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Homogenization estimates based on the self-consistent scheme are customarily used to describe the
plastic yielding of polycrystals. Such estimates of the initial micro yield surface of a polycrystal depend
on the morphologic and crystallographic textures, the slip system geometry, the corresponding critical
resolved shear stresses and the single crystal elastic anisotropy. The usual approach relies on a rather
crude description of the stress field induced by the local elastic anisotropy. This deficiency is addressed
and a new concept, i.e. a ‘‘probability” yield surface is proposed. Based on a statistical description of the
local fields, the latter makes use of the average and the standard deviation of the resolved shear stress on
the different slip systems within a given crystalline orientation. By comparing the homogenization esti-
mates with full-field results, it is shown that the self-consistent scheme does not present intrinsic short-
comings regarding the prediction of the micro yield stress of polycrystals with anisotropic elastic
constitutive behaviour. On the contrary, it delivers realistic estimates if the local field fluctuations are
taken into account in the yield criterion. The quantitative results obtained for cubic elasticity show a
strong influence of the intragranular stress heterogeneity on the estimate of the micro yield stress.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The initial yield surface of polycrystals can be defined in various
ways. By using an experimental macroscopic stress–strain curve,
the macro yield stress of a polycrystalline metallic material is cus-
tomarily determined by considering the stress for an offset plastic
strain of 0.2%. It is assumed that all grains have entered the plastic
regime when this stress is reached. This conventional definition
gives necessarily an upper limit for the yield stress of the polycrys-
tal. By contrast, the micro yield stress corresponds to the onset of
plastic slip in the polycrystal. The influence of the spatial heteroge-
neity of elastic properties on the inception of plasticity has been
first brought to light qualitatively by slip trace analysis in bicrys-
tals (Hook and Hirth, 1967) and in polycrystals (Hashimoto and
Margolin, 1983a). Indeed, these works have reported operating slip
systems with low Schmid factors and a preferential slip activity
near grain boundaries during the first stage of the elastoplastic
transition. As a consequence, an accurate determination of the
yield stress of a polycrystal requires the knowledge of the stress
field that develops in the material during the linear elastic regime.
It should be also noted that the stress field that develops due to
elastic interaction between grains has been put forward by some
authors to describe the grain size dependence of the yield stress
(Meyers and Ashworth, 1982; Margolin et al., 1986). From an
experimental point of view, the recent development of microdif-
ll rights reserved.

ner).
fraction techniques allows a quantitative investigation of the crys-
talline lattice distortions at the grain scale (Tamura et al., 2003).
This technique can thus be used to detect the onset of plasticity
and, more generally, to characterize the local plastic response of
polycrystals (Castelnau et al., 2006b; Ungár et al., 2007). Such
experimental results can be compared with estimates derived from
micromechanical modelling approaches that describe the hetero-
geneity of the mechanical fields resulting from the microstructural
topology and the anisotropy of the local constitutive behaviour. To
be more precise, micromechanical estimates of the micro yield
stress are functions of the spatial arrangement of grains, the crys-
tallographic texture, the slip system geometry together with the
critical resolved shear stresses, and the single crystal elastic mod-
uli. To tackle this problem, two types of micromechanical ap-
proaches can be chosen: a mean-field modelling (i.e.
homogenization theory) which makes use of a statistical descrip-
tion of the microstructure and a full-field computation based on a
spatial description of the microstructure.

The link between the single crystal elastic anisotropy and the
onset of yielding in polycrystals has been first studied within the
homogenization framework by Hutchinson (1970) who used the
linear elastic self-consistent model (Hershey, 1954; Kröner, 1958)
to estimate the micro yield stress. Hutchinson defined the latter
as the lowest macroscopic stress required to activate plastic slip
within the polycrystal. His self-consistent analysis relied on the
average stress field at the grain scale determined by using the
Eshelby’s inclusion result (Eshelby, 1957). Since then, this model
has been widely used to simulate experiments (see, for instance,
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Turner et al., 1995; Clausen et al., 1998; Pang et al., 1999). How-
ever, Hutchinson reported that the self-consistent model describes
an increase of the plastic yielding onset compared to the isotropic
elastic case, whereas elastic heterogeneities are expected to de-
crease the initial yield point. This feature has been interpreted as
a shortcoming of the self-consistent model which was mistakenly
believed to deliver an homogeneous stress field within each grain
of the polycrystal. Indeed, Hutchinson explained this apparent
drawback by stating that ‘‘. . . The reason for this stems from the
fact that stresses in each grain are calculated by treating it as a
spherical inclusion. Stresses in the matrix surrounding the inclu-
sion do not enter into the self-consistent estimate of initial yield
. . .” (Hutchinson, 1970). With this remark in mind, one of the pur-
poses of the present paper is to derive new self-consistent esti-
mates of the micro yield stress by making use of the entire
available information on the stress fluctuations within the poly-
crystalline material. To this end, comparisons with corresponding
full-field solutions will be instrumental to validate our homogeni-
zation analysis.

Numerous works have been devoted to the full-field modeling
of the elastic response of locally anisotropic polycrystalline aggre-
gates, in connection with the microplasticity onset. The Finite Ele-
ment Method (FEM) has been customarily chosen to perform this
analysis. Among others, we can cite the early study of Hashimoto
and Margolin (1983b) on polycrystalline a-brass with columnar
grains, the work of Kumar et al. (1996) who considered a three-
dimensional (3-D) Poisson–Voronoi tesselation, and the recent
investigations on thin films microstructures (Wikström and Ny-
gards, 2002; Geandier et al., 2008) and fields distribution at free
surfaces (Sauzay, 2007; Zeghadi et al., 2007). These different stud-
ies clearly evidenced the influence of the elastic heterogeneities on
the stress field fluctuations, especially near grain boundaries. It is
clear that, beyond the description of the effective behaviour, full-
field models provide significant information on local fields. They
can thus be used to characterize the local fields distribution and
to assess the accuracy of homogenization estimates at both macro-
scopic and local scales. Such comparisons have been performed for
viscoplastic polycrystals (Lebensohn et al., 2004), by using a meth-
od based on Fast Fourier Transform (FFT) (Moulinec and Suquet,
1998; Lebensohn, 2001), but few detailed studies exist for poly-
crystal elasticity. This question has been only partially addressed
by Yaguchi and Busso (2005) who performed comparisons of the
overall elastic properties of columnar microstructures.

In this paper, we first present a thorough analysis of the local
fields distribution within a Representative Volume Element (RVE)
of an elastic polycrystalline aggregate using, on the one hand, the
FFT-based full-field modelling and, on the other hand, the self-con-
sistent scheme (Section 2). Next, the link between the elastic stress
field and the definition of the micro yield stress, which constitutes
the central issue of this article, is discussed and an original proba-
bility approach for the determination of the yield surface is de-
scribed (Section 3). Using this ‘‘probability” yield surface, the
accuracy of various self-consistent estimates, including the one gi-
ven by Hutchinson (1970), is then discussed by comparison with
reference full-field results (Section 4).

2. Local fields within elastic polycrystals

Let us consider a RVE with volume X of an elastic polycrystal-
line medium. In what follows, the notion of representativity encom-
passes both mechanical and microstructural definitions. Thus, the
volume X is said representative if: (i) Hill’s macrohomogeneity
condition is fulfilled and (ii) all the statistical information on the
microstructure is contained in X (Hill, 1963). Our study is con-
cerned with polycrystals presenting a random homogeneous and
isotropic microstructure. This implies, in particular, equiaxed
grains and a random repartition of the crystalline orientations
within the material. Besides, it is assumed that the elastic tensor
field CðxÞ is ergodic. It is worth noting that the RVE status of such
random media has been rigorously justified (Sab, 1992).

2.1. Full-field modelling: FFT-based method

Given a complete description of a polycrystalline microstruc-
ture, various numerical methods can be used to compute its
mechanical response. Up to now, the FEM remains the most widely
used. In this article, we chose to use an alternative method, origi-
nally proposed by Moulinec and Suquet (1998), which makes use
of the Fourier transform technique to solve the heterogeneous elas-
ticity problem in a periodic unit cell. This method relies on the
integral equation for the strain field, also called Lippmann–Schw-
inger equation (see, for instance, Zeller and Dederichs, 1973). The
main attracting features of this numerical scheme are the possibil-
ity of using images of the microstructure as direct input (no mesh-
ing required) and a low numerical cost (problems with several
millions of degrees of freedom (d.o.f.) can be solved in a few min-
utes without parallel computing, see Appendix B). The reader is re-
ferred to Moulinec and Suquet (1998), Eyre and Milton (1999),
Michel et al. (2001) for a detailed description of the method and
to Lebensohn (2001) who first used it to investigate the local re-
sponse of elastic and viscoplastic polycrystalline aggregates made
of cubic-shaped grains.

2.1.1. Unit cell description
To construct a cubic polycrystalline unit cell of volume XUC, a

Poisson–Voronoi tesselation has been chosen. Dating from the
work of Kumar and Kurtz (1994), this microstructural model is
widely used to study the physical properties of equiaxed polycrys-
talline microstructures because it mimics the homogeneous crystal
growth process. Note that in our case periodicity has to be imposed
on the microstructure to be consistent with the requirements of
the FFT-based method and to avoid artificial boundary effects
(see also Nygards and Gudmundson, 2002). This is ensured by
the periodic duplication of Voronoi seeds immediately outside
the unit cube. A set of 500 initial seeds is used to generate the tess-
elation and a uniform crystalline orientation is assigned to each
resulting Voronoi cell. For that goal, a set Nu of 500 crystalline ori-
entations generated with a quasi-random Sobol process has been
used. There is thus a one-to-one correspondence between the set
of Voronoi cells and the set of crystalline orientations. The obtained
cubic unit cell is further discretized into a regular grid consisting of
128� 128� 128 voxels (Fig. 1a). Each grain thus comprises 4200
voxels on average. The set of orientations Nu and the Voronoi
tesselation process lead to a quasi-isotropic Orientation Distribu-
tion Function (ODF). Consequently, the volumetric average of the
elastic tensor field over an unique unit cell is quasi-isotropic and
can be considered as a good approximation of its ensemble average
(i.e. 1-point correlation function) over the set of equiprobable real-
izations Pa. It can thus be concluded that a polycrystalline unit cell
of volume XUC is isotropic of grade 1 following Kröner’s terminol-
ogy (Kröner, 1977). By contrast, for grade n > 1, the volumetric
average over XUC does not a priori identify with the n-point corre-
lation function and it follows that the ergodicity assumption is not
verified by XUC. Consequently, the constructed unit cell is not a
RVE. In particular, it does not contain several grains with the same
crystalline orientation but different neighbouring environments.

2.1.2. Approximation of the RVE’s response
To approximate the RVE’s response of a polycrystal, we apply

the procedure of ensemble averaging (see, for instance, Sab,
1992). Let a be a particular realization in the set Pa of equiprobable
realizations (i.e. the set of cubic unit cells generated by Poisson–



Fig. 1. Periodic Poisson–Voronoi tesselation containing 500 grains with uniform crystalline orientations (a) and corresponding axial stress field for a tensile loading (b).

Fig. 2. Relative sampling error of the stress field at different scales vs. the number
of unit-cell realizations.
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Voronoi tesselation) and let t be a random field, statistically homo-
geneous and ergodic. Then, the expectation of t defined by
htiPa ¼

R
Pa

tðaÞda can be approximated by a Monte–Carlo
computation

htiPa � 1
Na

XNa

i¼1

tðaiÞ ð1Þ

with Na being the number of unit cell realizations. The ergodicity
assumption implies that the expectation of t is equal to the volumic
average of t over X. Note that the generation of different unit cells is
performed with the fixed set of orientations Nu and randomly
varying Voronoi seeds positions. Grains with the same crystalline
orientation but varying neighbourhoods are thus present in the dif-
ferent realizations. This allows us to also perform rigorous ensem-
ble averages of the mechanical fields per crystalline orientation.

2.1.3. Fields description
An important aspect of the present analysis is to assess the

accuracy of the ensemble averaging procedure at different scales.
In order to perform ensemble averages, we have generated 100
unit cell realizations and considered the local constitutive elastic
behaviour of a crystal with cubic lattice symmetry. The anisotropy
of the local elastic behaviour can be characterized by the parame-
ter A introduced by Zener (1948), which reads, using standard Voi-
gt notation: A ¼ 2C44=ðC11 � C12Þ. Each unit cell has been subjected
to uniaxial tensile, simple shear and mixed tensile–shear loadings.
For illustration, the axial stress field distribution, normalized by
the corresponding macroscopic value, for a tensile loading and
anisotropy parameter A ¼ 2:8 is shown in Fig. 1b. As expected,
strong fluctuations of the local axial stress are obtained, with max-
ima appearing preferentially close to grain boundaries and a stress
concentration factor varying between 0.4 and 1.6 for this particular
unit cell.

While some results have been reported in the literature on the
size of the RVE necessary to estimate the effective properties of
polycrystalline materials within a given error (see, e.g. Nygards,
2003; Houdaigui et al., 2007), in the present investigation we ana-
lyze the representativity of our results at both macroscopic and lo-
cal scales (‘‘local” refers here to the scale of individual crystals).
According to sampling theory, the relative error on the expectation
of an homogeneous and ergodic random variable t is expressed as

�t ¼
2SDPaðtÞ
htiPa

ffiffiffiffiffiffi
Na
p ð2Þ

where the standard deviation SDPa ðtÞ and the average htiPa are
approximated by a Monte–Carlo computation of the ensemble aver-
age on Na realizations (1). The error �t is thus important when the
random variable t strongly vary from one realization to another.
To quantify the accuracy of the full-field results at different scales,
we have considered three random variables: the overall equivalent
stress �req, the equivalent of the average stress hrireq and the stan-
dard deviation of the equivalent stress SDrðreqÞwithin a given grain
orientation which has been arbitrarily chosen in the set Nu. The
evolution of the sampling error for each variable with respect to
the number of realizations Na is reported on Fig. 2, for Zener param-
eter A ¼ 2:8, in the case of a tensile loading. As expected, a decrease
of the error � is obtained with the increase of Na. It is worth men-
tioning that the minimum attainable error depends on the local
anisotropy, the discretization and the size of the unit cell. In the
studied case, we obtain a relative error of 0.1% on the macroscopic
stress, 1% on the average stress per grain orientation and 5% on the
standard deviation of the stress within a grain orientation for 100
realizations. There is thus one to two orders of magnitude between
the precisions at the overall and local scales for the chosen local
description of the stress field. This result can be explained by the
fact that the overall stress depends at first order on the 1-point cor-
relation function of the elastic tensor field which slightly varies
from one realization to another. By contrast, the average and stan-
dard deviation of the local stress within a grain with a given crystal-
line orientation is strongly affected by its neighbourhood (i.e. by
higher-order correlation functions of the elastic tensor field). This
results in less accurate estimates of the local fields compared to
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the macroscopic fields, for a given number of realizations. The effect
of the neighbouring grains on the local stress field can be further
illustrated by investigating the stress distributions. Fig. 3 shows
the effect of the number of realizations on the shape of the distribu-
tion within a given crystalline orientation. For a single realization,
the stress distribution within a single crystalline orientation is far
from Gaussian, but it gets closer to Gaussian when many random
realizations are considered although there is no proof that it be-
comes really Gaussian. The addition of different grain environments
thus tends to smooth out the local stress field distribution. It is
emphasized that this distribution is expected to be a good approx-
imation of the one that would have been obtained if we had consid-
ered a polycrystalline volume element containing grains with the
same crystalline orientation but randomly located in the specimen
as inCastelnau et al. (2006a). On the other hand, it can be observed
that the stress field distribution in the whole sample is already al-
most symmetric for a single unit cell (Fig. 3). It should be mentioned
that field distributions close to Gaussian have previously been re-
ported in two-dimensional linear composites with ‘‘particulate”
(i.e. matrix–inclusion) microstructure (Moulinec and Suquet, 2003).

2.2. Mean-field modelling: self-consistent scheme

By contrast with the previous full-field numerical approach,
mean-field estimates (a.k.a homogenization estimates) rely on an
incomplete statistical description of the microstructure. In the case
of polycrystals, the heterogeneity is related to the existence of dif-
ferent crystalline orientations or mechanical phases. Each mechan-
ical phase r has a volume Xr , and its spatial repartition is described
by the characteristic function vrðxÞ, which is equal to 1 if x 2 Xr

and 0 otherwise. An elastic polycrystal can be considered to be a
composite material made of N crystalline orientations such that

CðxÞ ¼
XN

r¼1

CrvrðxÞ ð3Þ

where Cr is the elastic moduli tensor of mechanical phase r. The
microstructure of the polycrystalline material is statistically de-
scribed by the n-point correlation functions of the characteristic
functions. Due to the ‘‘granular” character of a polycrystal (i.e. all
crystalline orientations are on the same footing), the self-consistent
model (Hershey, 1954) is expected to be well adapted for this kind
of microstructures (see Kröner, 1978). It is recalled that, in a
homogenization context, the localization problem linking the local
Fig. 3. Normalized equivalent stress field distribution within a single crystalline orienta
obtained with 100 configurations for the whole unit cell.
strain field eðxÞ to the overall strain e cannot be solved. Neverthe-
less, using the statistical description of the microstructure and the
uniformity per phase of the local behaviour, the problem can be
degenerated by considering only the average localization for each
crystalline orientation.

2.2.1. Self-consistent estimate
By considering ellipsoidal 2-point correlation functions (Willis,

1977), the estimate of the effective elastic tensor eC can be derived
using Eshelby’s solution (Eshelby, 1957) for an ellipsoidal inclusion
embedded in an infinite homogeneous linear medium, itself sub-
jected to an homogeneous loading. The self-consistent estimate
of eC reads

ðeC þ CHÞ�1 ¼ hðCþ CHÞ�1i ð4Þ

where CH ¼ P�1 � eC is the ‘‘constraint” tensor which reflects the
reaction of the homogeneous medium to the deformation of the
inclusion. It depends on the Hill tensor P which is a function of
the elastic properties of the effective medium and the shape of
the inclusion (see Appendix A).

At the local scale, the self-consistent model delivers information
about the average fields per crystalline orientation. For instance,
the local average strain tensor reads

heir ¼ ðCr þ CHÞ�1 : ðeC þ CHÞ : �e ð5Þ

The local average stress tensor can be obtained using the consti-
tutive relation: hrir ¼ Cr : heir . However, the statistical description
of the local stress and strain fields is not limited in the mean-field
framework to this first-order information. Indeed, the homogeni-
zation procedure also delivers estimates of the field fluctuations.
More precisely, the second moment of the intraphase field distri-
bution can be obtained by considering partial derivatives of the
effective elastic energy with respect to the local elastic behaviour
(see Bergman, 1978; Bobeth and Diener, 1987; Kreher, 1990; Ponte
Castañeda and Suquet, 1998). This result follows from the qua-
dratic dependence of the elastic energy on the stress and strain
fields. For instance, the intraphase second moment of the strain
field for crystalline orientation r is given by

he� eirijkl ¼
1
cr

�e :
@eC
@Cr

ijkl

: �e: ð6Þ

Its explicit computation, in a general anisotropy context, is gi-
ven in Appendix A.
tion (left) and within the whole unit cell (right). Note that a similar distribution is



Fig. 4. Distribution of the equivalent stress field distribution within a polycrystal-
line RVE, for different values of the Zener parameter A, as obtained by the full-field
approach.
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2.2.2. Fields description
The self-consistent estimate of the elastic response of the poly-

crystalline RVE has been computed numerically. In doing this, we
have considered a spherical shape for the covariances and the
above-described set Nu of crystalline orientations with equal
weights. The implicit self-consistent Eq. (4) has been solved itera-
tively with a relative error of 10�6. The good agreement between
the FFT-based computations and the linear self-consistent estimate
has been previously reported for different polycrystalline micro-
structures, namely: 2-D Voronoi tesselations (Castelnau et al.,
2006a) and 3-D polycrystals with cubic grains (Lebensohn et al.,
2004), and was expected to also hold in the present 3-D Voronoi
case. Indeed, a relative error of about 1% is obtained on the average
and second moment of the stress and strain distributions within
each crystalline orientation. This is the minimum error that could
be achieved since it is of the same order as the sampling error on
the intragranular average and standard deviation of the stress field,
as already discussed (Fig. 2).

3. Yield surface estimates

The results of the previous section highlight the strong stress
heterogeneity induced in a polycrystalline RVE made of grains with
local elastic anisotropy. Moreover, the pertinence of the self-con-
sistent scheme to describe the stress field distribution for linear
polycrystal has been demonstrated by comparison with full-field
computations. Based on these results, the way in which this avail-
able statistical information can be used to accurately describe the
onset of plasticity in a polycrystal is now addressed.

3.1. Shortcoming of previous mean-field estimates

As discussed previously, Hutchinson (1970) was the first to
shed light on the influence of the local elastic anisotropy on the
micro yield stress estimated by means of the self-consistent
scheme. Indeed, earlier assessments of the self-consistent model
for elastoplastic polycrystals relied on a simplifying assumption
of elastic isotropy (Budiansky et al., 1960; Kröner, 1961). Hutch-
inson’s analysis focused on the self-consistent prediction of the
initial yield surface of a random polycrystal made of FCC single
crystals. For this crystalline symmetry, the slip set K comprises
12 crystallographically equivalent slip systems f111g½1 �10�. By
adopting a description of the local stress field limited to its intra-
phase mean values, he showed that the self-consistent scheme
leads to a modified Tresca criterion, with a yield function fY of
the form

fY ð�rÞ ¼max
I;J

j�rI � �rJj
2

� ~s0 ð7Þ

where rIðI ¼ 1;2;3Þ are the macroscopic principal stresses. The
effective yield stress ~s0 is given by Hutchinson (1970)

~s0 ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2a2 þ b2

s
ð8Þ

where the coefficients a and b are

a ¼ C11 � C12

2~lð1� bÞ þ bðC11 � C12Þ
; b ¼ C44

~lð1� bÞ þ bC44
;

b ¼ 6
5

~jþ 2~l
3~jþ 4~l

� �
ð9Þ

with ~j and ~l being the self-consistent estimates of the effective
bulk and shear moduli. For cubic polycrystals, it is well-known that
the effective bulk modulus coincides with the bulk modulus of the
crystallites (Hill, 1952; Mendelson, 1981) whereas the self-consis-
tent overall shear modulus is the positive root of the following cubic
equation (Hershey, 1954; Kröner, 1958)

8~l3 þ ð5C11 þ 4C12Þ~l2 � C44ð7C11 � 4C12Þ~l
� C44ðC11 � C12ÞðC11 þ 2C12Þ ¼ 0: ð10Þ

For an isotropic local elastic behaviour (i.e. leading to an
uniform stress field within the polycrystal), relation (8) gives
~s0 ¼ s0 so that the yield function (7) reduces to the Tresca yield
surface (Hill, 1967).

To highlight the influence of the elastic anisotropy on the stress
heterogeneity, we have considered different values of the Zener
anisotropy parameter. The equivalent stress distribution within
the RVE for a tensile loading are reported on Fig. 4. In the case
A ¼ 1 (i.e. elastic isotropy), the distribution is a Dirac delta function
since the polycrystal is homogeneous. An increase of the local
anisotropy leads to a spread and a shift of the peak to larger stress
values. Similar observations have been made previously in a non-
linear context for viscoplastic polycrystals with highly anisotropic
grains (see, for instance, Castelnau et al., 2008). Fig. 4 illustrates
that an increase of the local anisotropy implies an increase of the
stress heterogeneity, which in turn should induce an early plastic
yielding of the polycrystal, compared to the isotropic elasticity case
(i.e. Tresca yield surface). On the contrary, Hutchinson (1970) ob-
served that the expression of the effective yield stress (Eq. 8) pre-
dicts a delayed plastic yielding for a Zener elastic anisotropy
parameter A greater than 1 (which is the case of many common
metals: Cu, Fe, Al, Ni, . . .). Up to now, this apparent deficiency of
the self-consistent model has not been addressed.

3.2. New statistical yield criterion incorporating field fluctuations

In order to improve the self-consistent estimate of yielding, we
propose to take into account the available information on local
stress fluctuations. First, we consider a RVE for which the micro-
structure is perfectly known. The local Resolved Shear Stress
(RSS) on a slip system k, at a given point xg of the grid, can be ob-
tained as

skðxgÞ ¼ rðxgÞ :
XN

r¼1

lr
kv

rðxgÞ ð11Þ
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where lr
k is the Schmid tensor of slip system k within crystalline ori-

entation r. According to the Schmid criterion, plasticity occurs when
the following condition is fulfilled

max
xg2X

max
k2K
jskðxgÞj ¼ s0: ð12Þ

Although it appears to be a quite straightforward approach to
describe the micro yield stress of the polycrystal, this definition
presents some important drawbacks. Indeed, it is dependent on
the refinement of the grid used for the full-field numerical resolu-
tion and, because of the random character of the microstructure, it
leads to a yield stress estimate that strongly vary from one unit cell
to another. This prevents the use of this criterion to get an accurate
estimate of the onset of plasticity.

An alternative approach to define the micro yield stress is mak-
ing use of the field statistics information. Obviously, different esti-
mates of the onset of plasticity can be obtained, depending on the
order of the statistical parameters involved in the yield criterion.
For example, Hutchinson (1970) made a very specific choice, disre-
garding the intraphase stress heterogeneity, defining that yielding
of the polycrystal occurs when

max
r2Nu

max
k2K

jhskirj ¼ s0 ð13Þ

where Nu is the finite set of crystalline orientations chosen to rep-
resent the crystallographic texture of the polycrystal and
hskir ¼ lr

k : hrir . We propose a more flexible and general definition
of the plastic onset that reads

max
r2Nu

max
k2K

ŝr
k ¼ s0 ð14Þ

where ŝr
k is a Reference Resolved Shear Stress (RRSS) that needs to

be specified in the general case of a nonuniform intraphase stress
field. Based on the information on the local fields that can be ob-
tained with homogenization theory, we propose the following
expression

ŝr
k ¼ jhskirj þ pSDrðskÞ ð15Þ

which involves the mean value hskir and the standard deviation
SDrðskÞ of the RSS on slip system k of crystalline orientation r. The
latter is given by

SDrðskÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs2

ki
r � ðhskirÞ2

q
with hs2

ki
r ¼ lr

k : hr� rir : lr
k: ð16Þ
Fig. 5. Self-consistent estimates of yield surface sections obtained with different p values
loading paths (symbols).
Depending on the value of the positive parameter p, relation
(15) leads to different estimates of the initial yield stress of the
polycrystal. These estimates can be evaluated for different applied
loadings by using the self-consistent scheme or the full-field
numerical scheme to determine a so-called probability yield surface.
This terminology has been chosen by analogy with the notion of
confidence intervals in statistics, which indicate the probability
of a measurement falling within p standard deviations of the mean
(e.g. for a Gaussian distribution, this probability is equal to 0.683
for p ¼ 1 and 0.997 for p ¼ 3). In the present context, this probabil-
ity is related to the stress heterogeneity accounted for by the new
yield criterion. The value of p parameter can also be related to a
more intuitive quantity, i.e. a threshold volume fraction of the
grain where plasticity initiates that needs to be in yielding condi-
tion to consider that the polycrystal is at the onset of plasticity.
This threshold volume fraction decreases as p increases (e.g. if
the field distributions in the grains are strictly Gaussians, p ¼ 1
amounts to consider that 15.85% of the first plastifying grain has
to yield, while for p ¼ 3 only a tiny 0.15% volume fraction has to
be deforming plastically, to consider that the polycrystal has
reached the plasticity onset. Note that the previous estimate of
Hutchinson (1970) corresponds to a threshold volume fraction of
50%).

4. Results and discussion

The probability yield criterion (14) and (15) is now applied to
the class of polycrystals discussed in Section 2 and its main fea-
tures are compared to previous works.

First, the accuracy of our self-consistent estimates have been as-
sessed by confrontation with the FFT results. For that goal, sections
of the yield surface in the ‘‘tension–torsion” plane have been com-
puted, for several assumed p values, using expression (15). Self-
consistent calculations were performed with 5� steps while FFT
computations were carried out for three particular loading direc-
tions: uniaxial tension, pure torsion and a mixed ‘‘tension–torsion”
loading (Fig. 5) (In the case p ¼ 0, the self-consistent numerical
computations have been also compared with the analytic solution
(8), showing a very good agreement, with a relative discrepancy of
about 10�3, likely to be linked to the finite set of crystalline orien-
tations used to approximate an isotropic crystallographic texture.)
A very good agreement is obtained between the FFT-based and the
self-consistent yield surfaces, for any p value. This is a direct con-
for tension–torsion loadings (curves). FFT estimates are reported for three different
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sequence of the excellent agreement between first and second mo-
ments of the field distributions within different crystalline orienta-
tions computed with both approaches. An important conclusion is
thus that the self-consistent model does not present intrinsic
drawback concerning the description of the micro yield stress.
The shortcoming of Hutchinson’s estimate appears to be uniquely
related to the choice of the RRSS in the yield criterion (i.e.
ŝr

k ¼ hskir). It is observed that earlier plastic onsets can be pre-
dicted when stress heterogeneity enters the yield criterion
ðp > 0Þ. Note also that the yield surfaces remain convex for any p
value.

Second, we investigated the physical relevance of the new esti-
mates by computing the evolution of the tensile yield stress for
various Zener anisotropy parameters A. In Fig. 6, results are re-
ported for different p values as well as the Tresca yield stress
ðrY=s0 ¼ 2Þ. Drastically different variations of the yield stress with
the local anisotropy are obtained. For p ¼ 0, the self-consistent
scheme predicts an increase of the yield stress with respect to
the isotropic elastic case, for whatever value of the Zener parame-
ter. This result is in strong disagreement with the stress fluctua-
tions that develop in the polycrystal when the local anisotropy
increases (Fig. 4). By contrast, when the intragranular stress heter-
ogeneity is used to define the RRSS ðp > 0Þ, the yield stress remains
Fig. 6. Self-consistent estimates of the tensile yield stress as a function of the Zener
parameter A. Note that the case p ¼ 0 corresponds to Hutchinson’s estimate. The
horizontal dotted line indicates the value of the Tresca yield stress.

Fig. 7. Self-consistent estimates of yield surface sections obtained with di
below the Tresca limit and decreases monotonically when A in-
creases. Such behaviour is consistent with an increasing heteroge-
neity as anisotropy increases.

In what follows, the influence of the field heterogeneity on the
shape of the yield criterion is addressed. A section of the yield sur-
face in the ð~r11; ~r22Þ plane is reported in Fig. 7 for two values of the
Zener parameter. When p ¼ 0, Hutchinson (1970) showed that the
‘‘classical” self-consistent scheme determines a modified Tresca
condition, i.e. the yield surface is obtained by dilation of the Tresca
yield surface and thus remains a hexagon in such projection. When
the stress heterogeneity is considered in the yield criterion, this is
no longer the case. Indeed, our results show that the yield surface
departs from a Tresca-type condition. It can be observed that the
initially straight segments of the yield surface become curved
when stress fluctuations are considered. This deviation from the
Tresca-type yield surface is more pronounced for increasing values
of parameters A and p. These results indicate that, in general, the
initial yield surface of macroscopically isotropic elastoplastic poly-
crystals does not obey a Tresca-type criterion (7).

5. Concluding remarks

This study sheds light on the effects of the local elastic anisot-
ropy on the onset of plasticity of polycrystalline materials. Our
attention has been focused on the description of yielding that
can be obtained by means of homogenization theories. Based on
a statistical description of local fields and the Schmid criterion, it
has been shown that there is not an unique definition of the initial
yielding of elastoplastic polycrystals, unless elasticity is isotropic.
The definition based on the absolute maximum resolved shear
stress in the RVE is useless since this extreme value cannot be
determined, except maybe for very specific microstructures for
which the complete stress field can be solved analytically. We have
proposed an original definition of the initial yield criterion based
on field statistics. This new approach defines a set of ‘‘probability”
yield surfaces. These latter can be associated to threshold volume
fractions of the first plastic grain that needs to be in yielding con-
dition. Addressing Hutchinson’s remark on an apparent shortcom-
ing of the self-consistent scheme, it has been demonstrated that
the incorporation of field fluctuations in the yield criterion leads
to physically meaningful self-consistent estimates. In particular,
an earlier plastic initiation compared with the elastically isotropic
case is predicted and a monotonic decrease of the yield stress esti-
mate is obtained when the stress fluctuations increase. The self-
consistent estimates have been successfully compared with the re-
sults of full-field computations performed on 3-D polycrystalline
fferent p values for biaxial loadings. A ¼ 2:8 (left) and A ¼ 10 (right).



Fig. 8. CPU time per elastic FFT iteration as a function of the number of voxels N.
The white squares correspond to unit-cell discretizations with prime numbers in
each direction.
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microstructures. Concerning the shape of the yield surface, our
investigation highlights the fact that the new ‘‘probability” yield
surface does not generally follow a Tresca-type criterion. A detailed
investigation of the relation between the field fluctuations and the
shape of the yield surface, as well as the extension of the present
statistical approach to describe the evolution with strain of the
yield surface will be subjects of future work. Finally, it is men-
tioned that the proposed approach might open interesting perspec-
tives for related problems, such as twinning activation in low-
symmetry crystalline structures, stress-assisted phase transforma-
tion, brittle fracture criterion in polycrystalline ceramics etc. In all
these problems, the local stresses distribution plays a critical role
and should be taken into account.

Appendix A. Computation of intraphase second moments of
stress and strain fields

The numerical computation of the intraphase stress second mo-
ment for the self-consistent model has been discussed previously
in Brenner et al. (2004). It must be noted that the expressions ob-
tained in this article require symmetrization but this had no conse-
quences on the published results. In this appendix, we derive the
concise dual expression for the intraphase strain second moment.

The intraphase stress and strain second moments are linked by
the local constitutive elastic law

hr� rir ¼ Cr : he� eir : Cr: ðA:1Þ

An estimate of the strain second moment can be obtained via
the relation

he� eirijkl ¼
1
cr

�e :
@eC
@Cr

ijkl

: �e ðA:2Þ

A detailed proof of the above relation can be found, in e.g. (Pon-
te Castañeda and Suquet, 1998).

A.1. Computation of @eC=@Cr
ijkl

The partial derivatives of the self-consistent Eq. (4) with respect
to local elastic moduli reads

eF :
@ðeC þ CHÞ
@Cr

ijkl

: eF � F :
@CH

@Cr
ijkl

: F

* +
¼ F :

@C
@Cr

ijkl

: F

* +
ðA:3Þ

with eF ¼ ðeC þ CHÞ�1 and F ¼ ðCþ CHÞ�1. The latter is a linear system
of equations for the determination of @eC=@Cr

ijkl. Using Kelvin’s con-
vention to represent symmetric fourth order tensors in three
dimensions by symmetric second order tensors in six dimensions
(Mehrabadi and Cowin, 1990), the latter equation is expressible in
the form

DIJKL
@eCKL

@Cr
PQ

¼ Ur;PQ
IJ ðA:4Þ

with

DIJKL ¼ eF IK
eF LJ þ eF IMQ MNKL

eF NJ �
XN

s¼1

csF
s
IMQ MNKLFs

NJ;

QMNKL ¼ �P�1
MS
@PST

@eCKL

P�1
TN � dMKdNL;

Ur;PQ
IJ ¼ 1

2
Fr

IPFr
QJ þ Fr

IQ Fr
PJ

� �
;

ðA:5Þ

where uppercase indices vary between 1 and 6. The estimation of
the intraphase second moment of the strain field thus requires
the evaluation of the Hill tensor P and its derivatives @P=@eCijkl. In
a general context of elastic anisotropy, these two quantities have
to be computed numerically.

A.2. Computation of P and @P=@eCijkl

The Hill tensor P is defined by a surface integral on the unitary
sphere

P ¼ 1
4pjZj

Z
jnj¼1

CðnÞjZ�1 � nj�3dS ðA:6Þ

where Z is a second-order tensor defining the assumed ellipsoidal
shape of the two-point correlation function of each phase. The
Green operator CðnÞ reads

C ¼ ½n� j�1 � n�ðsÞ ðA:7Þ

with the acoustic (Christoffel) tensor j ¼ n � eC � n� ½ �ðsÞ indicates the
(double) minor symmetrization.

The computation of partial derivatives of the Hill tensor thus re-
quires the evaluation of

@C

@eC ijkl

¼ n� @j�1

@eCijkl

� n

" #ðsÞ
ðA:8Þ

with

@j�1

@eC ijkl

¼ �j�1 � @j
@eCijkl

� j�1 ¼ �j�1 � n � @
eC

@eCijkl

� n
 !

j�1: ðA:9Þ

Taking into account the symmetries of the effective elastic mod-
uli tensor, its derivatives read

@eC mnpq

@eCijkl

¼ 1
8
ðdmidnjdpkdql þ dnidmjdpkdql þ dmidnjdqkdpl þ dnidmjdqkdpl

þ dpidqjdmkdnl þ dqidpjdmkdnl þ dpidqjdnkdml þ dqidpjdnkdmlÞ:

The Hill tensor and its partial derivatives have been computed
numerically using Gauss quadrature.

Appendix B. Details on the full-field FFT implementation

The FFT full-field modelling has been implemented using the
original scheme of Moulinec and Suquet (1998) since the studied
material (i.e. an elastic polycrystal) presents a moderate contrast



3026 R. Brenner et al. / International Journal of Solids and Structures 46 (2009) 3018–3026
in local mechanical properties. Concerning numerical aspects, use
has been made of the FFTW package (http://www.fftw.org) devel-
oped by Frigo and Johnson (2005). The computations have been
performed on a mono-processor computer (2.33 GHz). The effi-
ciency of our implementation has been tested for the same poly-
crystalline unit cell with different discretization grids. The
discretization of the unit cell ranges from N ¼ 163 to N ¼ 3203.
The CPU time per elastic iteration is reported in Fig. 8. As expected,
the computing time scales linearly with N log N. It is noted that the
chosen FFT package allows to get approximately the same scaling
even when the number of voxels along each direction

ffiffiffiffi
N3
p� �

is a
prime number. For a local elastic anisotropy parameter A ¼ 2:8,
five FFT iterations are required in average to solve the problem
with a relative error of 10�6 on the stress equilibrium condition.
It is also interesting to consider the efficiency of the method in
terms of memory size requirements. The size of a problem is char-
acterized by the number of d.o.f. which is equal to 3N. For illustra-
tion, the amount of memory required by our implementation of the
full-field FFT modelling for

ffiffiffiffi
N3
p
¼ 128 (� 6 millions d.o.f) is 1 GB

(compare with a recent study using FEM that required 21 GB of
memory to solve a similar problem with less than 1 million d.o.f
Houdaigui et al. (2007)).
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