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This paper presents comparisons between full-field numerical results and homog-
enization estimates for the effective behaviour and statistical fluctuations of the
stress and strain-rate fields in viscoplastic polycrystals. The full-field simulations
make use of a recently introduced technique based on the fast Fourier transform
(FFT) algorithm, while the homogenization results follow from the ‘second-order’
technique incorporating information about the averages and fluctuations of the fields
in a suitably chosen ‘linear comparison polycrystal’, together with the standard self-
consistent (SC) approximation for the linear comparison medium. An application
is given for a model two-dimensional power-law polycrystal, for which exact esti-
mates are available in the limit of linearly viscous behaviour. These exact results
demonstrate the accuracy of the FFT method, even for relatively large values of the
grain anisotropy parameter when the field fluctuations become significant. On the
other hand, the ‘second-order’ SC estimates for both the effective behaviour and the
statistical fluctuations of the stress and strain-rate fields in viscoplastic polycrystals
are found to be in good agreement with the corresponding FFT results. This is the
case even for strongly nonlinear systems with low strain-rate sensitivities, where the
field fluctuations are found to be large, and where other, earlier versions of the SC
approximation are shown to fail.
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1. Introduction

Because macroscopic samples of most metals and minerals appear in polycrystalline
form, the computation of the effective response of polycrystalline aggregates starting
from the properties of their constituent single-crystal grains and microstructure is
a fundamental problem in materials science. The simplest and perhaps most com-
monly used homogenization procedure in polycrystalline plasticity is the uniform
strain-rate approximation of Taylor (1938). There is also the corresponding uniform-
stress approximation of Reuss (1929). These two approximations have been shown
(Hutchinson 1976) to provide rigorous upper and lower bounds, respectively, for the
effective flow stress of viscoplastic polycrystals. Improved methods, based on various
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types of ad hoc approximations, include several extensions of the self-consistent (SC)
model, such as the ‘incremental’ method of Hill (1965) and Hutchinson (1976), and
the ‘tangent’ procedure of Molinari et al . (1987) and Lebensohn & Tomé (1993).
While these various approximations generally provide improvements on the Taylor
and Reuss bounds, and reduce to the linear self-consistent estimate on which they
are all based, for linearly viscous behaviour, they give widely diverging predictions
for low-rate-sensitivity materials.

Alternative extensions of the SC estimates for viscoplastic polycrystals have been
proposed recently making use of rigorous nonlinear homogenization methods (see
Ponte Castañeda & Suquet (1998) for a recent review). More specifically, these novel
SC estimates are based on the use of variational ‘linear comparison’ methods, which
express the effective potential of the nonlinear viscoplastic polycrystal in terms of
that of a linearly viscous polycrystal with properties that are determined from suit-
ably designed variational principles. Two types of estimates are available depending
on the method used. The first is based on the ‘variational’ method (Ponte Castañeda
1991; deBotton & Ponte Castañeda 1995), and makes use of the SC approximation
for linearly viscous polycrystals to give bounds on the SC estimate for viscoplastic
polycrystals (Ponte Castañeda & Nebozhyn 1997; Nebozhyn et al . 2001). The second
is based on the recently proposed ‘second-order’ method (Ponte Castañeda 2002),
and makes use of the SC approximation for a more general class of linearly viscous
polycrystals to generate more accurate SC estimates for viscoplastic polycrystals
(Liu & Ponte Castañeda 2004).

On the other hand, the dramatic increases in computational power in recent years
have begun to make possible full-field simulations of polycrystalline samples. Pioneer-
ing contributions have been made by Beaudoin et al . (1995) and Balasubramanian &
Anand (2002) using the finite-element method (FEM). Most of this work, however,
has been concerned with texture predictions, and has used rather crude (one-element)
discretizations of the constituent grains. Recently, an alternative technique based on
the use of the fast Fourier transform (FFT) has been introduced by Moulinec &
Suquet (1994, 1998). This technique has the advantage that it is amenable to finer
discretization, and although it has mostly been used for composites thus far (Michel
et al . 1999), applications of the method have been given recently for polycrystals
(Lebensohn 2001; Suquet 2001; Bhattacharya & Suquet 2004).

The uncertainties associated with the various self-consistent schemes and the avail-
ability of powerful full-field numerical simulations suggest the use of the later to
verify the accuracy of the former. In this paper, it is proposed to make use of the
FFT technique, as generalized by Michel et al . (2000) and Lebensohn (2001), to carry
out full-field simulations for a model, two-dimensional (2D) polycrystal, and to make
comparisons with the corresponding SC predictions. The interest in this model prob-
lem derives from the fact that an exact estimate is available for its effective behaviour,
and that the standard self-consistent model gives this estimate exactly, when the con-
stitutive behaviour of the single crystals is taken to be linear. This allows a precise
check on the accuracy of the full-field simulations, which will then be used as the
reference standard to check the accuracy of the various SC models for more general
nonlinear viscoplastic polycrystals, with the objective of discriminating among them.
While the accuracy of a particular SC method for this special class of polycrystals
will not prove its accuracy for more general classes of three-dimensional (3D) poly-
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crystals, the failure of a given method for this special, but representative example,
would severely compromise its validity for more general classes of polycrystals.

One of the advantages of the full-field FFT simulations is that they are not
restricted to macroscopic predictions, and can be used to generate estimates for the
local fields. On the other hand, the recently proposed ‘second-order’ method provides
estimates not only for the macroscopic behaviour, but also for the statistical averages
and fluctuations of the stress and strain fields within the grains of the polycrystal.
Therefore, a second objective of this paper will be to investigate the heterogeneity of
the stress and strain fields within the model polycrystal, as well as their dependence
on material parameters such as the strain-rate sensitivity (nonlinearity) and grain
anisotropy (heterogeneity contrast). This will be pursued here by means of both the
FFT simulations and the ‘second-order’ method.

2. Theory

(a) Single-crystal behaviour and macroscopic properties of the polycrystal

For the purposes of this work, polycrystals will be taken to be random aggregates
of perfectly bonded single-crystal grains with varying orientations. Furthermore, the
distribution of the grains in the polycrystals will be taken to be statistically homoge-
nous, so that the standard ergodic hypothesis will allow the replacement of ensemble
averages by volume averages over a suitably defined representative volume element
(RVE) of the polycrystal. An orientation distribution function (ODF) may then be
defined (see Adams & Olson 1998), serving to characterize the crystallographic texture
of the polycrystal. For simplicity, it will be assumed here that the grain orientations
take on a set of discrete values, defined by rotation tensors Q(r) (r = 1, . . . , N). The
RVE of the polycrystal is assumed to occupy a domain Ω, while all the grains of a
given orientation Q(r) occupy ‘phases’ Ω(r) (r = 1, . . . , N), such that

Ω =
N⋃

r=1

Ω(r).

The characteristic functions χ(r) describing the location of the various orientations
are defined to be equal to unity if the position vector x is in Ω(r) and zero otherwise.
Volume averages over Ω are denoted by 〈·〉, so that the scalars c(r) = 〈χ(r)〉 charac-
terize the crystallographic texture of the polycrystal. Similarly, volume averages over
the phases Ω(r) will be denoted 〈·〉(r).

Now, for a given stress σ, the local constitutive response is defined by

ε =
∂u

∂σ
, u(x,σ) =

N∑
r=1

χ(r)(x)u(r)(σ), u(r)(σ) =
K∑

k=1

φ
(r)
(k)(τ

(r)
(k)), (2.1)

where ε is the Eulerian strain rate, and u and u(r) are the stress potentials for
the polycrystal and a single crystal with orientation Q(r), respectively. The convex
functions φ

(r)
(k) (k = 1, . . . , K) characterize the response of the K slip systems in a

crystal with orientation Q(r) and depend on the resolved shear (or Schmid) stresses

τ
(r)
(k) = σ · µ

(r)
(k), µ

(r)
(k) = 1

2(n(r)
(k) ⊗ m

(r)
(k) + m

(r)
(k) ⊗ n

(r)
(k)). (2.2)
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Here the µ
(r)
(k) are second-order tensors with n

(r)
(k) and m

(r)
(k) denoting the unit vectors

normal to the slip plane and along the slip direction of the kth system, respectively,
for a crystal with orientation Q(r). Note that the Schmid tensors µ

(r)
(k) for a one-phase

polycrystal are related to corresponding tensors µ(k) for a ‘reference’ crystal via

µ
(r)
(k) = Q(r)Tµ(k)Q

(r).

In this work dealing with polycrystals made up of only one type of single crystal,
the slip potentials of the grains with various orientations will be taken to be the
same, i.e. φ

(r)
(k) = φ(k). Furthermore, for simplicity, use will be made here of the

standard power-law choice for these slip potentials:

φ(k)(τ) =
γ0(τ0)(k)

n + 1

∣∣∣∣ τ

(τ0)(k)

∣∣∣∣
n+1

, (2.3)

where m = 1/n (0 � m � 1) is the strain-rate sensitivity, (τ0)(k) > 0 is the reference
flow stress of the kth slip system, and γ0 is a reference shear rate. Note that the
limit as the nonlinearity parameter (n) tends to infinity is of special interest, as it
corresponds to rigid ideally plastic behaviour.

For the class of viscoplastic polycrystals whose local constitutive behaviour is given
by (2.1) and (2.2), it is known (e.g. Ponte Castañeda & Suquet 1998) that the effective
response for the polycrystal, characterizing the relation between the average strain
rate E = 〈ε〉 and stress Σ = 〈σ〉, is given by

E =
∂Ũ

∂Σ
, Ũ(Σ) = min

σ∈S(Σ)
〈u(x,σ)〉 = min

σ∈S(Σ)

N∑
r=1

c(r)〈u(r)(σ)〉(r). (2.4)

Here, Ũ is the effective stress potential for the polycrystal, and

S(Σ) = {σ, such that div σ = 0 and 〈σ〉 = Σ in Ω}

defines the set of statically admissible stresses.

(b) The ‘second-order’ homogenization theory

In this subsection, the ‘second-order’ homogenization method (Liu & Ponte Casta-
ñeda 2004) for viscoplastic polycrystals is recalled, which is a generalization of the
method proposed by Ponte Castañeda (2002) for nonlinear composite materials. In
turn, these formulations constitute improvements on an earlier version of the method
(Ponte Castañeda 1996), which neglected the field fluctuations, but which also led
to estimates that are exact to second order in the heterogeneity contrast (Suquet &
Ponte Castañeda 1993).

(i) The linear comparison polycrystal

The key idea of the ‘second-order’ method is to introduce a ‘linear thermoelastic
comparison polycrystal’ with local and grain-level stress potentials given by

uT(x,σ) =
N∑

r=1

χ(r)(x)u(r)
T (σ), u

(r)
T (σ) = 1

2σ · M (r)σ + e(r) · σ, (2.5)
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where

M (r) =
K∑

k=1

α
(r)
(k)µ

(r)
(k) ⊗ µ

(r)
(k) and e(r) =

K∑
k=1

e
(r)
(k)µ

(r)
(k) (2.6)

define the viscous-compliance and ‘residual’ strain-rate tensors at the grain level in
terms of the corresponding slip-level quantities α

(r)
(k) and e

(r)
(k), respectively.

The effective behaviour of this linear comparison polycrystal is characterized by a
stress potential ŨT defined by

ŨT(Σ) = min
σ∈S(Σ)

〈uT(x,σ)〉 = min
σ∈S(Σ)

N∑
r=1

c(r)〈1
2σ · M (r)σ + e(r) · σ〉(r). (2.7)

Because of the linearity of the problem, it is known (Laws 1973) that the average
of the stress over phase r in this linear comparison ‘thermoelastic’ composite may
be written in the form:

σ̄(r) = B(r)Σ + b(r), (2.8)

where B(r) and b(r) are concentration tensors depending on the homogenization pro-
cedure used. Using these concentration tensors, the effective potential ŨT may be
written (Laws 1973; Willis 1981) in the form:

ŨT(Σ) = 1
2Σ · M̃Σ + ẽ · Σ + 1

2 g̃, (2.9)

such that the associated effective stress–strain-rate relation is given by

E = M̃Σ + ẽ, (2.10)

where

M̃ =
N∑

r=1

c(r)M (r)B(r), ẽ =
N∑

r=1

c(r)e(r)B(r), g̃ =
N∑

r=1

c(r)e(r) · b(r) (2.11)

are the effective compliance, effective residual strain rate and effective energy under
zero applied stress, respectively.

Therefore, given explicit estimates for the concentration tensors B(r) and b(r) (see
further below), corresponding estimates may be generated for the phase averages
σ̄(r) and the effective potential ŨT of the linear comparison polycrystal. In addition,
estimates for the second moments of the stress over phase r may be obtained from

〈σ ⊗ σ〉(r) =
2

c(r)

∂ŨT

∂M (r) , (2.12)

where the variables e(r) are held fixed in the differentiation. Corresponding expres-
sions may then be generated for the phase fluctuation covariance tensors

C(r)
σ

.= 〈(σ − σ̄(r)) ⊗ (σ − σ̄(r))〉(r) = 〈σ ⊗ σ〉(r) − σ̄(r) ⊗ σ̄(r). (2.13)

Self-consistent estimates for thermoelastic systems are available from Laws (1973)
and Willis (1981). Expressions for the relevant concentration tensors are given by

B(r) = [M (r) + M̃�]−1Q̃−1 and b(r) = [M (r) + M̃�]−1[ẽ − e(r)]. (2.14)
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In these relations, M̃� = Q̃−1 − M̃ is the constraint tensor defined by Hill (1965),
where M̃ is the self-consistent estimate for the effective modulus tensor which is
obtained as the solution of the implicit equation

[M̃ + M̃�]−1 =
N∑

s=1

c(s)[M (s) + M̃�]−1, (2.15)

also involving M̃�, and Q̃ is a microstructural tensor, depending on M̃ and on the
‘shape’ of the two-point correlation functions 〈χ(r)χ(s)〉 for the distribution of the
grain orientations within the polycrystal. The tensor Q̃ may be expressed in terms of
a closely related tensor P̃ via Q̃ = L̃ − L̃P̃ L̃, where P̃ is given by

P̃ =
1

4π det Z

∫
|ξ|=1

H̃(ξ)|Z−1ξ|−3 dS. (2.16)

Here, H̃ijkh(ξ) = Ñikξjξh|(ij)(kh), Ñ = K̃−1, K̃ik = L̃ijkhξjξh and Z is a symmetric,
second-order tensor serving to characterize the ‘shape’ of the two-point correlation
functions, under the ‘ellipsoidal symmetry’ hypothesis (Willis 1977). For a polycrys-
tal, the shape of the two-point correlation functions is known to correlate with the
‘average’ shape of the grains. In particular, Z = I corresponds to the special case
of statistical isotropy for the two-point correlation functions, which is equivalent to
the hypothesis of ‘equi-axed’ grains.

(ii) The nonlinear polycrystal

By approximating the local potential of the nonlinear polycrystal u in terms of
the local potential of the above-defined linear comparison polycrystal uT and a suit-
able measure of the error, Liu & Ponte Castañeda (2004) generated the following
approximation for the effective potential of the nonlinear polycrystal:

Ũ(Σ) =
N∑

r=1

K∑
k=1

c(r){φ
(r)
(k)(τ̂

(r)
(k)) + φ

(r)
(k)

′
(τ̄ (r)

(k))(τ̄
(r)
(k) − τ̂

(r)
(k))} (energy), (2.17)

where the variables
τ̄

(r)
(k) and τ̂

(r)
(k)

depend on the averages and fluctuations of the resolved shear stress τ
(r)
(k) on the

slip systems k for grain orientations r in the linear comparison polycrystal, defined by
relations (2.5) and (2.6), in such a way that

τ̄
(r)
(k)

.= 〈τ (r)
(k)〉

(r) = σ̄(r) · µ
(r)
(k), (2.18)

and
(τ̂ (r)

(k) − τ̄
(r)
(k))

2 .= 〈(τ (r)
(k) − τ̄

(r)
(k))

2〉(r) = µ
(r)
(k) · C(r)

σ µ
(r)
(k), (2.19)

where the quantities τ̂
(r)
(k) − τ̄

(r)
(k) are taken to have the same sign as the τ̄

(r)
(k) .

In turn, the linear comparison polycrystal must be chosen such that the variables
e
(r)
(k) and α

(r)
(k) introduced in the context of relations (2.6) for e(r) and M (r) satisfy

the relations
e
(r)
(k) = φ

(r)
(k)

′
(τ̄ (r)

(k)) − α
(r)
(k)τ̄

(r)
(k) , (2.20)
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and
φ

(r)
(k)

′
(τ̂ (r)

(k)) − φ
(r)
(k)

′
(τ̄ (r)

(k)) = α
(r)
(k)(τ̂

(r)
(k) − τ̄

(r)
(k)). (2.21)

Note that equation (2.21) identifies the viscous slip compliances α
(r)
(k) of the linear

comparison polycrystal with a ‘generalized secant’ approximation of the nonlinear
constitutive relation for the corresponding slip systems in the viscoplastic polycrystal,
taking into account both the average and fluctuation of the stress for the given grain
orientation (as determined by the linear comparison approximation). Note also that
the variables τ̄

(r)
(k) and τ̂

(r)
(k) appearing in expression (2.17) for Ũ can be computed

making use of the self-consistent estimates (2.14) for the concentration tensors B(r)

and b(r).
Moreover, it is known (Liu & Ponte Castañeda 2004) that the effective stress–

strain-rate relation for the nonlinear polycrystal, obtained from relation (2.4)1 and
expression (2.17) for Ũ , does not coincide with the effective stress–strain-rate rela-
tion (2.10) for the linear comparison polycrystal, when use is made of (2.20) and
(2.21) to specify the linear comparison composite. In fact, an alternate version of the
‘second-order’ theory may be generated by making use of the effective stress–strain-
rate relations for the linear comparison polycrystal. The resulting estimate for the
nonlinear polycrystal can be shown to reduce to

E =
N∑

r=1

K∑
k=1

c(r)φ
(r)
(k)

′
(τ̄ (r)

(k))µ
(r)
(k) (constitutive relation). (2.22)

This estimate has the advantage of greater simplicity, but the disadvantage that it
does not possess an associated potential function Ũ , and that is not exact to second
order in the heterogeneity contrast. It can be interpreted as generalization of the
so-called ‘affine’ approximation of Masson et al . (2000).

A consequence of the comments in the preceding paragraph is the existence of a
duality gap in the theory (see Ponte Castañeda (2002) for more details). However,
in general, it is still useful to have consistent expressions for the average slip rates,
and their fluctuations. Thus, using certain restricted duality conditions, Liu & Ponte
Castañeda (2004) demonstrated that the following relations are satisfied:

γ̄
(r)
(k) = φ

(r)
(k)

′
(τ̄ (r)

(k)) and γ̂
(r)
(k) = φ

(r)
(k)

′
(τ̂ (r)

(k)), (2.23)

where the γ̄
(r)
(k) and the γ̂

(r)
(k) are consistent with relations

ε̄(r) =
K∑

k=1

γ̄
(r)
(k)µ

(r)
(k) L(r) · C(r)

ε =
K∑

k=1

1

α
(r)
(k)

(γ̂(r)
(k) − γ̄

(r)
(k))

2, (2.24)

with
L(r) = (M (r))−1, C(r)

ε = 〈(ε − ε̄(r)) ⊗ (ε − ε̄(r))〉(r).

Note, however, that the expressions

γ̄
(r)
(k) = 2ε̄(r) · µ

(r)
(k), (γ̂(r)

(k) − γ̄
(r)
(k))

2 = 〈[2(ε − ε̄(r)) · µ
(r)
(k)]

2〉(r),

are valid only when the µ
(r)
(k) are orthogonal for a given orientation r.
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(c) The FFT approach

Moulinec & Suquet (1994, 1998) developed an iterative method based on the
FFT algorithm to compute the effective properties and local response of elastic and
elastoplastic composites consisting of two isotropic phases with different proper-
ties. The Moulinec–Suquet FFT formulation is conceived for periodic heterogeneous
microstructures, provides an exact solution of the governing equations and has bet-
ter numerical performance than a standard FEM calculation for the same purpose.
Lebensohn (2001) adapted the Moulinec–Suquet FFT formulation to compute local
fields and to predict overall and local texture development in viscoplastic anisotropic
3D polycrystals. However, as discussed by Michel et al . (1999), and shown by Leben-
sohn (2001), the applicability of the iterative method to materials with low rate
sensitivity (highly nonlinear) and strongly anisotropic properties is limited to a few
initial iterations, after which the convergence towards the fulfilment of equilibrium
starts to deteriorate. To overcome this limitation, Michel et al . (2000) proposed an
improved FFT formulation for isotropic composites with high contrast of the prop-
erties between phases, based on an augmented Lagrangian method. In the present
work, the formulation of Michel et al . (2000) has been successfully adapted to deal
with anisotropic power-law polycrystals. Briefly, the improved FFT formulation con-
sists in finding a strain-rate field, associated with a kinematically admissible velocity
field, that minimizes the average of the local strain energies, under the constraint
imposed by the strain compatibility condition (see Michel et al . (2000) for details).
The general features of this improved method are the following.

(i) Discretization. The FFT method is based on the solution of a unit-cell prob-
lem with periodic boundary conditions. For numerical purposes, in order to
apply the discrete Fourier transform, the unit cell under consideration should
be discretized into N1 × N2 (in two dimensions) or N1 × N2 × N3 Fourier
points (in three dimensions). This discretization determines a regular grid in
the Cartesian space {xd} and a corresponding grid in the Fourier space {ξd}.

(ii) Linear reference medium. The method requires the selection of a linear refer-
ence medium of stiffness L0. The choice made for L0 can be quite general, but
the convergence of the method will depend on this choice. Then, for each point
of the grid in the Fourier space ξ ∈ {ξd}, the Fourier transform of the visco-
plastic Green operator Γ 0(ξ) associated with L0 is obtained (see Moulinec &
Suquet (1998) for the definition of Γ 0, and Lebensohn (2001) for details of the
calculation of Γ 0 in viscoplasticity).

Once the discretization and the linear reference medium have been chosen, the imple-
mentation of the FFT-based algorithm, for power-law polycrystals whose local con-
stitutive behaviour is given by equations (2.1)–(2.3), consists of the following steps.

(i) Initialization

If a macroscopic strain rate E is imposed on the unit cell, the algorithm can be ini-
tialized under a uniform strain-rate assumption: ε̆0(x) = 0 ∀x ∈ {xd}, where ε̆0(x)
is the initial guess for the local strain-rate deviation field, i.e. ε̆(x) = ε(x)−E. Next,
the initial guess of the stress field σ0(x) is obtained from the local constitutive rela-
tion given by equations (2.1)–(2.3), ∀x ∈ {xd}. Furthermore, it can be assumed that
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λ0(x) = σ0(x), where λ0(x) is the initial guess for the field of Lagrange multipliers
associated with the compatibility constraint.

(ii) Iterative procedure

If ε̆i(x) and λi(x) are known ∀x ∈ {xd}, the (i + 1)th iteration starts with the
calculation of the polarization field: δi+1(x) = λi(x) − L0ε̆i(x). Next, δ̂i+1(ξ) =
ftt{δi+1(x)} is computed, where ftt is the discrete Fourier transform operator
(numerically implemented by means of the FFT algorithm). It follows that the new
guess for the kinematically admissible strain-rate deviation field is obtained as

ˆ̆εi+1(ξ) = −Γ̂ 0(ξ)δ̂i(ξ), ∀ξ �= 0 and ˆ̆εi+1(0) = 0.

The corresponding field in real space is thus obtained by application of the inverse
FFT, i.e.

ε̆i+1(x) = ftt−1{ˆ̆εi+1(ξ)},

and the new guess for the deviatoric stress field is calculated from (Michel et al .
2000)

σi+1(x) + L0εi+1(x) = λi(x) + L0(E + ε̆i+1(x)), (2.25)

where

εi+1(x) =
∂u(x,σ)

∂σ

∣∣∣∣
σi+1(x)

. (2.26)

Hence, using the local constitutive relations (2.1)–(2.3) explicitly, (2.25) can be writ-
ten as

σi+1(x) + L0
K∑

k=1

γ0

(
σi+1(x) · µ

(r)
(k)

(τ0)(k)

)n

µ
(r)
(k) = λi(x) + L0(E + ε̆i+1(x)). (2.27)

Expression (2.27) is a system of nonlinear equations whose solution gives σi+1(x)
∀x ∈ {xd}. To complete the iteration, the new guess of the Lagrange multiplier field
(Michel et al . 2000) is obtained from

λi+1(x) = λi(x) + L0(εi+1(x) − εi+1(x)). (2.28)

Expressions (2.27) and (2.28) guarantee the convergence of (a) ε(x) (i.e. the strain-
rate field related with the stress through the constitutive equation) towards ε(x)
(i.e. the kinematically admissible strain-rate field) to fulfil compatibility, (b) the
Lagrange multiplier field λ(x) towards the stress field σ(x) to fulfil equilibrium.

(iii) Convergence test

Based on the above discussion, the obvious choice of a convergence criterion after
the jth iteration is given by

err(ε) =
〈‖εj(x) − εj(x)‖2〉

Ee
< δ, err(σ) =

〈‖σj(x) − λj(x)‖2〉
Σe

< δ, (2.29)

where ‖ · ‖2 denotes the quadratic norm, Ee and Σe are the macroscopic equivalent
strain rate and stress, and δ is a small positive threshold quantity.
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3. Power-law, 2D polycrystals under anti-plane strain

(a) Formulation

In this section, the focus is on a special class of model polycrystals consisting of
columnar orthorhombic grains, such that the grains are cylindrical in shape and their
symmetry axes are all aligned with the x3-axis. When such polycrystals are loaded
in anti-plane strain, only two slip systems are activated. They are those defined by
the Schmid tensors:

µ(1) = 1
2(e1 ⊗ e3 + e3 ⊗ e1), µ(2) = 1

2(e2 ⊗ e3 + e3 ⊗ e2). (3.1)

Therefore, a 2D boundary-value problem is defined, where the non-zero components
of the stress and strain rate tensors, σ13, σ23, ε13 and ε23 are functions of x1 and x2
only.

Although more general constitutive behaviours could be considered for the con-
stituent grains, for simplicity the stress potentials will be assumed here to be of the
power-law type (2.3), with the same exponent n for both systems. It follows, by fur-
ther assuming that the statistical distribution of the grains in the transverse plane
is isotropic both in space and orientation (i.e. isotropic crystallographic texture and
equi-axed grains in the plane), that the polycrystal will exhibit isotropic properties
in the plane. Therefore, under anti-plane strain conditions, the effective behaviour of
the polycrystal is fully determined by the effective flow stress, σ̃0, appearing in the
expressions for the effective potentials,

Ũ(Σ) =
γ0σ̃0

n + 1

(
Σe

σ̃0

)n+1

, W̃ (E) =
γ0σ̃0

m + 1

(
Ee

γ0

)1+m

, (3.2)

where
Σe =

√
3[Σ2

13 + Σ2
23]

1/2, Ee = 2√
3
[E2

13 + E2
23]

1/2.

In what follows, because of the anti-plane strain conditions and for consistency with
earlier work, we will make use of the effective shear flow stress or effective viscosity :
τ̃0 = σ̃0/3(n+1)/(2n), rather than referring to σ̃0.

Given that for this class of polycrystals the grain orientation (r) can be uniquely
identified with an angle θ(r), defined such that θ(r) = 0 corresponds to the orientation
of grains with the normal to system (1) aligned with the sample direction x1, the
dependence on θ(r) for the phase averages and fluctuations of the relevant components
of the stress and strain-rate fields will be investigated below. In this connection, it
is useful to introduce some additional notation for later use. Thus, recalling the
definitions (2.18) and (2.23)1 for the phase averages of the resolved shear stresses
and slip rates, corresponding equivalent measures associated with the phase averages
of the stress σ̄(r) and strain rate ε̄(r) are defined by

σ̄(r)
e =

√
3[(σ̄(r)

13 )2 + (σ̄(r)
23 )2]1/2, ε̄(r)

e = 2√
3
[(ε̄(r)

13 )2 + (ε̄(r)
23 )2]1/2, (3.3)

where σ̄
(r)
13 = 〈σ13〉(r), ε̄

(r)
13 = 〈ε13〉(r), and similarly for the other two components of

the stress and strain-rate tensors. It will also be useful to introduce the notation ¯̄τ (r)
(k)

and ¯̄γ(r)
(k) for the second moments of the resolved shear stresses and strains, as given

by
¯̄τ (r)
(k) =

√
〈(τ (r)

(k))
2〉(r) =

√
µ

(r)
(k) · 〈σ ⊗ σ〉(r)µ(r)

(k), (3.4)
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with a completely analogous expression for ¯̄γ(r)
(k). Similarly,

¯̄σ(r)
13 =

√
〈σ2

13〉(r), ¯̄σ(r)
23 =

√
〈σ2

23〉(r),

so that the second moment of the equivalent stress over grains with orientation θ(r)

is defined via
¯̄σ(r)
e =

√
〈σ2

e 〉(r) =
√

3[(¯̄σ(r)
13 )2 + (¯̄σ(r)

23 )2]1/2, (3.5)

with analogous expressions for ¯̄ε(r)
13 , ¯̄ε(r)

23 , and ¯̄ε(r)
e . In addition, the standard deviations

of the stress and strain-rate fields over grains with orientation θ(r) are given by
expressions of the type

SD(r)(τ (r)
(k)) =

√
(¯̄τ (r)

(k))
2 − (τ̄ (r)

(k))
2 = |τ̂ (r)

(k) − τ̄
(r)
(k) |. (3.6)

Finally, it is useful to also define field statistics over the whole polycrystal, such as
the second moments of the equivalent stress ¯̄σe =

√
〈σ2

e 〉, and the standard deviation
of the von Mises stress,

SD(σe) =
√

¯̄σ2
e − Σ2

e , (3.7)

with completely analogous expressions for the second moment and standard deviation
of the equivalent strain rate, denoted ¯̄εe and SD(εe), respectively.

(b) Bounds and estimates

This special class of 2D polycrystals has received considerable attention in the
literature in recent years, in spite of its somewhat limited practical value. This is
due to the fact that this problem is known (Dykhne 1970) to have an exact solution,
τ̃0 =

√
(τ0)(1)(τ0)(2), when the behaviour of the single crystals is linear (n = m = 1).

For more general power-law polycrystals with n, m �= 1, the exact result is not known,
but upper and lower bounds are available. These include the Taylor and Kohn–Little
(Kohn & Little 1998) upper bounds, as well as the Reuss lower bounds. Explicit
expressions of these bounds for τ̃0 have been given, for example, in Ponte Castañeda
& Nebozhyn (1997). It is noted that the Kohn–Little upper bound is usually (but
not always) sharper than the Taylor upper bound, especially for large values of the
anisotropy parameter M = (τ0)(2)/(τ0)(1), when it scales as M1/2, as opposed to the
Taylor bound, which scales as M1. The Reuss lower bound, on the other hand, scales
as M0 for large M . Upper bounds that improve on both the Kohn–Little and Taylor
bounds have been given by Nesi et al . (2000) and Goldstein (2001) for the special
case of ideally plastic (m = 0) polycrystals. The former are the best known bounds
for small values of the anisotropy parameter M , and the latter for larger values of M .

Unfortunately, the range of possible behaviours allowed by these bounds is still
quite large, especially at large values of M (M1/2 versus M0). In addition, only the
classical Taylor and Reuss bounds are available for more realistic classes of 3D poly-
crystals, such as FCC and HCP polycrystals. For this reason, considerable use has
been made in the literature of the self-consistent approximation, which was originally
developed (Hershey 1954; Kröner 1958; Willis 1977) for 3D polycrystals with linear
constitutive behaviour. As already mentioned, there are several generalizations of the
self-consistent approximation that have been proposed over the years for polycrys-
tals with nonlinear constitutive behaviour (plasticity and viscoplasticity). Now, it is
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known (Ponte Castañeda & Nebozhyn 1997) that the standard SC approximation
predicts the exact result τ̃0 =

√
(τ0)(1)(τ0)(2) for the above class of 2D polycrystals

in the limit of linear constitutive behaviour (n = m = 1). This strongly suggests
comparing the various nonlinear generalizations of the SC approximation with the
above bounds and with the predictions of the FFT simulations for this specific class
of problems. This will be carried out in some detail in § 4. In addition, noting that the
‘second-order’ method discussed in § 2 b has the capability of also providing estimates
for the per-phase averages and fluctuations of the stress and strain-rate fields in the
polycrystal, comparisons will also be carried out in § 4 with the corresponding FFT
results. In this connection, it is noted here for later reference that the standard SC
approximation may be used to generate analytical expressions for the phase averages
and fluctuations of the stress and strain-rate fields for the case of a linear (n = 1)
2D polycrystal. For example, the per-phase averages and SD of the resolved shear
stresses are given by

τ̄
(r)
(1) =

2 cos θΣe√
3(1 +

√
M)

, τ̄
(r)
(2) = − 2 sin θΣe√

3(1 +
√

M)
,

SD(r)(τ (r)
(2) ) = M1/2 SD(r)(τ (r)

(1) ) =
(
√

M − 1)M1/4Σe√
6(1 +

√
M)

,

while the second moment of the equivalent stress over the whole polycrystal is given
by

¯̄σe =

√
1 + M

2M1/2 Σe,

which scales as M1/4 for large values of M .

(c) Ensemble averages over FFT solutions

The expected value of any experiment performed on stochastic systems is the
mean of the outcomes of many experiments which are alike in a macro sense but
differ in micro details (Kröner 1986). This suggests that one way of getting effective
properties is by performing ensemble averages, i.e. averages over the outcomes of
the same experiment performed on many specimens which are prepared alike but
differ at the micro-level, due to its inherent stochastic character. Using the ergodic
hypothesis for systems that are stochastic in space, an alternative approach would
be to make use of volume averages over a single volume element, which should be
large enough to be representative of the microstructure considered. With this in
mind, a periodic 2D polycrystal is first considered, which is generated by periodic
repetition of a square unit cell consisting of square grains, such that the unit cell has
32 × 32 = 1024 grains. If this unit cell is discretized using a 256 × 256 Fourier grid,
this results in 8 × 8 = 64 Fourier points per grain. However, for such a specimen
with equi-axed grains, even if its crystallographic orientations are chosen at random,
and the constitutive behaviour linear (n = 1 in (2.3)), it has been verified that the
FFT solution of the anti-plane deformation of such a linear 2D polycrystal leads, in
general, to a slightly non-isotropic response (Lebensohn et al . 2004). Thus, for an
applied strain-rate tensor with only one non-zero independent component (say, E13),
the resulting stress tensor would be expected to have a small, but non-vanishing
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component Σ23 (in addition to a non-zero Σ13). Consequently, the effective viscosity
τ̃0 deviates from the theoretical value

√
(τ0)(1)(τ0)(2). This result would suggest

that a unit cell of such dimensions is not actually representative of the class of
isotropic polycrystals with random microstructure. For this to be true, it would
be necessary to have a very large volume element, containing a large number of
different grains with the same orientation but different environments. Evidently, the
size of a unit cell (and the Fourier grid needed for its discretization) that would
fulfil the above condition (while keeping a large number of Fourier points inside each
grain to capture intragranular heterogeneities) would require numerical capabilities
far beyond our available resources. In fact, our periodic unit cell is representative
of a periodic polycrystal generated by periodic repetition of that unit cell in both
directions of the space. The response of this periodic polycrystal is equivalent to
that of one specimen in an ensemble. Therefore, the averages over a sufficiently large
number of periodic unit cell configurations should give the effective properties of a
polycrystal with random microstructure. With this in mind, and in order to compare
macroscopic and per-phase quantities obtained from FFT simulations with analogous
quantities obtained from SC formulations for aggregates with random microstructure,
100 different periodic unit cells have been constructed using the following procedure.

(i) The square grains in the 2D array described above were numbered from 1
to 1024.

(ii) 100 random sequences of 1024 angles between −180 and 180◦ were generated.

(iii) Each sequence was scanned to find the angles having the minimum distances
from certain special orientations, {θ(r)} = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90◦},
which were selected for ensemble averaging of the per-phase statistical quanti-
ties. The angles having those minimum distances were redefined as 0, 10, . . . ,
90◦, respectively. In this way, these 10 orientations were present in every unit
cell, surrounded by different environments, which in turn were randomly cho-
sen. It is worth noting that in all cases, the minimum distances to the marked
orientations were less than 0.5◦, so that the perturbation to the randomness of
the set of angles was negligible.

(iv) To construct the αth configuration, the first angle of the αth random sequence
was assigned to grain 1, the second angle to grain 2, and so on.

Using the superscript [α] to denote a single configuration, i.e. E[α] = 〈ε[α]〉 and
Σ[α] = 〈σ[α]〉, the ensemble averages of macroscopic magnitudes are given by

E =
1

Nα

Nα∑
α=1

E[α], Σ =
1

Nα

Nα∑
α=1

Σ[α], (3.8)

where Nα is the number of unit cell configurations. Note that the effective viscosity
can be calculated from ensemble average magnitudes as τ̃0 = Σ13/(2Ė13)1/n. The
ensemble averages of per-phase and overall first and second moments are also made
consistent with prior definitions. For example, in the case of the ‘anti-plane’ stress
component, they are

σ̄
(r)
13 =

1
Nα

Nα∑
α=1

〈σ[α]
13 〉(r), ¯̄σ(r)

13 =
[

1
Nα

Nα∑
α=1

〈(σ[α]
13 )2〉(r)

]1/2

(3.9)
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Figure 1. Evolution of the relative errors as functions of the number of iterations,
for different values of M and n: (a) stress and (b) strain-rate fields.

Table 1. Adopted number of iterations and average relative errors,
for different values of M and n

M n iterations err(σ) err(ε)

9 1 50 0.183 × 10−5 0.165 × 10−5

36 1 100 0.107 × 10−4 0.525 × 10−5

100 1 200 0.334 × 10−4 0.101 × 10−4

9 10 250 0.347 × 10−2 0.159 × 10−1

9 20 300 0.506 × 10−2 0.188 × 10−1

Finally, in order to assess the accuracy of the foregoing ensemble average approach,
the convergence of the FFT method was studied for a single RVE configuration and
for different contrasts and rate sensitivities, as well as the convergence (stabiliza-
tion) of the ensemble averages of the phase statistical moments, as the number of
configurations in the ensemble is increased. Thus, figure 1 shows the evolution of
err(σ) and err(ε) (see equations (2.29)) for a single configuration, as the number of
iterations increases, for n = 1 and different contrasts, and for M = 9 and different
rate sensitivities. It is seen that, although the FFT calculations converge (i.e. the
error indicators decrease) for every set of parameters considered here, reaching errors
smaller than a given threshold requires to increase the number of iterations as the
contrast or the nonlinearity of the material increase.

Due to the very distinct behaviours, shown above for different contrasts and non-
linearities, of the error indicators in the foregoing ensemble average calculations, it
was decided to use a fixed (manageable) number of iterations instead of considering
a unique threshold error δ, for each pair of M and n. Table 1 shows the number
of iterations adopted and the resulting relative errors, averaged over the different
RVE configurations, for n = 1 and different contrasts, and for M = 9 and different
rate sensitivities. While in the linear cases an affordable number of iterations allows
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Figure 2. Ensemble averages of the per-phase first moments of the von Mises stress as functions
of the phase orientation angle θ, for an increasing number of configurations, for M = 9 and
(a) n = 1, (b) n = 10.

reaching very low convergence errors, in the nonlinear cases the relative errors remain
in the order of 1%, the strain-rate errors being higher than the stress errors.

Concerning the number of configurations needed to obtain representative ensem-
ble averages, figure 2 shows the ensemble averages of per-phase first moments of the
equivalent stress (normalized with the ensemble average equivalent stress) as a func-
tion of the phase orientation angle, for M = 9 and different rate sensitivities, as the
number of configurations increases. It is worth mentioning that, if the stress in the
phase were dictated only by its relative orientation, σ̄e/Σe versus angle should be a
monotonically increasing curve (note that, for anti-plane deformation, the soft slip
system has the highest possible Schmid factor in the phase at 0◦, and that this factor
decreases as the phase angle increases, reaching a null value at 90◦). However, for a
single configuration, the curves show a marked non-monotonic behaviour, suggesting
that the phase response is affected as much by its neighbours as by its orienta-
tion. Moreover, the range of variation and the jumps of the curves are higher in the
nonlinear case. For 10 configurations, the curves become smoother but still display
some non-monotonic behaviour. The curves for an ensemble of 50 configurations are
already monotonic (although presenting several inflexion points), meaning that the
influences of the different phase environments have been averaged out, resulting in
ensemble averages of the per-phase moments that are mainly dictated by the phase
orientation. Finally, the phase moments obtained for 100 configurations remain prac-
tically the same as those for 50 configurations, indicating a desirable stabilization of
the calculated averages.

4. Results

In this section, the ‘second-order’ SC estimates for the effective behaviour and field
heterogeneity of the model 2D power-law polycrystals are compared with the cor-
responding results arising from the FFT simulations, as well as with the Taylor,
Kohn–Little and Reuss bounds. In addition, some comparisons are included with
other nonlinear generalizations of the SC method for nonlinear systems, including
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the ‘incremental’ method (Hill 1965; Hutchinson 1976), the ‘tangent’ method (Moli-
nari et al . 1987; Lebensohn & Tomé 1993), and the ‘variational’ method (deBotton
& Ponte Castañeda 1995; Ponte Castañeda & Nebozhyn 1997).

In figure 3, the ‘second-order’ SC estimates for the effective viscosity τ̃0 are shown
and compared with the FFT simulation results. Note that the ‘error’ bars for the FFT
results correspond to the maximum and minimum values of τ̃0 over all configurations
(100 and 50 for figure 3a and figure 3b, respectively). Figure 3a shows results for τ̃0
plotted as functions of the strain-rate sensitivity m = 1/n, for a fixed value of the
grain anisotropy (M = 9). Note that the Taylor, Reuss and Kohn–Little bounds, as
well as the ‘variational’ SC estimates, are included in this figure. In addition, both
the ‘energy’ (continuous line) and the ‘constitutive relation’ (dashed line) versions
of the ‘second-order’ estimates are shown (cf. (2.17) and (2.22)). It can be seen
from this figure that the ‘variational’ as well as both versions of ‘second-order’ SC
estimates are consistent with the upper and lower bounds, and agree exactly with
the Kohn–Little bound for m = 1/n = 1. But these two types (‘variational’ versus
‘second order’) of SC estimates become progressively more different as m tends to
zero, where the ‘variational’ estimate is nearly twice the ‘second-order’ estimates. The
key observation, however, is that the ‘second-order’ SC estimates (both versions) are
fairly consistent with the FFT results, while the ‘variational’ SC estimates largely
overestimate the numerical results (recall that they are upper bounds for all other
SC estimates (Ponte Castañeda & Nebozhyn 1997)). Because the differences between
the two versions of the ‘second-order’ SC estimates are relatively small in general
(see also Liu & Ponte Castañeda 2003), and for simplicity, only the ‘energy’ version
will be shown in the results below. Figure 3b shows the results for the various bounds
and SC estimates for τ̃0 as functions of the grain anisotropy M , for a fixed value of
the nonlinearity (n = 1/m = 10). Among the SC estimates shown in this figure for
comparison purposes are the ‘incremental’ and ‘tangent’ SC estimates. The main
observation is that the ‘second-order’ estimate is the only one that is consistent
with the FFT results. Interestingly, it appears to lie roughly midway between the
‘variational’ and ‘tangent’ SC estimates. It is emphasized that at this fairly typical
value of the strain-rate sensitivity (m = 0.1) the bounds and other SC estimates can
lead to large errors for large values of the grain anisotropy parameter. For example,
at a value of M = 9, the Taylor bound and ‘incremental’ estimate would lead to
predictions that are more than twice the FFT predictions, while the ‘variational’
and ‘tangent’ estimates would lead to predictions that are ca. 40% larger and 35%
lower, respectively. (Note, however, that the ‘tangent’ estimates are accurate for
small enough values of M .)

Figure 4a, b provides results for the effective viscosity for a larger range of values of
the anisotropy parameter M , plotted in logarithmic scales, for n = 1 and 10, respec-
tively. As shown in figure 4a, the SC estimates which are exact in the linear case
(n = 1) serve as a check on the FFT simulations, and it can be seen that they are quite
accurate up to values of M = 104, when the simulations begin to deviate significantly
from the exact results, which correspond to a straight line with slope 1

2 . (Note that
τ̃0/(τ0)(1)|M=105 = 311.9 and τ̃0/(τ0)(1)|M=106 = 849.9, i.e. 1.4% and 15.0% under-
estimation of the theoretical values 105/2 = 316.2 and 103 = 1000, respectively.) It
is believed that these deviations are due to the large fluctuations in the local fields
within the polycrystal, which may not be captured very accurately with the grid
refinement adopted (256 × 256), and/or to the impossibility of reaching convergence
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Figure 3. Comparison of the ‘second-order’ SC estimates with the FFT simulation results,
and the Taylor, Kohn–Little and Reuss bounds for the effective viscosity τ̃0 as functions of
(a) the strain-rate sensitivity m for M = (τ0)(2)/(τ0)(1) = 9; (b) the grain anisotropy M for
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(b) n = 10.

errors smaller than a few per cent, for high contrasts and low rate sensitivities, as
shown in table 1. It is emphasized that the number of Fourier points and the num-
ber of iterations used for these FFT calculations were the maximum allowed by the
size and the speed of our available computational resources. On the other hand, fig-
ure 4b clearly shows that the various SC estimates give widely diverging trends for
large values of M , in this strongly nonlinear case (n = 10). Thus, the ‘incremental’
and ‘tangent’ SC estimates predict large-M trends that are consistent with linear
growth (M1) and no growth (M0), respectively. In contrast, both the ‘variational’
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0

1

2

3

4

5

m

1

2

3

4

5

e
Ee

SD(  r)ε
Ee

SD(  r)σ

eΣ

ε=

e

e

σ=

Σ

0.2 0.4 0.6 0.8 1.0 0
m

0.2 0.4 0.6 0.8 1.0

(a) (b)

Figure 5. Comparison of the ‘second-order’ SC (lines) and FFT (circles) estimates for the field
fluctuations and second moments of the stress and strain rates over the polycrystal, as functions
of the strain rate sensitivity m, for grain anisotropy M = 9. (a) Standard deviations of the
field fluctuations of the von Mises stress SD(σe) and the equivalent plastic strain rate SD(εe).
(b) Second moments of the von Mises stress ¯̄σe and the equivalent plastic strain rate ¯̄εe. The
results are normalized by the applied stress Σe and the applied strain rate Ee, respectively.

and ‘second-order’ estimates give trends that are consistent with square-root growth.
That is, they both grow like aM1/2, for sufficiently large values of M . However, the
‘second-order’ SC estimates give better overall agreement with the FFT results than
the other models, capturing not only the correct exponent (1

2), but also the correct
coefficient a. It is emphasized that the numerical results for the ‘variational’ and
‘second-order’ estimates suggest that the power (1

2) is independent of n, but that the
coefficient a does depend on n. In addition, it should be mentioned that, while exact
estimates are not available for comparison in the nonlinear case, the above compar-
isons for the linear case suggest that the nonlinear FFT results could be inaccurate
at the higher values of the contrast M .

Figure 5a, b shows plots of the ‘second-order’ SC (continuous and dashed lines) and
FFT (dark and clear circles) estimates for the m-dependence of the fluctuations and
second moments of the stress and strain rate, for a fixed value of the grain anisotropy
(M = 9). More specifically, figure 5a shows plots of the standard deviations of the
von Mises stress SD(σe) (see relation (3.7)) and the equivalent plastic strain rate
SD(εe), normalized by the average von Mises stress Σe and equivalent plastic strain
rate Ee, respectively. The main observation in the context of this figure is that
both the stress and the strain-rate fluctuations grow with decreasing values of m
(increasing nonlinearity n). Furthermore, it can be seen that the ‘second-order’ SC
estimates give excellent agreement with the FFT results, even at the lower values
of m. In addition, the strain-rate fluctuations are seen to grow at a progressively
faster rate than the stress fluctuations as the nonlinearity increases. This behaviour
is consistent with the localization of the deformation field (into shear bands) in the
grains of the polycrystals in the limit as m tends to zero (Suquet 2001; Bhattacharya
& Suquet 2004). Figure 5b shows plots of the corresponding second moments ¯̄σe and
¯̄εe, normalized in similar fashion. These plots are essentially the same as those shown
in figure 5a, apart from a shift which is noticeable only for small values of M and
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Figure 6. Comparison of the ‘second-order’ SC (lines) and FFT (circles) estimates for the second
moments of the equivalent stress ¯̄σe and the equivalent plastic strain rate ¯̄εe over the polycrystal,
as functions of the grain anisotropy M . (a) n = 1, (b) n = 10. The results for ¯̄σe and ¯̄εe are
normalized by Σe and Ee, respectively.

n. For this reason, in the rest of this section, only second-moment quantities will be
shown, the corresponding fluctuation quantities being easily derived from these.

Figure 6a, b shows plots of the M -dependence of the ‘second-order’ SC (lines)
and FFT (circles) estimates for the second moments of the von Mises stress ¯̄σe
and strain rate ¯̄εe, respectively, for fixed values of n (n = 1 and 10). It is seen
that the second moments of the stress and strain rate (as well as the corresponding
fluctuations) grow with M . It is emphasized that the results given in figure 6a for
the linear case have been calculated explicitly from the SC expressions (refer to the
expressions at the end of § 3 b), and are conjectured—as the corresponding results
for the effective shear flow stress—to be exact (or at least very accurate). They
can therefore be used to calibrate the FFT simulations. Thus, it can be seen from
figure 6a that, while the FFT results are very accurate for values of M up to 100, the
FFT simulations start to deviate from the exact results for values of M greater than
104. This loss of accuracy for large values of M is consistent with earlier observations
concerning effective magnitudes calculated by means of the FFT approach. Figure 6b
gives the corresponding results for a highly nonlinear case (n = 10). It can be deduced
from this figure that the stress and strain-rate fluctuations become different in the
nonlinear case, with larger fluctuations in the strain rate than in the stress, as would
be expected for a low-hardening material. However, although the ‘second-order’ SC
estimates and the FFT results exhibit similar trends, significant differences in their
predictions are observed for values of M greater than about 10. While this value of
M (for the nonlinear problem) may seem relatively small, it is in fact effectively quite
large. This is because a nonlinear system with grain anisotropy M and nonlinearity n
would be expected to behave roughly like a linear system with grain anisotropy Mn

(Liu & Ponte Castañeda 2003). Because significant errors have already been identified
in the FFT simulations for the linear polycrystal at sufficiently high values of M ,
corresponding errors would be expected in the present nonlinear FFT simulations,
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at much smaller values of M . Of course, this does not necessarily imply that the
‘second-order’ SC estimates are accurate. As with any approximation, errors would
be expected, especially at these high nonlinearities and contrasts. However, it seems
plausible that at least some of the differences observed at high M in the FFT-versus-
‘second-order’ comparisons of figure 6b could be due to inaccuracies associated with
the FFT simulations.

Next the ‘second-order’ SC predictions are compared with the corresponding FFT
results for the r-phase averages and second moments of the resolved shear stresses
and slip rates

(τ̄ (r)
(1) , τ̄

(r)
(2) , ¯̄τ

(r)
(1) , ¯̄τ

(r)
(2) , γ̄

(r)
(1) , γ̄

(r)
(2) , ¯̄γ

(r)
(1) , ¯̄γ

(r)
(2)),

plotting them as functions of the grain orientation θ(r). It is recalled that θ(r) is the
angle from the normal vector of the soft slip system (1) to the direction of applied
loading.

Figure 7 provides comparisons of the ‘second-order’ SC estimates (lines) and FFT
results (symbols) for the average resolved shear stresses τ̄

(r)
(1) and τ̄

(r)
(2) , as well as the

corresponding second moments ¯̄τ (r)
(1) and ¯̄τ (r)

(2) (over grains with fixed orientation θ(r)),
plotted as functions of θ(r). Figure 7a–d is for a fixed value of the grain anisotropy
(M = 9) and for several values of the nonlinearity (n = 1, 3, 5, 10, respectively). The
overall agreement is seen to be quite satisfactory, especially for small nonlinearity
(n = 1, 3), and it is generally better for the hard systems. At the larger values of
the nonlinearity n, the ‘second-order’ estimates for the average shear stresses on the
soft systems τ̄

(r)
(1) seem to be systematically larger than the corresponding results

for FFT, and the differences become more pronounced for values of θ(r) near, but
not equal to, 90◦ (the least favourable orientation for slip in these systems). On
the other hand, the agreement of the corresponding second moments ¯̄τ (r)

(1) on these
systems appears to be consistently predicted by the SC and FFT models. The main
conclusion from these plots, however, is that the fluctuations in the hard systems
are larger and increase in relative proportion as the nonlinearity increases, especially
for the least favoured orientations for slip in these systems (near θ(r) = 0). The
fluctuations in the soft systems are also seen to increase, although only slightly, for
the least favoured orientations for these systems (θ(r) = 90◦), but the predictions of
the FFT and SC estimates are not completely consistent for the more favourable
orientations of these systems (near θ(r) = 0). Thus, the FFT results suggest a slight
increase of the fluctuations in the soft systems with increasing nonlinearity, while the
SC estimates suggest a reduction. As pointed out by Liu & Ponte Castañeda (2003),
this last result would be consistent with a more uniform state of stress developing on
the soft systems, where the resolved shear stress would not be able to exceed its flow
stress in the limit of ideally plastic behaviour. On the other hand, the average stresses
in the hard systems are significantly below yield, suggesting that large fluctuations
would be necessary to activate such systems, at least for some selected parts of the
grains.

Figure 8 provides comparisons of the ‘second-order’ SC estimates (lines) and FFT
results (symbols) for the average slip rates γ̄

(r)
(1) and γ̄

(r)
(2) , as well as the corresponding

second moments ¯̄γ(r)
(1) and ¯̄γ(r)

(2) , plotted as functions of the grain orientation θ(r). As in
figure 7, the plots are for a fixed value of the grain anisotropy (M = 9) and correspond
to several values of the nonlinearity (n = 1, 3, 5, 10, respectively). Again, the overall
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Figure 7. Comparison of the ‘second-order’ SC (lines) and FFT (symbols) estimates for the
averages and second moments of the resolved shear stresses over grains with given orientation
θ(r) on the soft (1) and hard (2) slip systems, as functions of the grain orientation θ(r), for grain
anisotropy M = 9 and several values of the strain rate sensitivity m = 1/n: (a) n = 1, (b) n = 3,
(c) n = 5 and (d) n = 10. The results are normalized by Σe. (i) τ̄
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(2) .

agreement is quite good, especially for low n, but the agreement is better this time for
the soft systems. On the other hand, both the SC and FFT results appear to suggest
that the average slip rates on the hard systems γ̄

(r)
(2) become progressively smaller with

increasing values of n for all grain orientations, but the corresponding predictions
for the second moments ¯̄γ(r)

(2) seem to be inconsistent for lower values of θ(r), where
the FFT predictions are significantly larger than the SC estimates. Regardless of
these localized differences, it may be seen that the slip rate fluctuations are much
larger for the soft systems, especially for large values of n and for the least favoured
orientation for these systems (θ(r) = 90◦), where the average slip rate tends to zero.
More generally speaking, even if the average slip rate on both systems can be seen to
become very small with increasing nonlinearity for certain grain orientations, the fact
that the fluctuations become quite large suggests that small sections of the grains
would carry most of the deformation, which would be consistent with the shear band
mechanism observed by Suquet (2001) for ideally plastic polycrystals.
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5. Concluding remarks

In this paper, the FFT simulation technique and the ‘second-order’ homogenization
method have been used to generate estimates for the effective behaviour of, as well
as for the fluctuations of the stress and strain-rate fields in, model 2D power-law
polycrystals with isotropic microstructures. Direct comparison of estimates obtained
by means of both approaches required the calculation of ensemble averages of FFT
solutions, over different random polycrystal configurations. In particular, for the
linear case (m = n = 1), when the exact result is known (Dykhne 1970), it was
found that the FFT simulations give accurate estimates for the effective behaviour.
While it was also already known that the standard SC method reproduces exactly
Dhykne’s exact result for the effective behaviour of the linear 2D polycrystal, it was
possible to check that the SC method also gives good (analytical) predictions for the
fluctuations of the stress and strain-rate fields over the various grain orientations in
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a linear polycrystal. In fact, the conjecture was made that the SC method should
also reproduce exactly these higher-order statistical quantities for the polycrystal.

For nonlinear viscoplastic polycrystals, use of the SC approximation for the rel-
evant ‘linear comparison polycrystal’ in the context of the ‘second-order’ homoge-
nization method leads to estimates for the effective behaviour and field fluctuations
that are in good overall agreement with the corresponding FFT results. More specif-
ically, it was found that among the various extensions of the SC approximation
for nonlinear viscoplastic polycrystals, including the ‘incremental’, ‘variational’ and
‘tangent’ extensions, the ‘second-order’ SC approximation was the only one capa-
ble of generating estimates for the effective behaviour that were consistent with the
FFT simulations, especially for low rate sensitivities and high grain anisotropies (see
figure 3). In addition, the ‘second-order’ SC predictions for the averages and fluctua-
tions of the stress and strain-rate fields over the various grain orientations were found
to be generally consistent with the corresponding FFT results, even if some localized
differences were observed. Thus, both the overall stress and strain-rate fluctuations
were found to increase with increasing grain anisotropy and decreasing strain-rate
sensitivity, with the strain-rate fluctuations being generally larger than the corre-
sponding stress fluctuations. That the fluctuations should increase with increasing
grain anisotropy is consistent with the physics of the problem, which requires that
certain components of the stress and strain tensors be continuous across grains with
different orientations, leading to highly non-uniform fields within the grains. On the
other hand, it follows from the ‘second-order’ approximation that nonlinear polycrys-
tals can be thought of as ‘linear’ polycrystals with a grain anisotropy that scales as
Mn, where M is the grain anisotropy of the nonlinear polycrystal and n is the non-
linearity exponent. It therefore also makes sense physically that the field fluctuations
should increase with increasing nonlinearity.

Finally, it is noted that, while the results generated in this work are for a very
special class of polycrystals, this class is expected to be highly representative of the
behaviour of more general 3D classes of polycrystals. The fact that the ‘second-order’
SC estimates are quite accurate for the special class of 2D polycrystals is suggestive
that they may also be quite accurate for more general 3D polycrystals. Work on 3D
viscoplastic polycrystals is in progress and will be reported upon elsewhere.

The work of Y.L. and P.P.C. was supported by NSF grant CMS-02-01454.
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Goldstein, G. H. 2001 Rigid perfectly plastic two-dimensional polycrystals. Proc. R. Soc. Lond.
A457, 2789–2798.

Hershey, A. V. 1954 The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME
J. Appl. Mech. 21, 236–240.

Hill, R. 1965 Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids
13, 89–101.

Hutchinson, J. W. 1976 Bounds and self-consistent estimates for creep of polycrystalline mate-
rials. Proc. R. Soc. Lond. A348, 101–127.

Kohn, R. V. & Little, T. D. 1998 Some model problems of polycrystal plasticity with deficient
basic crystals. SIAM J. Appl. Math. 59, 172–197.
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