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Abstract
We compare two full-field formulations, i.e. a crystal plasticity fast Fourier
transform-based (CPFFT) model and the crystal plasticity finite element model
(CPFEM) in terms of the deformation textures predicted by both approaches.
Plane-strain compression of a 1024-grain ensemble is simulated with CPFFT
and CPFEM to assess the models in terms of their predictions of texture
evolution for engineering applications. Different combinations of final textures
and strain distributions are obtained with the CPFFT and CPFEM models for this
1024-grain polycrystal. To further understand these different predictions, the
correlation between grain rotations and strain gradients is investigated through
the simulation of plane-strain compression of bicrystals. Finally, a study of the
influence of the initial crystal orientation and the crystallographic neighborhood
on grain rotations and grain subdivisions is carried out by means of plane-strain
compression simulations of a 64-grain cluster.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Deformation texture modeling started with the Taylor full-constraints model (1938) [1] using
the simplest approximation of equal strain partitioning in a grain aggregate. Owing to this stiff
iso-strain formulation and the strong discrepancy between experiments and corresponding
predictions this approach was later modified via a global relaxation approximation of some of
these strain constraints [2, 3] leading to the relaxed-constraints Taylor models. Later variants,
which can be referred to as grain-cluster or grain interaction models, considered local grain
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neighborhood relaxations such as Van Houtte’s 2-grain-cluster LAMEL model and the modified
LAMEL model (ALAMEL model) [4, 5], a grain relaxation model proposed by Evers et al [6],
and the 8-grain-interaction GIA model of Gottstein and co-workers [7, 8].

Other models cast the mean-field homogenization problem in the form of an ellipsoidal
inclusion in an infinite matrix as originally suggested for elastic materials by Eshelby [9].
An extension of this approach to nonlinear constitutive response was suggested by Hill [10].
Molinari et al [11] and Lebensohn and Tomé [12] later proposed a self-consistent integral
formalism which links effective and grain average stresses and strain rates.

The first full-field crystal plasticity calculations were performed by Peirce et al in 1982 [13]
using a 2D crystal plasticity finite element method (CPFEM) simulation. The term ‘full-
field’ indicates that both long-range and short-range grain interactions are considered, and the
micromechanical fields resolved on a discrete grid. In the CPFEM case a variational solution
is achieved for the equilibrium of the forces and the compatibility of the displacements using
the principle of virtual work for a volume that is discretized into finite elements. The essential
step which renders the deformation kinematics of this approach a crystal plasticity formulation
is the fact that the velocity gradient is written in dyadic form (i.e. in terms of the sum of the
contributions of the different active slip systems). This reflects the tensorial crystallographic
nature of the underlying defects that lead to shear and consequently, to both shape changes
(symmetric part) and lattice rotations (skew-symmetric part). These simulations were later
extended to a polycrystalline arrangement by Harren et al [14, 15] using a 2D set-up with two
or three slip systems. Becker performed simulations on the basis of the 12 slip systems of the
face-centered cubic (FCC) crystal structure. Using a 3D model for the crystallographic degrees
of freedom he calculated channel-die deformation of a columnar polycrystal aggregate [16] and
of a single crystal [17]. Since then, CPFEM methods became increasingly popular, particularly
to tackle sub-grain scale problems, using meshes with sub-grain resolutions and, in occasions,
complex 2D and 3D grain arrangements [18–25].

Following the pioneering work of Suquet and co-workers [26, 27] for linear and nonlinear
composites, Lebensohn [28] introduced an alternative full-field crystal plasticity formulation
by applying a FFT-based algorithm in conjunction with Green’s function method, to solve
the governing equations for heterogeneous media (e.g. see Mura [29]). This approximation
solves the equilibrium equations under the constraint of strain compatibility for materials with
periodic microstructure, which can be generated by periodic repetition of a unit cell. This
full-field crystal plasticity fast Fourier transform (CPFFT) approach provides an alternative to
the CPFEM model with periodic boundary conditions [30]. In general, for the same spatial
resolution, the CPFFT approach is a very efficient alternative compared with CPFEM with
periodic boundary conditions. This higher numerical performance of CPFFT is related to the
repetitive use of the efficient FFT algorithm, avoiding the time-consuming inversion of large
matrices, needed under CPFEM. Although the exact reduction in computation time that it is
obtained using CPFFT instead of CPFEM is obviously problem-dependent, it is typically from
one to several orders of magnitude [30].

The aim of this work is to analyze and compare the predictions of the CPFFT and CPFEM
models for deformation textures of FCC polycrystals. We simulate the rolling texture evolution
of a 1024-grain representative volume element (RVE) representing an AA1200 aluminum
polycrystal under plane-strain boundary conditions (i.e. an approximation of a rolling process)
using the CPFFT and the CPFEM models. To further understand the different predictions of
both models, the correlation between grain rotations and strain gradients is next investigated
through the simulation of plane-strain compression of bicrystals at different discretization
levels. Finally, a study of the influence of the initial crystal orientation and the crystallographic
neighborhood on grain rotations and grain subdivisions is carried out by means of plane-strain
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compression simulations of a 64-grain RVE with four important orientation components
clustered in random order.

2. Comparison of the CPFFT and the CPFEM full-field model formulations

2.1. General

Constitutive models define the relation between the symmetric Cauchy stress tensor σ and the
strain or strain-rate tensor at a material point level. The material points where the constitutive
equations are actually solved can be the set of regular Fourier points, in the case of the CPFFT
model; or the Gaussian integration points, in the case of the CPFEM model.

What distinguishes full-field crystal plasticity models from Taylor and grain-cluster
approximations is that they solve the equilibrium equations (σij,j + f V

i = 0) numerically,
rather than assuming Taylor-like iso-strain conditions (σij is the stress and f V

i the body force).
The CPFFT model used in this work is based on the Lippmann–Schwinger integral

equation for the determination of the strain field in periodic heterogeneous materials [31].
The method was originally developed by Suquet and co-workers [26, 27] as a fast algorithm to
compute the elastic and elastoplastic effective and local response of composites, and was later
adapted by Lebensohn et al [28, 32, 33] to calculate also viscoplastic deformation of complex
3D polycrystalline aggregates.

The CPFEM model used in this comparison is based on the implementation of
Kalidindi and Anand [23, 34, 35], which is based on a constitutive viscoplastic law and a
phenomenological hardening model.

In this paper we only give a concise comparison of the two models concerning the
constitutive formulations, the numerical framework used for solving the equilibrium equations.
The same crystal plasticity constitutive equation and hardening law of the two models are briefly
mentioned. More details are given in [33, 36].

2.2. CPFFT model: theoretical framework

The method relies on the fact that the local response of a heterogeneous medium can be obtained
from convolution integrals between Green functions associated with the micromechanical fields
of an equivalent linear homogeneous medium with eigenstrains, and a polarization field in
which one collects the actual heterogeneity of the medium, including any possible nonlinearity
of the local mechanical behavior. For periodic media, Fourier transforms can be used to
reduce these convolution integrals in real space to a simple product in Fourier space between
the polarization field and an appropriate kernel function. The FFT algorithm can be used to
transform the polarization field into Fourier space and to anti-transform the aforementioned
product back to real space. However, since the actual polarization field depends precisely on
the a priori unknown mechanical fields, and the viscoplastic constitutive behavior determines
a strong mechanical contrast in local properties, an iterative scheme based on augmented
Lagrangians [27] needs to be implemented to obtain, upon convergence, a compatible strain-
rate field and an equilibrated stress field, related to each other through the nonlinear constitutive
equation.

The periodic unit cell representing the polycrystal is discretized into N1 × N2 × N3

Fourier points, determining a regular grid in the Cartesian space {xd} and a corresponding
grid in Fourier space {ξd}. A velocity gradient Vi,j that can be decomposed into a symmetric
strain-rate and a antisymmetric rotation rate, i.e. Vi,j = Ėij + �̇ij , is imposed to the unit cell.
The local strain-rate field ε̇ij (x) = 1

2 (vi,j (x) + vj,i(x)) is a function of the local velocity field,
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and both can be split into its average and a fluctuation term: ε̇ij (vk(x)) = Ėij + ˜̇εij (ṽk(x)),
where vi(x) = Ėij xj + ṽi (x). The velocity fluctuation field ṽk(x) has to be periodic across
the boundary of the unit cell, and the traction field antiperiodic, to meet equilibrium on the
boundary between contiguous unit cells.

The local constitutive relation between the strain rate ε̇ij (x) and the deviatoric stress σ ′
ij (x)

is given by the rate-sensitivity equation for single-crystal plasticity:

ε̇ij (x) =
Ns∑
s=1

ms
ij (x)γ̇ s(x) = γ̇o

Ns∑
s=1

ms
ij (x)

( |ms(x) : σ ′(x)|
τ s
c (x)

)n

sgn(ms(x) : σ ′(x)),

(2.2.1)

where ms
ij , γ̇ s and τ s

c are, respectively, the symmetric Schmid tensor, the shear rate and the
threshold stress of slip system (s); n is the rate-sensitivity exponent, γ̇o is the reference shear
rate and Ns is the number of slip systems in the single crystal. With p(x) being the hydrostatic
pressure field, the Cauchy stress field can be written as

σij (x) = Lo
ijkl ε̇kl(x) + ϕij (x) − p(x)δij . (2.2.2)

The polarization field ϕij (x) is given by

ϕij (x) = σ ′
ij (x) − Lo

ijkl ε̇kl(x), (2.2.3)

where Lo is the stiffness of a linear reference medium (note that the particular choice of Lo

changes the rate of convergence of the numerical algorithm but not the converged results).
Combining equation (2.2.2) with the equilibrium and the incompressibility conditions gives∣∣∣∣Lo

ijklvk,lj (x) + ϕij,j (x) − p,i(x) = 0,

vk,k(x) = 0.
(2.2.4)

The auxiliary system for the determination of Green’s functions is then given by∣∣∣∣Lo
ijklGkm,lj (x − x′) + Hm,i(x − x′) + δimδ(x − x′) = 0,

Gkm,k(x − x′) = 0.
(2.2.5)

After some manipulation, the convolution integrals that give the velocity and velocity-gradient
deviation fields are

ṽk(x) =
∫

R3
Gki,j (x − x′)ϕij (x

′) dx′, (2.2.6)

ṽi,j (x) =
∫

R3
Gik,j l(x − x′)ϕkl(x

′) dx′, (2.2.7)

Convolution integrals in direct space are products in Fourier space:

ˆ̃vk(ξ) = (−iξj )Ĝki(ξ)ϕ̂ij (ξ), (2.2.8)

ˆ̃vi,j (ξ) = 	̂ijkl(ξ)ϕ̂kl(ξ), (2.2.9)

where the symbol ‘∧’ indicates a Fourier transform. The Green operator in equation (2.2.9) is
defined as 	ijkl = Gik,j l . The tensors Ĝij (ξ) and 	̂ijkl(ξ) can be calculated by taking Fourier
transform to system (2.2.5) (see [33] for details), resulting in

Ĝij (ξ) = A−1
ij (ξ), (2.2.10)

	̂ijkl(ξ) = −ξj ξlĜik(ξ), (2.2.11)

where Aik(ξ) = ξlξjL
o
ijkl .
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2.3. CPFFT model: numerical algorithm

Assigning initial values to the strain-rate field in the regular grid {xd} (e.g. using a ‘Taylor’

guess: ˜̇ε(o)

ij (xd) = 0 ⇒ ε̇
(o)
ij (xd) = Ėij ), and computing the corresponding stress field σ

′(o)
ij (xd)

from the local constitutive relation (equation (2.2.1)), gives an initial guess for the polarization
field in direct space ϕ

(o)
ij (xd) (equation (2.2.3)), and its Fourier transform ϕ̂

(o)
ij (ξd).

Choosing the initial guess of an auxiliary stress field λij (i.e. the Lagrange multiplier
associated with the compatibility constraints) as λ

(o)
ij (xd) = σ ′(o)

ij (xd), the iterative procedure
based on augmented Lagrangians [27] reads as follows.

With the polarization field after iteration n being known, the n + 1th iteration starts by
computing the new guess for the kinematically admissible strain-rate deviation field:

ˆ̃
d

(n+1)

ij (ξd) = −	̂
sym
ijkl (ξ

d)ϕ̂
(n)
kl (ξd), ∀ξd �= 0; and ˆ̃

d
(n+1)

ij (0) = 0, (2.3.1)

where 	̂
sym
ijkl is the Green operator (equation (2.2.11)), appropriately symmetrized. The

corresponding field in real space is thus obtained by application of the inverse FFT, i.e.

d̃
(n+1)
ij (xd) = FFT−1[ ˆ̃d

(n+1)

ij (ξd)] (2.3.2)

and the new guess for the deviatoric stress field σ
′(n+1)
ij is calculated from the set of nonlinear

equations (omitting subindices):

σ ′(n+1)(xd) + Lo : γ̇o

Ns∑
s=1

ms(xd)

(
ms(xd) : σ ′(n+1)(xd)

τ s
c (xd)

)n

× sgn(ms(xd) : σ ′(n+1)(xd))

= λ(n)(xd) + Lo : (Ė + d̃(n+1)(xd)) (2.3.3)

which can be efficiently solved by Newton–Raphson. The iteration is completed with the
calculation of the new guess of the Lagrange multiplier field:

λ(n+1)(xd) = λ(n)(xd) + Lo : ( ˜̇ε(n+1)
(xd) − d̃(n+1)(xd)). (2.3.4)

Equations (2.3.3) and (2.3.4) in general guarantee the convergence of ε̇ij and σ ′
ij toward dij

and λij , respectively.
Upon convergence, the micromechanical fields (velocity, velocity gradient and stress

fields) are assumed to be constant in a time interval �t . The microstructure, e.g. the
crystallographic orientation and the threshold stresses for slip, can be then updated for each
Fourier point after each time increment. In particular, the new position of the Fourier points can
be determined as xi = Xi +vi�t = Xi + (Ėij xj + ṽi )�t . This update, however, would destroy
the regularity of the Fourier grid after the very first time increment. Therefore, in what follows
we use a simplified update scheme, neglecting the velocity fluctuation term: xi = Xi +Ėij xj�t .
This results in an evolving regular Fourier grid, in which the distances between adjacent points
change after each increment following the average stretching prescribed by the macroscopic
deformation. The implications of this simplified updating scheme were discussed in [30] and,
for the particular case of plane-strain of fcc materials, it was shown that only minor differences
should be expected with respect to the more accurate morphologic evolution considering the
velocity fluctuation term.

2.4. CPFEM model: theoretical framework

FEM models are based on the variational solution of the equilibrium of the forces using a weak
form. Based on the principle of virtual work the basic equation reads∫

V

σij δε̇ij dV =
∫

V

f V
i δvi dV +

∫
S

f S
i δvi dS, (2.4.1)
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where f V
i is the body force, f S

i is the surface traction, δvi is the virtual velocity field, δε̇ij is
the virtual strain rate, ε̇ij = 1

2 (vi,j +vj,i), V is the current volume and S is the surface bounding
this volume.

The entire sample volume under consideration is discretized into elements, which is
the reason why FEM is especially well suited for arbitrary geometries. The integrals in
equation (2.4.1) can be split into integrals over the individual elements. That is each integral
is split into a sum over N integrals, with N being the number of elements in the mesh. As
the elements used in FEM have simple regular shapes, the individual element integrals can be
easily evaluated numerically using, e.g., Gaussian quadrature.

In order to solve equation (2.4.1) the Cauchy stress σij has to be calculated. In CPFEM
models this is done via the generalized Hooke’s law:

σij = 1

J
F e

ikSklF
e
j l and Sij = Cijklε

G,∗
kl , (2.4.2)

where F e
ij is the elastic part of deformation gradient Fij , J = det(F e), Sij is the second

Piola–Kirchhoff stress, that is work conjugate to the elastic Green–Lagrange strain ε
G,∗
ij =

1
2 (F e

kiF
e
kj − δij ) and Cijkl is the constant fourth-order elastic stiffness tensor. F e

ij is calculated
from the multiplicative decomposition of Fij

Fij = F e
ikF

p
kj . (2.4.3)

In order to do this one has to know the plastic deformation gradient F
p
ij , which evolves

according to

Ḟ
p
ij = v

p
i,jF

p
ij . (2.4.4)

In the CPFEM the plastic velocity gradient v
p
i,j is calculated from the slip rates γ̇ s on all active

slip systems s:

v
p
i,j =

Ns∑
s=1

γ̇ sms
i n

s
j . (2.4.5)

where ms
i is the slip direction and ns

i the slip plane normal of slip system s.

2.5. CPFEM model: numerical algorithm

Crystal plasticity material models can be directly implemented into commercial FEM solvers
in the form of user subroutines, e.g. HYPELA2 in MSC.Marc or UMAT/VUMAT in Abaqus.
For implicit solvers the purpose of a material model is twofold: first, the stress σij is calculated
which is required to reach the final deformation gradient Fij ; second, the Jacobian matrix,
Jijkl = dσij /dεG

jk , is calculated, where εG
ij is the total Green–Lagrange strain.

The stress calculation is implemented using a predictor–corrector scheme. Figure 1
visualizes the set-up of the clockwise loop of calculations to be performed. With an initial
guess v

p,guess
i,j , the prediction v

p
i,j is updated using a Newton–Raphson scheme until convergence

is reached, i.e. the difference between v
p,guess
i,j and v

p
i,j falls below a prescribed threshold.

The Jacobian matrix is calculated numerically by perturbing the deformation gradient Fij

and determining the new resulting stress σij .

2.6. Constitutive equation and hardening law

Both crystal plasticity models relate the shear rate on a system s to the stress acting on the system
and the critical threshold stress (critical shear stress) of this system through a viscoplastic form

6
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Figure 1. Clockwise loop of calculations during stress determination. Symbols: Sij second
Piola–Kirchhoff stress, γ̇ s shear rate, v

p
i,j plastic velocity gradient, ms

i slip direction, ns
i slip plane

normal, F
p
ij plastic deformation gradient, F e

ij elastic deformation gradient, Cijkl elasticity tensor,
δij Kronecker delta.

according to

γ̇ s = γ̇0

∣∣∣∣τ s

τ s
c

∣∣∣∣
1/m

sgn(τ s), (2.6.1)

where τ s is the resolved shear stress on slip system s and m (m = 0.1) is the rate-sensitivity
parameter, which is the reciprocal of n in equation (2.2.1).

For describing the evolution of the critical shear stress as a function of the accumulated
preceding shears, both models use the hardening law based on the work of Brown et al [37].

τ̇ s
c =

∑
s ′

qss ′
hs ′ |γ̇ s ′ | and hs ′ = h0

(
1 − τ s ′

c

τs

)a

, (2.6.2)

where qss ′
(qss ′ ≡ 1.0) is the ratio matrix of latent hardening rate to self-hardening rate, τs

(τs = 90 MPa) is the saturation shear stress, h0 (h0 = 400 MPa) and a (a = 2.25) are constant
parameters. The stress–strain curves calculated by both models are shown in figure 2.

3. Statistical texture evolution predicted by CPFFT and CPFEM: results and discussion

3.1. Starting texture and orientation mapping

The simulations started with a typical recrystallization texture of FCC metals containing a Cube
orientation (0◦, 0◦, 0◦)4 with scatter about the rolling direction (RD) from Cube toward Goss (0◦,
45◦, 0◦), figure 3 left. The corresponding orientation distribution function (ODF) is constructed
from 1024 equally weighted orientations [38]. The same spatial configuration of 1024 grains
(figure 3 right) is used as starting configuration for both, the CPFEM and CPFFT simulations.

4 Bunge–Euler notation.
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Figure 2. Evolution of the critical shear stress as a function of deformation in the two models.

Figure 3. Initial texture and orientation mapping for the CPFFT and CPFEM simulations. The
starting texture contains a Cube orientation (0◦, 0◦, 0◦) with some scatter about the RD from the
Cube toward the Goss (0◦, 45◦, 0◦). Small cube symbols represent the crystallographic orientations.
Red and blue colors indicate orientations within a 15◦ misorientation to Cube and Goss, respectively.
The intermediate orientations are transparent.

The figure shows the unit cell and the sample reference frame, and the cube symbols represent
the crystallographic orientations, which have been rotated about the sample axes accordingly.
Red and blue colors indicate orientations that are within 15◦ misorientation to Cube and Goss,
respectively. The other intermediate orientations are transparent. For the texture simulations
the orientations are mapped onto the integration points for the CPFEM model and on the

8
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Figure 4. Rolling texture β-fiber, after Li et al [39]: (a) experimental results of aluminum alloys
AA1200, (b) Taylor model, (c) CPFEM with flat surface boundary conditions (1200 elements, 1200
grains), (d) CPFEM with flat surface boundary conditions (9600 elements, 1200 grains).

Fourier points for the CPFFT model. The sample size and geometry (8 × 8 × 16) were
chosen to approximate previous CPFEM texture simulations in the literature [39] which used
1200 grains. Also, the unit cell size and discretization was made compatible with the FFT
algorithm. In the present CPFFT implementation, the FFT is performed by adopting the
algorithm from [40], which requires that the number of Fourier points to be a power of two
along each dimension.

3.2. Analysis of the predicted texture fibers and strain distributions

In what follows, the ODFs are calculated from the discrete orientations of the 1024-grain
ensemble using spherical harmonics with a 7◦ Gaussian smoothing. This method was also
employed in previous works used for comparison [5, 39, 41]. First, we compared the β-fiber
predictions of our CPFEM calculations (periodic boundary conditions) with earlier ones (flat
surface boundary conditions) by Li et al [39]. The overall CPFEM texture simulations with
all surfaces flat, figure 4(c), yield predictions close to those of the Taylor model, figure 4(b),
while the use of periodic boundary conditions, figure 5(a), allows the crystals more freedom
during deformation and thus the results show more deviations to those of the Taylor model.

For comparison purposes, the CPFEM and CPFFT textures are presented in terms of
β-fiber plots, which reveal an increase in intensity of the stable rolling orientations (copper
(90◦, 35◦, 45◦), S (59◦, 37◦, 63◦) and brass (35◦, 45◦, 0◦)), figures 5(a)–(c); and Cube-RD
fiber plots, figures 6(a)–(c), which show a decrease in the density of the starting orientations,
namely a drastic decay of the Cube orientation and the metastability of the Goss orientation.
In the CPFFT simulations the originally Cube oriented grains show higher rotation rates away
from their initial orientation, but further on, the reorientation of these grains toward the stable
plane-strain orientations (copper, S, brass) becomes slower (figures 5(b) and 6(b)) than in
the corresponding CPFEM simulations (figures 5(a) and 6(a)). The CPFFT textures with
different resolutions are nearly the same, figures 5(b), (c) and 6(b), (c), while this is not the
case with CPFEM, figures 4(c) and (d). As the number of elements increased from 1 to 8

9
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Figure 5. Rolling texture β-fiber, this work: (a) CPFEM with periodic boundary conditions (1024
elements, 1024 grains), (b) CPFFT (1024 Fourier points, 1024 grains), (c) CPFFT (8192 Fourier
points, 1024 grains).

Figure 6. Rolling texture Cube-RD fiber: (a) CPFEM with periodic boundary conditions (1024
elements, 1024 grains), (b) CPFFT (1024 Fourier points, 1024 grains), (c) CPFFT (8192 Fourier
points, 1024 grains).

per grain, a substantial drop in intensity of the copper component is observed, which makes
the results deviate from the Taylor model calculations, figure 4(b), closer to the experimental
results, figure 4(a). For the CPFFT simulation, strikingly, even at low resolution, the calculated
β-fibers (figure 6(b)) match well the experimental results (figure 4(a)).

The strain distributions of the CPFEM and CPFFT simulations are given in figure 7. All
the strain components have broader fluctuation ranges in the CPFFT simulations than in the
CPFEM simulation. In the CPFFT case, with increasing resolution (1 Fourier point to 8 Fourier
points per grain), the strain distributions become smoother especially for strain component

10
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Figure 7. Strain distributions after plane-strain compression at 98% thickness reduction: CPFEM
with periodic boundary conditions (1024 elements, 1024 grains), CPFFT (1024 Fourier points,
1024 grains), CPFFT (8192 Fourier points, 1024 grains).

ε31, but the distribution widths for all strain components hardly change. With the same
initial configuration and boundary conditions, using the same crystal plasticity constitutive
equation and hardening law, the CPFEM and CPFFT simulations give different combinations
of orientation and strain distributions.

11
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Figure 8. Initial configurations of the bicrystals.

The above comparison between the predictions of both models leads to the following
questions:

• What causes the different textures and strain distributions as predicted by the two models?

• Why increasing the resolution has almost no effect on the textures and strain distributions
predicted with CPFFT, but strongly affects the CPFEM results?

To start addressing these issues, let us first note that texture evolution is closely connected
to strain distribution, in such a way that a sharp rolling texture with the copper component
dominating the β-fiber corresponds to a strain distribution that does not deviate much from the
macroscopic strain state. On the other hand, the local strain deviations from the macroscopic
state have to be balanced by the surrounding material. In other words, how much the local
strain can deviate from the average depends on the how large are the strain gradients that can be
accommodated. Thus, from figure 7, it can be concluded that, on average, the strain gradients
are smaller and more sensitive to mesh refinement in the CPFEM simulations compared with
the CPFFT case.

With these in mind, next section presents a study of the strain gradients predicted by
CPFEM and CPFFT in the case of bicrystals, including the analysis of the role played,
respectively, by the FE mesh and the Fourier grid refinements.

4. Strain gradients predicted by CPFFT and CPFEM for bicrystals: results and
discussion

To investigate the difference between the CPFFT and CPFEM models in solving strain
gradients, we simulate plane-strain compression of two bicystals at 90% thickness reduction.
The two grains of the first bicrystal are assigned with the RZ orientation (32◦, 85◦, 85◦) [42]
and the Goss orientation (0◦, 45◦, 0◦). In the periodic sense, the RZ grain is surrounded by
the Goss grain, figure 8(left). The second bicrystal is different from the first one in the way
that the center grain is assigned with an initial orientation that is the Cube orientation (0◦, 0◦,
0◦) rotated 5◦ about ND and 5◦ about RD, which will be referred to as ‘Cube∼’ (5◦, 5◦, 0◦)
from now on, figure 8(right). The introduction of a RZ grain or a Cube∼ grain surrounded by a
Goss matrix gives relative high and low strain gradients across the bicrystals, respectively. The
simulations were run with different resolutions: 1, 8, 64, 512 Fourier points or finite elements
for the RZ and Cube∼ grains and 1×7, 8×7, 64×7, 512×7 Fourier points or finite elements
for the surrounding Goss grain.
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Figure 9. Final crystallographic orientations and strain states on the material points after plane-
strain compression of a bicrystal (RZ in Goss) at 90% thickness reduction. The cube symbols are
rotated according to the final orientations, and colored according to the values of strain component
ε31. The results correspond to the simulations run at the lowest resolution (1 Fourier point or
element in the RZ grain and 1 × 7 Fourier points or elements in the Goss grain) (left) and at the
highest resolution (512 Fourier points or elements in the RZ grain and 512 × 7 Fourier points or
elements in the Goss grain) (right).

The results of these bicrystal simulations are presented in the following way:

• The final local crystallographic orientations are represented by the rotations of the small
cubes, and the values of local shear strain component ε31 are represented by the color of
those cubes. (In this paper RD, TD and ND of the sample are identified with directions
1, 2 and 3, respectively.) Using this convention the results of the simulations run with
the lowest and highest resolutions are presented in figure 9 for the ‘RZ-in-Goss’ bicrystal,
and in figure 11 for the ‘Cube∼-in-Goss’ case.

• The grain averages of ε31 are plotted with the consideration of the different volume fractions
of the crystals (for the RZ and Cube∼ grains: ε31×1, for the Goss grain: ε31×7). The strain
plots obtained with different resolutions are presented in figure 10 for the RZ-in-Goss,
and in figure 12 for Cube∼-in-Goss cases.

The differences between these CPFEM and CPFFT results reveal that the two methods
lead to different combinations of grain rotations and strain fields. Specifically, the results of
these bicrystal simulations show that

• For the RZ-in-Goss bicrystal, figure 9, CPFFT gives higher strain gradients and more
diverse rotations than the CPFEM model at low resolution (1 Fourier point or element in
the RZ grain, 1 × 7 Fourier points or elements in the Goss grain). At higher resolution,
the bicrystal starts to split up into fragments, becoming a polycrystal. The strain gradients
and grain rotation diversity calculated by both methods are comparable at high resolution
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Figure 10. Plane-strain compression of a bicrystal (RZ in Goss) at 90% thickness reduction. The
grain averages of strain component ε31 are plotted considering the different volume fractions of
the crystals (for the RZ grain ε31 × 1, for the Goss grain ε31 × 7) for simulations run at different
resolutions: 1, 8, 64, 512 Fourier points or elements in the RZ grain and 1 × 7, 8 × 7, 64 × 7,
512 × 7 Fourier points or elements in the Goss grain.

(512 Fourier points or elements in the RZ grain, 512 × 7 Fourier points or elements in the
Goss grain).

• For the Cube∼-in-Goss case, figure 11, at low resolution, comparable strain gradients and
grain rotations are obtained with CPFFT and CPFEM. As resolution increases, higher
strain gradients and more diverse grain rotations are observed in the simulation results of
both models. The differences in strain gradients between the CPFFT and CPFEM results
become pronounced at high resolution.

• On average, the strain gradients across the bicrystals continuously rise with increasing
resolution in CPFEM simulations, but hardly change in the CPFFT simulations, figures 10
and 12.

The CPFFT model calculates certain strain gradients at low resolution. The average strains
can be captured even at the lower end of the resolution scale. This well explains why there is
almost no resolution effect on the CPFFT simulation of the 1024 grain polycrystal in section 3.
The CPFEM model gives the lowest strain gradient at low resolution. As resolution increases,
the CPFEM simulations continuously approach higher strain gradients, and the calculated
average grain strains grow accordingly. This explains why refined resolution strongly affects
the CPFEM results.

We want to point out here that there is no real meaning in discussing the convergence
of these bicrystal results as resolution increases, because, at large deformations, the crystals
tend to split up, such that the initial bicrystal becomes different polycrystals in the simulations
conducted at different resolutions.

5. Micro-texture predictions using the CPFFT model: results and discussion

One of the advantages of full-field models, such as CPFEM and CPFFT, over grain-cluster
models is that they take into account the spatial configuration of the polycrystals and the
grain interactions in the whole RVE [5, 7, 8, 43, 44]. This enables full-field models to predict
intragranular reorientations during deformation. Although the related grain-cluster models
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Figure 11. Final crystallographic orientations and strain states on the material points after plane-
strain compression of a bicrystal (Cube∼ in Goss) at 90% thickness reduction. The cube symbols are
rotated according to the final orientations, and colored according to the values of strain component
ε31. The results presented here are from the simulations run at the lowest resolution (1 Fourier point
or element in the Cube∼ grain and 1 × 7 Fourier points or elements in the Goss grain) (left) and
at the highest resolution (512 Fourier points or elements in the Cube∼ grain and 512 × 7 Fourier
points or elements in the Goss grain) (right).

Figure 12. Plane-strain compression of a bicrystal (Cube∼ in Goss) at 90% thickness reduction.
The grain averages of strain component ε31 are plotted considering the different volume fractions
of the crystals (for the Cube∼ grain ε31 × 1, for the Goss grain ε31 × 7) for simulations run at
different resolutions: 1, 8, 64, 512 Fourier points or elements in the Cube∼ grain and 1 × 7, 8 × 7,
64 × 7, 512 × 7 Fourier points or elements in the Goss grain.
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Figure 13. Crystallographic orientations chosen to construct a 64-grain RVE.

Figure 14. Crystallographic orientations of the 64-grain RVE before deformation (left) and after
plane-strain compression at 90% thickness reduction (right) obtained in the case of one Fourier
point per grain simulation. θA→B is the misorientation between the starting orientation (A) and
final orientation (B) for a single grain.

(e.g. GIA, ALAMEL) have been proven to be highly efficient for texture simulations, they
have been less successful when applied at the single-crystal scale, as they do not account for
the near- and far-field spatial arrangement of the crystals in the sample and the corresponding
strain relaxations inside a wider cluster. When a single crystal is composed of more than one
numerical unit, full-field models are able to simulate the orientation split-up inside one single
grain [33, 42, 43, 45]. In the CPFFT model used in this work such split-up is due to grain
interactions [33] while for the CPFEM model both intrinsic (grain interactions) and extrinsic
mechanical conditions such as friction and complex externally imposed strain paths can enter
the simulation, which in turn can lead to the fragmentation of originally homogeneously
oriented grains [42, 45].

In this section we present a theoretical study on micro-texture evolution of a 64-grain RVE
during plane-strain compression using the CPFFT approach. The sample is build up from four
orientations (figure 13), arranged in random order (figure 14, left). The Cube, rotated Cube,
Goss and RZ orientations have been chosen to study the initial orientation dependence and
crystal neighbor influence of in-grain orientation split-up as analyzed earlier using CPFEM
simulations in [42]. The choice of these four texture components is related to their different
orientation stabilities under plane-strain loading [18, 42, 46, 47].

In previous CPFEM simulations on orientation stability, only single crystals and bicrystals
have been investigated. In a 64-grain aggregate more grain-scale diversity is created by the
grain neighborhood. The 50% thickness reduction used in the former study is extended to
90% in the current one. This is more revealing of the final stable texture components. The
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Figure 15. In-grain texture evolution inside the 64-grain RVE presented in the form of {1 1 1}
pole figures. The split-up and resulting reorientation distribution is shown individually for the
four selected initial texture components Cube, rotated Cube, Goss and RZ; CPFFT; plane-strain
compression; thickness reduction 90%: S1 (1 Fourier point per grain simulation), S2 (8 Fourier
points per grain simulation), S3 (64 Fourier points per grain simulation), S4 (512 Fourier points
per grain simulation). The grains that have identical initial orientation are put into the same {1 1 1}
pole figure, and the black stars mark the starting orientations.

simulations were run at four resolution levels, namely 1; 8(2 × 2 × 2); 64(4 × 4 × 4) and
512(8 × 8 × 8) Fourier points per grain. The results of all simulations are shown in figure 15.
Grains with identical initial orientation are presented in the same {1 1 1} pole figure. The black
stars mark the starting orientations. The other markers are used to indicate the simulation results
obtained at the different resolutions.

These results allow us to make a number of observations.
For the simulation with only one Fourier point per grain (marked by blue triangles in

figure 15) the final orientation spread is due to the fact that the initially identically oriented
grains have different neighbors in this 64-grain RVE. Depending on the initial orientation and
grain neighborhood, the grain rotations can, hence, vary substantially. The results obtained for
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Table 1. Misorientation (θA→B ) between the starting orientation (A) and final orientation (B):
statistics of 1 Fourier point per grain simulation (figure 14, right).

max(θA→B) min(θA→B) mean(θA→B) �(θA→B) (N = 16)

Cube grains 38.4◦ 3.6◦ 21.0◦ 11.1◦

RCube grains 33.3◦ 26.7◦ 29.0◦ 1.8◦

Goss grains 22.9◦ 0.9◦ 8.8◦ 5.1◦

RZ grains 34.5◦ 28.0◦ 30.0◦ 1.7◦

Table 2. Misorientation (θB→C ) between the final orientation (B) and the ideal texture component
(C): statistics of 512 Fourier points per grain simulation; thickness reduction 90%.

max(θB→C) min(θB→C) mean(θB→C) �(θB→C)(N = 16 × 512)

Cube grains to Goss(C) 60.0◦ 4.0◦ 22.9◦ 7.6◦

RCube grains to Copper(C) 55.0◦ 0.4◦ 8.5◦ 4.6◦

Goss grains to Goss(C) 43.6◦ 0.2◦ 10.2◦ 6.9◦

RZ grains to S(C) 46.1◦ 0.7◦ 15.6◦ 8.2◦

the calculation with one Fourier point per grain are additionally presented in figure 14(right),
to make a direct comparison with the starting orientations in figure 14(left), using the same
method by sample-axis rotations and color-coded misorientations as in figure 3(right).

When divided by the macroscopic von Mises strain (2.645, at 90% thickness reduction),
the misorientation θA→B (between the starting and final orientations) can be used as a measure
of the grain rotation rate, and its standard deviation �(θA→B) can be used to indicate the
neighbor sensitivity of the rotation rate.

�(θ) =
√√√√ 1

N

N∑
i=1

[θ − mean(θ)]2.

The maximum, minimum, mean, and standard deviation of the rotation angles for initially
differently oriented grains are listed in table 1. On average, the rotation rates θ̇A→B follow the
sequence θ̇RZ

A→B > θ̇RCube
A→B > θ̇Cube

A→B > θ̇Goss
A→B . Besides this global tendency, the rotation rates

of Cube and Goss oriented grains are more sensitive to the influence of neighbor grains than
those of RCube and RZ grains, following the sequence �(θ̇Cube

A→B) > �(θ̇Goss
A→B) > �(θ̇RCube

A→B ) �
�(θ̇RZ

A→B).
For the simulations with more than one Fourier point in each grain, the intragranular

misorientations are stimulated by the grain interactions. As it is shown in figure 15, at 90%
thickness reduction, RCube oriented grains rotate into the copper orientation, RZ oriented
grains rotate toward the S component, Cube grains rotate into the Goss orientation and Goss
grains only rotate slightly. Based on these results we next calculated the misorientation (θB→C)
between the simulated final orientations (B) and the closest ideal texture component (C) for
the whole data set obtained from a simulation with 512 Fourier points per grain. From these
misorientations we derived the maximum, minimum, mean and standard deviation as listed
in table 2. The RZ and Cube grains show stronger intragranular orientation subdivisions
than the Goss and RCube grains, as �(θRZ

B→C) > �(θCube
B→C) > �(θGoss

B→C) > �(θRCube
B→C ).

We pick four initially differently oriented grains out of the 64-grain cluster from the 512
Fourier point per grain simulation. The final orientations of the Fourier points inside the
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Figure 16. Example of in-grain orientation split-up in four grains inside the 64-grain RVE (512
Fourier points per grain calculation). θB→C is the misorientation between the final orientation
(B) and the ideal texture component (C). The reference ideal texture components (C) for initially
differently oriented grains are given below the figures.

four grains are presented in figure 16 in terms of the small cube symbols. The material units
(Fourier points) inside the initially Cube and RZ oriented crystals create upon loading more
diverse in-grain rotation fields, than those inside the Goss grain. The RCube grains tend
to split into two Copper components (equivalent under orthotropic sample symmetry). In
figure 16, the misorientations between the final orientations and ideal texture components are
color-mapped.

6. Conclusions

We simulated the statistical texture evolution of a FCC metal (plane-strain loading), and
investigated the strain gradients predicted in bicrystals under the same deformation mode, with
the full-field crystal plasticity Fast Fourier Transform and Finite Element models. Additionally
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we conducted a grain-scale orientation fragmentation analysis using the FFT approach. The
main conclusions are the following:

• Concerning the statistical texture evolution simulations of the 1024-grain ensemble:

– In the CPFFT simulations Cube oriented grains show higher rotation rates away from
their starting orientation and slower rotations at the later deformation stages toward
stable plane-strain orientations (copper, S, brass) than in the CPFEM simulations.

– With the same initial configuration and boundary conditions, using the same
crystal plasticity constitutive equation and hardening law, the CPFEM and CPFFT
simulations give different combinations of orientation and strain distributions.

• Concerning the strain gradient predictions in bicrystals:

– The CPFFT model predicts certain strain gradients at low resolution. The average
strains in the grains can be captured even at the lower end of the resolution scale.
This explains that why there is nearly no resolution effect on the CPFFT simulation
of the 1024 grain polycrystal.

– The CPFEM model gives the lowest strain gradient at low resolution. As the resolution
increases, the CPFEM simulations continuously approach higher strain gradients,
and the calculated average strains in the grains grow accordingly. Thus, resolution
strongly affects the CPFEM results.

• General comments on the texture predictions of the CPFFT and CPFEM models for
engineering applications:

– For the statistical texture evolution simulation with a sample size larger than one
thousand grains like the ones in section 3, the orientation and strain distributions can
be obtained at relatively low resolutions using the CPFFT model. For the CPFEM
model, this would depend on the initial orientations inside the sample, which means
higher resolution is needed when the initial orientation distribution tends to introduce
higher strain gradients.

• Concerning micro-texture predictions of the 64-grain aggregate:

– Plane-strain compression of the 64-grain RVE at 90% thickness reduction revealed
that the RCube grains rotate toward the copper orientation; the RZ grains rotate close
to the S orientation; the Cube grains rotate toward the Goss orientation; and the Goss
grains only slightly rotate away from their initial orientation.

– The rotation rates θ̇A→B of grains with different initial orientations follow the
following sequence: θ̇RZ

A→B > θ̇RCube
A→B > θ̇Cube

A→B > θ̇Goss
A→B .

– The rotation rates of the Cube and Goss grains are more sensitive to the grain
neighborhood than those of the RCube and RZ grains. The grain neighborhood
dependence follows the sequence: �(θ̇Cube

A→B) > �(θ̇Goss
A→B) > �(θ̇RCube

A→B ) � �(θ̇RZ
A→B).

– The Cube and RZ grains reveal larger in-grain rotation gradients after deformation
than the Goss grains. The rotated Cube grains split into two equivalent copper
components.
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[12] Lebensohn R A and Tomé C N 1993 Acta Metall. Mater. 41 2611
[13] Peirce D, Asaro R J and Needleman A 1982 Acta Metall. Mater. 30 1087
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