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Abstract

A full-field formulation based on fast Fourier transforms (FFT) has been adapted and used to predict the micromechanical fields that
develop in two-dimensional columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular
mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear
and kink bands. These localized bands are associated with the large internal stresses that develop during creep in such anisotropic mate-
rial, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the
grains and on their interaction with neighboring crystals. The predictions of the model are also discussed in relation to the deformation
of columnar sea and lake ice, as well as with the mechanical behavior of granular ice of glaciers and polar ice sheets.
Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
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1. Introduction

Ih ice single crystals deform plastically in the dislocation
glide regime essentially by ð0 001Þh1�210i basal slip. The
yield point observed during the early stage of plastic flow,
associated with the formation of slip lines, is related to the
multiplication of basal dislocations by slip, cross-slip and/
or dislocation climb [1]. The stress required to produce a
given effective strain-rate along a crystallographic direction
not lying on the basal plane is between one and two orders
of magnitude greater than the stress necessary to produce
the same strain-rate along a direction belonging to the
basal plane [2].

The single crystals that form glacier ice and polar ice
sheets exhibit a wide range of sizes and morphologies,
but, in general, the structure of this polycrystalline ice
can be characterized as being ‘‘granular” or ‘‘three-dimen-
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sional” (3-D). Another natural form of ice is the so-called
‘‘columnar” or ‘‘two-dimensional” (2-D) polycrystalline
ice (also referred to as ‘‘S2” ice in glaciological literature
[3]), consisting of an aggregate of columnar grains with
the hci-axis of each single-crystal randomly oriented in
the plane perpendicular to the direction of the columns.
This kind of aggregate is obtained when ice grows from
the surface of calm water in an unidirectional temperature
gradient. This type of ice forms the natural covers of the
Arctic Ocean and northern large rivers. Two-dimensional
ice samples can be also prepared in the laboratory, for con-
trolled testing [4–7].

The aforementioned very large viscoplastic anisotropy
of ice single crystals has consequences on the mechanical
response of ice polycrystals. On the one hand, the develop-
ment of lattice preferred orientations (crystallographic tex-
tures) as ice deforms (e.g., when ice is transported into the
depths of a polar ice sheet) determines the striking differ-
ences in the viscous response of textured ice polycrystals
to stresses applied along different directions (e.g., [8]). On
.
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the other hand, the fulfillment of both compatibility and
stress equilibrium across grain boundaries results in heter-
ogeneous intragranular deformation patterns [4–7,9–11].
High orientation gradients were observed in ice crystals
extracted from the Antarctic ice sheet [12]. Dynamic con-
tinuous and discontinuous recrystallization, which is very
active in ice sheets [13], contributes to the reduction of
the long-range internal stresses field induced by such intra-
granular deformation heterogeneities.

Texture development in polar ice sheets and the result-
ing anisotropic response of polycrystalline ice have been
intensively studied using mean-field models (e.g., [14–16]).
This kind of approach is based on the statistical character-
ization of the intragranular mechanical fields (in terms of
average grain stresses and strain-rates, and, in the most
advanced formulations, also through the determination
of the intracrystalline average field fluctuations [16]), but
the actual micromechanical fields remain inaccessible to
these homogenization approaches.

The modeling of the intracrystalline heterogeneity that
develops in ice polycrystals (which requires the use of
full-field approaches) has been, on the other hand, much
less investigated. To fill this gap, this work is devoted to
the study of the correlation existing between the heteroge-
neous deformation patterns that appear inside the constit-
uent single-crystal grains of an ice aggregate and their
corresponding crystallographic orientations, along with
the influence of other factors, such as orientation and size
of neighboring grains. To this end, a full-field formulation
based on the fast Fourier transform (FFT) [17–19] has been
adapted to obtain the micromechanical fields that develop
in polycrystalline ice deforming by dislocation creep.

We have chosen to pursue this study on columnar ice
polycrystals, for various reasons. On the one hand, dealing
with a 2-D problem allowed us to use a higher resolution
(i.e., more discretization points) to characterize the intra-
crystalline fields, and to fully visualize the results in a 2-
D representation. Another advantage is that the mathemat-
ical representation of this kind of polycrystals is easier
since each crystallographic orientation is almost fully char-
acterized by only one angular parameter (rather than by
three Euler angles, as in the case of 3-D polycrystals). Also,
most importantly, we have available a comprehensive set of
experimental results on crystal orientation and neighbor-
hood type dependence of the intracrystalline localization
patterns observed in laboratory grown and tested columnar
ice specimens with different microstructures [4–7], which
can be used for validation of our model predictions.

The plan of this paper is as follows. In Section 2 we
review the available experimental evidence on the effective
and local viscoplastic behavior of polycrystalline ice and
recall some experimental results obtained by Mansuy [5]
on the orientation- and microstructure-dependent defor-
mation localization patterns in columnar ice polycrystals.
In Section 3 we provide details of the model utilized and
the unit cell used in this study. In Section 4 we present
the results of our simulations and compare them with the
experimental evidence. In Section 5 we conclude discussing
possible improvements of the modeling of natural poly-
crystalline ice, based on the capabilities of the present
micromechanical formulation.

2. Mechanical behavior of polycrystalline ice

2.1. Effective and local viscoplastic behavior of

polycrystalline ice

The secondary creep of polycrystalline ice is reached
at strains of about 1%. The corresponding stress expo-
nent is close to 3 for deviatoric stresses higher than
0.2 MPa [2]. Otherwise, for conditions prevailing in polar
ice sheets (deviatoric stresses lower than 0.2 MPa and
strain-rates lower than 10�10 s�1) the stress exponent
for steady-state creep is lower than 2, as suggested by
borehole deformation measurements [20], bubbly ice den-
sification [21] and laboratory tests [22]. Under these very
low stress and strain-rate conditions, dislocation creep
remains the dominant deformation mode [23,24] but
grain-boundary sliding [25,26] and grain-boundary
migration [24] can also accommodate strain and control
the deformation kinetics. Therefore, in what follows,
for consistency with the assumption of dislocation glide
being the exclusive viscoplastic deformation mechanism,
and also for a meaningful comparison with laboratory
measurements of deformation localization in columnar
ice [4–7], obtained at strain-rates between 10�8 and
10�7 s�1, a stress exponent of 3 is assumed.

Hexagonal ice single crystals have a c/a relation of
1.629. Based on direct and indirect evidence (e.g., see
Ref. [14] and references therein), it is usually assumed that
they can deform by means of slip on three soft
ð0 001Þh1�210i basal (‘‘bas”) slip systems, three hard

1 0�10
� �

h1�210i prismatic (‘‘pr”) systems, and six hard
1 1�22
� �

h11�2�3i pyramidal (‘‘pyr”) systems. The rate-sensi-
tive equation, relating the shear-rate on each slip system
and the stress acting on the crystal, is given by

_cs ¼ _co

ms
ijr
0
ij

ss

� �n

; ð1Þ

where r0ij is the deviatoric stress tensor, ms
ij is the Schmid

tensor of slip system (s) defined as ms
ij ¼ ðns

i b
s
j þ ns

jb
s
i Þ=2,

with ns and bs being the normal and Burgers vectors of sys-
tem (s); _cs and ss are, respectively, the shear-rate and the
threshold stress of slip system (s); n = 3 is the creep expo-
nent; and _co is reference shear-rate. Hence, the single-crys-
tal anisotropy is characterized by the ratio between the
critical stresses of the different slip modes. In what follows,
we have adopted spr = spyr and M = spr/sbas = spyr/sbas.
The value of the anisotropic parameter M was adjusted
to experiments, according to the following considerations.
A normalized effective response of a viscoplastic material
can be obtained in terms of the reference equivalent stress
ro, defined as [14]:
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ro ¼
_co

_Eeq

 !1=n

Req; ð2Þ

where n is the macroscopic stress exponent, and Req and _Eeq

are the macroscopic von Mises equivalent stress and strain-
rate. For _co ¼ 1, a typical value of the reference stress for
an isotropic ice polycrystal (i.e., one made of randomly ori-
ented crystals), at �10 �C, for a viscosity exponent n = 3 is
ro=sbas ¼ 18 [14]. The latter relation expresses the ratio be-
tween the viscosity of a isotropic polycrystalline ice sample
and a single-crystal deforming by basal glide. Previous
studies [16] using the FFT-based model to calculate the
effective response of isotropic ice showed a linear depen-
dence of the reference stress ro with the anisotropy param-
eter M, with a slope very close to 1. Based on this scaling
behavior, a value of the anisotropic parameter M = 20
was adopted in the calculations that follow. It is worth not-
ing that the choice of a higher M value does not change
qualitatively the results to be presented below.
Fig. 1. Photograph of compression creep specimen #1 (after Mansuy [5])
between crossed polarizers, after a deformation of 6.3 � 10�2 at �10 �C.
The corresponding strain-rate was 4.5 � 10�8 s�1. The diameter of the
initially circular monocrystalline inclusion was 30 mm. Parallel lines are
the traces of the basal planes.

Fig. 2. Photograph of compression creep specimen #2 (after Mansuy [5])
between crossed polarizers, after a deformation of 6.6 � 10�2 at �10 �C.
The corresponding strain-rate was 6.0 � 10�8 s�1. The mean size of each
hexagonal grain was 20 mm. Black and white arrows indicate the initial
hci-axis orientations.
2.2. Deformation heterogeneity in columnar ice polycrystals

Mansuy [5,7] conducted a series of compression creep
experiments at �10 �C on laboratory-grown large colum-
nar ice crystals and multicrystals with different orientations
and surrounded by a matrix of smaller crystals. The speci-
mens were plates of 210 � 140 mm2 with a relatively thick
(8 mm) section, consisting of a large columnar single crys-
tal or a multicrystalline cluster, located in the center of the
plate, with columnar axes along plate thickness (i.e., having
their hci-axes lying on the plane of the plate) and embedded
in fine-grained ice matrices. In what follows, results of two
types of specimens tested by Mansuy are going to be dis-
cussed and compared with corresponding simulations:

(a) Specimen #1 (Fig. 1), consisting of a single crystal
with a circular section in the plane of the plate, measuring
30 mm in diameter, embedded in an isotropic matrix of
very fine globular grains (of around 1 mm in diameter,
i.e., small compared to the sample thickness) with random
orientations. The hci-axis of the central crystal was inclined
45� with respect to the compression axis.

(b) Specimen #2 (Fig. 2), consisting of seven grains, hex-
agonal in shape, of about 20 mm in size, surrounded by a
matrix of smaller (3–8 mm in diameter) columnar grains.
The hci-axes of the central grains had different initial orien-
tations in the plane of the plate.

These ice specimens were tested under compression
exerted in the plane at �10 �C. The applied compression
stress was, respectively, 0.5 MPa for specimen #1 and
0.75 MPa for specimen #2. Fig. 1 shows the localization
of the deformation in basal slip lines in specimen #1 after
a strain of about 0.06. Fig. 2 shows, after about the same
strain (0.07), three types of localization bands: basal shear
bands, kink bands and sub-boundaries, that change orien-
tation to follow crystallographic directions when they cross
from one grain to another. Kink band boundaries are
roughly parallel to the hci-axis and are seen inside grains
well oriented for basal slip (grains #2 and #7). These kink
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bands appear to form after some basal slip and the bending
of basal planes [5,7]. On the other hand, kink bands are not
observed in grains #3, #5 and #6, which are not well ori-
ented for basal slip. Sub-boundaries parallel to the hci-axis
can be seen in grain #3. The difference in behavior for the
two types of specimens is related to the stress conditions at
the interface between each crystal and its neighborhood. A
better accommodation of basal slip by the fine-grained
matrix explains the absence of shear and kink bands in
the central grain of specimen #1.

It is worth noting that the formation of kink bands,
described as a sharp or discontinuous change in orienta-
tion of the active slip surface, had been previously
reported in many experimental studies conducted on 3-
D ice polycrystals (e.g., [9–11]). In particular, Wilson
et al. [10] reported the formation of kink bands in grains
of a 3-D polycrystal deformed in plane-strain, with hci-
axis lying on the plane containing the shortening and
extension directions, normal to the shortening axis. Fur-
thermore, kinking is not restricted to plastic deformation
of ice. It has been reported to occur in different low-sym-
metry materials, both as an inelastic mechanism (alterna-
tive to easy glide and deformation twinning, when the
former is not favorably oriented and the latter is inactive
due to, for example, a high single crystal’s c/a ratio [27–
30]) and, recently, also as an elastic (reversible) deforma-
tion mechanism (e.g., [31,32]). Kink bands were also
observed in face-centered cubic (fcc) single crystals (e.g.,
[33]), specially at sites of high stress concentration such
as crack tips [34]. The development of these kink bands
has been successfully simulated using crystal plasticity-
based finite element (FE) analysis [34–36]. Therefore, the
present analysis of the deformation of columnar polycrys-
talline ice can be regarded also as a model material study,
to better understand this ubiquitous mechanism that kink-
ing represents.

3. Model

3.1. The FFT-based formulation

The intracrystalline states that develop during creep of
polycrystalline ice can be obtained using an extension of
an iterative method based on FFT, originally proposed
by Moulinec and Suquet [17] and Michel et al. [18] for lin-
ear and nonlinear composites. This formulation was later
adapted to polycrystals and applied to the prediction of
texture development of fcc materials [19], and in turn used
for the computation of field statistics and effective proper-
ties of power-law 2-D polycrystals [37,38] and 3-D cubic,
hexagonal [39] and orthorhombic [40] materials. The
FFT-based formulation was also recently applied to com-
pute the development of local misorientations in polycrys-
talline copper, with direct input from orientation images
[41]. The present work is the first application of this formu-
lation for the prediction of local fields in non-cubic
materials.
The FFT-based full-field formulation for viscoplastic
polycrystals is conceived for a periodic unit cell, provides
an exact solution of the governing equations, and has bet-
ter numerical performance than a FE calculation for the
same purpose and resolution. The viscoplastic FFT-based
formulation consists in finding a strain-rate field, associ-
ated with a kinematically admissible velocity field, which
minimizes the average of local work-rate, under the com-
patibility and equilibrium constraints. The method is based
on the fact that the local mechanical response of a periodic
heterogeneous medium can be calculated as a convolution
integral between the Green function of a linear reference
homogeneous medium and the actual heterogeneity field.
This type of integral reduces to a simple product in Fourier
space, and therefore the FFT algorithm can be used to
transform the heterogeneity field into Fourier space and,
in turn, to get the mechanical fields by antitransforming
that product back to real space. However, since the actual
heterogeneity field depends precisely on the a priori
unknown mechanical fields, an iterative scheme should be
implemented to obtain, upon convergence, a compatible
strain-rate field and a stress field in equilibrium.

The periodic unit cell representing the polycrystal is dis-
cretized by means of a regular grid xdf g, which in turn deter-
mines a corresponding grid of the same dimensions in
Fourier space nd

� �
. Velocities and tractions along the

boundary of the unit cell are left undetermined. An average
velocity gradient Vi,j is imposed on the unit cell, which gives
an average strain-rate _Eij ¼ 1

2
ðV i;j þ V j;iÞ. The local strain-

rate field is a function of the local velocity field, i.e.,
_eijðvkðxÞÞ, and can be split into its average and a fluctuation
term: _eijðvkðxÞÞ ¼ _Eij þ ~_eijð~vkðxÞÞ, where viðxÞ ¼ _Eijxjþ
~vi ðxÞ. By imposing periodic boundary conditions, the veloc-
ity fluctuation field ~vkðxÞ is assumed to be periodic across the
boundary of the unit cell, while the traction field is antiperi-
odic, to meet equilibrium on the boundary between contigu-
ous unit cells. The local constitutive equation that relates the
deviatoric stress r0ijðxÞ and the strain-rate _eijðxÞ at point x is
obtained from Eq. (1), adding the contribution of the 12 slip
systems assumed to be active in the ice single crystal:

_eijðxÞ ¼
X12

s¼1

ms
ijðxÞ _csðxÞ

¼ _co

X12

s¼1

ms
ijðxÞ

ms
ijðxÞr0ijðxÞ

ssðxÞ

� �3

: ð3Þ

If p(x) is the hydrostatic pressure field, the Cauchy stress
field can be written as:

rijðxÞ ¼ Lo
ijkl _eklðxÞ þ uijðxÞ � pðxÞdij; ð4Þ

where the polarization field uijðxÞ is given by

uijðxÞ ¼ r0ijðxÞ � Lo
ijkl _eklðxÞ; ð5Þ

and where Lo is the stiffness of a linear reference medium.
Combining Eq. (5) with the equilibrium and the incom-
pressibility conditions gives



Fig. 3. Unit cell containing the cross-sections of 200 columnar grains
generated by Voronoi tesellation. The three hand-picked orientations:
(0�, 90�,0�) , (45�, 90�, 0�) and (90�, 90�, 0�), and the extension and shorting
directions are also indicated.
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Lo
ijklvk;ljðxÞ þ uij;jðxÞ � p;iðxÞ ¼ 0;

vk;kðxÞ ¼ 0:

���� ð6Þ

The system of differential equations (5), with periodic
boundary conditions across the unit cell boundary, can
be solved by means of the Green function method. If
Gkm and Hm are the periodic Green functions associated
with the velocity and hydrostatic pressure fields, the solu-
tions of system (6) are convolution integrals between those
Green functions and the actual polarization term. In the
case of the velocity and its gradient, after some
manipulation:

~vkðxÞ ¼
Z

R3

Gki;jðx� x0Þuijðx0Þdx0; ð7Þ

~vi;jðxÞ ¼
Z

R3

Gik;jlðx� x0Þuklðx0Þdx0: ð8Þ

Convolution integrals in direct space are simply prod-
ucts in Fourier space. Hence

~̂vkðnÞ ¼ ð�injÞĜkiðnÞûijðnÞ; ð9Þ
~̂_eijðnÞ ¼ Ĉsym

ijkl ðnÞûklðnÞ; ð10Þ

where Csym
ijkl ¼ symðGik;jlÞ. The tensors ĜijðnÞ and Ĉsym

ijkl ðnÞ
are only functions of Lo and can be readily obtained for
every point belonging to nd

� �
(for details, see Ref. [41]).

Having current estimates of the strain-rate field in the reg-
ular grid xdf g and computing the corresponding stress field
from the local constitutive relation (Eq. (3)) allows us to
obtain a guess for the polarization field in direct space
uijðxdÞ (Eq. (5)), from which, by application of FFT,
ûijðndÞ can be readily calculated. An improved guess for
the strain-rate field in xdf g can be then obtained antitrans-
forming Eq. (10), and so on. The actual iterative procedure
used in the present case of creep of polycrystalline ice is
based on an augmented Lagrangian algorithm [17] that
guarantees that the converged stress and strain-rate fields
fulfill equilibrium and compatibility, respectively (see Refs.
[18,41] for details).

Upon convergence, the stress at each material point can
be used to calculate the shear-rates associated with each
slip system (Eq. (1)), from which fields of relative activity
of the basal, prismatic and pyramidal slip modes can be
obtained as well.

It is worth noting that, while it is certainly possible to
use the present FFT-based formulation for the prediction
of microstructure evolution (e.g., using an explicit scheme
such that the strain-rate and velocity fields, and the corre-
sponding local lattice rotation-rates [41] are assumed con-
stant during a time interval, and thus can be integrated
to predict local texture evolution, morphological changes
of the grains and local strain-hardening), in this work, we
have restricted our analysis to the local fields that are
obtained for a fixed configuration. In this sense, for exam-
ple, the high strain-rate regions predicted by the model (see
below) should be regarded as precursors of localization
bands. Evidently, microstructural changes that are not con-
sidered under this approximation, such as the eventual
grains’ and subgrains’ morphological evolution and rota-
tion, as well as the possible occurrence of local strain-hard-
ening (although the latter remains small in ice deforming at
high temperature), may modify some of the trends
observed in the initial micromechanical fields. In order to
account for these microstructural changes, we are presently
in the process of coupling the FFT-based formulation with
a front-tracking numerical platform [42]. Results of this
coupled model will be reported elsewhere [43,44].

3.2. Unit cell construction

The crystallographic texture of a 2-D ice polycrystal
consisting of columnar grains with hci-axes perpendicular
to the axial (vertical) direction x3 can be described in terms
of a collection of Euler angles triplets of the form
ðu1; 90�;u2Þ (Bunge convention). The angle u1 determines
the orientation of the hci-axis on the plane perpendicular
to the columnar direction and u2 gives the rotation of the
hexagonal prism (i.e., the conventional unit cell of the hex-
agonal close-packed (hcp) crystal structure) around its hci-
axis. The application of the FFT method required the gen-
eration of a periodic unit cell or representative volume ele-
ment (RVE), by repetition along x1 and x2 of a square
domain. This square domain was constructed in such a
way that it contained the cross-sections of 200 columnar
grains, generated by Voronoi tessellation (see Fig. 3). Each
Voronoi partition represents the cross-section of a colum-
nar grain with orientation ðu1; 90�;u2Þ, where u1 and u2

were randomly selected from the interval [�180�, 180�]
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(except for three grains assigned with hand-picked orienta-
tions, see below). This square domain is the cross-section of
the unit cell, consisting of columnar grains with axes along
x3 and sections in the x1–x2 plane. This unit cell was dis-
cretized using a 1024 � 1024 � 1 grid of regularly spaced
Fourier points, resulting in an average of around 5250
Fourier points per grain. Note that the periodic repetition
of this unit cell along x3 determines infinitely long grains
along this direction.

For reasons that will become apparent below, the fol-
lowing three orientations: (0�, 90�, 0�), (45�, 90�, 0�),
(90�, 90�, 0�) were forced to make part of the set of 200
(otherwise random) orientations assigned to the grains.
For this, three relatively big Voronoi cells with large sepa-
rations between each other (located in the lower left, at the
center, and in the upper right sections of the unit cell, see
Fig. 3), were, respectively, designated to have the above
orientations. In Fig. 3, the arrows indicate the orientation
of the corresponding hci-axes. For a plane-strain state,
such that x1 is the tensile direction and x2 is the compres-
sion direction, the grain with u1 ¼ 45� (‘‘45�” grain in what
follows) is favorably oriented to deform by soft basal slip,
while in the ‘‘0�” and ‘‘90�” grains, the hard pyramidal sys-
tems are the only ones favorably oriented to accommodate
deformation. It is worth noting that due to the above
plane-strain condition and the in-plane orientation of the
hci-axes, the prismatic slip systems are not well oriented,
for any u1 angle.
Fig. 4. Predicted equivalent strain-rate field over the entire unit cell of
Fig. 1, normalized with respect to the average equivalent strain-rate
ð _Eeq ¼ 1:15� 10�8 s�1Þ.
4. Results and discussion

A FFT-based calculation was run to obtain the overall
and local mechanical response of the above-described unit
cell representing a columnar ice polycrystal, to the follow-
ing imposed strain-rate tensor (see also Fig. 3):

_Eij ¼
1� 10�8 0 0

0 �1� 10�8 0

0 0 0

2
64

3
75 s�1: ð11Þ

The computed effective equivalent stress reached a value
of 0.01875 in units of sbas, resulting in a normalized refer-
ence equivalent stress ro (see Eq. (2)) [14] of 9.11 � sbas.
This roughly represents an effective response twice as soft
for this kind of isotropic columnar ice polycrystal
deformed in-plane, compared to an isotropic 3-D polycrys-
talline ice (the magnitude of ro of the latter, in units of sbas,
is around the value of the single crystal’s anisotropic
parameter [16], i.e., ro ffi 20� sbas in the present case). As
expected, the computed overall relative activities of the dif-
ferent slip modes (i.e., 90.7%, 7.6% and 1.7% for basal,
pyramidal and prismatic slip, respectively) show a pre-emi-
nence of basal slip, a minor contribution of pyramidal slip
and a very low activity of prismatic slip.

Fig. 4 shows the computed equivalent strain-rate field
for the entire unit cell, normalized with respect to the aver-
age equivalent strain-rate ( _Eeq ¼ 1:15� 10�8 s�1). The
main feature observed in this plot is a network of high
strain-rate bands, precursors of localization bands (in what
follows we will sometimes refer to them simply as ‘‘locali-
zation bands”). These bands are transmitted from grain
to grain, and are, in general, inclined with respect to the
shortening and extension directions. They follow tortuous
paths, sometimes with large deviations from 45� (i.e., the
macroscopic directions of maximum shear stress). As will
be shown in more detail below, the reason for this is that
they follow crystallographic directions (basal poles or basal
planes) inside each grain. Note that, since the existing
experimental evidence [5,10] shows an excellent correlation
between the orientation of the band with respect to the
crystallographic hci-axis and its shear- or kink-band char-
acter (the latter having being actually determined by basal
slip trace analysis), and since the only information extract-
able from our continuum modeling approach is the orien-
tation of the band with respect to crystallographic
directions, the predicted bands parallel or perpendicular
to the hci-axis will be reasonably assumed to be kink or
shear bands, respectively. Some segments of these bands
also follow favorably oriented grain boundaries and fre-
quently go through triple or multiple points between
grains, in good agreement with some of Mansuy’s [5] obser-
vations (see Fig. 2). These transgranular bands usually fade
and eventually stop inside grains whose orientations force
the bands to adopt an orientation close to 0� or 90�. The
most intense bands (>10 times the macro strain-rate) are
thinner and generally only one of them is found inside a
given grain. Less intense bands appear in parallel pairs
inside some grains, connected by another system of orthog-
onal and even less intense bands (see also field predictions
in the vicinity of the 45� grain below).
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The next three figures show in more detail the predicted
fields of equivalent strain-rate (normalized to _Eeq), equiva-
lent stress (in units of sbas) and relative basal activity, in the
vicinities of the 0�, 45� and 90� grains, together with the
map of randomly assigned orientations of the surrounding
grains in those vicinities. Fig. 5 corresponds to the vicinity
of the 45� grain. Two very intense (i.e., local strain-rates
higher than 10 times the macroscopic strain-rate) and par-
allel kink bands (note the alignment of the latter with the
basal pole direction) are seen inside the 45� grain, con-
nected by several less intense shear bands (orthogonal to
the pair of kink bands, lying on to the basal plane), in good
agreement with Mansuy’s experiments (see Fig. 2). Both
bands go through triple and quadruple points formed by
the central grain and neighbor crystals. The upper kink
band propagates down and to the right, into the �54.9�
grain, in the form of a shear band. The lower band propa-
gates up and to the left, following two well oriented (i.e.,
with an inclination close to 45�) grain boundaries. The
basal activity in the 45� grain is very high, although some
regions of higher non-basal activity can be observed
between shear bands and immediately outside the kink
bands. The latter is compatible with a low or even vanish-
ing resolved shear stress on basal planes in those locations,
equivalent strain-rate 

basal activity 

Fig. 5. Predicted fields of equivalent strain-rate (normalized to _EeqÞ, equivale
orientations, for the 45� grain and its surroundings.
which may be responsible for the formation of basal dislo-
cation walls that are at the origin of a kink band [5,7]. This
correlation between kink band precursors and nearby
localized higher non-basal activity is systematic in our
results.

In the case of the surroundings of the 0� grain (Fig. 6)
one can observe a shear band coming into the central grain,
out of the highly stressed quadruple point on the right that
struggles to propagate inside the 0� grain. The only clear
kink band is found in the 37.2� crystal, again well oriented
for basal slip. No kink band precursors are observed in the
0� grain. This is compatible with the absence of a clear indi-
cation of kink bands in grains #5 and #6 of Fig. 2. The rea-
son for this behavior is that kink bands in grains of such
orientation are ineffective at accommodating the applied
deformation (i.e., shortening along the compressive direc-
tion or extending along the tensile direction).

The 90� grain and its vicinity are shown in Fig. 7. Local-
ization bands near grain boundaries are found in the 155.9�
and �53.1� grains. A kink region initiates at a triple point
between the central grain and the 82.9� and 58.0� crystals,
by the confluence of two bands coming from these neigh-
bors, but it vanishes inside the grain. It is also worth noting
that the sharp shear band observed in grains with a small
orientation
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Fig. 6. Predicted fields of equivalent strain-rate (normalized to _EeqÞ, equivalent stress (in units of sbas), relative basal activity, and map of neighboring
orientations, for the 0� grain and its surroundings.
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tilt with respect to 90�, such as the 82.9� grain on the upper
left, indicates the possibility of finding intense basal slip lines
in grains with orientations very close to 90�, as also reported
by Mansuy [5]. In such grains, a relatively low basal activity
and a relatively high equivalent stress is observed.

The effect of the size of the surrounding crystals on the
deformation heterogeneity of large grains is analyzed next.
Fig. 8 shows another RVE configuration studied using the
FFT-based approach. This unit cell was constructed as fol-
lows. A new 2-D Voronoi tessellation with 100,000 grains
was generated and discretized using the same number of
Fourier points (1024 � 1024) as before. The resulting aver-
age grain size (linear dimensions, in the same units as the
distance between two adjacent Fourier points) is given by

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1024Þ2=100; 000

q
� 3. Since the average grain size

of the original RVE was
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1024Þ2=200

q
� 72, the ratio

between these two average grain sizes roughly represents
the ratio between the linear dimensions of the large central
single crystal and the surrounding globular grains of Mans-
uy’s specimen #1 shown in Fig. 1. Next, the two Voronoi
structures (i.e., of 200 and 100,000 grains, respectively)
were superimposed and combined. In this combination,
the small grains were kept, except for the 0�, 45� and 90�
grains, which replaced the overlapping fine grains, resulting
in the configuration of Fig. 8. The predicted equivalent
strain-rate field is shown in Fig. 9. While the 0� and 90�
grains deform very little, the strain-rate field inside the
45� grain is around two times the average strain-rate, with
much less fluctuation than in the RVE surrounded by large
grains. However, unlike Mansuy’s specimen #1 (see Fig. 1),
both types of (mild) bands of higher strain-rate (contained
in, and perpendicular to, the basal plane, respectively) were
predicted. The retained sharp angles of the 45� grain (as
opposite to the circular geometry of the central crystal of
Fig. 1) are the likely cause of this disagreement. In any
case, our model clearly predicts that localization in large
grains is likely to be prevented (or at least delayed) as the
grain size of the surrounding crystals decreases.

In what concerns the strain-rate field predicted in the
matrix outside the large grains, it is apparent from the com-
parison of Figs. 4 and 9 that the length of the localization
bands correlates with the typical grain size of the micro-
structure. This result of our model can be qualitatively
compared with Doumalin et al.’s observations [45,46] on



 

orientation

98.494.3

82.9
11.1

58.0

66.0

-53.1

155.9

90.0

equivalent strain-rate 

basal activity 

equivalent stress 

+

Fig. 7. Predicted fields of equivalent strain-rate (normalized to _EeqÞ, equivalent stress (in units of sbas), relative basal activity, and map of neighbor
orientations, for the 90� grain and its surroundings.

Fig. 8. Unit cell obtained combining 100,000 Voronoi grains and the three
grains of the 200 grain unit cell of Fig. 1 with hand-picked orientations.

Fig. 9. Predicted equivalent strain-rate field over the entire unit cell of
Fig. 8, normalized with respect to the average equivalent strain-rate
( _Eeq ¼ 1:15� 10�8 s�1Þ.
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strain localization patterns in different heterogeneous mate-
rials. These authors have used microextensometry tech-
niques to characterize strain localization bands in a Ni/
Ag two-phase material deformed plastically in compres-
sion, forming at ±45� with respect to the compression axis,
and having a characteristic length of between two and six
times the correlation length of the phase distribution [45].
Also, in polycrystalline Zr deformed in tension, localiza-
tion bands were formed at a slightly higher angle (±52�)
with respect to the tensile direction, with a characteristic
length of 5–10 times the aggregate’s grain size [46].
Although the precise value of the factor between the length
of the localization bands and the heterogeneity length-scale
evidently depends on the mechanical contrast between
phases, or on the single-crystal anisotropy, our simulations
are in good qualitative agreement with Doumalin et al.’s
observations. This can be seen in Fig. 10, which shows
the strain-rate field (in two different scales, and with and
without grain boundaries superimposed) in the neighbor-
hood of the 45� grain.

5. Concluding remarks

A full-field formulation was adapted and used to predict
the micromechanical fields that develop in columnar ice
polycrystals deformed under plane-strain compression.
This formulation, conceived as a very efficient alternative
to FE methods (which calculation times usually scale with
N2, where N is the number of discretization points), is
based on the repetitive use of the FFT algorithm, whose
computing time scales with N � logN. This high numerical
efficiency combined with the resolution of the 2-D problem
associated with the deformation of columnar ice polycrys-
tals allowed us to obtain very detailed predictions of the
intragranular mechanical fields.

Under the assumption of creep deformation accommo-
dated exclusively by dislocation glide (consistent with stres-
ses >0.3 MPa and strain-rates >10�8 s�1), the deformation
Fig. 10. Predicted equivalent strain-rate field corresponding to the unit cell of F
equivalent strain-rate ( _Eeq ¼ 1:15� 10�8 s�1Þ. Left column: Grain boundaries
column: Highest color in the scale represents intensities of 2+ and grain boun
heterogeneity predicted by the model is in good qualitative
agreement with the available experimental evidence. Nar-
row regions of high strain-rate comprising several grains,
compatible with the subsequent formation of localization
bands lying on the basal plane (shear bands) and perpen-
dicular to the basal plane (kink bands), were found, and
their dependence with crystallographic orientation, grain
morphology and interaction with neighboring grains was
studied and validated. In the laboratory, kink bands were
observed to form after significant basal slip [5,10] and,
especially, in grains well oriented for basal slip (Fig. 2).
From Figs. 6 and 7, kink bands predicted by the FFT
model were also not observed in the 0� and 90� grains,
which are not well oriented for basal slip. Kink bands with
basal planes parallel to the compression axis have been
observed in 2-D columnar ice, but at a strain-rate of about
10�5 s�1, within the ductile–brittle transition [47]. At these
high strain-rates, cracks induced by the pile-up of disloca-
tions were observed at the kink band boundaries. It is
worth noting that the difficulty of initiating reversible
incipient kink bands in ice, which are seen to nucleate on
the easy slip plane in several anisotropic hexagonal metals
when loaded parallel to this plane [30–32], is related to the
brittle behavior of ice at relatively low stresses [48,49].

Kink bands, as predicted by the FFT-based model, are
expected to form easily in 2-D columnar sea and lake ice
[9], especially in high pressure zones located at the interface
between ice and rigid marine structures. On the other hand,
this is generally not the case in 3-D natural glacier ice that
deforms at strain-rates generally lower than 10�9 s�1. At
those low stresses and strain-rates, alternative accommoda-
tion processes, such as grain growth, dynamic recrystalliza-
tion and, possibly, diffusion and grain-boundary sliding
can efficiently contribute to reduce the long-range internal
stress field associated with the mismatch of slip at grain
boundaries in such anisotropic material. These accommo-
dation processes should therefore preclude the formation
of kink bands [10]. This may be the reason why kink bands
ig. 8 in the vicinity of the 45� grain, normalized with respect to the average
shown and highest color in the scale represents intensities of 5+. Right
daries are not plotted.
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have never been observed in polar ice sheets. On the other
hand, the active slip modes in 2-D and 3-D ices can be dif-
ferent. In the present FFT-based simulations, the predicted
relative activity of non-basal slip was less than 10%, and
essentially associated with pyramidal slip. The rather low
activity of the prismatic slip systems (1.7%), compared with
that predicted for a 3-D granular ice (about 8%) [14] is
related to a vanishing resolved component of the applied
stress on the prismatic planes when 2-D ice is deformed
under compression normal to the columnar axis.

The present micromechanical formulation can be
adapted to 3-D granular ice and used as a basis to account
for more of the relevant accommodation processes taking
place in polar ice sheets, but it obviously needs further
improvement. Microstructural update using an explicit
scheme as explained at the end Section 3.1 can provide
information about the development of dislocation struc-
tures. Intragranular misorientations [41] and the excess dis-
location density fields [50] can be readily obtained and
incrementally updated by numerical derivation of the pre-
dicted deformation gradient field. In turn, these fields, in
combination with an appropriate thermomechanical mod-
eling platform (e.g., [42]), can be used to calculate local
driving forces for the prediction of dynamic recrystalliza-
tion [43,44]. Furthermore, a more straightforward and
quantitative comparison with experimental evidence can
be achieved using the present model in combination with
direct input from microstructure images, integrating
in situ electron backscattering diffraction observations
(e.g., [51,52] in the specific case of ice polycrystals) with
numerical simulations [51].
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