
www.actamat-journals.com

Acta Materialia 54 (2006) 4159–4169
Anisotropic yield function of hexagonal materials taking into
account texture development and anisotropic hardening

B. Plunkett a, R.A. Lebensohn b, O. Cazacu a,*, F. Barlat c

a Department of Mechanical and Aerospace Engineering, University of Florida/REEF, 1350 N Poquito Road, Shalimar, FL 32579-1163, USA
b Los Alamos National Laboratory, MST8, MS G755, Los Alamos, NM 87545, USA

c Materials Science Division, Alcoa Inc., Alcoa Technical Center, 100 Technical Drive, Alcoa Center, PA 15069-0001, USA

Received 13 October 2005; received in revised form 4 May 2006; accepted 4 May 2006
Available online 1 August 2006
Abstract

Because of twinning and texture evolution, the yield surface for hexagonal close-packed (hcp) metals significantly changes its shape
with accumulated plastic deformation. Traditional hardening laws cannot accurately model these phenomena. In this paper, an aniso-
tropic model that captures the influence of evolving texture on the plastic response of hcp metals is proposed. Initial yielding is described
using a recently developed analytical yield function that accounts for both anisotropy and strength differential effects. To describe the
change of the shape of the yield surface during monotonic loading, the evolution of the anisotropic coefficients involved in the expression
of the yield function is considered. The evolution laws for the anisotropic coefficients are obtained based on experimental data and crystal
plasticity theory, together with a macroscopic-scale interpolation technique. This approach is further applied to the description of the
mechanical behavior of high-purity zirconium at room temperature. Validation of the proposed model is provided by applying it to
the simulation of the three-dimensional deformation of a beam subjected to four-point bending along different directions with respect
to the hard-to-deform Æcæ-axis predominant orientation of the material. Comparison between predicted and measured macroscopic strain
fields and beam sections shows that the proposed model describes very well the difference in response between the tensile and compressive
fibers and the shift of the neutral axis.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Characterization of the plastic response in metals
requires the specification of a yield function and a flow rule
by which subsequent inelastic deformation can be calcu-
lated for specified loadings and displacements. Tradition-
ally, the evolution of the yield surface is described by a
combination of isotropic and kinematic hardening laws.
Isotropic hardening implies a proportional expansion of
the surface, without any changes in shape or position. An
isotropic hardening model is only truly valid for monotonic
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loading along a given strain path assuming that every
strain path hardens at the same rate. For simulation of
sheet forming operations of cubic metals (both face-
centered cubic (fcc) and body-centered cubic (bcc)), such
an assumption is reasonably adequate [1]. Pure translation
of the initial yield surface could be described by the classic
linear kinematic hardening laws [2,3]. To model more accu-
rately the smooth elastic–plastic transition upon reverse
loading, multi-surface models as well as nonlinear kine-
matic hardening models have been proposed. Reviews of
such models may be found in Refs. [4–6].

Because of non-negligible twinning activity accompa-
nied by grain reorientation and highly directional grain
interactions, the influence of the texture evolution on hard-
ening of hexagonal close-packed (hcp) materials cannot be
rights reserved.
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neglected even for the simplest monotonic loading paths.
To describe with accuracy the evolution of yield loci it is
imperative to account for the most important sources of
anisotropy in the given material: slip and/or twinning
activity, substructure evolution at grain level and texture
development during deformation. Since in crystal plasticity
models (see e.g. Refs. [7,8]) the distribution of crystal orien-
tations in the given polycrystal, the available slip/twinning
deformation systems and the stress levels necessary to acti-
vate them are taken into account explicitly, the evolution of
anisotropy due to texture development can be character-
ized by measuring the initial texture and calculating the
grain reorientation (i.e. updating the texture) using a suit-
able homogenization scheme (e.g. a Taylor model or a
self-consistent model). Recently, the application of crystal
plasticity models to hcp metals and the incorporation of
crystal plasticity calculations directly into finite element
(FE) analyses have received much attention. Models that
account for both slip and twinning activity and employ
Taylor [9–11] or self-consistent [12,13] averaging schemes
to predict the aggregate behavior have been proposed.
For example, the model of Staroselsky and Anand [10]
neglects hardening but accounts for the intragranular
effects on plastic deformation observed in magnesium
alloys. Salem et al. [11] concentrated their attention on
the characterization of the strain-hardening behavior of
high-purity titanium during compression at room tempera-
ture and the development of slip-hardening and twin-
hardening functions. These laws were incorporated into a
Taylor crystal plasticity framework and further used to
simulate the stress–strain response and texture evolution
for monotonic loading (uniaxial compression and simple
shear). However, no attempt was made to predict the final
deformed shape of the specimens, nor to perform bench-
mark simulations of more complex monotonic loadings
such as bending. In Refs. [12,13], a self-consistent visco-
plastic model linked to the explicit FE code EPIC has been
successfully used for describing the deformation of pure
zirconium with a strong initial texture under quasi-static
monotonic loading at room and liquid nitrogen
temperatures.

The above direct implementations of polycrystal mod-
els into FE codes, where a polycrystalline aggregate is
associated with each FE integration point, have the
advantage that they follow the evolution of anisotropy
due to texture development. However, such FE calcula-
tions are computationally very intensive, thus limiting
the applicability of these approaches to problems that
do not require a fine spatial resolution. An alternative
approach is to develop anisotropic formulations at a mac-
roscopic level that can be easily implemented in FE codes,
and thus can be applied routinely for detailed analyses of
complex forming processes. Methods to determine analyt-
ical expressions for the plastic potential in the strain rate
space based on texture data have been proposed by
Arminjon et al. [14] and Van Houtte and collaborators
(e.g. Ref. [15]). The coefficients of an adjustable plastic
potential (up to several hundreds of them) are obtained
by minimizing the difference between the plastic work rate
computed using such plastic potential and the plastic
work rate computed using crystal plasticity for a large
number of strain modes. This approach, in conjunction
with the Taylor model and isotropic hardening, has been
implemented in FE codes and applied to the modeling of
texture-induced anisotropy of sheet forming of fcc and
bcc materials (see e.g. Ref. [16]). Also recently, a complex
constitutive model that couples a texture-adjusted aniso-
tropic plastic potential with a physically based hardening
model involving several tensorial variables has been pro-
posed [17,18]. It has been shown that the model captures
very well the microstructure evolution under arbitrary
strain-path changes in low-carbon steels. However, the
model neglects texture evolution during plastic deforma-
tion [18]. It is to be noted that no attempt to use the
aforementioned texture-based approaches for the determi-
nation of analytic expressions of the plastic potential of
hcp materials has been reported.

Unlike recent progress in the development of mathemat-
ical descriptions of anisotropic yield surfaces for materials
with cubic structure [19–23], phenomenological modeling
of hcp materials is less developed. Due to the lack of ade-
quate macroscopic yield criteria for hcp materials, hcp
sheet forming FE simulations are still performed using
classic anisotropic formulations for cubic metals such as
Hill’s 1948 criterion [24] (see e.g. Refs. [25,26]). Some of
the rigorous methods proposed to account for initial plastic
anisotropy or to describe an average material response over
a certain deformation range [20,23] can be extended to hcp
materials. The major difficulty encountered in formulating
analytic expressions for the yield functions of hcp metals is
related to the description of the strength differential effect
(tension vs. compression asymmetry due to twinning).
Recently, yield functions in the full stress space which cap-
ture both the tension/compression asymmetry and the
anisotropic behavior of hcp metals and alloys were devel-
oped [27,28]. In particular, the capability of the Cazacu–
Plunkett–Barlat 2005 yield criterion [28] (further denoted
as CPB05) to describe accurately the shape of yield surfaces
corresponding to individual equivalent plastic deformation
levels of textured polycrystalline binary Mg–Th and Mg–Li
alloys (data after Kelley and Hosford [29]) was demon-
strated in Ref. [28].

The objective of the present paper is to propose a mac-
roscopic model that captures the evolution of anisotropy
due to evolving texture in hexagonal metals subjected to
monotonic loading conditions. Yielding is described using
the CPB05 yield criterion. To model the change in shape
of the yield locus during plastic deformation, evolution
laws for the anisotropic coefficients involved in the expres-
sion of the CPB05 yield function are determined using a
macroscopic-scale interpolation technique and experimen-
tal data. For the strain paths for which experimental data
were not available, flow stress data were calculated with a
viscoplastic self-consistent model. This approach is further
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applied to the description of the mechanical behavior of
high-purity zirconium at room temperature.

2. Polycrystal model

Characterization of the effect of evolving crystallo-
graphic texture on the plastic response of hexagonal mate-
rials by direct mechanical testing is a challenging task even
for simple loading conditions. To generate information
concerning the evolution of the yield loci with accumulated
deformation, we performed numerical tests using the visco-
plastic self-consistent (VPSC) model [30]. While this formu-
lation is briefly reviewed in what follows, a detailed
description can be found in the review article by Tomé
and Lebensohn [8]. The polycrystal is represented by a
finite set of orientations, each one representing a given
volume fraction chosen to reproduce the initial texture.
The total deformation of the polycrystal is achieved by
imposing successive strain increments and calculating the
resulting shears in the active deformation (slip and/or twin-
ning) systems in the grains. The final texture is given by the
grain reorientations associated with these shears. A self-
consistent approach is used to model the interaction of a
grain with the surroundings. Each grain is treated as an
anisotropic, viscoplastic, ellipsoidal inclusion embedded
in a uniform matrix having the unknown properties (to
be determined) of the polycrystal. Elastic deformations
are neglected. Each deformation system (s) is characterized
by a vector ns (normal to the slip or twinning plane) and a
vector bs (Burgers vector or twinning shear direction). The
local constitutive behavior (at the grain level) is described
by

_eg ¼
X

s

ms _cs ¼ _c0

X
s

ms ms : rg

ss
c

� �n

; ð1Þ

where ms ¼ 1
2
ðbs � ns þ ns � bsÞ, _cs and ss

c are, respectively,
the Schmid tensor, the shear rate and the critical stress of
system (s), _eg and rg are the local averages of the strain rate
and stress fields in grain (g), _c0 is a reference shear rate and
n is a rate sensitivity parameter. Eq. (1) expresses that the
deformation rate is given by the sum over all the shear rates
contributed by all systems. The activation criterion (both
for slip and twinning) is given by the expression in paren-
thesis: the activity on each deformation system (s) increases
when the resolved shear on that system (given by ms: rg)
approaches a threshold value ss

c. However, twinning differs
from slip in its directionality, i.e. it can be only activated by
a positive shear. Strain-hardening is incorporated by allow-
ing the critical stress ss

c to increase in an interval Dt accord-
ing to

ss
c ¼ ss

0 þ ðss
1 þ hs

1C
sÞ 1� hs

0C
s

ss
1

� �� �
; ð2Þ

where ss
0, ss

1, hs
0 and hs

1 are constants, and Cs ¼
P

s _csDt is
the accumulated shear in all deformation systems. The
nonlinear expression equation (1) can be linearized using
a tangent approximation:
_eg ffiMtgðrgÞ : rg þ _eg
0ðrgÞ ð3Þ

with

Mtg ¼ n _c0

X
s

ms �ms

ss
c

ms : rg

ss
c

� �n�1

ð4Þ

and _eg
0 ¼ ð1� nÞ_eg.

At the macroscopic level, the overall response of the
polycrystal can also be assumed to be described by a tan-
gent relation:

_�e ¼ �Mtg : �rþ _�e0; ð5Þ

where _�e and �r are the effective strain rate and stress, respec-
tively, �Mtg is the macroscopic tangent compliance moduli
and _�e0 is the back-extrapolated macroscopic strain rate.
As previously mentioned, the interaction of the grain with
its surroundings is accounted for by assuming each grain to
be an inclusion embedded in an infinite homogeneous ma-
trix having the overall properties of the polycrystal. The
following interaction equation results:

ð_eg � _�eÞ ¼ � ~M : ðrg � �rÞ; ð6Þ

where

~M ¼ ðI� SEÞ�1
: SE : �Mtg: ð7Þ

In Eq. (7), SE is the viscoplastic Eshelby tensor, a function
of the properties of the effective medium (i.e. �Mtg) and the
inclusion (grain) shape [31]. The self-consistent equation,
which allows adjustment of the macroscopic compliance
by requiring a matching between the overall averages of
the local fields and the corresponding effective magnitudes,
reads

�Mtg ¼ hMtg : Bgi; ð8Þ
where ÆÆæ denotes average over the set of grains that repre-
sents the polycyrstal, and where the localization tensor Bg

(that links the local and effective stresses, i.e. rg ¼ Bg : �r)
is given by

Bg ¼ 1

n
Mtg þ ~M

� ��1

:
1

n
�Mtg þ ~M

� �
: ð9Þ

Once �Mtg is adjusted by means of Eq. (9), Eqs. (1), (6)
and (7) can be combined into a system of nonlinear
equations to solve for the local stress and strain rate in
each grain.

Finally, it should be mentioned that the twinning con-
tribution to texture development is accounted for by
means of the so-called predominant twin reorientation
(PTR) scheme, which essentially consists of determining
the grains where twinning is most active and reorienting
them completely into the orientation of their most active
twinning system, accounting in this way for the volumet-
ric effect of twinning reorientation on texture development
and at the same time maintaining fixed the number of ori-
entations that represent the polycrystal (see Ref. [31] for
details).
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3. Proposed macroscopic model

3.1. Initial yielding

In order to develop a macroscopic elastoplastic model to
capture the evolution of anisotropy due to evolving texture
in hexagonal metals subjected to monotonic loading condi-
tions, yielding is described here by means of the CPB05
criterion [28] that accounts for both anisotropy and
asymmetry in yielding between tension and compression.
The CPB05 criterion is an extension to orthotropy of an
isotropic yield criterion of the form

f ðSÞ ¼ ðjS1j � kS1Þa þ ðjS2j � kS2Þa þ ðjS3j � kS3Þa; ð10Þ
where Si, i = 1, . . . , 3, are the principal values of S, the devi-
ator of the Cauchy stress r; the coefficient k allows for the
description of strength differential effects; and the integer a

is the degree of homogeneity. Specifically, for a fixed value
of the parameter a, the parameter k can be expressed solely
in terms of the ratio between rT, the uniaxial yield in ten-
sion, and rC the uniaxial yield in compression, respectively:

k ¼
1� 2a�2�ðrT=rCÞa

ð2�rT=r CÞa�2

n o1
a

1þ 2a�2�ðrT=rCÞa
ð2�r T=rCÞa�2

n o1
a
: ð11Þ

Note that for a = 2 and k = 0, which corresponds to equal
yield stresses in tension and compression, the Von Mises
yield criterion is recovered.

The isotropic criterion (Eq. (10)) was extended to ortho-
tropy by using a linear transformation on the deviatoric
stress tensor, i.e. in Eq. (10), S1, S2, S3 are substituted
by the principal values of a transformed tensor R defined
as

R ¼ L : S: ð12Þ
Thus, the anisotropic yield criterion CPB05 is of the form

F ¼ ðjR1j � kR1Þa þ ðjR2j � kR2Þa þ ðjR3j � kR3Þa; ð13Þ
where R1,R2,R3 are the principal values of R. The only
restrictions imposed on the fourth-order tensor L are: (i)
to satisfy the major and minor symmetries and (ii) to be
invariant with respect to the orthotropy group. Thus, for
three-dimensional stress conditions CPB05 involves nine
independent anisotropy coefficients and it reduces to the
isotropic criterion of Eq. (9) when L is equal to the
fourth-order identity tensor. It is worth noting that
although the transformed tensor is not deviatoric, the
orthotropic criterion is insensitive to hydrostatic pressure
and thus the condition of plastic incompressibility is satis-
fied (see Ref. [28] for details). For k 2 [�1,1] and any inte-
ger a P 1, the anisotropic yield function is convex in the
variables R1,R2,R3.

Identification of the material parameters involved in the
above yield criterion for an orthotropic sheet can be done
using (i) experimental yield stress values corresponding to
monotonic uniaxial tension and compression along different
directions in the plane of the sheet and through-thickness
compression, and (ii) r-values along the rolling and trans-
verse directions obtained from uniaxial tension and com-
pression tests, respectively (for more details, see Ref. [28]).

It was shown that this criterion is able to reproduce indi-
vidual plane stress yield surfaces corresponding to different
given (fixed) levels of accumulated plastic deformation for
pure Mg as well as for Mg and Ti alloys (see Ref. [28], data
after Ref. [32]). However, modeling the change in the shape
of the yield locus which is due to texture evolution during
plastic deformation is a daunting task, even for monotonic
loading conditions. In this work we focus on the descrip-
tion of the evolution of anisotropy for such monotonic
strain paths (i.e. anisotropic hardening effects associated
to strain-path changes like the Bauschinger effect will not
be considered).

We assume that yielding is described by:

F ðr;~epÞ ¼ ~rðr;~epÞ � Y ð~epÞ: ð14Þ
In Eq. (14), ~r is the effective stress based on the stress
potential given by Eq. (13) i.e.

~r¼ B½ðjR1j � kR1Þaþ ðjR2j � kR2Þaþ ðjR3j � kR3Þa�
1
a; ð15Þ

where B is a constant defined such that ~r reduces to the ten-
sile yield stress in the rolling direction, i.e.

B ¼ 1

ðjU1j � kU1Þa þ ðjU2j � kU2Þa þ ðjU3j � kU3Þa
� �1

a

ð16Þ
with

U1 ¼
2

3
L11 �

1

3
L12 �

1

3
L13

� �
;

U2 ¼
2

3
L12 �

1

3
L22 �

1

3
L23

� �
;

U3 ¼
2

3
L13 �

1

3
L23 �

1

3
L33

� �
ð17Þ

and where Y ð~epÞ is the isotropic hardening law in which ~ep

is the effective plastic strain. The effective plastic strain
associated with this anisotropic yield function is calculated
using the principle of equivalence of plastic work (see Ref.
[33]).

Note that even if, for a given level of strain, the compo-
nents of the fourth-order tensor L and the coefficients k
and a can be determined based on the available experimen-
tal data, establishing analytical expressions for the evolu-
tion of all these parameters in terms of the hardening
variable is very challenging. Therefore, an alternative
approach is proposed.
3.2. Evolution of the yield surface with accumulated

deformation

The methodology proposed is to complement available
experimental data with numerical test results. For this pur-
pose, we use the VPSC model to calculate the yield stresses
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along strain paths for which no experimental data are
available. Since the polycrystalline model incorporates
explicitly the evolution of texture, we can thus obtain infor-
mation concerning the change of the shape of the yield
locus with accumulated deformation. Using this combina-
tion of experimental and numerical results, we then identify
the coefficients involved in the CPB05 yield criterion for
a finite set of values of equivalent plastic strain, say
~e1

p < ~e2
p < � � � < ~em

p , and then calculate the effective stress
~rj ¼ ~rfr;Lð~ej

pÞ; kð~ej
pÞ; að~ej

pÞg (according to Eq. (15)) as well
as Y j ¼ Y ð~ej

pÞ, corresponding to the each of the individual
strain levels ~ej

p, j = 1, . . . ,m. Further, an interpolation pro-
cedure is used to obtain the yield surfaces corresponding to
any given level of accumulated strain. For a given arbitrary
~ep, the anisotropic yield function is of the form

F ðr;~epÞ ¼ Cðr;~epÞ �Pð~epÞ ð18Þ
with

C ¼ nð~epÞ � ~rj þ ð1� nð~e pÞÞ � ~rjþ1 ð19Þ
and

P ¼ nð~epÞ � Y j þ ð1� nð~epÞÞ � Y jþ1 ð20Þ
for any ~ej

p 6 ~ep 6 ~ejþ1
p , j = 1, . . . ,m � 1. For linear interpo-

lation, the weighting parameter nð~epÞ appearing in Eqs. (19)
and (20) is defined as

nð~epÞ ¼
~ejþ1

p � ~e p

~ejþ1
p � ~ej

p

ð21Þ

such that nð~ej
pÞ ¼ 1 and nð~ejþ1

p Þ ¼ 0. By considering that the
anisotropy coefficients Lij, the strength differential parame-
ter k and the homogeneity parameter a evolve with the
plastic deformation, the observed distortion and change
in shape of the yield loci of hcp materials can be captured.
Obviously, if these coefficients are taken constant, then the
shape of the yield locus depends only on the initial texture
and does not change.

3.3. Integration algorithm

In order to simulate the deformation of hcp metals the
proposed model was implemented in the commercial FE
code ABAQUS [34]. The algorithmic aspects related to
the FE implementation are presented in what follows.
The elastic strains are usually much smaller than the plastic
strains, and hence an additive decomposition of the total
strain rate _e into an elastic part _ee and a plastic part _ep is
usually considered. Thus, the constitutive equations can
be written in a rate form as

_e ¼ _ee þ _ep: ð22Þ
The elastic stress–strain relationship is given by

_r ¼ C : _ee; ð23Þ
where C denotes the fourth-order elasticity tensor. The
yield function is given by Eq. (18) and the evolution of
the plastic strain is given by an associated flow rule:
_ep ¼ k
oF
or
; ð24Þ

where k P 0 is the plastic multiplier. Since the effective
stress ~r is a first-order homogeneous function in stresses
(see Eq. (15)), from the work-equivalence principle it fol-
lows that the law of evolution for the effective plastic strain
(associated with ~r) reduces to _~ep ¼ k. The loading–unload-
ing conditions can be expressed in Kuhn–Tuckner form as

k P 0; F 6 0; kF ¼ 0: ð25Þ
Using the preceding relationships, it can be easily shown
that the tensor of tangent elastoplastic moduli, Cep, which
relates the current stress increment to the current total
strain increment, is given by

Cep ¼
C if k ¼ 0;

C� C:oC
or
�C:oC

or
oC
or

:C:oC
or
þoP

o�ep
� oC

o�ep

if k > 0;

8<
: ð26Þ

where

oC
or
¼ nð~epÞ �

o~rj

or
þ ð1� nð~epÞÞ �

o~rjþ1

or
; ð27Þ

oC
o~ep

¼ ~rjþ1 � ~rj

~ejþ1
p � ~ej

p

; ð28Þ

oP
o~ep

¼ Y jþ1 � Y j

~ejþ1
p � ~ej

p

: ð29Þ

In order to solve for the plastic multiplier, the following
second derivatives of the yield function are also generally
necessary:

o2C
or2
¼ nð~epÞ

o2~rj

or2
þ ð1� nð~epÞÞ

o2~rjþ1

or2
; ð30Þ

o2C
o~ep or

¼
oC
or

jþ1 � oC
or

j

~ejþ1
p � ~ej

p

: ð31Þ

In displacement-based FE formulations, for a prescribed
nodal displacement, at each Gauss point the system of
Eqs. (22)–(24) is integrated to update stress and hardening
parameter. As integration algorithm we used the closest
point projection algorithm (see e.g. Refs. [35,36]). During
a time step [tn, tn+1], the trial stress rtrial

nþ1 ¼ rn þ C : Den is
calculated.

If F ðrtrial
nþ1;~e

p
nÞ 6 0, rnþ1 ¼ rtrial

nþ1; if Cðr trial
nþ1 ;~e

p
nÞ�

Pð~ep
nÞ > 0, there is plastic flow, and integration of the con-

stitutive equation leads to the following nonlinear system:

rnþ1 ¼ rtrial
nþ1 � DkC :

oF
or

� �
nþ1

;

F nþ1 ¼ Cðrnþ1;~e
p
n þ DkÞ �Pð~ep

n þ DkÞ ¼ 0

ð32Þ

to be solved for rn+1 and Dk. The integration of Eq. (32) is
performed iteratively, starting with r0

nþ1 ¼ rtrial
nþ1 and

Dk(0) = 0. Then, given rðkÞn and ~epðkÞ
n , an iterative procedure

is performed. Basically, the constraint equation (32) is
linearized and the increment to the plastic multiplier is
computed. The stresses and strains are then updated
through kn+1, and the yield criterion F ðrnþ1;~epÞ 6 0 should



Table 1
Yield criterion coefficients corresponding to Fig. 1

0.2% 1% 5% 10% 15%

k �0.0017 0.2756 �0.1621 �0.1659 �0.1828
L12 3.7403 2.7390 3.2358 3.2749 3.1351
L13 2.1468 2.0252 1.6811 1.6275 1.6353
L22 0.9926 0.9413 0.8142 0.6188 0.72011
L23 2.0845 1.9900 1.5974 1.5191 1.5212
L33 0.5393 1.2506 1.3113 1.3190 1.1806
L44 1.2958 0.4906 0.6567 0.7695 0.7549
L55 1.4085 0.5560 0.6290 0.7021 0.6858
L66 5.1832 1.9010 2.7404 3.0585 2.9195

For all levels of effective plastic strain: a = 2 and L11 = 1.0.
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Fig. 1. Yield surface evolution for an initial textured zirconium clock-
rolled plate. The solid lines represent the anisotropic CPB05 yield surfaces
at individual levels of equivalent plastic strains; the symbols represent the
data points used for the determination of the coefficients involved in the
analytic yield criterion (experimental measurements as well as flow stresses
calculated using VPSC); the dashed surfaces are CPB05 yield surfaces
obtained by linear interpolation.
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be satisfied within a specified tolerance. If this tolerance has
not been met, then the plastic corrector step will be re-
peated until convergence is obtained. Once this happens,
the updated stresses and strains are accepted as the current
state.

In what follows, the proposed model will be applied to
the description of the quasi-static behavior of high-purity
zirconium at room temperature (data reported in Refs.
[12,13,37]) during in-plane tension, in-plane compression
and bending.

4. Results

4.1. Application to the description of the behavior of
Zirconium

Kaschner and Gray [37], Tomé et al. [12] and Kaschner
et al. [13] have reported results of an experimental study on
the anisotropy of deformation of textured polycrystalline
pure zirconium. This material is highly anisotropic both
at the single-crystal and polycrystal level. It was processed
through a series of clock-rolling and annealing cycles to
produce a plate with strong basal texture (Æcæ-axes of the
crystals predominantly oriented along the plate normal
direction). The process of multiple rolling passes with rota-
tion was used in order to obtain a nearly isotropic in-plane
texture. Right-circular cylindrical tests specimens were sec-
tioned from both the through-thickness (TT) and in-plane
(IP) plate directions. Quasi-static compression tests were
conducted on these samples (denoted as TTC and IPC),
while quasi-static tension tests were conducted only in the
IP direction (IPT). The experimental tests have shown that
the mechanical response is strongly dependent on the pre-
dominant orientation of the Æcæ-axes with respect to the
loading direction. While the experiments reported in Refs.
[12,13] correspond to two different temperatures (room and
liquid nitrogen), in what follows we will use only the room
temperature results to validate the proposed model. For
the identification of the anisotropy coefficients involved
in the CPB05 expressions (see Eq. (15)), the yield stresses
corresponding to at least another two different strain paths
besides TTC, IPC and IPT are necessary. To obtain the
yield stresses for through-thickness tension and shear in
different directions, we have performed numerical tests
with the VPSC polycrystal model using the reported initial
texture (consisting of 377 orientations), deformation mech-
anisms operational at room temperature (i.e. prismatic Æaæ-
slip, pyramidal Æc + aæ-slip and tensile twinning) and the
values for the slip system parameters (critical stresses,
hardening coefficients, rate sensitivity exponent); see Refs.
[12,13]. Using the yield stress data from mechanical tests
and the results of the numerical tests by least squares we
have fitted the CPB05 yield surfaces (i.e. the nine indepen-
dent coefficients of the fourth-order tensor L and the
strength-differential parameter k) for five different individ-
ual levels of accumulated plastic strain: ~e1

p ¼ 0:0002,
~e2

p ¼ 0:01, ~e3
p ¼ 0:05, ~e4

p ¼ 0:1 and ~e5
p ¼ 0:15. The numerical
values for the coefficients for each level of accumulated
plastic strain are given in Table 1. It is worth noting that
the homogeneity parameter was considered to have a fixed
value a = 2, because of the nearly elliptical shape of the
yield loci for high-purity zirconium. Next, for each individ-
ual strain level ~ej

p, j = 1, . . . , 5, we calculated Y j ¼ Y ð~ej
pÞ

using the experimental IPT loading curve, and ~rj ¼
~rfr;Lð~ej

pÞ; kð~ej
pÞ; að~ej

pÞg using Eq. (15). Finally, the yield
surface corresponding to any given level of accumulated
plastic deformation (between 0 and 0.15) was obtained
using the interpolation technique described in Section 3.2.
Fig. 1 shows the biaxial plane (rxx,ryy) projections of the
five individual yield surfaces (solid lines) given by Eq.
(13), the available experimental and numerical test
results as well as several yield loci (dashed lines) obtained
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Fig. 3. Schematic of the four-point bend test.
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using the proposed interpolation technique (see Eqs. (18)–
(21)).

FE calculations were carried out using the above inter-
polation model to simulate the response of zirconium at
room temperature, for the cases of IPT, IPC and TTC.
For comparison purposes, we have also performed simula-
tions for the same material assuming fixed values of the
anisotropy coefficients (these values correspond to yield
stress data at 0.002 equivalent plastic strain) and isotropic
hardening. Fig. 2 shows the stress–strain curves obtained
using the proposed model (i.e. CPB05 coupled with VPSC
using experimentally adjusted anisotropic hardening law),
together with those obtained by means of CPB05 but
assuming isotropic hardening, and the data from mechan-
ical tests (symbols) [12,38]. Note that the proposed model
captures well the experimental trends. Obviously, since iso-
tropic hardening implies that the material hardens at the
same rate in every testing direction, it cannot adequately
describe deformation that involves the activation of defor-
mation mechanisms different from the ones operational
during in-plane tension (i.e. the test used to adjust the
values of Y j ¼ Y ð~ej

pÞÞ.
4.2. Simulations of beam bending

The proposed model will be used to simulate a series of
four-point bending tests at room temperature reported in
Refs. [12,13]. The experiments were carried out on rectan-
gular bars of square section cut from the same clock-rolled
Zr. Before loading, the beams were aligned in one of the
two possible orientations with respect to the main texture
component: with Æcæ-axes mostly aligned with the z-axis
of the beam (case C0) and with Æcæ-axes mostly aligned with
the x-axis of the beam (case C90) (see also Fig. 3 for a sche-
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Fig. 2. Comparison between experimental data (solid rectangles) and simula
evolving during plastic deformation and CPB05 with fixed anisotropy coeffic
zirconium plate. Data after Ref. [12]. Error bars are smaller than symbol size
0.1%, respectively [38]).
matic of the test). The initial dimensions of the beams were
6.35 mm · 6.35 mm · 50.8 mm. The beams were bent as
the upper dowel pins were displaced downwards by 6 mm
and the lower pins were held rigid, resulting in a strain of
about 20% in the outmost fibers of the beam. Special exper-
imental techniques were developed to map and measure the
local strain field (see Refs. [12,13]). Detailed information
concerning the variation of each strain component as a
function of the location along the width of the specimen
was reported for the compressive side (top) as well as the
tensile side (bottom). Refs. [12,13] also contain a detailed
FE analysis of the bending tests using the explicit FE code
EPIC coupled with VPSC (designated VPSC/EPIC in what
follows) which was performed assuming the presence of a
polycrystal at each integration point. The mesh consisted
of 1920 single-integration-point tetrahedral brick elements
(the only elements available in EPIC) with the tetrahedra
symmetrically arranged in set of 24. For comparison pur-
poses, we implemented the proposed model in EPIC
(CPB05/EPIC in what follows) and simulated the same
experiments using the same type of elements and the same
mesh as in Ref. [12]. Finally, we have also used the present
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tion results using the yield criterion CPB05 with anisotropic coefficients
ients (obtained from the initial texture) (dashed lines) for a clock-rolled
(i.e. relative errors in stress and strain measurements are less than 1% and
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Fig. 5. Comparison of the experimentally measured strain distributions
(symbols) with the results of FE simulations using the proposed model
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model in combination with the explicit ABAQUS FE code
(CPB05/ABAQUS in what follows) to simulate the same
zirconium bent beam tests using a 9 · 9 grid of single-inte-
gration-point hexahedral elements (CD8R three-dimen-
sional linear brick elements). Due to the symmetry of the
problem, only half of the beam was analyzed using 2916
elements. Free-surface boundary conditions were imposed
on the beam except at the nodes that coincide with the con-
tact points of the dowel pins. It is worth noting that the
adopted discretization is coarser than the one used in the
EPIC calculations (the CPB05/ABAQUS calculations
involve a total of 5832 elements for the whole beam while
the VPSC/EPIC and the CPB05/EPIC simulations involve
a total of 7680 elements). The results from these simula-
tions, along with the experimental data and the VPSC/
EPIC predictions reported in Ref. [13], are shown in
Fig. 4 (C0 case) and Fig. 5 (C90 case). Inspection of
Fig. 4 (C0 case) reveals that the simulation results using
either VPSC/EPIC or the proposed model (in combination
with EPIC or ABAQUS) are reasonably close to the exper-
imental data. Both models capture very well the rigidity of
the beam response along the hard-to-deform Æcæ-axes pref-
erential orientation, which in this case is parallel to the
z-axis. Also, both models capture the asymmetry between
tension and compression (i.e. the differences in yield values
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Fig. 4. Comparison of the experimentally measured strain distributions
(symbols) with the results of FE simulations using the proposed model
implemented in ABAQUS (solid lines), the proposed model implemented
in EPIC (interrupted lines) and VPSC linked directly to EPIC (dashed
lines), for the case C0 (i.e. when the Æcæ-axes are predominantly contained
in the bending plane). Data and VPSC/EPIC simulations results reported
in Fig. 6 of Ref. [13]. Data horizontal error bars are roughly equal to
symbol size (see Fig. 5 of Ref. [13]).

implemented in ABAQUS (solid lines), the proposed model implemented
in EPIC (interrupted lines) and VPSC linked directly to EPIC (dashed
lines), for the case C90 (i.e. when the Æcæ-axes are predominantly
perpendicular to the bending plane). Data and VPSC/EPIC simulations
results reported in Fig. 6 of Ref. [13]. Data horizontal error bars are
roughly equal to symbol size (see Fig. 5 of Ref. [13]).
and hardening rates) and thus correctly predict the shift of
the neutral plane. The deformation along the beam axis is
better predicted by the proposed model, while the VPSC/
EPIC model underpredicts the deformation in the lower
half of the beam. Also, the proposed model gives an accu-
rate prediction of upward shift of the neutral plane.

For the case when the major texture component is
aligned with the x-axis of the beam (C90, Fig. 5), the
CPB05/EPIC calculations underpredict the strains for the
lower part of the beam while the upward shift of the neu-
tral axis is reproduced correctly. On the other hand,
CPB05/ABAQUS results are much closer to the experi-
mental results. Both the strain distribution and shift of
the neutral axis are predicted with accuracy. The better
overall performance of the CPB05/ABAQUS implementa-
tion compared with the EPIC simulations can be attributed
to the use of hexahedral elements (e.g. see Ref. [39]). This
may be also the reason why VPSC/EPIC overpredicts the
strains for the upper half of the beam but gives a good
agreement with the experimental data for the lower half
of the beam. However, the predicted VPSC/EPIC neutral
plane remains at the center of the beam.

Figs. 6 and 7 present the strain distributions obtained
with CPB05/ABAQUS corresponding to the cases C0
and C90, respectively, for the case when the anisotropy
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(symbols) and the ABAQUS FE predictions using the proposed model
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Fig. 8. Comparison of experimentally photographed x–z cross-section of the bent bars versus the predictions of VPSC/EPIC (white dots) and the proposed
model (CPB05/ABAQUS implementation). Exx contours corresponding to (a, c) C0 case (Æcæ-axes mostly parallel to the z-axis) and (b, d) C90 case (Æcæ-axes
mostly aligned with the x-axis of the beam). The orientation of the basal poles is indicated by the arrows (data and VPSC/EPIC simulations after Ref. [13]).
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coefficients are fixed (values of the coefficients were
obtained by fitting the yield stress data at 0.002 equivalent
plastic strain). Note that CPB05 in conjunction with isotro-
pic hardening reproduces qualitatively well the upward
shift of the neutral axis. This is due to the fact that
CPB05 incorporates strength-differential effects. However,
keeping the anisotropy coefficients constant, i.e. assuming
that the shape of the yield locus is given by the initial tex-
ture and does not evolve during plastic deformation, we
cannot capture the difference in hardening rate between
uniaxial tension and uniaxial compression (see also
Fig. 2), so the strains distributions are not reproduced
quantitatively. In conclusion, excellent agreement between
the measured neutral axis displacement and measured
strains can be obtained only if the shape of the yield locus
is allowed to evolve, i.e. if the difference in hardening rates
between in-plane tension and in-plane compression is
accounted for.

In what concerns the predictions of the cross-sections of
the deformed bars, VPSC/EPIC, CPB05/EPIC and
CPB05/ABAQUS models are in agreement with the exper-
imental data. Fig. 8 shows the final configurations for the
photographed experimental x–z cross-section of the bent
beams superimposed to the predictions obtained with
VPSC/EPIC (white dots), as reported in Ref. [13]. The fig-
ure also shows the calculated x–z cross-sections of the bent
beams obtained with CPB05/ABAQUS (Figs. 8(a) and
(b)). Note that both models predict wedged cross-sections
for the case C0 (Figs. 8(a) and (c)) when the hard-to-
deform Æcæ-axes are predominantly parallel to the z-axis.
The wedge-shaped section results from a nearly uniaxial
stress loading along the beam axis (the y-axis) that reverses
sign at the neutral plane, and from the plastic incompress-
ibility of the material.

For the case C90, when the Æcæ-axes are aligned with the
x-axis, VPSC/EPIC and both CPB05/FEM implementa-
tions describe correctly the rigidity in the hard-to-deform
direction, and predict that the final cross-section remains
rectangular, in agreement with the experimentally mea-
sured ones. It is worth noting that, as shown in Ref. [12],
if a Taylor model (instead of a self-consistent formulation)
is used to describe the material response, then the predicted
final beam section adopts a wedge shape, contrary to the
experimental evidence.

5. Summary and concluding remarks

A macroscopic anisotropic model that captures the
influence of evolving texture on the plastic response of hex-
agonal metals was proposed. Initial yielding is described
using a recently developed analytical yield function that
accounts for both anisotropy and strength differential
effects. To describe the change of the shape of the yield sur-
face during monotonic loading, the evolution of the aniso-
tropic coefficients involved in the expression of the yield
function is considered. The evolution laws for the aniso-
tropic coefficients are obtained based on experimental data,
VPSC crystal plasticity theory, together with a macro-
scopic-scale interpolation technique. A procedure for iden-
tification of the parameters involved in the model using
flow stress data for simple monotonic single loading paths,
in-plane tension, in-plane compression, through-thickness
tension, through-thickness compression and pure shear
was provided. It was shown that if experimental informa-
tion is not available or cannot be obtained (e.g. for
through-thickness tension or shear loadings), then flow
stress data can be generated using the polycrystal calcula-
tion in conjunction with the metallurgical information
(initial texture, active deformation modes, macroscopic
loading curves for simple monotonic single loading paths).

The proposed model was applied to the description of the
quasi-static behavior of a high-purity zirconium at room
temperature (data reported in Refs. [12,13,37]). The model
was benchmarked against beam bending test results. The
reason for choosing the bending test is because it provides
non-homogeneous forming conditions with deformation
gradients and local variables amenable to detailed analysis
of the twinning contribution to deformation. Comparison
between predicted and measured macroscopic strain fields
and beam sections shows that the proposed model describes
very well strength differential effects. The difference in
response between the tensile and compressive fibers and
the shift of the neutral plane are particularly well captured.

Because of non-negligible twinning activity accompa-
nied by grain reorientation and highly directional grain
interactions, the influence of the texture evolution on hard-
ening of hcp materials cannot be neglected even for the
simplest single loading paths. The model presented is a first
attempt to address this very difficult and challenging topic.
The simulation results suggest that a computationally effi-
cient macroscale model that incorporates relevant informa-
tion about the behavior of hcp metals at different length
scales describes with high fidelity the quasi-static deforma-
tion of initially textured hcp materials for single path
loadings.
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[31] Tomé CN, Lebensohn RA, Kocks UF. Acta Mater 1991;39:2667.
[32] Lee D, Backofen WA. TMS-AIME 1966;236:1077.
[33] Hill R. J Mech Phys Solids 1987;35:23.
[34] ABAQUS Version 6.4 reference manuals, Pawtucket (RI); 2003.
[35] Belytschko T, Liu WK, Moran M. Nonlinear finite elements for

continua and structures. New York (NY): Wiley; 2000.
[36] Simo JC, Hughes TJR. Computational inelasticity. New York

(NY): Springer; 1998.
[37] Kaschner GC, Gray GT. Metall Trans A 2000;31:1997.
[38] Kaschner GC. Private communication.
[39] Cook RD, Malkus DS, Plesha ME, Witt RJ. Concepts and

applications of finite element analysis. New York (NY): Wiley; 2001.


	Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening
	Introduction
	Polycrystal model
	Proposed macroscopic model
	Initial yielding
	Evolution of the yield surface with accumulated deformation
	Integration algorithm

	Results
	Application to the description of the behavior of Zirconium
	Simulations of beam bending

	Summary and concluding remarks
	Acknowledgments
	References


