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Abstract

A self-consistent model for semi-crystalline polymers is proposed to study their constitutive

behavior, texture and morphology evolution during large plastic deformation. The material is

considered as an aggregate of composite inclusions, each representing a stack of crystalline lamellae

with their adjacent amorphous layers. The deformation within the inclusions is volume-averaged

over the phases. The interlamellar shear is modeled as an additional slip system with a slip direction

depending on the inclusion’s stress. Hardening of the amorphous phase due to molecular orientation

and, eventually, coarse slip, is introduced via Arruda–Boyce hardening law for the corresponding

plastic resistance. The morphology evolution is accounted for through the change of shape of the

inclusions under the applied deformation gradient. The overall behavior is obtained via a viscoplastic

tangent self-consistent scheme. The model is applied to high density polyethylene (HDPE). The

stress–strain response, texture and morphology changes are simulated under different modes of

straining and compared to experimental data as well as to the predictions of other models.
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1. Introduction

Semi-crystalline polymers are increasingly used in structural applications where the
influence of the microstructure and its evolution on the macroscopic mechanical properties
is of prime importance. A number of applications, such as thin films, coatings, high-
modulus fibers and ribbons, display highly anisotropic mechanical and crystallographic
properties and their processing often involves large plastic deformation of an initially
isotropic material.

The microstructure of melt-crystallized polymers consists of broad, thin crystalline
lamellae separated by amorphous layers. Locally, the lamellae are grown from a central
nucleus and are radially oriented, which results in the formation of spherulitic structures
(e.g. Lin and Argon, 1994). During large plastic deformation, profound changes in both
the crystallographic texture and morphology take place. It has been observed (e.g. Butler et
al., 1998; Hiss et al., 1999) that in uniaxial tension of HDPE, the initial lamellar
microstructure is gradually destroyed and replaced by stretched fibrils (Fig. 1). Similar
lamellar-to-fibrillar transition processes have also been reported from simple-shear
experiments of HDPE (Bartczak et al., 1994).

In the past fifteen years, several micromechanical models have been developed in order
to simulate the stress–strain behavior and crystallographic texture evolution in semi-
crystalline polymers at large strains. Parks and Ahzi (1990) proposed a purely crystalline
model treating the lack of five independent slip systems in polymer crystals. Ahzi et al.
(1990) developed a bi-crystal approach, where the basic structural unit of semi-crystalline
polymers was introduced as a two-phase composite inclusion consisting of a single, flat
Fig. 1. Morphology change during lamellae stack deformation in a tensile test, after Schultz (1974): (a)

interlamellar shear; (b) interlamellar shear plus fine slip in the crystals; (c) coarse slip plus initiation of lamellae

breakage; (d) fibrillar state with residual crystalline block portions. Arrows show the loading direction. The

imposed deformation increases from left to right.
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lamella and its adjacent amorphous layer (Fig. 2a). Both models used Taylor’s assumption
for the overall properties. This approach yields a very stiff stress–strain response and
overestimates the rate of the texture evolution. Dahoun et al. (1991) represented the
crystalline polymer as an aggregate of crystalline lamellae in the form of oblate ellipsoids.
The average properties have been found via a tangent self-consistent scheme. Due to the
more realistic modeling of the interactions between the crystals, the obtained results agreed
reasonably well with the experiments despite the fact that the amorphous phase
contribution was not considered. Later, Lee et al. (1993a) used the composite inclusion
depicted in Fig. 2a, coupled with Sachs- and self-consistent-like interaction laws. The
model produced valuable results about the stress–strain behavior and crystallographic
texture development of HDPE. Recently, van Dommelen et al. (2003) extended the rigid-
viscoplastic modeling of Lee et al. (1993a) to elasto–viscoplastic behavior using a
deformation gradient formulation and the same composite inclusion model. With this
approach they were able to simulate cyclic loadings of semi-crystalline polymers.
Despite the above mentioned efforts, many important phenomena related to the strain-

induced evolution of the microstructure are not fully accounted for in the existing models.
For example, there were no attempts to incorporate the strain localization within the
crystals and their subsequent fragmentation into smaller blocks, the strain-induced
decrease in crystallinity (Raabe et al., 2004) or the transformation of the morphology from
a lamellar to a fibrillar state (Fig. 1). Undoubtedly, all of these microscopic processes
influence the macroscopic mechanical properties and their integration into the constitutive
modeling should result in better predictions of the observed stress–strain response and
texture evolution.
In the present work, we develop a micromechanical model which, besides the

stress–strain behavior and the crystallographic texture evolution, also takes into account
the morphology evolution of the microstructure. We restrict our attention to monotonic
loadings. The material is assumed to be incompressible. For the sake of simplicity,
elasticity is neglected, which is a reasonable approximation for highly crystalline polymers
and polymers with glassy amorphous phase where the purely elastic strain does not exceed
3%. Following Lee et al. (1993a), we ignore the radial arrangement of the lamellae in the
spherulites and use a basic structural unit representing only a part of a spherulite. This
Fig. 2. The basic structural unit of a semi-crystalline polymer: (a) composite plane inclusion, after Lee et al.

(1993a); (b) lamellae stack inclusion, after Nikolov and Doghri (2000); nðIÞ—normal to the lamella(e)/amorphous

layer(s) interface; c—chain direction in the crystals.
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simplification is motivated by the fact that, despite some efforts in this direction,
the influence of the spherulitic structure as such on the macroscopic mechanical pro-
perties has not been proven experimentally. Moreover, at large deformations the
spherulites are gradually destroyed (Bartczak et al., 1992a). With these conside-
rations in mind, here we assume that an aggregate consisting of randomly oriented
composite inclusions, which are smaller than the spherulites, behaves in the same way as an
aggregate where the inclusions are arranged in spherulitic-like structures as long as the
macroscopic mechanical properties are concerned. In contrast to the inclusion model used
by Lee et al. (1993a), we define the basic structural unit of semi-crystalline polymers
as a stack of crystalline lamellae with their adjacent amorphous layers according
to Fig. 2b (Nikolov and Doghri, 2000). This choice is motivated by several reasons.
Firstly, the composite plane inclusion from Fig. 2a, is a nearly 2D object, which makes it
difficult to introduce its shape in the model. Hence, the self consistency conditions
for the aggregate should be explicitly based on the equilibrium and compatibility
conditions at the crystalline/amorphous interfaces instead of the inclusions’ boundaries.
Given that during coarse slip the interfaces are destroyed (see Fig. 1), the latter self
consistency conditions are not a natural choice. Thirdly, the lamellae stack inclusion seems
to better reflect the physical reality. Experimental observations have shown that during
deformation, stacks of several parallel lamellae rotate as a rigid body (e.g. Lin and Argon,
1994). The formation of lamellae stacks is due to the fact that many of the polymer chains
forming the crystals run through several neighboring lamellae, thus creating tie molecules
and loose loops that link several lamellae together. At the crystalline/amorphous interface,
the lamellae normals, nðIÞ, are assumed to be tilted at a certain angle with respect to the
direction of the polymer chains in the crystals, c (Fig. 2), as observed experimentally
(Bassett and Hodge, 1981).

The definition of the composite inclusion as a lamellae stack allows us to incorporate
its shape and strain-induced transformation into the micromechanical modeling.
In our model, the change of the inclusion’s shape under the action of the local
deformation gradient represents the morphology evolution. The average behavior of the
aggregate is obtained by including the lamellae-stack inclusion model into a viscoplastic
tangent self-consistent scheme. This homogenization procedure was proposed by Molinari
et al. (1987) and generalized by Lebensohn and Tomé (1993) for anisotropic polycrystals
and arbitrary ellipsoidal shape of the inclusions. With this approach, the relatively soft
interactions between the lamellae stacks are modeled in a realistic way. Moreover, both
local equilibrium and compatibility between a given inclusion and its surrounding
are satisfied.

Finally, it is worth mentioning that the use of a lamellar structure as the basic unit in the
context of a self-consistent formulation was also successfully applied to the study of the
mechanical properties and texture evolution of an intermetallic Ti–Al aggregate consisting
of multiple lamellar colonies (i.e., polysynthetic twins) (Lebensohn, 1999).

The article is organized as follows: First, we describe the constitutive relations for the
different phases and the composite inclusion. Next, we outline the averaging scheme and
the methods for texture and morphology update. Finally, we apply the micromechanical
model to HDPE subjected to uniaxial tension, uniaxial compression and simple shear. The
obtained results are compared to experimental stress–strain and texture data as well as to
the simulation results reported in Lee et al. (1993b). Notation conventions are as follows:
Scalars are in mathematical italics, boldface symbols are used for tensors, the order of
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which is indicated by the context. Dots and colons indicate tensor products contracted
over one and two indices, respectively, e.g.,

ðA � BÞij ¼ AijBkj; ðC : DÞijkl ¼ CijmnDnmkl .

Dyadic tensor products are designated by �, e.g.,

ða� bÞij ¼ aibj; ðA� BÞijkl ¼ AijBkl .

The second- and fourth-order identity tensors are denoted as 1 � dij and
I � I ijkl ¼

1
2
ðdikdjl þ dildjkÞ, respectively. The inverse and the transpose of a matrix C are

indicated by C�1 and CT, respectively.
2. Constitutive relations

2.1. Crystalline phase

Polymer crystals are formed by folding and association of long polymer mole-
cules. Plastic deformation proceeds mainly via crystallographic slip on a limited number
of planes (e.g. G’Sell and Dahoun, 1994). Thus, despite the physical differences with
respect to the small-molecules crystals, they can be conveniently modeled with the
same basic equations used for metals and other crystalline materials. A distinctive
feature of the polymer crystals is that a single polymer crystal cannot accommo-
date a general macroscopic deformation because it lacks five independent slip systems
due to the inextensibility of the polymer chains in the chain direction (Lee et al., 1993a).
For example, the orthorhombic polyethylene crystals considered here possess only
four independent slip systems. We do not consider this kinematic deficiency further
because the self-consistent approach does not require any special treatment of low-
symmetry single crystals.
The velocity gradient Lp

c in the crystalline lamellae due to plastic deformation
(without rigid rotation) is defined as the sum of the shear rates _ga over all distinct slip
systems ðaÞ:

Lp
c ¼

X
a

_gaðb
ðaÞ � nðaÞÞ, (1)

where the unit vectors bðaÞ and nðaÞ denote the slip direction and the normal to the slip plane
ðaÞ, respectively.
Further, Lp

c can be split into symmetric and asymmetric parts as follows:

Lp
c ¼ Dp

c þWp
c ,

Dp
c ¼

X
a

_ga
2
ðbðaÞ � nðaÞ þ nðaÞ � bðaÞÞ �

X
a

_gaR
ðaÞ,

Wp
c ¼

X
a

_ga
2
ðbðaÞ � nðaÞ � nðaÞ � bðaÞÞ �

X
a

_gaA
ðaÞ, ð2Þ

where Dp
c and Wp

c denote the plastic rate of deformation and the spin caused by plastic
deformation, respectively; RðaÞ and AðaÞ are the symmetric and the asymmetric Schmid
tensors, respectively.
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The resolved shear stress ta acting on a slip system ðaÞ can be found from the deviatoric
part, sc, of the Cauchy stress rc as:

ta ¼ sc : R
ðaÞ, (3)

where sc � rc �
1
3 trðrcÞ1.

The microscopic shear rate on ðaÞ is related to ta by a nonlinear power law (e.g. Asaro
and Needleman, 1985):

_ga ¼ _g0
ta
ga

ta
ga

����
����
nc�1

(no sum), (4)

where _g0 is a reference strain rate, ga40 is the shear resistance of the slip system ðaÞ and
nc ¼ 1=mc denotes the inverse of the crystals’ rate sensitivity mc. Because of the low
lamellae thickness, strain-induced hardening of the resistances, ga, is neglected.

The crystallographic slip in the lamellae can be divided into two groups, namely, chain

slip with slip direction along c (Fig. 2), and transverse slip with direction perpendicular to c.
On the other hand, the deformation can proceed via a quasi-homogeneous mode (fine slip)
or a localized mode (coarse slip), Lin and Argon (1994). During fine slip, the crystalline/
amorphous interfaces remain intact while the coarse-slip mode initiates interface
discontinuities and subsequent lamellae fragmentation (Fig. 1).

2.2. Amorphous phase

During crystallization, almost all entanglements and most of the branches of the
polymer chains are expelled in the amorphous phase layers (e.g. Lin and Argon, 1994).
Consequently, the amorphous phase of the semi-crystalline polymers consists of disordered
molecules with high concentrations of entanglements and other defects. Above the glass
transition temperature, the amorphous phase is in a rubber-like state with a pronounced
viscoelastic behavior. Below the glass transition temperature, the mobility of the polymer
segments is strongly reduced and the amorphous phase displays elasto—viscoplastic
behavior. The amorphous phase of HDPE at room temperature is rubber-like viscoelastic.
However, the experimental evidence suggests that for this polymer, the purely elastic strain
is much smaller than the viscoelastic strain and can be neglected in a first approximation.
In addition, as we consider only monotonous loadings, we cannot distinguish between
viscoelasticity and viscoplasticity. Taking into account these considerations, in this work
we apply a viscoplastic-like modeling of the amorphous phase.

Two main deformation modes have been identified for the amorphous layers, namely,
interlamellar shear and interlamellar separation (e.g. Lin and Argon, 1994). In the context
of incompressible deformation without cavitation assumed here, interlamellar separation is
excluded as a deformation mode. We can therefore express the plastic velocity gradient
resulting from interlamellar shear Lp

a in a given inclusion as:

Lp
a ¼ _gaðb

ðaÞ � nðIÞÞ, (5)

where _ga is the amorphous phase shear rate, bðaÞ is the direction of the interlamellar shear
and nðIÞ denotes the normal unit vector to the crystalline/amorphous interfaces in the
inclusion (Fig. 2).

It is assumed that the direction of the interlamellar shear coincides with the projection
tðaÞ of the amorphous phase stress vector ðsa � n

ðIÞÞ on the lamellae surfaces (Nikolov
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et al., 2002). We can, therefore, write

bðaÞ ¼
tðaÞ

ktðaÞk
,

tðaÞ ¼ sa � n
ðIÞ � ½ðsa � n

ðIÞÞ � nðIÞ�nðIÞ,

ta �
1

2
sa : ðb

ðaÞ � nðIÞ þ nðIÞ � bðaÞÞ ¼ sa : R
ðaÞðsaÞ ¼ kt

ðaÞk, ð6Þ

where sa is the deviatoric part of the Cauchy stress in the amorphous phase and ta is
the effective shear stress. It is noted that ta is a positive quantity by construction and
the amorphous phase (symmetric) Schmid tensor RðaÞ depends on the applied stress sa
through bðaÞ.
The relation between the amorphous phase shear rate _ga and the effective shear stress is

given by (van Dommelen et al., 2003):

_ga ¼ _g0
ta
ga

� �na

(7)

with ga being the shear strength of the amorphous layers and na the rate exponent (inverse
of rate sensitivity) of the amorphous phase. The reference shear rate _g0 is taken to be the
same for both the amorphous and crystalline phase.
To complete the constitutive modeling, we need to introduce the amorphous phase

hardening due to the strain-induced molecular alignment as well as its locking caused by (i)
the finite extensibility of the polymer strands and (ii) the onset of coarse slip that makes the
interlamellar shear kinematically unfavorable.
The hardening of the amorphous phase is usually modeled as a back stress (Lee et al.,

1993a; van Dommelen et al., 2003 expressed with the rubber elasticity model of Arruda
and Boyce (1993) as:

ha ¼
mR
3

ffiffiffiffiffiffiffi
3N

I1

r
L�1

ffiffiffiffiffiffiffi
I1

3N

r !
ba �

1

3
I11

� �
, (8)

where mR is the rubbery shear modulus; N is the number of rigid links (with length l)
constituting the sub-chains between entanglements; ba is the left Cauchy–Green strain
tensor of the amorphous phase; I1 is the trace of ba; L

�1ðxÞ is the inverse of the Langevin
function LðxÞ ¼ cothðxÞ � 1=x.
Here we apply a different approach. Because interlamellar separation is excluded in our

model, the back stress given by Eq. (8) will result only from amorphous phase shear with
shear stress ha and will be aligned with the effective shear stress ta but with an opposite
direction. On the other hand, it is always possible to choose the reference shear rate in
Eq. (7) such that _ga ¼ _g0. Then, from Eq. (7) it follows that:

ta � ha

ga

� �
_ga¼_g0

¼
ta

ga þ ha

� �
. (9)

The above considerations indicate that instead of using the back stress ha given by Eq. (8),
we can alternatively use a ‘‘crystallographic extension’’ of the Arruda–Boyce model where
the back stress is introduced as a nonlinear strain hardening, ha, of the shear resistance, ga,
of the ‘‘slip system’’ associated with the interlamellar shear. A similar ‘‘crystallographic
extension’’ of an ‘‘isotropic’’ material model at the level of the slip systems in a single
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crystal was proposed by Kok et al. (2002) in the context of a crystal plasticity-based FE
analysis.

The rubber-like hardening ha can be computed analytically by solving the constitutive
equation (8) for simple shear deformation. In a local Cartesian basis ðe1; e2; e3Þ, the left
Cauchy–Green strain resulting from shear strain ga on the slip system e1 � e2 is given by
(e.g. Doghri, 2000):

ba ¼

1þ g2a ga 0

ga 1 0

0 0 1

0
B@

1
CA (10)

with the principal invariant I1 ¼ 3þ g2a.
The Padé approximation of the inverse Langevin function derived by Cohen (1991)

reads L�1ðxÞ ¼ xð3� x2Þ=ð1� x2Þ. Then, from Eqs. (8) and (10) we obtain the shear back
force, or, equivalently, the hardening of the slip resistance of the amorphous phase as:

ha ¼
mR
3

ð9N � 3� g2aÞ
ð3N � 3� g2aÞ

ga. (11)

With the above considerations in mind, the constitutive equations for the amorphous
phase can be summarized as follows:

Lp
a ¼ Dp

a þWp
a,

Dp
a ¼ _gaR

ðaÞ,

Wp
a ¼ _gaA

ðaÞ,

_ga ¼ _g0
ta

ga þ ha

� �na

,

ta ¼ ksa � nðIÞ � ½ðsa � nðIÞÞ � nðIÞ�nðIÞk,

ha ¼
mR
3

ð9N � 3� g2aÞ
ð3N � 3� g2aÞ

ga, ð12Þ

where plastic deformation without rigid rotation is considered.
2.3. Composite inclusion

The undeformed composite inclusion is depicted in Fig. 2b. The crystalline phase
content wc in each inclusion is taken to be equal to the overall crystallinity. Similarly to the
decomposition suggested by Lee for elastic–plastic behavior (Lee, 1969), the deformation
gradient FI in a given inclusion can be separated into plastic deformation that preserves the
orientation F

p
I and a rigid rotation F�I :

FI ¼ F�I � F
p
I ¼ RI � F

p
I , (13)

where RI � F�I is the rotation matrix of the inclusion. It can be obtained from the right
polar decomposition FI ¼ RI �UI.

The inclusion’s velocity gradient LI is related to the corresponding deformation gradient
FI via LI ¼ _FI � F

�1
I . By introducing Eq. (13) into the latter definition, LI is decomposed
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into the rate of deformation DI and the spin WI of the inclusion:

LI ¼ DI þWI. (14)

The components of DI and WI involving plastic deformation without rigid rotation are
assumed to be the volume averages of the plastic rate of deformation and spin tensors in
the phases (Eqs. (2b), (2c), (12b) and (12c)):

D
p
I ¼ wcD

p
c þ ð1� wcÞD

p
a,

W
p
I ¼ wcW

p
c þ ð1� wcÞW

p
a. ð15Þ

With Eqs. (13)–(15), DI and WI are expressed as follows:

DI ¼ RI �D
p
I � R

T
I ,

WI ¼ _RI � R
T
I þ RI �W

p
I � R

T
I . ð16Þ

Continuity of traction on the interface requires that

sI � n
ðIÞ ¼ sc � n

ðIÞ ¼ sa � n
ðIÞ. (17)

With regard to the stresses in the crystalline and amorphous phases, it is useful to recall
some experimental evidence, namely, that prior to yield, the strain is entirely
accommodated by the amorphous phase and that rigid rotation of lamellae stacks takes
place at larger strains (Lin and Argon, 1994). This indicates that the interactions between
the lamellae stacks are weak and the variations of the local stress in semi-crystalline
polymers must be much smaller compared to the stress variations observed in metals and
alloys, for example. On the other hand, previous models (Lee et al., 1993a) were successful
in the simulation of semi-crystalline polymers using a Sachs-type assumption for uniform
stress. For the sake of simplicity and in order to facilitate the numerical implementation,
here we assume that the deviatoric stress within the inclusion, sI, is uniform and equal for
both phases, which corresponds to a Sachs-type assumption for the lamellar inclusion:

sI ¼ sc ¼ sa. (18)

The above approximation ensures that equilibrium within the inclusion and Eq. (17) are
trivially satisfied. In addition, as shown in Nikolov et al. (2002), this assumption is not too
restrictive. Taking into account Eq. (12e) and the incompressibility in both phases, it
follows that only two scalar identities embedded in Eq. (18) are additionally imposed on
the inclusion beyond the traction equilibrium conditions expressed by Eq. (17) namely:

ðsIÞ11 ¼ ðscÞ11 or ðsIÞ22 ¼ ðscÞ22; ðsIÞ12 ¼ ðscÞ12, (19)

where the components are written in a local Cartesian basis with the third direction
e3 � nðIÞ.
The compatibility conditions at the inclusion level are not explicitly enforced in our

model for two reasons. Firstly, they are not needed in the single-crystal-like constitutive
modeling of the lamellae stacks where the amorphous phase deformation is formally
introduced as an additional degree of freedom for microscopic shear. Thus, if the number
of the available slip systems in the polymer crystals is P, the composite inclusion has Pþ 1
slip systems where the (variable) direction of the amorphous phase shear is given by
Eqs. (6a) and (6b). At any rate, the number of independent slip systems in the inclusion is
not an issue here because even if a single inclusion cannot accommodate an imposed
general deformation, our self-consistent approach allows us to obtain a unique solution for
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the macroscopic properties of the aggregate. Secondly, the formulation of realistic compa-
tibility conditions is extremely difficult in our case because in general, due to the lamellae
kinking and disruption, the crystalline/amorphous interfaces do not remain flat and intact
during deformation, as observed, for example, in tensile experiments (see Fig. 1).

Finally, we consider the influence of coarse slip and lamellae kinking on the kinematics
of the lamellae stacks. As illustrated in Fig. 1, the onset of coarse slip in the crystalline
lamellae can lock the amorphous phase shear well before the amorphous phase molecules
have reached their limit stretch, Nl, with N and l being the number and the length of the
rigid segments building the chains, respectively. This suggests that the interplay between
the crystalline and amorphous phase during deformation of semi-crystalline polymers is
much more complicated than in bi-crystals where the deformation in one phase does not
directly influence the kinematics of the other and the integrity of the interfaces is preserved
at all strains. In order to account for the influence of the crystalline phase deformation on
the amorphous phase hardening during coarse slip, we propose a simple modification of
the hardening law, Eq. (11), where the amorphous phase strain, ga, is replaced by the
accumulated viscoplastic strain in the inclusion:

ha ¼
mR
3

ð9N � 3� G2Þ

ð3N � 3� G2Þ
G (20)

with

GðtÞ ¼
Z t

0

wc
X
a

j_gaj þ ð1� wcÞj_gaj

 !
dt (21)

being the accumulated viscoplastic strain in the inclusion.
In cases where coarse slip does not take place, for example at temperatures above the a-

transition where the chain mobility in the crystals abruptly increases, the hardening law
given by Eq. (11) should be used.

3. Macroscopic properties and evolution of the microstructure

3.1. Self-consistent interaction law

In order to identify the effective properties of the aggregate, it is necessary to formulate
an interaction law that relates the mechanical behavior of each composite inclusion to the
macroscopically imposed boundary conditions, so that the following self-consistent
conditions are satisfied:

s ¼ hsIi; D ¼ hDIi; W ¼ hWIi, (22)

where s, D and W are the overall deviatoric stress, rate of deformation, and spin tensors,
respectively. Throughout the text, the brackets h�i denote volume averages over all
inclusions in the aggregate.

The 1-site self consistent approach considers each (composite) inclusion as embedded in
a Homogeneous Equivalent Medium (HEM) representing the surrounding material
(Molinari et al., 1987). Both equilibrium and compatibility at the inclusion’s boundaries
are enforced in a strong sense when using the HEM approach. Unlike either the Taylor
assumption for uniform strain rate or the Sachs model imposing uniform stress throughout
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the aggregate, the self-consistent method predicts both stress and strain rate heterogeneity
depending on the local properties, such that the conditions given by Eq. (22) are met. On
the other hand, the classical self consistent approach used here is different from the hybrid
self-consistent-like interaction laws developed by Lee et al. (1993a) and van Dommelen et
al. (2003) where the compatibility and equilibrium of a given inclusion with the rest of the
material is defined not with respect to the inclusion’s outer boundaries but to its
crystalline/amorphous interface.
In this work, we use the tangent viscoplastic formulation proposed by Lebensohn and

Tomé (1993). From the Sachs-type assumption, Eq. (18), it follows that the homogenized
compliance of a given inclusion, MI, is the volume average of the viscoplastic compliances
of the crystalline and amorphous phases. Hence, the rate of deformation, DI, can be
expressed as:

DI ¼ ½wcMc þ ð1� wcÞMa� : sI ¼MI : sI,

Mc ¼
X
a

_g0
ga

ta
ga

����
����
nc�1

RðaÞ �RðaÞ

 !
,

Ma ¼
_g0

ga þ ha

ta
ga þ ha

����
����
na�1

RðaÞ �RðaÞ, ð23Þ

where RðaÞ ¼ RI � R
ðaÞ � RT

I and RðaÞ ¼ RI � R
ðaÞ � RT

I are the symmetric Schmid tensors of
the crystalline and amorphous phases, respectively, rotated from the intermediate to the
current configuration. The compliances of the crystalline and amorphous phases are
denoted by Mc and Ma, respectively.
The deviation between the rate of deformation, DI, in a given inclusion and the imposed

macroscopic rate, D, is related to the inclusion’s deviatoric stress, sI, and the overall stress,
s, via the interaction law (Lebensohn and Tomé, 1993):

ðDI �DÞ ¼ � ~MI : ðsI � sÞ, (24)

where

~MI ¼ nðI� SIÞ
�1 : SI :M, (25)

is the so-called interaction tensor; n is the rate exponent of the inclusion. For simplicity, we
assume that the rate exponents of the phases are equal for all inclusions so that
n ¼ nc ¼ na; SI is the viscoplastic Eshelby tensor depending on the inclusion’s shape and
the overall secant compliance, M, given by

M ¼ hMI : BIi, (26)

where BI is the localization tensor defined as

BI ¼ ðMI þ ~MIÞ
�1 : ðMþ ~MIÞ. (27)

Here it is assumed that all the inclusions have the same initial morphology and that their
shape and orientation are updated according to the macroscopic deformation gradient (see
Section 3.2), so that their morphology remains unique. In general, when the shape and the
orientation differ from one inclusion to another, a modified self-consistent equation must
be introduced (Walpole, 1969; Lebensohn et al., 1996).
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3.2. Texture and morphology update

We consider a generic time interval ½t; tþ Dt�. The velocity gradient LI in each inclusion
at a time t is known and is assumed to remain constant during the time increment Dt.

The rate of change of the rotation matrix RI that governs the texture evolution is
obtained from Eq. (16b) as:

_RI ¼ ðWI �W
p
I Þ � RI (28)

The updated rotation matrix is found from:

RtþDt
I ¼ Rt

I þ ðWI �W
p
I Þ � R

t
IDt (29)

The deformation gradient in a given inclusion FI is updated using the macroscopic velocity
gradient L ¼ DþW and the relation _FI ¼ L � Ft

I:

FtþDt
I ¼ Ft

I þ
_FIDt ¼ ðIþ LDtÞ � Ft

I. (30)

The deformation gradient computed with the help of Eq. (30) is then used to update the
shape of the inclusions as follows. In the reference configuration at t ¼ 0, all inclusions are
assumed to have spherical shape. Then, the points at the boundary of a given inclusion
have position vectors X in the reference configuration defined by X � X ¼ 1. In the
deformed configuration, the position vectors become x ¼ FI � X. The corresponding locus
is found from:

½ðFI � F
T
I Þ
�1
� x� � x ¼ 1. (31)

Eq. (31) is that of a general ellipsoid. The eigenvectors and the square root of the
eigenvalues of FI � F

T
I define the direction and the length of the ellipsoid axes, respectively.

4. Applications and results

4.1. Model parameters

The micromechanical model has been implemented in the self-consistent code VPSC6
(Lebensohn and Tomé, 2003). HDPE at room temperature is chosen as a model material.
The undeformed polymer is represented as an aggregate of 500 randomly oriented
composite inclusions with an initially spherical shape. The tilt angle between the lamellae
normals and the chain direction in the crystals (Fig. 2) is chosen as ðnðIÞ; cÞ ¼ 34:4�. This
value corresponds to the f2 0 1g orientation of the interfaces, according to experimental
(Bassett and Hodge, 1981) and theoretical (Gautam et al., 2000) results for polyethylene.
The crystallinity content in the inclusions is fixed at wc ¼ 0:7, which is a typical value for
HDPE. The rate exponents and the reference shear rate are taken to be na ¼ nc ¼ 9 and
_g0 ¼ 10�3 s�1, respectively (Lee et al., 1993a).
The orthorhombic unit cell of a polyethylene crystal has dimensions a ¼ 7:4 Å; b ¼

4:93 Å; c ¼ 2:54 Å with c being the lattice parameter along the polymer chains. The
associated eight slip systems (of which only four are independent) and the corresponding
shear resistances used in the present work are listed in Table 1.

The initial shear resistance of the additional ‘‘slip system’’ due to amorphous phase
shear (which, applied to HDPE, increases the number of independent slip systems in a
single composite inclusion to five) is chosen as ga ¼ 3:4MPa. According to the



ARTICLE IN PRESS

Table 1

Slip systems and resistances of HDPE crystals used in this work

Slip system ga (MPa)

Chain slip ð1 0 0Þ½0 0 1� 7:2a

ð0 1 0Þ½0 0 1� 15:6a

f1 1 0g½0 0 1� 15:6 ð413aÞ

Transverse slip ð1 0 0Þ½0 1 0� 12:2a

ð0 1 0Þ½1 0 0� 18b

f1 1 0gh1 1̄ 0i 15:9b

ð�Þ
a—experimentally measured resistances from Bartczak et al. (1992b).

ð�Þ
b—resistances with ratio ga=gð1 0 0Þ½0 0 1� taken from Lee et al. (1993a).
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observations, at room temperature the interlamellar shear is the most easily activated
deformation mode for HDPE (Lin and Argon, 1994). Coarse slip is taken into account
with the numerical implementation of the hardening law given by Eqs. (20) and (21). The
amorphous phase rubbery modulus and the number of rigid links of the sub-chains have
been identified as mR ¼ 12MPa and N ¼ 8, respectively. For comparison, Lee et al.
(1993b) used mR ¼ 0:8MPa and N ¼ 12. The higher value of mR in our model suggests that
the amorphous phase layers may be stiffer than a conventional rubber because (i) they
contain more entanglements and branches than the polymer melt before crystallization and
(ii) for HDPE, the amorphous layers thickness is only of the order of 10 nm so that size
effects could be the cause for additional stiffening.
The above values for the model parameters have been chosen to adjust the experimental

stress–strain curve in uniaxial compression and then used without further change for
prediction of uniaxial tension and simple shear.

4.2. Uniaxial compression

The first application is uniaxial compression of a HDPE sample at a constant strain rate

of 10�3 s�1. In Fig. 3, the predicted equivalent stress ðseq ¼
ffiffiffiffiffiffiffiffiffiffiffi
3
2

sijsij

q
Þ versus strain ð�eq ¼R t

0 Deq dtÞ curve is compared with the measured true stress–strain response obtained by

Bartczak et al. (1992a) and the predictions of Lee et al. (1993b). The macroscopic true

strain rate is defined as the equivalent strain rate, Deq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

DijDij

q
.

For equivalent strains �eqo1, the predictions of the present model and the results of Lee
et al. (1993b) are very close to each other and agree well with the experiment. At larger
strains, however, the present model predicts a slightly more realistic stress–strain response.
According to Fig. 12, the reason for that is not the rubbery hardening of the amorphous
phase but the morphological evolution of the composite inclusions.
Fig. 4 shows in the left diagram the normalized strain rates (hereafter referred to as

relative activity) of the principal deformation modes in the phases versus �eq. We
distinguish between chain slip, transverse slip and interlamellar shear (which in our model
represents the total amorphous phase deformation). It is emphasized that at smaller
strains, chain and transverse slip operate solely in the crystalline phase. At very large
strains and strong evolution of the shape of the inclusions, however, they should be
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Fig. 3. Predicted and measured stress–strain curves for HDPE in uniaxial compression.

Fig. 4. Relative activity of the principal deformation modes in the phases vs. �eq in uniaxial compression. Left:

present model; Right: according to Lee et al. (1993b).
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interpreted as chain and transverse shear between composite micro-fibrils formed after the
lamellae disruption. According to Fig. 4, left, at small strains the amorphous phase
deforms much faster than the crystals, but its activity rapidly decreases with increasing �eq
and at �eq41:7 it is practically locked. At �eq40:4, chain slip is the dominant deformation
mode up to very large strains where the steadily evolving transverse slip becomes equally
important. The corresponding results obtained by Lee et al. (1993b) are shown in Fig. 4,
right. It is seen that the amorphous phase strain rate is superior to the strain rate in the
crystals at all deformation levels and saturates with increasing �eq, but at a much slower
pace compared to our prediction, and never locks.

Next, we analyze the texture evolution. In the present work, the predicted pole figures are
obtained with a TSL OIM Analysis software. Fig. 5 shows the predicted equal-area-projection
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Fig. 5. Left: predicted pole figures in uniaxial compression at equivalent strains, (a) �eq ¼ 0:35; (b) �eq ¼ 1:29;
(c) �eq ¼ 1:86. The loading direction is normal to the equator plane of the figure. Right: corresponding experimental

intensities obtained by Bartczak et al. (1992a).

S. Nikolov et al. / J. Mech. Phys. Solids 54 (2006) 1350–13751364
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pole figures, compared to the experimental intensities measured by Bartczak et al. (1992a). The
ð2 0 0Þ, ð0 2 0Þ and ð0 0 2Þ planes correspond to the a, b and c crystallographic axes,
respectively. In accordance with the experiments, the predicted pole figures display axial
symmetry with respect to the compressive direction.

At plastic strain �eq ¼ 0:35, the chain ð1 0 0Þ½0 0 1� slip is the most active deformation
mode in the crystals. Consequently, the a and b crystal axes migrate towards and away
from the compressive direction, respectively. Experimentally, the maximum intensity for
the ð2 0 0Þ planes is located at an angle of about 25� to the loading direction (LD). For the
ð0 2 0Þ, ð1 1 0Þ and ð0 1 1Þ planes, the corresponding maximum intensities are located at
about 85�, 60� and 70�, respectively; the ð1 1 0Þ planes show a very weak texturing.

At a strain �eq ¼ 1:29, intense lamellae kinking and rearrangement has already taken
place (Bartczak et al., 1992a) and both chain and transverse slip are active. This results in
the development of a sharp maximum in the intensity of the ð2 0 0Þ planes’ distribution. The
location of the maximum, however, is not affected. The b axes are mostly arranged at
about 80� to LD. The ð0 1 1Þ planes are depleted in the center of the pole figure and
gradually arrange circumferentially towards the radial direction. Their maximum intensity
remains at about the same angle to LD. The ð1 1 0Þ planes have developed a weak texture
with maximum intensity located at about 55� to LD.

At a strain �eq ¼ 1:86, the predicted texture does not change qualitatively with respect to
that obtained for �eq ¼ 1:29. Besides further sharpening in terms of intensities, it is noted
that the maxima of the ð0 2 0Þ and ð1 1 0Þ planes have moved towards the LD and are
located at 75� and 35�, respectively. The ð0 1 1Þ planes reach the direction of 90� with
respect to the compressive axis.

From Fig. 5, it is seen that the model predictions for the texture evolution during
uniaxial compression compare favorably with the experiment, although the chosen form of
presentation of the experimental results in Bartczak et al. (1992a) makes the direct
quantitative comparison somewhat difficult.
4.3. Uniaxial tension

Next, we simulate an uniaxial tensile experiment at a constant true strain rate
Deq ¼ 10�3 s�1. In uniaxial tension, HDPE displays necking instability and cavitation
immediately after the yield point, which poses difficulties in obtaining the true stress–strain
curves. This problem was solved by G’Sell and Jonas (1979) who developed a special device
maintaining a constant strain rate in the center of the neck. In Fig. 6, the simulated
stress–strain behavior is compared to experimental data from G’Sell and Jonas (1979) and
Hiss et al. (1999) obtained with this technique, as well as to the results reported in Lee et al.
(1993b).

It is seen that both models give similar predictions for strains �eqo1. For �eqo0:5, our
model slightly overestimates the stress triaxiality, which results in a higher-than-measured
equivalent stress. For strains �eq41, the present model agrees much better with the
experiment than the results of Lee et al. (1993b). These authors argued that strain-induced
cavitation results in higher effective stress than that measured experimentally. Dahoun
(1992), however, measured the decrease in density r during tension of HDPE and showed
that for �eq � 1:5, r=r0 � 0:9 with r0 the initial density. Therefore, cavitation cannot
explain the significant deviation of the results of Lee et al. (1993b) from the experiment.
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Fig. 6. Predicted and measured stress–strain curves for HDPE in uniaxial tension.

Fig. 7. Relative activity of the principal deformation modes in the phases vs. �eq in uniaxial tension. Left: present

model; Right: according to Lee et al. (1993b).

S. Nikolov et al. / J. Mech. Phys. Solids 54 (2006) 1350–13751366
Although with less influence than in uniaxial compression, the morphology evolution
(Fig. 12) explains in part the ability of our model to match the experiment at very large
strains. While the actual processes involved into the lamellar-to-fibrillar transition shown
in Fig. 1 are much more complex than our modeling, the obtained results suggest that in a
first approximation, this morphology change can be accounted for reasonably well through
the change of shape of the inclusions and the crystallographic texture evolution within the
inclusions. The choice of averaging scheme and the constitutive model for the composite
inclusions are the other important factors that determine the predicted stress–strain
response.
The relative activity of the crystalline and amorphous phases in function of �eq during

tension is shown in Fig. 7, left. The amorphous phase strain rate follows a pattern very
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similar to that in uniaxial compression and locks at �eq41:7. With increasing strain, chain
slip becomes the dominant deformation mode and its strain rate increases up to strains
�eq � 1:7, thus contributing to the development of a very strong c texture component along
the tensile direction. Transverse slip is most active at a strain �eq � 0:4, but unlike in
compression, its strain rate steadily decreases for �eq40:4 in favor of the chain slip. The
corresponding graphics obtained by Lee et al. (1993b) is depicted in Fig. 7, right. Again, it
is seen that the amorphous phase behavior predicted by the two models is very different,
especially at equivalent strains �eq41 where, according to Lee et al. (1993b), the
amorphous phase strain rate shows a steep increase and reaches a maximum at �eq ¼ 1:2
before locking.

The predicted and experimental pole figures for uniaxial tension are given in Fig. 8. The
pole figures are obtained with harmonic series expansion for the intensity functions and
plotted in stereographic projection. The experimental data from Li et al. (2001) represent
the texture of a sample of HDPE after relaxation.1 It is noted that in Fig. 8c, the ð0 1 0Þ
component aligned with the tensile direction has been found to be stronger during
deformation.

At true strain �eq ¼ 0:8 (Fig. 8a), the predicted texture evolution is relatively weak and
results from both chain and transverse slip. Most of the c axes are oriented at about 25� to
the tensile direction, a smaller fraction is oriented in the radial direction. The a axes form
an angle of about 65� with the LD, the b axes just start to form a weak component oriented
at 25� away from the LD.

At true strain �eq ¼ 2:1, a very strong c fiber component develops along the tensile
direction. The fraction of the radially oriented c axes remains unchanged, and a small
fraction of crystals has c axes oriented at about 45� to the LD. Most of the a and b axes
have migrated towards the radial direction, but our model also predicts a relatively strong
ð0 1 0Þ component oriented at about 25� to the LD and a very weak component oriented
along the tensile direction.

Experimentally, the preferred orientations in HDPE at large strains have been
found to be (Li et al., 2001): (i) a strong ð0 0 1Þ component aligned with the tensile axis;
(ii) a weaker ð0 1 1Þ component aligned close to the tensile axis; (iii) a weaker ð0 1 0Þ
component aligned with the tensile axis. From Fig. 8b, it is seen that our model
correctly predicts the existence of all three components, i.e., a strong c fiber; weaker ð0 1 1Þ
and ð0 1 0Þ components more or less aligned with the tensile axis. In contrast to the
experiment, we obtain a ð0 1 0Þ component oriented at 25� instead of a perfect alignment
with the tensile axis. The predicted average angle of the ð0 1 1Þ planes is also somewhat
wider than the experimentally measured one. We believe that these minor discrepancies are
due to the fact that the lamellae breakage, which allows the lamellae pieces to rotate more
freely at large tensile strains, is not explicitly incorporated in our model. It is noted,
however, that the model gives considerably better predictions in tension compared to those
reported in Lee et al. (1993a, b), where the c component develops much faster than
observed and the ð0 1 1Þ and ð0 1 0Þ components along or close to the tensile direction are
not predicted at all.
1Li et al. (2001) also measured the in-situ texture evolution during deformation, but we could not use these data

because the HDPE sample displayed a strong texture in the undeformed state, which remained stable up to very

high strains.



ARTICLE IN PRESS

Fig. 8. Predicted and experimental pole figures in uniaxial tension: (a) predicted at �eq ¼ 0:8; (b) predicted at

�eq ¼ 2:1; (c) experimental for a sample allowed to relax after a strain �eq ¼ 2:1 (Li et al., 2001). The tensile

direction is normal to the equator plane of the figure.
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4.4. Simple shear

Finally, we simulate simple shear of HDPE at a constant nominal shear rate
_g ¼ 10�3 s�1. In the experiments of Dahoun (1992) and Bartczak et al. (1994), the applied
nominal shear stress t and the nominal shear strain g were measured. The model
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Fig. 9. Predicted and measured stress–strain curves for HDPE in simple shear.
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predictions for the equivalent shear stress, t
ffiffiffi
3
p

, versus the equivalent strain, �eq ¼ g=
ffiffiffi
3
p

,
are compared to the experiment in Fig. 9. In the following, we do not discuss the normal
stress difference related to simple shear because it has not been experimentally measured.

In this case, despite the differences between our model and the model of Lee et al.
(1993a, b), the obtained results are very similar over the entire deformation range. Both
models overestimate the stress at strains �eq40:3. At strains �eq41:2, our model predicts a
slight strain softening whereas Lee et al. (1993b) obtain minor strain hardening. The
discrepancy between the predicted and the measured stress may be due to several reasons.
Firstly, it is very difficult to experimentally obtain simple shear deformation because shear
experiments are accompanied by stress triaxiality and unloading effects near the sample
ends. In fact, the normal stresses developing during large shear have not been measured in
the experiments performed by Dahoun (1992) and Bartczak et al. (1994), which can partly
explain the lower value of the measured equivalent stress. On the other hand, local drawing
of material from the shoulders into the gauge section of the specimen (Lee et al., 1993a;
Bartczak et al., 1994) is not taken into account in our simulation because the boundary
conditions are applied to a single representative volume element. Better results for the
stress–strain behavior in simple shear can be eventually obtained after integration of the
micromechanical model in a finite element code and a full-scale modeling of the 3D sample
geometry with more realistic boundary conditions.

The relative activity of the different deformation modes in function of �eq is shown in
Fig. 10. Interestingly, the simulated activity of the modes strongly resembles that obtained
in uniaxial tension, except the somewhat steeper decrease of the interlamellar shear rate
and its earlier locking. At large shear strains, chain slip is by far the most active
deformation mode.

The absence of macroscopic hardening in simple shear can be explained as follows: with
increasing shear strain, the chain direction c rotates towards the shear direction. Because
the crystals’ resistances do not exhibit strain hardening and the imposed shear is
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Fig. 10. Relative activity of the principal deformation modes in the phases vs. �eq in simple shear.
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accommodated mostly by chain slip, the overall stress–strain curve remains flat despite the
amorphous phase locking at large strains. Similar interpretation has been given by Parks
and Ahzi (1990).
The predicted and experimental texture evolution in simple shear are compared in

Fig. 11. The pole figures are plotted in stereographic projection. Upon increasing strain,
the chain axes c cluster towards the direction of maximum stretch and rotate with it
tending to align with the shear direction. The a axes follow a similar evolution pattern with
their orientation fixed at 90� with respect to the c axes at all strains. The b axes develop a
ð0 2 0Þ component along the neutral direction. The ð1 1 0Þ planes develop a weaker
component oriented perpendicular to the maximum stretch that follows its strain-induced
rotation and have a characteristic forked-tongue shape.
It is seen that our predictions are in good agreement with all experimentally observed

characteristics of the texture evolution in simple shear, except the slightly sharper-than-
observed development of the ð2 0 0Þ and ð0 0 2Þ textures. This can be explained by the fact
that our predictions are for texture evolution during deformation while the experimental
results are taken from relaxed samples. Consequently, the viscoelastic component of the
mechanical behavior (implicitly taken into account in our simulations) influences, to some
extent, the predicted texture while it has been relaxed in the measured samples. On the
other hand, the predicted sharper texture is consistent with the overestimation of the shear
stress at large strains, as it has already been discussed.

4.5. Morphology evolution

The influence of the morphology evolution on the stress–strain curves in uniaxial tension
and compression is shown in Fig. 12. The difference between the stress–strain curves
obtained with spherical inclusions and inclusions with a continuously evolving shape
according to Eq. (31) is due to the dependency of the Eshelby tensor on the inclusions’
shape in Eqs. (24) and (25). This in turn affects the estimation of the overall properties.



ARTICLE IN PRESS

Fig. 11. Pole figures in simple shear at strains; (a) g ¼ 1:0; (b) g ¼ 1:8; (c) g ¼ 3:0. Left: predicted; Right:

experimental data after Bartczak et al. (1994). Arrows indicate the shear direction. The neutral direction is normal

to the equator plane of the pole figure.
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Fig. 12. Influence of the inclusions’ shape evolution on the stress–strain behavior in uniaxial tension and

compression.
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Fig. 12 suggests that, without taking into account the morphology (inclusions’ shape)
evolution, it may be impossible to match the experimentally observed strain hardening in
both tension and compression. In fact, the curves obtained with spherical inclusions in Fig.
12 are very close to the results reported in Lee et al. (1993a). In their subsequent work, Lee
et al. (1993b) reduced the number of rigid links N for the amorphous phase chains from 49
to 12 in order to better fit the experimental stress–strain curve in compression. This
resulted in a corresponding increase in the hardening of the predicted curve in tension,
shifting the already stiff stress–strain response further away from the experimental data.
The evolution of the average inclusions’ shape in uniaxial tension and compression is

given in Fig. 13. In tension, the inclusions evolve into prolate ellipsoids with very high
aspect ratio along the tensile axis at �eq � 2. This mimics the strain-induced transition of
the microstructure from lamellar to fibrillar.
In compression, the inclusions transform into oblate ellipsoids with their short axis

aligned with the compressive direction. The shape evolution is noticeably less pro-
nounced than in tension and resembles the evolution of the long period of the
microstructure measured along and perpendicular to the compressive direction by
Bartczak et al. (1992a).
The predicted morphology changes in simple shear with increasing g are shown in

Fig. 14. For concreteness, let us assume that the macroscopic shear proceeds along
the e1 direction of a e1 � e2 slip system fixed to a laboratory Cartesian basis ðe1; e2; e3Þ.
Along e3 (neutral direction), the aspect ratio remains unchanged. In directions along and
perpendicular to the maximum stretch lmax in the ðe1; e2Þ plane, the shape evolution
resembles to that simulated in tension, which is consistent with the experimental evidence
for development of fibrillar microstructure in simple shear (Bartczak et al., 1994).
In addition to the shape evolution, simple shear causes rotation of the maximum-stretch

axis of the inclusions from an initial angle of 45� with respect to the shear direction e1.
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Fig. 13. Predicted evolution of inclusions’ shape in uniaxial tension and compression.
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Fig. 14. Predicted evolution of the inclusions’ shape and rotation of lmax direction in simple shear.
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With increasing strain, the direction of lmax gradually aligns with the shear direction. The
simulation results are given in the right-hand side of Fig. 14.

5. Conclusions

A micromechanical model for the large deformation behavior of semi-crystalline
polymers has been developed and implemented. The model consists of three major parts:
(i) constitutive equations for a composite inclusion comprising crystalline lamellae
with their adjacent amorphous layers; (ii) a tangent self-consistent averaging scheme, and
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(iii) an algorithm for strain-induced evolution of the inclusions’ shape. The model
predictions are in good agreement with virtually all aspects of the experimentally observed
stress–strain behavior and texture evolution in HDPE in tension, compression and simple
shear.
It has been shown that the morphology evolution and not the amorphous phase

hardening determines the macroscopic strain hardening in uniaxial compression.
Generally, the inclusions’ shape evolution incorporated in the model provides an insight
into the development of fibrillar morphology in uniaxial tension and simple shear but not
in uniaxial compression.
In contrast to the bi-crystal approach of Lee et al. (1993a, b), we adopt single-crystal-like

constitutive equations for the lamellae stacks where the amorphous phase shear is
introduced as an additional slip system. The direct comparison between the two models
shows that our model predicts the strain hardening in both uniaxial tension and
compression better. In tension, a more realistic pace of texture development is obtained
and the existence of the experimentally observed near-ð0 1 1Þ and ð0 1 0Þ components along
the tensile axis is qualitatively predicted. In simple shear, both models give similar
predictions for the stress–strain behavior and texture development and overestimate the
observed shear stress. At this point, it is unclear whether this is due to the consideration of
a single material point instead of the real 3D sample geometry or further modeling efforts
are needed. A specific prediction of our model is the complete locking of the amorphous
phase deformation at very large strains in all tested straining modes.
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