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a b s t r a c t

This paper is concerned with the multiscale simulation of plastic deformation of metallic
specimens using physically-based models that take into account their polycrystalline
microstructure and the directionality of deformation mechanisms acting at single-crystal
level. A polycrystal model based on self-consistent homogenization of single-crystal visco-
plastic behavior is used to provide a texture-sensitive constitutive response of each mate-
rial point, within a boundary problem solved with finite elements (FE) at the macroscale.
The resulting constitutive behavior is that of an elasto-viscoplastic material, implemented
in the implicit FE code ABAQUS. The widely-used viscoplastic selfconsistent (VPSC) formu-
lation for polycrystal deformation has been implemented inside a user-defined material
(UMAT) subroutine, providing the relationship between stress and plastic strain-rate
response. Each integration point of the FE model is considered as a polycrystal with a given
initial texture that evolves with deformation. The viscoplastic compliance tensor computed
internally in the polycrystal model is in turn used for the minimization of a suitable-
designed residual, as well as in the construction of the elasto-viscoplastic tangent stiffness
matrix required by the implicit FE scheme.

Uniaxial tension and simple shear of an FCC polycrystal have been used to benchmark
the accuracy of the proposed implicit scheme and the correct treatment of rotations for
prediction of texture evolution. In addition, two applications are presented to illustrate
the potential of the multiscale strategy: a simulation of rolling of an FCC plate, in which
the model predicts the development of different textures through the thickness of the
plate; and the deformation under 4-point bending of textured HCP bars, in which the
model captures the dimensional changes associated with different orientations of the dom-
inant texture component with respect to the bending plane.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The formulation of multiscale frameworks for modeling and simulation of plastic deformation of polycrystalline materials
is a very active field of research, representing at the same time a challenging material science and computational problem
and a relevant development for engineering applications. The main goal is to simultaneously account for the strength of the
actual deformation mechanisms active at single-crystal level, the polycrystalline character of the aggregate microstructure
and its evolution with deformation, and the specific boundary conditions applied to a polycrystalline specimen.
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Since its inception by Peirce et al. (1982), the so-called crystal plasticity finite element (CPFE) method has been extensively
used to solve problems involving the mechanical behavior of crystalline materials. This methodology combines (single) crys-
tal plasticity (CP) as constitutive description and finite element (FE) analysis as numerical solver for boundary-value prob-
lems (for a comprehensive review of these methods, see e.g. Roters et al. (2010)). While most of the CPFE applications found
in the literature are based on the numerical solution of single-crystal plasticity constitutive equations directly within the FE
analysis (in most cases, with intragranular resolution, i.e. comprising several integration points and, usually, several ele-
ments per grain), the present approach can be regarded as belonging to a sub-class of models based on CP and FE, in which
the single crystal (microscopic) behavior is connected with the specimen (macroscopic) response through an intermediate
(mesoscopic) scale. The behavior at this latter scale is obtained from the homogenized response of an entire polycrystal,
which represents the behavior of each material point in the FE mesh.

This kind of approach, based on polycrystal homogenization at the mesoscale, is applicable to problems with a clear sep-
aration of scales, i.e. those in which the typical length-scale associated with the gradients of the mechanical fields at the mac-
roscale is large compared with the typical length-scale of the polycrystalline microstructure (e.g. the grain or sub-grain size).

Different flavors of models and numerical methods at both ends of this multiscale problem are well-established and read-
ily available. In this work, the microscopic scale represented by single crystals deforming by slip and twinning, is modeled by
means of the rate-sensitivity approach to plasticity (e.g. Asaro and Needleman, 1985) and a description of strain-hardening
based on a phenomenological update of the critical resolved shear stresses of the different deformation modes (e.g. Tomé
et al., 1984). This latter choice involves the identification of a relatively small number of constitutive parameters, although
the modifications to the present implementation to include more sophisticated hardening laws, (e.g. Beyerlein and Tomé,
2007, 2008; Proust et al., 2007) are straight-forward. The macroscopic scale, represented by an elasto-viscoplastic solid, pos-
sibly of complicated geometry and undergoing complex boundary conditions, is modeled with the commercial FE code ABA-
QUS (2007), in its implicit version. This choice guaranties in principle a greater efficiency for the same accuracy, compared to
explicit formulations, and a relatively easy portability of the present development, in the form of a user-defined material
(UMAT) subroutine.

In what concerns the mesoscopic scale, the techniques used at this level can be of different kind. For example, they can be
based on purely numerical homogenization, in which the micromechanical fields are fully resolved inside each polycrystalline
unit cell associated with each macroscopic integration point, and averaged to obtain the material point’s response. Within
this group, FE has been frequently used to perform this mesoscale numerical homogenization for different polycrystalline
microstructures (e.g. Miehe et al., 1999; Werwer and Cornec, 2000; Kouznetsova and Geers, 2008). In the general case of het-
erogeneous materials (of which a polycrystal is a particular case), these approaches are sometimes referred to as FE2 models
(e.g. Feyel, 2003). Alternatively, as in the present work, the mesoscopic homogenization can rely on more efficient mean-field
theories, in which the polycrystal response is obtained from an estimate of its effective behavior, based on some overriding
principle (e.g. iso-strain, iso-stress, energy minimization) and a statistical representation of the microstructure.

Another important aspect of the implementation of the mesoscopic level within the multiscale analysis concerns whether
the polycrystal model is (Van Houtte et al., 2006): (a) embedded in the FE computation, i.e. interrogated on the fly each time
the behavior of the corresponding material point is needed by the FE analysis, or (b) it is used in a hierarchical fashion, such
that the FE level utilizes a number of parameters which are identified in advance (pre-computed), using the mesoscale model
(Van Houtte et al., 2006, 2009). Embedded models are obviously more accurate to follow the microstructural evolution and
how the latter affects the macroscopic behavior, while hierarchical approximations are more efficient. In connection with
these two different strategies, it is also worth mentioning a promising intermediate approach, known as adaptative sampling
(AS) method (Barton et al., 2008), which consists in embedding a lower length-scale model (e.g. at polycrystal level) and stor-
ing, each time this model is interrogated, the response obtained for a given microstructure. In this way, a microstructure-
response database is populated, which can be used instead of a new call to the polycrystal model when the current micro-
structure is not far from an already computed point of this microstructure-response space.

In the present work, the strategy of fully embedding a mean-field model in the FE analysis is used at mesoscopic scale. In
particular, we use polycrystal models based on self-consistent (SC) homogenization of single-crystal plastic behavior. This
choice (under which the constituent single crystals deform differently according to their orientation and their interaction
with the surrounding material), instead of the simpler Taylor iso-strain approximation (under which the strains of the crys-
tals are assumed to be equal to the strain of the aggregate), provides in general a more accurate texture-sensitive constitutive
response of the polycrystalline material points. In particular, we make use of the viscoplastic self-consistent (VPSC) ap-
proach. This formulation, based on a ad-hoc linearization of the non-linear single crystal constitutive behavior and the
use of the linear SC model (Hershley, 1954), was first proposed by Molinari et al. (1987) for the prediction of texture evo-
lution of polycrystalline materials, and later extended and numerically implemented by Lebensohn and Tomé (1993) in
the so-called VPSC code. In the last decade, the VPSC formulation and code have experienced several improvements and
extensions (e.g. see Lebensohn et al., 2007), and it is nowadays extensively used to simulate plastic deformation of polycrys-
talline aggregates (considered as single material points) and to interpret experimental evidence on metallic, geological and
polymeric materials (see Lebensohn et al. (2007) for a comprehensive list of VPSC applications).

While this is not the first attempt to embed polycrystal models in FE codes to connect single crystal and macroscopic
behaviors, novel relevant aspects of the present formulation will be described here and compared with earlier approaches.
Mathur and Dawson (1989) used a rigid-viscoplastic Eulerian FE approach to model the evolution of crystallographic texture
during a steady-state rolling process, obtaining the response of the polycrystalline aggregates associated with each material
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point from an iso-strain Taylor assumption. Also based on a Taylor-type homogenization at the level of the polycrystalline
material points, Kalidindi et al. (1992) developed an elasto-viscoplastic implementation in ABAQUS, using an implicit time-
integration scheme for the simulation of texture evolution in non-steady forming operations. While the procedure reported
in Kalidindi et al. (1992) for the calculation of the Jacobian matrix was based on numerical differentiation, later Kalidindi and
collaborators (e.g. Delannay et al., 2006) implemented more efficient analytical schemes to obtain this Jacobian within a Tay-
lor framework. Kalidindi (1998) was also the first to incorporate twinning at the mesoscale (using a Taylor framework) with-
in ABAQUS.

In what concerns the use of mesoscopic viscoplastic self-consistent schemes in FE codes, the applications to date con-
sisted in explicit implementations, for problems involving hcp materials in which plasticity at single-crystal level was accom-
modated not only by slip but also by twinning (see Tomé et al. (2001) and Kaschner et al. (2001) for Zr, using the FE code
EPIC; and Walde and Riedel (2007a,b) for Mg, using ABAQUS explicit). The obvious motivation for these applications is the
superior ability of the VPSC formulation (e.g. Lebensohn and Tomé, 1993; Tomé et al., 2001) compared with the Taylor model
to capture the strong texture-induced anisotropy of hcp polycrystals, the rapid textural changes induced by twinning that
results in strong geometric hardening/softening, as well as the highly anisotropic slip-twin interaction. In contrast with these
previous VPSC-FE couplings, in the present implementation the self-consistent polycrystal model is embedded in an implicit
FE code. In addition to the benefits of using an implicit formulation (robustness and less computational cost for the same
accuracy), a key and novel aspect of this coupling is that the tangent stiffness matrix (Jacobian) of the non-linear FE scheme
is obtained analytically, what makes the implementation less computationally expensive. This stiffness matrix is obtained as
a function of the viscoplastic tangent moduli (which has already been calculated as part of the non-linear self-consistent
homogenization scheme), the elastic stiffness of the aggregate, and the FE time increment.

2. Model

At the macroscopic scale, the proposed multiscale approach is a standard elasto-viscoplastic FE with implicit time inte-
gration, which solves the governing equations under certain imposed boundary conditions and given constitutive relations
between strain increments and stresses at the level of the integration points. In order to obtain such constitutive behavior, a
whole polycrystal is considered at each integration point. In turn, the mesoscopic VPSC model is interrogated to obtain the
homogenized viscoplastic response of each of these polycrystalline material points, as needed during the FE solution of the
macroscopic boundary problem. Upon convergence of the macroscopic model, the microstructure of each polycrystal is up-
dated in terms of the average values of the micromechanical fields inside the crystallites, obtained through localization rela-
tions, which are natural by-products of the self-consistent solution.

2.1. Kinematics

The proposed UMAT with the VPSC solver at the mesoscale is devised to work under a small-strain approximation, and for
finite deformations as well. Given that the VPSC formulation is rigid-viscoplastic, in the case of small strains, an additive
decomposition of the total strain increment (De), in elastic (Deel) and viscoplastic (Devp) parts is assumed, such that the con-
stitutive relation at each polycrystalline integration point is given by:
1 Not
gradien
De ¼ Deel þ Devp ¼ C�1 : Drþ Devp ð1Þ
where C is the elastic stiffness of the polycrystalline material point, Dr is the Cauchy stress increment, and Devp = Devp(r) is
computed with the VPSC model for each polycrystalline material point.

In the case of large deformations, our implementation is consistent with ABAQUS’s default treatment of rotations. A local
coordinate system, defined by the unit vectors ea (a = 1, 3) in which the polycrystal behavior is computed, undergoes rota-
tions that need to be accounted for by the FE. In what follows, this system will also be referred to as co-rotational system.
In the present hypoelastic solution of the finite-deformation problem, the material model is formulated incrementally, using
the Jaumann rate as the objective rate to define the stress increments (although other choices are possible, e.g. Peeters et al.
(2001)). In this case, the evolution of the unit vectors of the local coordinate system rotating with the polycrystal is given by:
_ea ¼ _x � ea ð2Þ
where _x is the total rotation-rate of the polycrystalline material point. The integration of _x in a time increment (from time t
to t + Dt) gives an incremental rotation matrix DR that rotates the local reference system from time t to t + Dt:
RtþDt ¼ DR � Rt ð3Þ
where Rt+Dt is the rotation matrix from the local coordinate system at t = 0 to its orientation at time t + Dt,1 e.g.
etþDt
a ¼ RtþDt � e0

a ð4Þ
e that, in general, the rotation matrix calculated incrementally can be different from the one defined by the polar decomposition of the deformation
t F (F = R � U).
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Similarly to Eq. (1), for large strains the velocity-gradient L is decomposed into elastic and viscoplastic components:
L ¼ Lel þ Lvp ð5Þ
where:
Lel ¼ _eel þ _x ð6aÞ
Lvp ¼ _evp ð6bÞ
Elastic and viscoplastic constitutive laws involve only the symmetric component of the deformation, while the antisymmet-
ric component is ambiguous. Consequently, for convenience, in Eq. (6) the full rotation-rate was assigned to the elastic part
of the velocity-gradient, although other choices can be made (e.g. Barton et al., 2008).

The Jaumann rate of the Kirchoff stress, which is the stress measure work-conjugate with the rate of deformation, is de-
fined by:
s
r
¼ _r� _x � rþ r � _x ð7Þ
If plastic strains are much larger than elastic ones, deformation can be considered isochoric (J = det(F) = 1 and s = Jr � r).

Thus, r
r

is related to the elastic strain-rate by:
r
r
¼ C : ð _e� _evpÞ ð8Þ
The FE solution requires constitutive relation (8) be expressed and integrated in a fixed coordinate system. Let us assume
that the coordinate system associated to every polycrystalline material point at t = 0 is unique and given by e0

a, and let us
use this reference frame as the required fixed coordinate system. Integrating Eq. (8) from time t to t + Dt gives:
r
r

Dt ¼ C : ðDe� DevpÞ ð9Þ
In our formulation, the polycrystal elastic stiffness and the viscoplastic strain increment are calculated by means of the VPSC
model in the co-rotational system. Therefore, in order for these magnitudes to be expressed in the fixed coordinate system,
use is made of Rt+Dt, e.g. if De�vp is the viscoplastic strain increment computed by means of the VPSC model (the symbol ‘‘⁄’’
denotes magnitudes expressed in the co-rotational system), Devp to be used in Eq. (9) is obtained as:
Devp ¼ ðRtþDtÞT � De�vp � R
tþDt ð10Þ
In Eq. (9), De is the logarithmic strain increment, obtained from De⁄ given by the FE analysis:
De� ¼ logðDVÞ ð11Þ
with DV being the left Cauchy stretch tensor associated with the deformation gradient increment from time t to t + Dt, such
that: DF = DV � DR. Hence:
De ¼ ðRtþDtÞT � De� � RtþDt ð12Þ
Finally, for completeness, once the right-hand of Eq. (9) is obtained by computing the left-hand magnitudes in the fixed ref-
erence system, the stress expressed in co-rotational axes (as needed by VPSC as part of the proposed algorithm, see next sec-
tion) is obtained as:
rtþDt� ¼ RtþDt � ðrt þ r
r

DtÞ � ðRtþDtÞT ð13Þ
2.2. Viscoplastic single-crystal and polycrystal models

At polycrystal level, the use of a rigid-viscoplastic approach implies that the constitutive relations at single-crystal level
can be expressed in terms of Cauchy stress deviator r0 and the (Eulerian) viscoplastic strain-rate _evp. Under the rate-sensi-
tivity approach to crystal plasticity, the constitutive behavior at each material point x belonging to a single crystal is de-
scribed by means of the following non-linear relation between _evp and r0:
_evpðxÞ ¼
XNk

k¼1

mkðxÞ _ckðxÞ ¼ _co

XNk

k¼1

mkðxÞ jm
kðxÞ : r0ðxÞj
sk

oðxÞ

� �n

� sgn mkðxÞ : r0ðxÞ
� �

ð14Þ
where the sum runs over all Nk slip and twinning systems. sk
o and mkðxÞ ¼ 1

2 ðnkðxÞ � bkðxÞ þ bkðxÞ � nkðxÞÞ are, respectively,
the threshold resolved shear stress and the symmetric Schmid tensor associated with slip or twinning system (k) (with nk

and bk being the normal and Burgers vector direction of such slip or twinning system), _ck is the local shear-rate on slip or
twinning system (k), _co is a normalization factor and n is the rate-sensitivity exponent. Note that, in the case of twinning,
the polarity of this mechanism can be taken into account, making sk

o a function of sgn(mk(x) : r0(x)). The following linear
relation (an approximation of the actual local non-linear relation, Eq. (14)) is assumed between _eðrÞvp and r0(r), i.e. the average
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magnitudes of these fields inside each mechanical phase or statistically-representative (SR) grain (r), representing the set of
grains with the same orientation (r) and all possible neighborhoods compatible with the statistical description of the
polycrystal:
2 Not
when u
_eðrÞvp ¼MðrÞ : r0ðrÞ þ _eoðrÞ ð15Þ
where M(r) and _eoðrÞ are respectively a linearized viscoplastic compliance and a back-extrapolated strain-rate of SR grain (r).
Depending on the linearization assumption, M(r) and _eoðrÞ can be chosen differently.2 For instance, making use of the affine
linearization (Masson et al., 2000):
MðrÞ ¼ n _co

X
k

mkðrÞ �mkðrÞ

skðrÞ
o

mkðrÞ : r0ðrÞ

skðrÞ
o

 !n�1

ð16Þ

_eoðrÞ ¼ ð1� nÞ _co

X
k

mkðrÞ : r0ðrÞ

skðrÞ
o

 !n

� sgnðmkðrÞ : r0ðrÞÞ ð17Þ
where the index (r) in mk(r) and skðrÞ
o indicates uniform (average) values of these magnitudes, corresponding to a given ori-

entation and hardening state associated with SR grain (r).
The behavior of a linear heterogeneous medium, whose linear (piecewise constant) local response is described by Eq. (15),

can be homogenized assuming an analogous linear relation at the effective medium (polycrystal, px) level:
_eðpxÞ
vp ¼MðpxÞ : r0ðpxÞ þ _eoðpxÞ ð18Þ
where _eðpxÞ
vp and r0(px) are the effective (polycrystal) deviatoric strain-rate and stress tensors and M(px) and _eoðpxÞ are respec-

tively the tangent viscoplastic compliance and back-extrapolated strain-rate of an a priori unknown homogeneous medium that
represents the behavior of the polycrystal. The usual procedure to obtain the homogenized response of a linear polycrystal is
the linear self-consistent method. The problem underlying the self-consistent method is that of an inhomogeneous domain
(r) of moduli M(r) and _eoðrÞ, embedded in an infinite medium of moduli M(px) and _eoðpxÞ. Invoking the concept of the equivalent
inclusion (Mura, 1987), Eqs. (15) and (18) can be combined to give:
er0ðrÞ ¼ LðpxÞ : ðe_eðrÞvp � _e�ðrÞÞ ð19Þ
where the symbol ‘‘�’’ denotes local deviations from macroscopic values of the corresponding magnitudes (e.g.er0ðrÞ ¼ r0ðrÞ � r0ðpxÞ), L(px) = [M(px)]�1 is the tangent viscoplastic stiffness, and _e�ðrÞ is an eigen-strain-rate that fulfills Eshelby’s
relation:
e_eðrÞvp ¼ S : _e�ðrÞ ð20Þ
where S is the (viscoplastic) symmetric Eshelby tensor, a function of L(px) and the ellipsoidal shape that represents the mor-
phology of the SR grains (for details of the calculation of S, see Lebensohn et al. (2007)). Working with Eqs. (19) and (20), the
following interaction equation is obtained:
e_eðrÞvp ¼ �fM : er0ðrÞ ð21Þ
where the interaction tensor is given by:
fM ¼ ðI � SÞ�1 : S : MðpxÞ ð22Þ
Replacing the constitutive relations of the inclusion and the effective medium in the interaction equation and after some
manipulation one can write the following localization equation:
r0ðrÞ ¼ BðrÞ : r0ðpxÞ þ bðrÞ ð23Þ
where the stress localization tensors are defined as:
BðrÞ ¼ ðMðrÞ þfMÞ�1 : ðMðpxÞ þfMÞ ð24Þ
bðrÞ ¼ ðMðrÞ þfMÞ�1 : ð _eoðpxÞ � _eoðrÞÞ ð25Þ
Replacing the stress localization equation (Eq. (23)) in the relation between average magnitudes of stress and strain-rate in
(r) (Eq. (15)):
eðrÞvp ¼MðrÞ : BðrÞ : rðpxÞ þMðrÞ : bðrÞ þ eoðrÞ ð26Þ
e that the VPSC code can run under different linearization assumptions, and that the corresponding results can differ substantially from each other
sing the same hardening parameters. For a thorough discussion, see Lebensohn et al. (2007).
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and taking volumetric average over the polycrystal while enforcing the condition that the average of the strain-rates over the
aggregate has to coincide with the macroscopic quantities, i.e.:
_eðpxÞ
vp ¼ h _eðrÞvpi ð27Þ
where the brackets ‘‘h i’’ denote average over the SR grains, the following self-consistent equations for the polycrystal moduli
are obtained:
MðpxÞ ¼ hMðrÞ : BðrÞi ð28Þ
_eoðpxÞ ¼ hMðrÞ : bðrÞ þ _eoðrÞi ð29Þ
While the VPSC model can be interrogated with strain-rate imposed (i.e. _eðpxÞ
vp fully applied and r0(px) to be determined); stress

imposed (i.e. r(px) fully applied and _eðpxÞ
vp to be determined); or mixed boundary conditions, the UMAT’s algorithm has been

conceived for stress-imposed boundary conditions. In such case, a typical VPSC calculation starts with a uniform stress initial
guess: r0(r) = r0(px), from where the corresponding initial guesses for _eðrÞvp; MðrÞ and _eoðrÞ can be readily obtained (Eqs. (14), (16),
and (17)). Next, initial guesses for the polycrystal moduli are assumed (usually as simple averages of the local moduli). With
them, and the applied stress, the initial guess for the polycrystal strain-rate can be obtained (Eq. (18)), and the Eshelby tensor
can be computed, with the viscoplastic tangent stiffness and the ellipsoidal shape of the SR grains (for details, see Lebensohn
et al. (2007)). Subsequently, the interaction tensor fM (Eq. (22)), and the localization tensors B(r) and b(r) (Eqs. (24) and (25))
can be calculated, as well. With these tensors, new estimates of M(px) and _eoðpxÞ are obtained by solving iteratively the self-
consistent equations (Eqs. (28) and (29)). After achieving convergence on the macroscopic moduli (and, consequently, also
on the macroscopic stress and the interaction and localization tensors), a new estimation of the average grain stresses can be
obtained, using the localization relation (Eq. (23)). If the recalculated average grain stresses are different (within certain tol-
erance) from the input values, a new iteration is started, until convergence is reached. When the iterative procedure is com-
pleted, the average shear-rates on the slip system (k) in each SR grain (r) are calculated as:
_ckðrÞ ¼ _co
jmkðrÞ : r0ðrÞj

skðrÞ
o

 !n

� sgnðmkðrÞ : r0ðrÞÞ ð30Þ
These average shear-rates are in turn used to calculate the lattice rotation-rates associated with each SR grain, in co-rota-
tional axes:
_xðrÞ ¼ e_xðrÞ � _xpðrÞ ð31Þ
with:
_xpðrÞ ¼
X

k

akðrÞ _ckðrÞ ð32Þ
where akðxÞ ¼ 1
2 ðb

kðxÞ � nkðxÞ � nkðxÞ � bkðxÞÞ is the antisymmetric Schmid tensor of system (k) in SR grain (r) and:
e_xðrÞ ¼ P : S�1 : e_eðrÞ ð33Þ
with P being the antisymmetric Eshelby tensor (Lebensohn et al., 2007).
The above numerical scheme can be used to predict the stress–strain response and the microstructure evolution of the

polycrystal (crystallographic and morphologic texture and hardening evolution), by applying viscoplastic deformation to
the polycrystal in incremental steps. The latter is done by assuming constant rates during a time interval Dt and using
the strain-rates _eðrÞvp and rotation-rates _xðrÞ (times Dt) to update the shape and orientation of the SR grains, and the shear-
rates (times Dt) to update the critical stress of the deformation systems due to strain hardening, after each deformation
increment. Concerning the evolution of the threshold stress with accumulated shear strain in each grain, an extended Voce
law (Tomé et al., 1984) has been used, given by:
s�kðrÞ ¼ sk
oo þ ðsk

1 þ hk
1C
ðrÞÞð1� expð�CðrÞjhk

o=s
k
1jÞÞ ð34Þ
where C(r) is the total accumulated shear in the grain; sk
oo; sk

1; hk
o and hk

1 are the initial threshold stress, the initial hardening-
rate, the asymptotic hardening-rate and the back-extrapolated threshold stress, respectively. In addition, we allow for the
possibility of ‘‘self’’ and ‘‘latent’’ hardening by defining coupling coefficients hkk0 , which empirically account for the obstacles
that new dislocations (or twins) associated with system k0 represent for the propagation of dislocations (or twins) on system
k. The increase in the threshold stress is calculated as:
DskðrÞ
o ¼ ds�kðrÞ

dCðrÞ
X

k0
hkk0 _ck0 ðrÞDt ð35Þ
Note that the above (explicit) update scheme relies on the fact that the internal variables bi that describe the microstructure
(i.e. orientation, morphology and hardening state of each SR grain) evolve slowly within the adopted time interval. For later
use, the increments can be compactly written as:
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DeðpxÞ
vp ¼ _eðpxÞ

vp ðrðpxÞ;tþDt; bt
i ÞDt ð36Þ

Dbi ¼ _biðrðpxÞ;tþDt ; bt
i ÞDt ð37Þ
2.3. VPSC-based UMAT

While, for convenience, the elasto-viscoplastic algorithm to obtain the material response using the viscoplastic constitu-
tive behavior provided by the polycrystal model will be hereby described in small-strain notation, this description is also
applicable to finite deformations, replacing the small-strain variables by their analogous large-deformation ones, expressed
in the co-rotational system (see Section 2.1). For large strains, it is necessary to save the actual orientation of each polycrys-
talline material point as an internal variable, e.g. to be able to represent the evolving texture in the fixed coordinate system
(e.g. see Sections 3 and 4).

At macroscopic level, the applied load is divided in increments, and the equilibrium at each increment is obtained by
means of the FE analysis in an iterative fashion, using a global non-linear solver. The load increment is controlled by the time,
and once the problem has being solved at time t, the solution for the next time increment requires the polycrystal model to
provide a tangent stiffness (Jacobian) matrix Ctg = oDr/oDe for each material point, in order for the FE scheme to compute an
initial guess for the nodal displacements at t + Dt. The strain increments obtained from that prediction for each material
point, DeFE, together with the stress rt and the set of internal state variables bt

i corresponding to the previous increment,
are used inside the UMAT to calculate a new guess for the stress and the Jacobian at t + Dt. When convergence in stress equi-
librium is achieved by the global non-linear scheme, the new values (at t + Dt) of the stresses, the internal variables, and the
Jacobian matrix are accepted for every node, and the calculation advances to the next increment. For a given DeFE, the VPSC-
UMAT is based on the minimization of an ad-hoc residual, defined below.

The elastic constitutive relation for the stress in the material point at t + Dt in the co-rotational system is given by:
rtþDt ¼ rt þ C : Deel ¼ rt þ C : ðDe� DevpÞ ð38Þ
where C is the elastic stiffness of the polycrystal. In the present context, the natural choice for C is to use the elastic self-con-
sistent (ELSC) estimate, given by (c.f. Eq. (28)):
C ¼ hCðrÞ�1 : BðrÞi�1 ð39Þ
where C(r) and B(r) are the elastic stiffness and stress localization tensors (c.f. Eq. (24)) of SR grain (r). Note that an ELSC cal-
culation for the determination of C is implemented in the VPSC code, at the beginning of each deformation increment. In this
way, the textural changes are also accounted for in the determination of the polycrystalline material element’s elastic mod-
ulus. Note also that the aforementioned choice amounts to effectively decouple the self-consistent determination of the elas-
tic and viscoplastic response of the polycrystalline material points. This strategy, originally proposed by Mercier and
Molinari (2009), obviously simplifies the determination of the polycrystal’s constitutive behavior, although is less accurate
than other, more involved, elasto-viscoplastic selfconsistent formulations recently proposed (e.g. Lahellec and Suquet, 2007a,
2007b; Doghri et al., 2010).

Combining Eq. (38) with the viscoplastic constitutive relation coming from VPSC (Eq. (36)), we obtain:
De ¼ C�1 : Drþ Dt _eðpxÞ
vp ðrt þ Dr; bt

i Þ ð40Þ
We define a residual X(Dr), as a (non-linear) function of the stress increment Dr = rt+Dt � rt, which the UMAT should return
to the FE analysis, as the constitutive response of the polycrystalline material point to the trial strain increment DeFE:
XðDrÞ ¼ De� DeFE ¼ C�1 : Drþ Dt _eðpxÞ
vp ðrt þ Dr; bt

i Þ � DeFE ð41Þ
The condition X(Dr) = 0 (i.e. De = DeFE), is obtained using a Newton–Raphson (NR) scheme to solve this non-linear algebraic
equation. The corresponding Jacobian JNR is given by:
@XðDrÞ
@ðDrÞ ¼ JNRðDrÞ ¼ C�1 þ Dt

@ _eðpxÞ
vp

@ðDrÞ ðr
t þ Dr; bt

i Þ ¼ C�1 þ DtMðpxÞðrt þ Dr; bt
i Þ ð42Þ
Hence, given a guess Drk�1 for the stress increment, the new guess is obtained as:
Drk ¼ Drk�1 � J�1
NRðDrk�1Þ : XðDrk�1Þ ð43Þ
Moreover, using the first equalities of Eqs. (41) and (42):
JNR ¼
@XðDrÞ
@ðDrÞ ¼

@ðDe� DeFEÞ
@ðDrÞ ¼ @ðDeÞ

@ðDrÞ ð44Þ
we obtain the Jacobian matrix that the VPSC-based UMAT should pass to the FE model:
Ctg ¼ @ðDrÞ
@ðDeÞ ¼ J�1

NR ¼ ½C
�1 þ DtMðpxÞ	�1 ð45Þ
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Eq. (45) provides a closed expression for the FE Jacobian, as a function of the viscoplastic tangent moduli (which is calculated
as part of the VPSC algorithm), the elastic stiffness of the aggregate, and the FE time increment. The use of this expression
greatly reduces the overall computational cost because the polycrystal’s stress and the elasto-viscoplastic tangent stiffness
tensor are obtained from the same calculation loop. Moreover, the use of expression (45) for the FE Jacobian usually provides
quadratic convergence to the macroscopic non-linear equations.

Finally, it must be remarked that the above procedure is semi-implicit: implicit in the stress value, because internal equi-
librium is checked at the end of the increment, but explicit in the internal variables bi (such as grain orientations, morphol-
ogy and hardening variables). The reason for the proposed algorithm to remain explicit in those internal variables is related
to the difficulty and computational cost of deriving a residual and a Jacobian matrix that would contain literally thousands of
internal variables. In any case, the explicit updating of the internal variables appear not to change significantly the conver-
gence of the macroscopic model in most cases, such that the influence of the time increment on the final results remains
small, as it will be shown in the benchmark examples.
2.4. Finite element type

The proposed elasto-viscoplastic model was tested with several three-dimensional continuum elements. Linear cubic ele-
ments with reduced integration (C3D8R in ABAQUS) failed even for simple benchmarks due to the hourglass deformation
modes. This behavior could not be corrected, even using an additional hourglass stiffness. All other typical solid elements
(either linear or quadratic, hexahedra or tetrahedra) behaved adequately in this regard. Therefore, the choice of the type
of element should be based on general aspects of the simulation of plastic deformation with finite elements, e.g. linear tet-
rahedra (C3D4 in ABAQUS) are not recommended since they exhibit volumetric locking, while hybrid formulations are spe-
cially suitable for large plastic deformations. Another important aspect to take into account for the choice of an element is
that the main computational cost of the present FE implementation lies on the evaluation of constitutive behavior at the
Gauss points by the relatively expensive VPSC model. Because of this, elements with the less integration points (compatible
with non-hourglassing behavior) compared to the number of degrees of freedom are preferable. In this regard, quadratic ele-
ments with reduced integration were found to be a very good choice.
3. Benchmarks

In order to check the correct implementation and accuracy of the proposed multiscale model, we ran comparisons of the
ABAQUS–VPSC model, against stand-alone (SA) VPSC calculations, for cases involving homogenous polycrystalline properties
and simple boundary conditions, i.e. the type of configuration the stand-alone VPSC model can handle.

For this purpose, we used an FCC polycrystal represented by 500 initially randomly-oriented grains. The VPSC constitutive
parameters, adjusted to reproduce the experimental behavior of an AA6116 Al alloy deformed in uniaxial compression
(Tomé et al., 2002) were: soo = 116 MPa, s1 = 119 MPa, h0 = 793 MPa and h1 = 31 MPa (see Eq. (34)), isotropic hardening
(hkk0 ¼ 1, "kk0, see Eq. (35)), and a rate-sensitivity exponent n = 10, in all 12 {1 1 1}h1 1 0i slip systems. The single-crystal
elastic constants used for Al were: C11 = 108 GPa, C12 = 62 GPa and C44 = 28 GPa.

The first benchmark corresponds to a uniaxial tensile test along the y-direction up to 50% strain. The FE model consisted
in a single linear cubic element (8 nodes, and 8 integration points) with displacements imposed along the y-direction and
stress-free boundary conditions on faces x–y and y–z. The applied strain-rate was _eyy ¼ 0:2. In order to check the sensitivity
of the predicted effective response to time-increment size, three different time increments were used, Dt = 0.05 s and 0.01 s
(fixed), and adaptative time increments (i.e. the increment is reduced by half if no convergence is achieved) with a maximum
step of 0.1 s and initial step of 0.01 s.

The stress–strain curves obtained with SA-VPSC and with ABAQUS–VPSC for the different time increments are presented
in Fig. 1. One important difference between the FE and SA-VPSC predictions is that the latter is a rigid-viscoplastic model and
obviously does not exhibit an elastoplastic transition. In what concerns the sensitivity of the macroscopic response to the
magnitude of the time (strain) increment, it is observed that the FE predictions are insensitive to the time increment at suf-
ficiently large strains and asymptotically tend to coincide with the SA-VPSC curve. On the other hand, time-step sensitivity
appears to be significant in the elastoplastic transition, where the hardening rate varies rapidly. This sensitivity is due to the
semi-implicit integration scheme, which becomes particularly inaccurate in this transition (note the initial non-smooth re-
sponse predicted for the large (fixed) time step Dt = 0.05 s). These results suggest that for this initial part of the simulation
smaller increments should be used. This can be achieved without much computational cost with an adaptative time incre-
ment, starting with small increments in the initial stage.

Concerning the rate of convergence of the material subroutine, in the case with largest strain increments, no more than 6
iterations were necessary inside the internal Newton–Raphson loop in the elastoplastic transition, and this number de-
creased to 2 iterations under fully plastic conditions. The convergence of the FE model was even better, with only 3 iterations
needed in the initial increment in the worst case, and just one for the rest of the calculation. This result emphasizes the very
efficient numerical behavior provided by the Jacobian matrix given by Eq. (45).

Another important check of our FE implementation, especially to verify that the intensive bookkeeping of internal vari-
ables is sound, is to compare the evolution of crystallographic orientations predicted by the FE model and the stand-alone



Fig. 1. Stress–strain curves for uniaxial tension of an FCC polycrystal obtained with SA-VPSC, and ABAQUS–VPSC using different time increments.

132 J. Segurado et al. / International Journal of Plasticity 28 (2012) 124–140
polycrystal model. Fig. 2 shows superimposed h1 1 1i pole figures predicted by SA-VPSC and ABAQUS–VPSC (Dt = 0.01 s). In-
stead of representing these uniaxial textures in the standard way (i.e. by means of inverse pole figures using level lines rep-
resenting multiple of random distribution, which give compact and quantitative texture information), we use direct pole
figures and plot one dot per pole per grain. In this way, we are able to show not only the good agreement between the overall
textures predicted by our FE implementation and the reference SA-VPSC, but also the almost perfect match between the final
orientations of individual grains predicted by both approaches, on a one-to-one basis.

Finally, a simple shear of the same FCC polycrystal was simulated with ABAQUS–VPSC and compared with the stand-
alone case, for an applied deformation gradient F = I + cey � ez, with c = 2. This analysis was performed in order to check
the correct treatment of rotations under finite-deformation kinematics. Fig. 3 shows the <111> pole figures corresponding
to SA-VPSC (referred to the fixed initial axes, Fig. 3a), and ABAQUS–VPSC predictions in co-rotational axes (Fig. 3b), and ABA-
x

z

Fig. 2. Superimposed h1 1 1i direct pole figures predicted by SA-VPSC (larger gray dots) and ABAQUS–VPSC (smaller black dots) for 50% uniaxial tension of
an FCC polycrystal.
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Fig. 3. h1 1 1i pole figures predicted by SA-VPSC and ABAQUS–VPSC for the case of simple shear (cyz = 2) of an FCC polycrystal. (a) SA-VPSC, in fixed axes; (b)
ABAQUS–VPSC in co-rotational axes; (c) ABAQUS–VPSC in fixed axes. In all these figures, lines represent multiple of random distributions (mrd) and dots
represent regions with less than 1 mrd. (d) SA-VPSC and ABAQUS–VPSC pole figures (in fixed axes) superimposed, using a one-dot-per-pole-per-grain
representation.
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QUS–VPSC in the same fixed reference system as the SA-VPSC texture (Fig. 3c). Note that both ABAQUS–VPSC pole figures are
related by a rigid-body rotation of about 60 degrees defined by the rotation matrix R (see Section 2.1) that transforms from
co-rotational to fixed axes. For this purpose the matrix R is stored by ABAQUS as another internal variable. The fact that the
SA-VPSC and FE pole figures are almost identical when expressed in the same axes validates the proposed treatment of the
crystallographic and rigid-body rotations. For a more detailed comparison, Fig. 3d shows the SA-VPSC and ABAQUS–VPSC
pole figures superimposed, using a dot per pole per grain, instead of level lines. Again, the one-to-one matching of individual
poles is very good, although somewhat larger differences can be appreciated for poles belonging to ‘‘outlier’’ grains (i.e. ori-
ented differently with respect to the dominant shear texture components), whose final orientations seem to be more affected
by the small differences in local mechanical behavior due to the consideration of elastic strains in the FE model (as opposed
to the rigid-viscoplastic behavior under SA-VPSC).
4. Applications

4.1. Texture variations in a rolled FCC plate

To further illustrate the capabilities of the proposed multiscale model, a rolling process of the same FCC material (AA6016
Al-alloy) has been simulated to capture the spatial variations of texture evolution. These variations, in turn, change the local
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behavior and, as a consequence, determine the redistribution of stresses during deformation. This case constitutes a chal-
lenge for the proposed approach, since it includes heterogeneous deformation, large strains and rotations, contact and com-
plex local strain histories, including unloading at the exit (which cannot be handled by a rigid-viscoplastic model).

The simulation consists of a single rolling pass of 50% reduction in thickness (from 1 to 0.5, in arbitrary length units).
Plane-strain is imposed (no strain in the transverse direction, TD, aligned with the z-axis), and symmetry is used to reduce
the size of the FE model. Load is applied by the rotation of two rolling cylinders of radius R = 4. An initial step consists in a
small vertical displacement of the cylinders in order to establish contact conditions between rolls and plate at the entry and,
subsequently, rotation with an angular velocity x = 2 s�1 until the plate has been completely rolled.
Fig. 4. ABAQUS–VPSC simulation of rolling of an FCC plate, up to 50% reduction. Distributions of: (a) Von Mises stress (in MPa), (b) diagonal strain
component in ND and (c) shear strain component along RD normal to ND.
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The movement of the cylinders is transferred to the plate by friction, and the imposed angular velocity corresponds to an
average compression strain-rate component of 2.1 s�1 along the normal direction (ND, y-axis). The plate of initial size 4 � 1
in the rolling (RD, x-axis)-ND plane, is meshed with a structured mesh of linear cubes with full integration (C3D8 in ABAQUS)
using 26 � 9 elements in that plane and 1 element in TD. The geometry in the final stage is shown in Fig. 4, together with the
corresponding distributions of Von Mises stress, the diagonal strain component in ND, eyy, and the shear strain exy. Interest-
ingly, the stress does not vanish in the region already laminated and a heterogeneous distribution of residual stresses is left
in the material. Both from Fig. 4c and the final shape of the elements it can be concluded that elements near the surface
underwent significant shear deformation along RD normal to ND, while elements towards the center were subjected to smal-
ler shear distortion. This shear deformation is a consequence of the friction between the metal surface and the cylinders.

The different deformation history of the polycrystalline material points through the section determines different evolu-
tion of the texture. In order to study this effect, the texture has been tracked in two material points, located near the center
and near the surface of the plate, respectively. Both points were taken far from the leading tip in the rolling direction in order
to minimize edge effects and obtain results that resemble those of a continuum rolling process. The h1 1 1i pole figures of
both polycrystalline material points are shown in Fig. 5. It is observed that the textures near the center resemble typical
plane-strain compression textures of high-SFE FCC polycrystals, while the texture associated with a point near the surface
shows significant rotation with respect to TD of the rolling texture components, consistent with a plane-strain + shear strain
history applied to the material point. Similar results were reported by Engler et al. (2000), in terms of experimental Al rolling
textures and SA-VPSC texture predictions using FE-generated deformation histories.
4.2. Dimensional changes in bent HCP bars

Four-point bending experiments performed on textured Zr (Tomé et al., 2001; Kaschner et al., 2001) and Ti (Nixon et al.,
2010a) bars have been used to illustrate the strong effect of texture-induced anisotropy on the mechanical response of HCP
polycrystals. These experiments consisted in the bending of bars of square cross-section, cut from the same plate, with their
main basal texture component oriented either perpendicular or parallel to the bending plane. This geometry resulted in dif-
ferent dimensional changes of the cross-sections of the bars, which can be explained in terms of texture-related ‘‘hard’’ or
‘‘soft’’ responses normal to the fibers along the longitudinal direction. These fibers undergo tension or compression, depend-
ing on its vertical position.
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Fig. 5. h1 1 1i pole figures predicted by ABAQUS–VPSC in the case of rolling of an FCC plate after 50% reduction, for two polycrystalline material points
located: (a) near the center, and (b) near the surface of the plate. Lines represent multiple of random distributions (mrd) and dots represent regions with
less than 1 mrd.

Table 1
VPSC parameters used in the VPSC–ABAQUS simulations of 4-point bending of textured Zr bars (from Tomé and Lebensohn, 2011).

s0 (MPa) s1 (MPa) h0 (MPa) h1 (MPa) h⁄,PR h⁄,PY h⁄,TT h⁄,CT n

Prhai 14 12 900 40 1 1 10 2 10
Pyrhc + ai 145 192 1684 5 1 1 2 2 10
TT1 90 17 100 30 1 1 10 16 10
CT1 270 30 1000 178 1 1 10 5 10
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Fig. 6. Measured (after Tomé et al., 2001) and VPSC stress–strain curves (after Tomé and Lebensohn, 2011) corresponding to three different uniaxial tests
performed on the textured Zr plate from where bars for 4-point bending experiments were cut.

Fig. 7. Four-point bending of textured Zr bars, up to approximately 20% strain in the outer fibers. (a) Predicted final 3-D shapes, (b) predicted final lateral
sections, showing the distribution of strain component along the fiber direction; (c) montage of the actual deformed sample (TT vertical), from Kaschner
et al. (2001).
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These experiments were in turn modeled with texture-sensitive explicit finite elements, using both a hierarchical ap-
proach (see Plunkett et al. (2006) for Zr, and Nixon et al. (2010b) for Ti), in which the FE analysis interrogated a pre-com-
puted anisotropic yield function whose parameters were adjusted using experimental data (Plunkett et al., 2006; Nixon
et al., 2010b, supplemented by VPSC simulations in Plunkett et al., 2006), and also using a fully-embedded approach
(Tomé et al., 2001; Kaschner et al., 2001). Here we will use the proposed VPSC–ABAQUS implementation to reproduce the
4-point bending experiments in Zr (Tomé et al., 2001; Kaschner et al., 2001). The initial axisymmetric texture of the bars
(i.e. transversely-isotropic in the plane of the plate from where the bars were cut) is represented by 377 orientations with
basal poles predominantly aligned with the normal direction of the original plate (Tomé et al., 2001; Tomé and Lebensohn,
2011). The slip and twinning modes used in the simulations were those identified by Tomé et al. (2001): f10 �10gh�12 �10i
prismatic hai slip (Prhai), f10 �11gh�1 �123i pyramidal hc + ai slip (Pyrhc + ai), f10 �12gh10 �1 �1i tensile twinning (TT1) and
f11 �22gh11 �2 �3i compressive twinning (CT1). The corresponding hardening parameters, given in Table 1, were adjusted
(Tomé and Lebensohn, 2011) to reproduce to the best extent possible loading curves of uniaxial in-plane tension (IPT), uni-
axial in-plane compression (IPC) and through-thickness compression (TTC) experiments, performed at a strain-rate of
10�3 s�1, as shown in Fig. 6. Note these hardening parameters have differences with respect to the ones used in Tomé
et al. (2001). Such adjustment was required to better approach the experimental curves using the latest version of VPSC
(Tomé and Lebensohn, 2011), which includes, e.g. an improved integration-based update for the hardening of individual sys-
tems. Reorientation by twinning was handled within VPSC by means of the ‘‘Predominant Twin Reorientation’’ (PTR) scheme,
originally proposed by Tomé et al. (1991), and also used in Tomé et al. (2001), which allows keeping track of the textural
changes associated with twinning in a statistical sense, without increasing the number of orientations needed for the rep-
resentation of each polycrystalline materials point (for details, see Tomé et al. (1991, 2001)). Note that all quantities asso-
ciated with the PTR scheme were required to be defined as additional internal variables within the UMAT.

The bars of initial dimensions 6.35 � 6.35 � 50.8 mm were discretized using a structured mesh of 32 � 4 � 4 quadratic
elements (20 nodes with reduces integration, C3D20R). Two external steel pins, fixed underneath the bar, and two internal
pins, moving downwards from the top, all of them of 6.32 mm diameter, were set at center-to-center distances of ±19.05 mm
and ±6.35 mm, respectively. The total displacement of the upper pins was �6 mm, corresponding to a longitudinal strain of
the most external fiber of approximately +20%.
Fig. 8. Four-point bending of textured Zr bars. (a) Predicted final cross-sections, showing the distribution of the stress component along the fiber direction
(in MPa); (b) measured cross-sections (Kaschner et al., 2001), white arrows represent the predominant direction of the basal poles.
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In order to reproduce previously reported experiments (Tomé et al., 2001; Kaschner et al., 2001), two different geome-
tries, in terms of the predominant orientation of the basal poles (aligned with the TT direction of the original plate) with
respect to the bending plane were simulated, for bars cut along the IP direction of the plate. In one case, the hard TT direction
lies on the bending plane (i.e. TT vertical), while in the other configuration, the TT direction is perpendicular to the bending
plane (i.e. TT horizontal). Fig. 7 shows the predicted 3-D final shapes, together with the lateral views (with color3 maps rep-
resenting the strain component along the fiber direction), and a montage of the actual deformed sample in the TT vertical
case, reported by Kaschner et al. (2001). While the lateral views show little differences (both in terms of final shape and
accumulated longitudinal strain) and resemble the experimental image, the 3-D views of the deformed bars show the strong
effect that texture had on the final shape. Because in the TT horizontal case the horizontal direction on the bar cross section is
hard to deform, the lateral section remains almost flat, in contrast with the TT vertical case, in which the lateral section be-
comes strongly warped. These strong differences between both bar orientations can also be observed in Fig. 8, which shows
the cross sections of the bars (color maps correspond to the longitudinal stress component), together with the actual mea-
sured shapes (Kaschner et al., 2001), with the white arrows representing the predominant direction of the basal poles. It is
evident that when the texture-induced soft (respectively, hard) direction of the polycrystalline Zr bar lies horizontally, a
strongly wedged (respectively, almost square) cross-section is predicted, in good agreement with the experimental observa-
tions. Note that these striking differences in the cross-section’s strains have little influence on the stress component along
the fiber direction, which in both cases remains aligned with the soft IP direction of the original plate. Only FE models using
texture-sensitive constitutive responses (provided in this case by the VPSC model) are capable to capture these effects. Fi-
nally, it is also worth comparing the efficiency of the present implicit implementation and the explicit one of Tomé et al.
(2001) applied to the same problem. While Tomé et al.’s explicit calculation required 16,000 time steps, the present implicit
simulation was completed after only 45 time increments.
5. Conclusions

A multiscale FE model for the prediction of plastic deformation of polycrystalline materials, in which each integration
point is in itself a polycrystal with evolving texture, has been developed and embedded in ABAQUS-implicit. The VPSC code
(Lebensohn and Tomé, 1993; Tomé and Lebensohn, 2011) is used to localize the macroscopic fields in the single crystals
whose distribution represents the texture associated with each material point, and to provide the homogenized viscoplastic
response of these FE nodes. The integration of the non-linear material equations is semi-implicit and the convergence is fast,
both at mesoscopic (polycrystal) and macroscopic levels. The key for this fast convergence is the use of Eq. (45), which gives
the FE elasto-viscoplastic Jacobian as a function of elastic and viscoplastic self-consistent moduli, already calculated inside
VPSC as part of the polycrystal model solution. However, despite this efficient algorithm, it should be acknowledged that the
intensive use of VPSC evaluations, along with the required bookkeeping of thousands of internal variables associated with
the orientation and hardening state of each grain in each polycrystalline integration point, add significantly to the computing
time and memory requirements of the proposed FE approach.

Simple geometries and boundary conditions, corresponding to uniaxial tension and simple shear of a single element, were
solved using the proposed ABAQUS–VPSC and compared with stand-alone VPSC predictions. These comparisons showed
that, past the elastoplastic transition, the macroscopic behavior predicted by the FE model was very similar to the reference
SA-VPSC. The FE response is mildly dependent on the magnitude of the time/strain increment, mostly in the elastoplastic
transition, and is almost completely independent of the increment size for large plastic deformations. In what concerns tex-
ture evolution, the ABAQUS–VPSC predictions match very well those of SA-VPSC, on a grain-by-grain basis. This is specially
significant in the case of simple shear, i.e. involving large rotations, which therefore serves as validation of the underlying
kinematics of our implementation.

In terms of applications, two illustrative examples were shown in the cases of rolling of FCC and bending of HCP polycrys-
tals. In the first case, the use of the FE model allowed us to keep track of the effect of the macro-strain heterogeneity (induced
by the complex boundary conditions) on the texture evolution at different locations of a mechanically-processed material.
The different evolving elastic and viscoplastic responses of the FE polycrystalline points associated with those texture gra-
dients in turn affect the overall mechanical behavior of the deformed specimen. This texture-sensitive response is critical to
improve predictions of, e.g., industrial forming operations, in which textural effects are known to play a significant role on
the dimensions, shape, spring-back and mechanical state (e.g. residual stresses) of the final product. The present coupling
between these well-established formulations, VPSC and ABAQUS, provides a useful numerical tool to tackle these problems.
In this regard, the second application shown above, corresponding to the prediction of dimensional changes associated with
different orientations of the predominant texture component of an HCP bar undergoing 4-point bending, exemplifies the
capability now in place with ABAQUS–VPSC to account for texture-induced effects in strongly anisotropic materials under-
going complex boundary conditions.

Finally, it should be emphasized that, while in the above applications a relatively standard version of the VPSC model was
used (e.g. Voce hardening, first-order linearizations), other more involved approaches, already implemented in VPSC to cap-
ture more of the underlying physics and microstructural effects, can be easily adapted to provide a more sophisticated
3 For interpretation of color in Figs. 7 and 8, the reader is referred to the web version of this article.
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microstructure-sensitive material response under ABAQUS. These VPSC extensions include the composite-grain model (Proust
et al., 2007), designed to capture the strongly anisotropic slip-twin interactions and the use of dislocation-density based
hardening models (Beyerlein and Tomé, 2008), which includes grain-size and kinematic hardening effects, along with more
accurate linearization assumptions, like the second-order self-consistent approximation (Liu and Ponte Castaneda, 2004),
which has been shown to improve the VPSC predictions for strongly anisotropic materials (Lebensohn et al., 2007) and
voided polycrystals (Lebensohn et al., 2011).
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