:
eBC P
kPBC � P�k2

kPk2

where P� ij ¼
0 if PBC ij not prescribed 

Pij otherwise

(
ð15Þ
where eBC is the boundary condition tolerance.

3. Simulation details 

3.1. Simulation codes 

The present work uses a material model implementation from the open source Düsseldorf Advanced Material Simulation 
Kit (DAMASK). DAMASK provides various constituti ve models that are interfaced to the newly developed spectral method 
solver based on the above algorithm, as well as to commercial finite element solvers. Here, MSC.Marc 2010 with the 
HYPELA2 user material interface was used for finite element simulations. Eight-noded hexahedral finite elements with linear 
shape functions (i.e. eight GAUSS integrati on points) were employed. For simplicity, the same regular grid generated for the 
spectral method was used as the FEM mesh, although the result quality might not be as good as for a locally refined and/or 
boundary shape-conform ing mesh (Diard et al., 2005 ).

3.2. Material model and constitutive description of crystal plasticity 

An exemplary material model that relates F to P is chosen from DAMASK and used for both, the spectral method and finite
element solution of the mechanical boundary value problem. The conceptual details of this material model are given in 
Roters et al. (2010). In short, the overall deformation is multiplicativel y decompo sed at the material point level as 
F ¼ FeFp into an elastic, Fe, and plastic part, Fp. The (second PIOLA–KIRCHHOFF) stress in the intermediate configuration,
S ¼ CðFT

eFe � IÞ=2, depends via the anisotropic elastic stiffness C on the elastic stretch. The rate of change in plastic defor- 
mation is driven by S and follows from the plastic velocity gradient Lp ¼ _FpF�1

p . Since the exact nature of the underlyin g crys- 
tal plasticity law is not essential to the present work, we adopt the simple and widely known phenomenolog ical description 
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of Peirce et al. (1982) for face-centere d cubic crystals. Thus, the microstru cture is parameterized in terms of a slip resistance 
sa on each of the 12 f111gh�110i slip systems, which are indexed by a ¼ 1; . . . ;12. These resistances evolve asymptotical ly 
towards sa

1 with shear c according to the relationship 
_sa ¼ h0 1� sa=sa
1

� �whab _cb ð16Þ
with implicit summation over repeated indices b ¼ 1; . . . ;12. Given a set of current slip resistances, shear on each system 
evolves at a rate of 
_ca ¼ _c0
sa

sa

���� ����nsgn sað Þ; ð17Þ
with sa ¼ S � ðba � naÞ. The superposition of shear on all slip systems in turn determines the plastic velocity gradient 
Lp ¼ _ca ba � na; ð18Þ
where ba and na are unit vectors along the slip direction and slip plane normal, respectively . The values used for all material 
parameters are listed in Table 1.

3.3. Convergence criteria 

All FEM simulatio ns use a convergence criterion based on relative nodal force residua. For the heterogenous material re- 
sponse reported in Section 4.2 three different tolerances are employed and result in converge nce essentially being reached in 
either one, two, or four iterations per increment. The spectral solver uses the convergence criteria described in Section 2.4.3
with fixed eBC ¼ 0:01 and varying eeq for comparis on to the FEM results.

3.4. Application of periodic mixed boundary conditions 

Periodicity of the solution is inherent to the spectral method due to the FOURIER approximation of the deformation gradient 
field. In FEM a periodic displacemen t field is enforced by linking the degrees of freedom for matching nodes on opposite 
faces. The components of the volume-aver aged displacement gradient F are controlled by either directly prescribing the cor- 
responding terms of _F in case of the spectral method, or, in case of FEM, by prescribing the motion of the three control nodes 
at ðdx;0;0Þ; ð0; dy;0Þ, and ð0;0; dzÞ with the node at (0,0,0) being fixed.

4. Results 

In the following we want to directly compare the large-strain finite element method with the proposed spectral method 
as valid solution strategie s for static equilibrium and compatibilit y in a periodic volume element representing a polycrystal.
First, the equivalence of the material model employed in both schemes is demonstrated using unidirectional compression of 
a single crystal as example. Next, we compare both solution strategies at various mesh/grid resolutions of a periodic VORONOI

grain structure under simple shear. The predicted average and local mechanical responses are contrasted and discussed in 
terms of the fulfillment of compatibilit y and static equilibrium. The section closes by comparing the computational effort 
spent in solving the problem by both methods.

4.1. Unidirection al compressi on of single crystal 

To confirm the equivalence of the material model used in both methods we present results on two single crystal compres- 
sion tests. Case (a) is a highly symmetric ‘cube’ orientation with Bunge (1982) Euler angles of u1 ¼ 0	; / ¼ 0	; u2 ¼ 0	. Case 
Table 1
Material parameters used in the simulations.

Property Value Unit 

C11 106.75 � 109 Pa
C12 60.41 � 109 Pa
C44 28.34 � 109 Pa
_c0 1 � 10�3 m s�1

s0 31 � 106 Pa
s1 63 � 106 Pa
h0 75 � 106 Pa 
Coplanar hab 1
Non-coplanar hab 1.4
n 20
w 2.25
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(b) looses symmetry along the y-direction due to a small rotation by / ¼ 10	 around the x-directio n compare d to (a). The 
periodic volume element is taken as a cube of initial dimensions dx;0 ¼ dy;0 ¼ dz;0 ¼ d ¼ 1 m (where m can be considered 
as an arbitrary unit of length), discretized by 8� 8� 8 voxels. The boundary conditions chosen to represent compression 
along the z-direction are 
5 Res
_F
10�3 s�1

¼
� � �
0 � �
0 0 dz

dz;0

264
375 and

P
Pa
¼

0 0 0
� 0 0
� � �

264
375 ð19Þ
with ‘‘ �’’ denoting components for which complemen tary conditions are prescribe d. These condition s are applied for 400 s in 
400 equal increments resulting in a final z-compression of 0.4.

The resulting VON MISES equivalent stress curves are plotted (Fig. 1) as function of the VON MISES equivalent of the logarithmic 
left stretch tensor ln V ¼ lnðFR�1Þ ¼ ðln kiÞvi � vi, with ki;vi being the eigenvalues and eigenvec tors of V. The plot shows that 
both schemes yield identical solutions, with the symmetric cube orientation of case (a) exhibiting a higher flow stress and hard- 
ening rate compared to the slightly rotated case (b), i.e. a behavior as expected from a straightforw ard SCHMID factor analysis.

Fig. 2 compares the shape changes resulting from the finite element and spectral methods, at the final deformation of 
Fzz ¼ 0:67 for cases (a) and (b) in yellow and blue, respectively. Again, both methods predict identical results, which are 
homogeneous and fully symmetr ic in case (a) and nonsymmetric in case (b). This comparison demonstrat es the strict equiv- 
alence of the material models employed in the two solution schemes, being the prerequisite to the evaluations performed in 
the following sections.

4.2. Simple shear of a periodic aggregate of 50 grains 

The periodic VORONOI tessellati on of 50 seed points placed at random is shown in Fig. 3. All voxels belonging to one cell/ 
crystallite are assigned the same random orientation. The physical dimensions of the cubic volume element is set to 
d3 ¼ 1� 1� 1 m3 for simplicity. Different mesh/grid resolutions of 16 3, 32 3, 64 3, 128 3, and 256 3 are compared.5 The bound- 
ary conditions chosen to reflect simple shear along the y-direction in the yz-plane are 
_F

10�3 s�1
¼
� � �
0 � 1
0 0 �

264
375 and

P
Pa
¼

0 0 0
� 0 �
� � 0

264
375 ð20Þ
with ‘‘ �’’ denoting components for which complemen tary conditions are prescribe d. These condition s are applied for 200 s in 
200 uniform increments, thus reaching a final shear of 0.2.

4.2.1. Average response 
Fig. 4 presents the volume-averaged response of the grain aggregat e in terms of the shear deformation gradient compo- 

nent Fyz as a function of the first PIOLA–KIRCHHOFF shear stress component Pyz, up to the final shear of 0.2. The three upper (red)
olutions of 128 3 and 256 3 were only feasible when using the spectral meth od.



Fig. 2. Final shape change of two differently oriented fcc single crystals under compression along z using FEM (left) and spectral method (right). Original 
volume is illustrated by hollow cube. A ð0	 ; 0	; 0	Þ orientation results in symmetric deformation (yellow). Crystal inclination by / ¼ 10	 (about x) renders 
extension along the y-direction more difficult, resulting in skewed deformation (blue). The two views can be used as a stereo pair to confirm that FEM and 
spectral method results coincide. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Periodic VORONO I tessellation of 50 randomly placed seeds at mesh/grid resolution of 64 3. Each color represents one VORONOI cell of randomly-chosen 
but constant crystal orientation.
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sets of curves represent solutions of the finite element simulatio ns, while the five lower (blue) sets of curves correspond to 
the spectral method results. Mesh/gri d resolution is indicated at the right of Fig. 4 and increases with increasing darkness of 
each curve set. The respective converge nce tolerance decreases in the order: dotted, dashed, solid.

It is seen that lower convergence tolerances do not alter the average response of the grain aggregate to a significant de- 
gree. The exception being the initial elastic–plastic transition (up to about 0.02 shear deformation ) for which the spectral 
method markedly overpredicts the stress in case of very low precision requirements (see blue dotted curves in Fig. 4).

Regarding the overall influence of mesh/grid refinement, FEM predicts consistently higher stresses and exhibits a much 
more pronounced decrease in stress with increasing mesh resolution than the correspondi ng spectral solutions. The latter 
method reaches a practically converged average response already at a grid resolution of 32 3. The FEM predictions, on the 
other hand, continuously soften with increasing resolution and are likely to eventual ly converge very close to the response 
given by the spectral method solution.
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4.2.2. Local response 
In this section, the fields of local stress, deformat ion, and lattice rotation resulting from both methods are compared in a

spatially-resol ved manner. Due to the use of linear eight-nod ed hexahedral finite elements, the number of material points 
considered in FEM simulations is always eight times larger than the correspondi ng spectral method simulation, for a given 
mesh/grid resolution. Therefore, to work with the same number of point values, a reduction is performed for the deformat ion 
gradient field and the lattice rotation field by averaging the values at the eight integrati on points per finite element. Stress 
field values in FEM are nodal averages resulting after extrapolating the integrati on point data to the element nodes.
4.2.2.1. Results along a volume element’s diagonal. In Fig. 5 the VON MISES equivalent strain (top) and stress (bottom) at an aver- 
age shear deformat ion of Fyz ¼ 0:2 is followed along the (0,0,0)–(1,1,1) diagonal of the grain aggregate passing through 
nine6 different grains. The profiles resulting at different mesh/grid resolutio ns exhibit similar trends as already observed for 
the volume averag ed mecha nical response.

Considering the equivalent strain in Fig. 5 (top), the FEM results gradually approach, at increasing mesh resolution, the 
profile to which the spectral method appears to have converged already at a grid resolution of 64 3 (third-lightest shade 
of blue in Fig. 5). With regard to the stress profiles in Fig. 5 (bottom), the spectral solutions can again be considered con- 
verged for resolutions exceeding 64 3. Contrarily, no clear convergence trend is observed in the FEM solutions, except for 
its general trend towards the final spectral values.

Moreover, the strain profiles predicted by FEM are compara bly smooth, while the spectral solutions show considerabl y
higher in-grain variability. Relatively large amplitud es of high-frequency strain oscillations are found in the spectral solu- 
tions, particularly at some grain boundari es, e.g. close to diagonal coordina tes of 0.8 and 0.9 in Fig. 5. At most of the grain 
boundaries crossed by this particular diagonal, the converge d spectral results reveal significant and sudden jumps in equiv- 
alent stress. This feature is also suggested by extrapolating the evolution of FEM profiles with mesh resolution, despite them 
not reaching the high fidelity of the spectral profiles.
4.2.2.2. Full-field. Next, three-dimensio nal views of the resulting field quantities are presente d. To reconstru ct the deformed 
configuration illustrate d in Figs. 6–8 we follow the method described in Appendix B to calculate the displacement field by 
integration of the deformation gradient field.

The local shear deformation gradient Fyz, the correspondi ng first PIOLA–KIRCHHOFF stress Pyz, and the crystal lattice reorien- 
tation resulting from the FEM and spectral method simulations are contrasted in Figs. 6–8(a) and 6–8(b), respectively , at an 
average shear deformation of Fyz ¼ 0:2. The three pairs in the two columns on the left of Figs. 6–8 allow us a direct compar- 
ison between FEM (leftmost, red wireframe) and spectral (central, blue wireframe) predictions, up to their maximum com- 
mon mesh/grid resolution of 64 3. In the rightmost column, the sequence of increasing resolution is continued, from bottom 
to top, for the spectral simulatio ns.

For all three visualized field quantities, the spectral method results exhibit a small but noticeable high-frequency fluctuation
that is inherent to the necessary representat ion (and the unavoidable truncation at high frequencies) of the micromecha nical 
6 The thinnest grain (4th from the right in Fig. 5) is only resolved above 32 3.
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Fig. 6. Local shear deformation gradient Fyz at average shear deformation of Fyz ¼ 0:2 mapped onto deformed configuration. Light arrow: intense shear 
emanating from close to a horizontal grain boundary into neighboring grains. Dark arrow: geometry evolution in FEM in contrast to essentially constant 
geometry for spectral method.

P. Eisenlohr et al. / International Journal of Plasticity 46 (2013) 37–53 45
fields in FOURIER space. These fluctuations are most easily discernible at the highest spatial resolutions, i.e., 128 3 and 256 3 (right
column of Figs. 6–8).

The overall spatial variability of each spectral method solution is appreciably larger than that of the correspondi ng FEM at 
a given mesh/grid resolution—most obviously with respect to deformation (see Fig. 6). This, however, seems not to be pre- 
dominantly related to the aforementi oned high-frequency numerical fluctuations, but be a feature of the actual solutions. A
typical example for this characteristic is the area of high shear deformat ion emanating from close to a grain boundary into 
two neighbori ng grains (see light arrows in Fig. 6). The spectral method solutions reveal this region of intense localized 
deformation (and many more, close to other grain boundari es) already from the lowest resolution, while the FEM solutions 
only start to suggest the true intensity of such features at the 64 3 discretizatio n.

It is noteworthy that the spectral solutions are qualitatively the same from the lowest grid resolution on, and change 
quantitative ly only to a small extent, owing to finer details being captured at higher spatial resolutions. This can clearly 
be seen when following the evolution of the deformed geometry with grid resolution. On the other hand, the FEM solutions,
for example, only start to show a protrusion of the right vertical edge in the 64 3 case, but not at lower resolutions (dark ar- 
rows in Fig. 6a). In contrast, all spectral method solutions show virtually identical geometri es between 16 3 and 256 3 (dark
arrows in Fig. 6b). The low-stress spots related to a small grain sitting close to the lower-right corner of the grain aggregate 
and a companion larger one above it (see arrows in Fig. 7b) may serve as another example of the consisten cy across reso- 
lutions of the spectral results. This persistent feature is already present in the 16 3 spectral case, but only starts to emerge 
in FEM between the 32 3 and 64 3 resolutions. Practically all features that can be observed at the 256 3 resolution are already 
discernible in the 32 3 spectral case. The correspond ing 32 3 element FEM results lack fidelity and appear much more ‘blurred’.
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Fig. 7. Local first PIOLA–KIR CHHOFF shear stress Pyz at average shear deformation of Fyz ¼ 0:2 mapped onto the deformed configuration. Arrows highlight two 
examples of low-stress grains within the aggregate that are captured at all resolutions for the spectral method but emerge for the FEM only at higher 
resolution.
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In contrast to the almost stationary appearance of the spectral results, the FEM solutions exhibit a continuing evolution 
between resolutions 16 3 and 64 3. A hypothetical converged FEM solution, which would require a resolution significantly lar- 
ger than 64 3, is likely to fall close to the most highly resolved spectral result. This, together with the other characterist ics 
mentioned above, supports the observation that the predicted mechanical response is virtually converge d for spectral cal- 
culations exceeding a resolution of about 32 3, while the FEM method requires resolutions significantly larger than 64 3 to
reach ultimate convergence.

Finally, a close inspection reveals that the spectral results show peculiar oscillations of the predicted field at some loca- 
tions (for instance, within the upper left grain highlighted in Fig. 8b). These oscillations are not present in the correspond ing 
FEM simulations and their wavelength decreases by a factor of two for each doubling of the grid resolution. The origin of 
these oscillations is presently not clear and will be part of a future investigatio n.

4.2.3. Compatibility 
This section compares the incompatibil ity of the (discrete) deformation gradient field FðxÞ resulting from the FEM and 

spectral method simulations . We quantify incompatibil ity as the FROBENIUS norm of the finite-strain incompatibil ity tensor,
i.e.,
Inc :¼ kCurl FðxÞkF ¼ kFðxÞ � rkF: ð21Þ
The curl of the deformat ion gradient field is conveniently calculated in FOURIER space as 



(a) Finite element method simulation
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Fig. 8. Local rotation angle between initial and current grain orientation after average shear deformation of Fyz ¼ 0:2 mapped onto the deformed 
configuration. Circles indicate an example of a potential artifact related to the FOURIER approximation in the spectral method.
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Fig. 9. Statistical distributions of local incompatibility for different mesh/grid resolutions at average shear deformation Fyz ¼ 0:2.

P. Eisenlohr et al. / International Journal of Plasticity 46 (2013) 37–53 47
Curl FðxÞ ¼ F�1 FðkÞ � ikð Þ: ð22Þ
Fig. 9 presents the distribution s of incompatibility resulting from post-pro cessing both solution methods at different 
mesh/grid resolutions at the final average shear deformation Fyz ¼ 0:2. These results were found to not depend noticeably 
on the chosen convergence tolerance. The incompatibil ity of the spectral results essentially equals the theoretical value of 
zero within numerical precision, while that of the FEM result is about 8–9 orders of magnitude larger. For the spectral 



Fig. 10. Distribution of local first PIOLA–KIRCHHOFF stress divergence magnitudes at average shear deformation Fyz ¼ 0:2 for FEM (red) and spectral method 
(blue). Short gray bar at 50 MN m�3 corresponds to a reference value of kPk2 divided by the longest edge of the simulated grain aggregate (1 m). (For
interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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method, a doubling of (linear) resolution shifts the distribution to higher values by a factor of two. Obviously, the point-to- 
point incompatibility remains essentially unchanged with resolution, but due to the reduction of the grid spacing all values 
of spatial derivatives double. A slight, but not fully systemati c, increase of incompatibil ity with increasing mesh resolution is 
also observed for the FEM results.

4.2.4. Static equilibrium 
By design, the finite element method seeks fulfillment of stress equilibriu m only in an integral or ‘weak’ form. The pre- 

sented spectral method, on the contrary, is set up to fulfill strong equilibrium at the discretizatio n points (see Eq. (5)). In this 
section, the absolute degree to which static equilibrium is maintained in the reference configuration, i.e. DivP ¼ 0, is con- 
trasted for both methods at the final average shear deformation Fyz ¼ 0:2. The divergen ce of the field of first PIOLA–KIRCHHOFF

stress is convenientl y7 calculated in FOURIER space and then transformed back to real space.
Fig. 10 compare s the distribut ion of body force values resulting from FEM (red) and spectral method (blue) for different 

levels of their respective convergence criterion at constant mesh/grid resolution of 32 3 (a) and for different mesh/grid res- 
olutions at constant converge nce tolerance (b). The average stress kPk2, divided by the longest edge of the volume element, is 
taken as reference magnitude and its value of 50 MN m�3 is indicated by a vertical gray bar in Figs. 10 a and b. All resulting 
distribution s turn out to be close to log-normal (with one exception at 256 3, see Fig. 10 b and below).

In the FEM simulations, three different tolerance limits for residual nodal forces were considered . Nevertheless, all three 
FEM distribut ions fall on top of each other despite performing one, two, or even four stress iteration s per increment for the 
different tolerances (see dashed lines in Fig. 11 a). The median values of FEM body force are about a factor of 50 larger than 
the reference magnitude (gray bar in Fig. 10 a).

A different situation is found in the case of the spectral results. For the two lowest convergence tolerances of 0.01 and 0.1 
the median divergen ce value falls very close to 0.01 and 0.1 of the reference quantity, as it would be expected from Eq. (5).
For the even higher tolerances of 1 and 10, the stress equilibrium does not deteriorate any further, but a median divergence 
of about 0:1kPk2 m�1 is retained. This behavior can be easily understo od in terms of the number of iterations needed to 
achieve stress equilibrium as plotted in Fig. 11 a: With the lowest convergence tolerance, i.e. 0.01 as topmost line, equilibrium 
is reached after 13 iteration s in increment 200. With the three higher tolerances only two iterations are necessar y8 in the 
final increment, hence, these three reach about the same quality in stress equilibriu m (as is found in Fig. 10 a).

Fig. 10 b illustrates, for a given convergence tolerance, the change in the distribution of divergen ce values with mesh/grid 
resolution. For both methods, a shift to larger values with increasing resolution is found. This feature is again mainly related 
to the number of iterations required for converge nce. In case of FEM, the (almost) constant number of iterations illustrated in 
Fig. 11 a for the intermediate convergence tolerance are independen t of resolution. In case of the spectral method, the same is 
true since for the tolerance of 1 all resolutions converge very similar to the 16 3 curve shown in Fig. 11 b, i.e. eventually taking 
a constant value of two iterations. The stress field is, therefore, refined to basically the same accuracy in both methods , but 
the point-to-poi nt distances in the geometry decrease with increasing resolution. The divergence, as a spatial derivative, con- 
sequently increases by roughly the increase in (linear) resolution. The one exception observed is for the highest resolution of 
2563. Here, the distribution turns bimodal with a fraction of approximat ely 0.15 having substantially larger divergen ces than 
7 Direct numerical derivatio n by a finite difference scheme in real space turns out to be ambiguous. Due to the strongly heterogeneous grain structur e, finite
differences do not converge to a meaningful result with increasing order of accur acy.

8 The minimum iteration count for the spectral method was intentionally set to a value of two.
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Fig. 11. Iterations required per increment to reach convergence. At each iteration, the constitutive response is evaluated and the boundary value problem is 
attempted. Spectral method is intentionally limited between 2 and 25 iterations.
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the rest. We speculate that this response is a consequence of the spectral method strictly maintaining compatibility (see
Fig. 9) at the expense of equilibrium in locations where strain deformation localization occurs. This peculiarity is currently 
been investigated and will be reported in a forthcoming publication.

By comparing the median body force achieved by FEM and the spectral method it is seen that the latter fulfills static 
equilibrium relatively better, by a factor of about 10 3 (depending on the convergence tolerance chosen in the spectral 
method).
4.2.5. Computati onal cost 
Fig. 12 summari zes the computational cost, in terms of cpu time spent on 8 cores of a dual Xeon X5670 (12 cores @

2.93 GHz in total), for FEM and spectral method simulations, for different convergence tolerances, as a function of mesh/grid 
resolution.

The computation times of the FEM simulations scale proportional ly with the number of elements used for discretizatio n
(being indicative of an optimal matrix inversion algorithm in the currently employed solver). The increasing number of iter- 
ations entailed by a decreasing convergence tolerance (see Fig. 11 a) is directly reflected by the increase of computin g times 
by factors of 2 and 4 relative to the lowest precision, which requires only one iteration per increment for convergence.
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The overall computational cost of the spectral simulations is much less and falls about 1–2 orders of magnitude below 
that of the corresponding FEM cost, indicating that one iteration of FEM is much more costly than one of the spectral method.
Computational cost scales in direct proportion to the number of grid points, as long as the total number of iterations for con- 
vergence remains independent of resolution. This is the case of practically all simulations up to 128 3 elements, for conver- 
gence tolerances of 1 or larger, as they converge after two iterations per incremen t (Fig. 11 a). Only at the highest resolution 
of 256 3 a worse-than- linear increase is observed for the converge tolerance of 1. This is related to the emergence of regions in 
which static equilibrium cannot be maintained as easily any more—potentially due to strongly localized deformation in their 
vicinity. For the tighter convergence tolerances (0.1 and 0.01) a generally worse-than-linea r increase of cpu time with ele- 
ment count is observed. This reflects the marked increase in iterations (see Fig. 11 b) that are required to satisfy Div P ¼ 0 in
strong form (see Eq. (5)).
5. Summary 

The mechanics of polycrystal s is characterized by heterogeneous fields of stress and strain, due to the intricate interac- 
tions between anisotropic grains. In order to capture this heterogeneity and predict the resulting propertie s at micro and 
macro scales, an accurate and efficient solution of the mechanical boundary -value problem is necessar y. In the present work,
we have formulated a spectral method capable of solving stress equilibrium and strain compatib ility within a finite-strain
framework, and compare d its results to the standard finite element method, using the exact same material model. The equiv- 
alence of the constitutive material description was checked by simulating homogeneous single crystal deformat ion.

Simple shear up to 0.2 of a periodic aggregate containing 50 grains was chosen as example for a more detailed comparison 
of both methods . A number of observati ons can be made from this comparison: (i) the volume-a veraged strength of the grain 
aggregate predicted by FEM is distinctly larger than that predicted by the spectral method. Furthermore, the strength con- 
stantly reduces with increasing mesh resolution in the FEM simulatio ns, such that no converged response is found even at 
the highest resolution of 64 3. In contrast, the volume-aver aged mechanical response does not change significantly any more 
for the spectral method for mesh resolutions between 32 3 and 256 3 (see Fig. 4). (ii) The same relatively much earlier con- 
vergence with mesh resolution of the spectral method is also seen for the local fields. Virtually all features that are present 
in the spectral results at the highest resolution (2563) are already established both qualitatively as well as quantitat ively at 
much lower resolution of 32 3. The FEM, on the contrary, is at 64 3 still relatively far from reaching quantitative agreement 
with the high-resol ution spectral result (see Figs. 6–8). (iii) The compatib ility of the deformation gradient field as well as 
the static equilibrium of the stress field is fulfilled better by orders of magnitude by the spectral solutions (see Figs. 9,10 ).
(iv) The spectral method is amenable to reach spatial resolutions that are prohibiti vely expensive with FEM in terms of mem- 
ory requiremen t and—even more restrictive—in terms of computati on time. In the latter respect, the spectral method is fas- 
ter by about a factor of 50, resulting in roughly similar computation times for a 64 3 resolution FEM simulation and 256 3

resolution spectral simulation (see Fig. 12 ).
Two essential differences between the spectral and finite element methods with respect to the solution approximat ion 

and problem description appear essential to understand the above differenc es: Standard FEM operates on low-order (typi-
cally linear or quadratic) piecewise approximat ions by shape-functions within the elements that discretize the geometry.
Stress equilibrium is required only in a volume-averaged (or weak) sense by indirectly requiring residual nodal forces to van- 
ish. In contrast, the spectral method approximat es the fields of stress and deformation gradient by a FOURIER series, i.e., by 
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superposition of as many sinusoidal functions as the number of points in the regular grid used for discretizatio n. Further- 
more, strong stress equilibrium is required at all of those discretization points.

The spectral method, originally proposed by Moulinec and Suquet (1994, 1998), extended to polycrystal s by Lebensohn
(2001), and now complemented by the flexible material model implemented as DAMASK, is a promising and powerful tool.
The software used in this work is open-source and freely available at http://damask.m pie.de/ . It provides the means for further 
investigatio n of important open issues related to the micromecha nics of polycrystals, like damage initiation, deformation local- 
ization, micro-texture developmen t, or nucleation of phase transformation s. Another interesting application of this class of 
spectral methods —enabled by their fast converge nce with mesh resolution—is their potential use as computational homogeni- 
zation tool at the mesoscale, for relatively coarse volume elements, within multiscal e approaches based on FEM at macro level.
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Appendix A. Notation 

As a general scheme of notation, vectors are written as boldface lowercase letters (e.g. a;b), second-order tensors as bold- 
face capital letters (e.g. A;B), and fourth-or der tensors as blackboard-bo ld capital letters (e.g. A;B). For vectors and tensors,
Cartesian components are denoted as, respectively, ai;Aij and Aijkl. The action of a second-order tensor upon a vector is de- 
noted as Ab (in components Aijbj, implicit summation over repeated indices is used unless specified otherwise) and that of a
fourth-orde r tensor upon a second order tensor is designate d as AB (AijklBkl). The composition of two second-order tensors is 
denoted as AB (AikBkj). The tensor product A�B of two second-order tensors A and B is defined by ðA�BÞC :¼ ACB. The tensor 
(or dyadic) product between two vectors is denoted as a� b (aibj). All inner products are indicated by a single dot between 
the tensorial quantities of the same order, e.g., a � b (aibi) for vectors and A � B (AijBij) for second-order tensors. The cross-prod- 
uct of a second-order tensor A with a vector a, denoted by A� a, is a second-order tensor defined in components as 
ðA� aÞij ¼ Aik al �lkj, where � is the LEVITA–CIVITA permutation matrix. The transpose, AT, of a tensor A is denoted by a super- 
script ‘‘T’’, and the inverse, A�1, by a superscript ‘‘ �1’’. kAk2 and kAkF designate the spectral norm and FROBENIUS norm of ma- 
trix A, respectivel y. The ‘del’ operator is denoted by the nabla symbol r. h � i produces the spacial average of the quantity in 
angle brackets. Addition al notation is introduced where required.

Appendix B. Reconstruc tion of displaceme nt field from deformation gradient field

The following method was used to reconstruct the deformed polycrystal geometry for visualization in Figs. 6–8. This 
shape reconstructi on algorithm is suitable for volume elements with periodic boundary conditions for which the deforma- 
tion gradient on each point of a regular, three-dimensio nal grid in undeformed configuration is known. Starting from the 
separation of the deformation gradient in average and fluctuating part (Eq. (2)), the fluctuation in the displacemen t field
can be recovered as 
eFðxÞ ¼ ewðxÞ � r;

eFðkÞ ¼ ewðkÞ � ik;

eFðkÞik ¼ ewðkÞ ik � ikð Þ;

�eFðkÞ ik

kj j2
¼ ewðkÞ 8k – 0: ð23Þ
Since the fluctuation, eF, of the deformation gradient has by definition a vanishing average, the exclusion of the zero-fre- 
quency vector k ¼ 0 in Eq. (23) is inconsequentia l. When inserting the result of Eq. (23) into Eq. (1) the overall deformation 
map can be assembled as  !
yðxÞ ¼ Fx� F�1 eFðkÞ ik

kj j2
; ð24Þ
i.e., integrating the locally fluctuating part of the deformation gradient in FOURIER space and the average part in real space.
A beneficial side effect of this splitting is the possibility to independen tly rescale the displacemen t fluctuation in the 
visualization.

http://damask.mpie.de/
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From Eq. (24) the coordina tes of the deformed grid are recovered. For a subsequent visualizati on we construct hexahedr al 
cells around these grid points. Each node of a cell is positioned at the average location of all eight surrounding grid points,
accounting for periodicity.

A verification of the reconstru ction accuracy is possible based on a FEM simulation result since the nodal coordinates of 
the FEM mesh should coincide with the positions of the cell nodes of the reconstructi on mesh in the limit of infinite reso- 
lution. Fig. 13 shows the distribution of distances relative to element size delem between reconstructed node positions yreconstr

and FEM node positions yFEM. The data confirms the expected systematic decrease of deviations with increasing resolution.
On absolute grounds, the reconstructi on accuracy is very good: even for the lowest resolution of 16 3 the reconstructed nodal 
coordinates match the original positions with a median error of less than 2% of the element size.

Appendix C. Algorithm 

The algorithm used to solve for static equilibrium with the spectral method is given in pseudocode in Algorithm 1. It fol- 
lows the procedure that was outlined for a single increment in Section 2.4. Here, it is extended to the general case of several 
load cases, each consisting of a series of incremen ts.

We observed a noticeable improvement in convergence speed by assuming the evolution of the stress boundary condi- 
tions and of the deformation gradient field to follow in the first iteration of an increment the trajector y of the preceding con- 
verged increment. In the calculation of the reference stiffness A is selected as the volume average hCðxÞi of all individual 
linear elastic stiffnesses.

Algorithm 1. Spectral method boundary value problem solver.
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