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N-SITE MODELING OF A 3D VISCOPLASTIC POLYCRYSTAL
USING FAST FOURIER TRANSFORM
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Abstract—We present a formulation to compute the local response of elastic and viscoplastic anisotropic
3D polycrystals based on the Fast Fourier Transform (FFT) algorithm. This formulation is conceived for
periodic heterogeneous microstructures and also for materials with random spatial distribution of heterogen-
eities. The approach is of then-site kind, provides an exact solution of the equilibrium equation and has
better numerical performance than small-scale FEM. The viscoplastic FFT formulation combined with an
ad-hoc microstructure updating scheme is used to predict local states, morphology and texture evolution of
ideal f.c.c. polycrystals. The model predicts strain localization, intragranular misorientation and subgrain
formation and overall textures which are smoother than those obtained with classical 1-site schemes, in
better agreement with experiments. 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All
rights reserved.
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1. INTRODUCTION

This paper is concerned with the determination of
local states of heterogeneous materials. Due to the
development of new characterization techniques
which allow the investigation of the materials proper-
ties and structures down to atomic scale and the
increasing capability of computers, small-scale mech-
anisms of deformation and damage are being incor-
porated into multiscale models of plasticity and frac-
ture. The modeling of, for instance, diffusion-
controlled deformation mechanisms or cavitation
which are essential to explain phenomena like fatigue,
creep or ductile fracture of complex polycrystalline
materials, requires realistic predictions of intragranu-
lar strain and stress concentrations. The Finite
Element method (FEM) at small-scale as well as
multisite homogenization models have been used in
the past to model the local behavior of complex
microstructures. On the one hand, small-scale FEM
techniques [1–14] have been used to deal with such
complex microstructures when their complexity is
due to the contrast of properties between phases [3,
5, 6, 8] and/or the morphology of a large number of
inclusions of irregular shape [3, 5, 8] and/or the local
directional properties in polycrystals with anisotropic
constituent grains [1, 2, 4, 6–14]. However, the diffi-
culties related to meshing and the large number of
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degrees of freedom required by such FEM calcu-
lations limit the complexity and the size of the micro-
structures that can be investigated by these methods.
On the other hand, the prediction of intracrystalline
states using homogenization techniques requires n-
site selfconsistent approaches [15, 16] instead of the
classical 1-site formulations [17, 18] in which ideal
crystals are considered to deform embedded in a
homogeneous medium with average properties. The
size of the problem which can be solved by means
of the n-site selfconsistent formulation is also dra-
matically limited by the total number of sites involved
in the calculation, even in the simplified case of con-
sidering only first-neighbor interactions [15, 16].

The aforementioned limitations of both the small-
scale FEM and then-site selfconsistent models can
be overcome with a novel approach, based on the FFT
algorithm. Moulinec and Suquet [19, 20] and Michel
et al. [21, 22] recently developed a method based on
FFT to compute the overall linear (elastic [19-21])
and non-linear (elastoplastic [19, 20] and viscoplastic
[21, 22]) response of composites consisting of two
isotropic phases with different properties. The main
characteristics of the FFT approach are:

(a) The method is based on the solution of a cell prob-
lem for a representative volume element (RVE)
with periodic boundary conditions. In this way, it
is implicitly assumed that the size of the hetero-
geneities is small compared with the specimen
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dimensions. For actual periodic microstructures
the size and properties of the RVE are naturally
specified from the properties of a unit cell which
generates the whole microstructure by periodic
repetition. For spatially random microstructures,
the RVE should be chosen to be statistically rep-
resentative of the whole microstructure.

(b)The formulation is of the n-site kind with no cut-
off distance for the interaction. In other words, the
interaction of one site of the discretized RVE with
all the other sites is taken into account. Conse-
quently, this formulation does not involve any
homogenization assumption and—for an infinitely
refined discretization of the RVE—it would pro-
vide an exact solution of the equilibrium equation.

Although, until now, the main interest of Suquet and
coworkers [19-22] has been to calculate the overall
behavior of two-phase isotropic composites, the FFT
method can also be used to obtain the local response
of anisotropic polycrystals in which the source of het-
erogeneity is the existence of grains with directional
properties and different crystallographic orientations.
In the present work, the elastic FFT formulation is
applied to obtain the local response of an ideal 3D
polycrystal. This elastic case will serve us to intro-
duce the FFT formulation for viscoplastic polycrys-
tals deforming by dislocation glide. The plan of the
paper is as follows: in Section 2 we describe the kind
of model polycrystal we use and its corresponding
discretization. In Section 3 we review the elastic FFT
formulation and algorithm and compare n-site FFT
results with 1-site selfconsistent predictions for the
same model polycrystal. In Section 4 we present the
extension of the FFT model to the viscoplastic
regime. To start with, the formulation, the ad-hoc cri-
terion for microstructure updating and the algorithm
are presented. As in the elastic case, the local states
predicted with the n-site FFT and the 1-site selfcon-
sistent models are compared. Next, a detailed study
of the convergence of the method is presented. The
section is closed with two illustrative applications of
the viscoplastic FFT formulation for the prediction of
morphology and texture evolution in f.c.c. polycrys-
tals and a discussion about the numerical performance
of the method.

2. DISCRETIZATION

In what follows we will work with idealized 3D
polycrystals, initially consisting of prismatic grains
arranged in a regular fashion, rather than use other
available schemes [15, 23] to generate microstruc-
tures which may look more realistic but are more
complicated to analyze. Figure 1 shows a schematic
representation of such ideal 3D polycrystal and its
discretization. The polycrystal (i.e. the RVE) consists
of 512 prismatic grains arranged in a 8×8×8 structure.
Due to the requirement of periodic boundary con-
ditions, this structure should be periodically repeated

Fig. 1. Schematic representation of the initial discretization of a
3D polycrystal. (a) The polycrystal consists of 512 cubic grains
arranged in a 8×8×8 structure. Arrows pointing in different
directions indicate different orientations of each crystallite. (b)
Each grain is discretized into 512 cubes arranged in a 8×8×8
structure. The points of the Fourier grid are located in the
center of each cube. Arrows pointing in the same direction indi-
cate that for a given grain the initial orientations associated
with the Fourier points are identical. The entire Fourier grid

consists of 64×64×64 points.

along the three spatial directions. In Fig. 1(a), the
arrows pointing in different directions indicate differ-
ent orientations of each crystallite. Each grain, in turn,
is subdivided into 512 prisms arranged in a 8×8×8
structure [Fig. 1(b)] with the points of the Fourier grid
placed in the center of each prism. The arrows point-
ing in the same direction indicate that, for a given
grain, the initial orientations associated with each
Fourier point are identical. In the case of the figure,
the entire Fourier grid has 64×64×64 points. Through-
out this work, in order to study the influence of the
spatial resolution, we will also discretize the same
8×8×8-grain structure using other grids, such as a
coarser 32×32×32 grid (64 points per grain) and a
more refined 128×128×128 grid (4096 points per
grain). The formal definition of the 3D Fourier grid
{xd} in real space is given by:

{xd} = ��(i1�1)·
L1

N1

, (i2�1)·
L2

N2

, (i3�1)·
L3

N3
�; (1)

ik = 1,…,Nk, k = 1,3�
where Lk and Nk are the length (i.e. the period) and
the number of Fourier points in each xk-direction.
Particularly in the case of the figure (for equiaxed
grains and RVE) we have: L1 = L2 = L3 and
N1 = N2 = N3 = 64.

3. ELASTIC CASE

3.1. Formulation

Following the general framework established by
Moulinec and Suquet [19, 20], we present here the
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solution of the local problem of an inhomogeneous
elastic medium undergoing an applied strain Eij. The
local problem for a heterogeneous RVE with periodic
boundary conditions is written as:

s(x) = C(x):e(x) in RVE (2a)









sij,j = 0 in RVE (2b)

periodic boundary conditions across RVE (2c)

where e(x) and s(x) are the local strain and stress
fields induced in the material and C(x) is the local
elastic stiffness. Defining a homogeneous reference
medium of stiffness Co, system (2) is formally equiv-
alent to:

s(x) = Co:e(x) + t(x) in RVE (3a)









sij,j = 0 in RVE (3b)

periodic boundary conditions across RVE (3c)

where the perturbation field associated with the het-
erogeneity is given by:

t(x) = dC(x):e(x) (4)

with dC(x) = C(x)�Co. Combining the constitutive
equation (3a) and the equilibrium equation (3b) we
get:

Co
ijkluk,lj(x) + tij,j(x) = 0 (5)

where uk(x) is the periodic displacement vector field.
The term tij,j(x) can be thought as a fictitious body
force field applied to the RVE. Solving (5) by means
of the Green function method gives [24]:

Co
ijklGkm,lj(x�x�) + dimd(x�x�) = 0 (6)

where the Green function Gkm(x�x�) is the displace-
ment component in the xk-direction at the point x
when a unit force is applied in the xm-direction at the
point x� of the RVE. The local fluctuation of the dis-
placement field can be obtained as:

ũk(x) = �
R

3

Gki(x�x�)tij,j(x�) dx�. (7)

After integrating by parts, deriving and symmetrizing,
the local strain fluctuation ẽ = e�E can be expressed
as a convolution in real space:

ẽij(x) = sym��
R

3

Gik,jl(x�x�)tkl(x�) dx��. (8)

Calling �ijkl = sym(Gik,jl) and using the symbol of
convolution «∗», we obtain:

ẽ = �ijkl∗tkl. (9)

If (9) is transformed into the Fourier space, it gives
a (tensor) product:

ẽ̂ij = �̂ijklt̂kl (10)

�̂ijkl can be calculated taking Fourier transform to (6)
to obtain:

Co
ijklxl xjĜkm = dim (11)

where x is a point of the Fourier space or frequency.
It follows that:

Ĝik = A��1
ik = [xl xjCo

ijkl]�1 (12)

and:

�̂ijkl = �
1
2

(x1xj A��1
ik + x1xi A��1

ik ). (13)

With equations (11)–(13), �̂ijkl can be calculated at
any frequency except in the origin of Fourier space
(i.e. x = 0̄) where the value of ẽ̂ij is given directly
by ẽ̂ij|(x = 0̄) (i.e. the mean value of the strain deviation
field in the real space vanishes). The aforementioned
boundary condition in Fourier space together with
equations (10) and (11)–(13) can be used to obtain
the local strain field if the transformed perturbation
field t̂ij is known. However, the perturbation field in
real space tij(x) is not a priori known since it is pre-
cisely a function of the unknown local strain [see equ-
ation (4)]. Therefore, the problem must be solved iter-
atively, assuming an initial guess for ẽij(x) and
adopting an appropriate convergence criterion. As
stated in [19, 20], the convergence of the method
should be related to the fulfillment of the equilibrium
condition (2b). To check this condition it is advisable
to work in Fourier space rather than in real space
since a divergence in the latter is transformed into a
contracted product in the former. Hence, the Fourier
transform of equation (2b) leads to the following con-
vergence criterion:

�|xjŝij|�
||ŝ(x = 0̄)||

�d (14)
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where �.� denotes average over the whole Fourier
grid, d is a small positive constant (typically 10-4)
and ||ŝ(x = 0̄)|| is an appropriate normalization factor
[19, 20].

3.2. Algorithm

The numerical implementation of the previous for-
mulation needs an appropriate discretization [e.g.
{xd} given by equation (1)] in order to allow the
application of FFT each time a Fourier transform is
required. The algorithm can be initialized with:
ẽo(x) = 0 and so(x) = Co:E; ∀ x�{xd}. Iteration
(i + 1)—provided ẽi, si are known—consists of:

1. ŝi = fft(si)
2. Convergence test [equation (14)]: is equilibrium

fulfilled? If yes, stop.
3. ti(xd) = si(xd)�Co:ei(xd)
4. t̂i = fft(ti)
5. For each frequency x, calculate �̂ using equations

(12) and (13).
6. ẽ̂ i + 1 = �̂:t̂i with ẽ̂ i + 1|(x = 0̄) = 0
7. ẽ i + 1 = fft�1(ẽ̂ i + 1) and
si + 1(xd) = C(xd):(E + ẽi + 1(xd))

8. Start iteration (i + 1) from step 1.

Here fft and fft-1 denote the application of direct and
inverse discrete Fast Fourier Transform algorithms
(for details see [25], for example), respectively.

3.3. Results

Since the elastic FFT model is presented here just
as an introduction to the viscoplastic formulation, we
will briefly illustrate the former with predictions of
elastic strain heterogeneity in Cu polycrystals and
then move forward to the viscoplastic FFT model,
leaving other applications of the elastic polycrystal
model for future contributions. Figure 2 shows a com-
parison between the relative longitudinal strain devi-
ation predicted with the n-site elastic FFT formulation

Fig. 2. Relative longitudinal strain deviation calculated with 1-
site ELSC and elastic FFT vs directional Young modulus for a
Cu polycrystal under axisymmetric deformation. Straight line:

linear regression of FFT points.

and the 1-site elastic selfconsistent (ELSC) model, as
a function of the directional Young modulus,† for the
case of axisymmetric deformation. The 1-site ELSC
model is based on regarding each grain as an elastic
inclusion embedded in an elastic homogeneous equiv-
alent medium that has the average properties of the
polycrystal (for details, see [17]). Consequently, the
1-site ELSC model allows the calculation of average
strains inside each grain that depend only on the
directional properties of the grain relative to the
polycrystal. Both calculations were performed for a
Cu polycrystal with 512 equiaxed, randomly oriented
grains. Cu single crystals are f.c.c. and have a high
elastic anisotropy (the elastic anisotropy factor of Cu
is: [c44�

1
2(c11�c12)/c44]×100 = 65%. In the FFT case,

the discretization of the polycrystal is the one
sketched in Fig. 1. The ELSC gives a single point per
grain while the FFT gives 512 vertically aligned
points per grain. As expected, the ELSC results show
a monotonic behavior as a function of the directional
Young modulus, with negative slopes. The FFT
results show a great dispersion but, regarding the
average behavior, the regression line of the whole set
of FFT points also shows a negative (but less
pronounced) slope. Evidently, in the n-site FFT case,
the orientation still plays a role in dictating the local
behavior but also the neighborhoods have a strong
influence on the local response.

4. VISCOPLASTIC CASE

4.1. Formulation

In what follows, we present the solution of the
local problem of an inhomogeneous viscoplastic
medium undergoing an applied velocity gradient Vi,j.
The resulting strain-rate and rotation-rate are given
by the symmetric and skewsymmetric parts of Vi,j:

Dij =
1
2

(Vi,j + Vj,i) (15)

�ij =
1
2

(Vi,j�Vj,i). (16)

If the inhomogeneous viscoplastic medium is an
anisotropic polycrystal deforming by dislocation
glide, its local behavior can be described in terms of
a tangent approximation [18]:

s�(x) = Mtg�1
(x):d(x) + So(x) (17)

where d(x) and s�(x) are local the strain-rate and the

† The directional Young modulus is defined as: 1/S�3333

where S�ijkl is the elastic compliance tensor expressed in ten-
sile axes, when x3 lies along the tensile direction.
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deviatoric stress, So(x) is a back-extrapolated stress
term and the tangent compliance modulus Mtg(x) is
defined by:

Mtg(x) = nġo�
s

ms(x)�ms(x)
tso(x) �ms(x):s�(x)

tso(x) �n�1

(18)

where the sum runs over all the potentially active slip
systems(s), ms(x) and tso(x) are the symmetric Schmid
tensor and the critical stress of system(s), ġo is a nor-
malization factor and n is the viscoplastic exponent
(i.e. inverse of the rate-sensitivity of the material).
The homogeneous reference medium can also be
described in terms of a tangent behavior:

�� = Ltg
o :D + Soo (19)

where Ltg
o and Soo are, respectively, the tangent stiff-

ness and the back-extrapolated stress of the reference
medium. Considering incompressibility, the system of
differential equations to be solved in viscoplasticity
becomes:









Ltg

oijkl
vk,lj(x) + tij,j(x)�p,i(x) = 0 in RVE (20a)

vk,k(x) = 0 in RVE (20b)

periodic boundary conditions across RVE (20c)

where vk(x) is the velocity field. The perturbation field
is now defined by:

tij = s̃ij��Ltg
oijkl

d̃kl (21)

where d̃ = d�D and s̃� = s���� are the local fluctu-
ations in strain-rate and deviatoric stress, respectively.
The derivation of equations (20a) and (21) is shown
in Appendix A. System (20) can be also solved by
means of the Green function method [26, 27], i.e.

Ltg
oijklGkm,lj(x�x�) + dimd(x�x�) = 0 (22)

Gkm.k(x�x�) = 0

where the Green functions Hm(x�x�) and Gkm(x�
x�) are, respectively, the hydrostatic pressure and the
velocity component in the xk-direction at the point x�
when a unit force is applied in the xm-direction at the
point x� of the RVE. The local fluctuations in the
velocity and the velocity gradient fields can be
obtained as convolutions in the real space:

ṽk(x) = �
R

3

Gki(x�x�)tij,j(x�) dx� (23)

Integrating by parts and assuming that the boundary
terms vanish [24]:

ṽk(x) = �
R

3

Gki,j(x�x�)tij(x�) dx� (24)

and:

ṽi,j(x) = �
R

3

Gik,jl(x�x�)tkl(x�) dx�. (25)

Calling �ijkl = Gik,jl and using the convolution symbol:

ṽi,j = �ijkl∗tkl. (26)

Transforming to Fourier space:

ṽ̂i,j = �̂ijklt̂kl (27)

�̂ijkl can be calculated by taking Fourier transform
to (22):

x1xjLtg
oijkl

Ĝkm�ixiĤm = dim (28)

xkĜkm = 0.

Using the matrix A�ik defined in (12)—replacing
Co

ijkl by Ltg
oijkl—system (28) can be written as [27]:

A�(4�4)

A�11 A�12 A�13 x1

A�21 A�22 A�23 x2

A�31 A�32 A�33 x3

x1 x2 x3 0

×

Ĝ11 Ĝ12 Ĝ13

Ĝ21 Ĝ22 Ĝ23

Ĝ31 Ĝ32 Ĝ33

�iĤ1 �iĤ2 �iĤ3

=

1 0 0

0 1 0

0 0 1

0 0 0

.

(29)

Thus:

Ĝjk = A��1
jk j,k = 1,3 (30)

�iĤj = A��1
4j j = 1,3 (31)
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and:

�̂ijkl = �xjx1Ĝik. (32)

As in the elastic case, �̂ijkl can be calculated every-
where except at zero frequency (i.e. x = 0̄) where
ṽ̂i,j is given directly by ṽ̂i,j|(x = 0̄) = 0. With �̂ijkl and
t̂kl, ṽi,j can be calculated taking inverse Fourier trans-
form to the right term of equation (27). The fields of
local fluctuation in strain-rate and rotation-rate can be
readily obtained by taking symmetric and skewsym-
metric parts of ṽi,j, respectively:

d̃ij = dij�Dij =
1
2

(ṽi,j + ṽj,i) (33)

w̃ij = wij��ij =
1
2

(ṽi,j�ṽj,i). (34)

The local fluctuation of the pressure field in Fourier
space can be obtained as a by-product of the calcu-
lation of �̂ijkl, i.e.

p̃(x) = �
R

3

Hi,j(x�x�)tij(x�) dx� = Hi,j∗tij. (35)

Hence,

p̃̂ = Ĥi,jt̂ij = (�iĤi)xjt̂ij (36)

where �iĤi is given by (31). The equilibrium state-
ment in Fourier space is now written as:

�|xiŝ�ij�xip̃̂|�
||ŝ(x = 0̄)||

�d. (37)

After convergence is achieved, the velocity field in
Fourier space can be obtained transforming
expression (24):

ṽ̂k = (�ixj)Ĝkit̂ij. (38)

After antitransforming the right term of equation (38)
to get ṽk—with the boundary condition ṽ̂k|(x = 0̄) = 0—
the macroscopic velocity can be calculated as:

vi(x) = Vi(x) + ṽi(x) (39)

where Vi(x) is the velocity field derived from the
applied velocity gradient Vi,j, i.e.:

Vi(x) = xiVi,i i = 1,3 (no sum). (40)

4.2. Texture and microstructure updating

After achieving convergence, the orientation and
the critical stresses together with the grain mor-
phology and the polycrystal topology should be
updated. The orientation updating is performed using
the local rotation-rate, given by:

wij = �ij + w̃ij�w p
ij (41)

where �ij and w̃ij are given by equations (16) and
(34) and the plastic spin w p

ij is calculated as:

w p
ij = �

s

as
ijġ s (42)

where as
ij is the skewsymmetric Schmid tensor asso-

ciated with slip system(s) and ġ s is the simple shear-
rate in that system, given by:

ġ s = ġo�ms(x):s�(x)
tso(x) �n

. (43)

The critical stresses should be updated adopting a
hardening law, e.g.

tso = �
s�

hss�ġ s� (44)

where hss� is a hardening matrix.
The update of the grain morphology and the

polycrystal topology requires the adoption of an ad-
hoc criterion to reassign local properties to the Four-
ier points as deformation evolves. Any criterion
adopted should keep the regularity of the Fourier grid
at every time, in order to allow performing a new FFT
calculation in the following deformation step. The cri-
terion used in this work is as follows (see Fig. 3):

1. At time t1 = to + 	t, update the position of the
initial grid {xd(to)} according to: (a) the local velo-
city field vi(x) given by equations (38) and (39)
and (b) the velocity field derived from the applied
velocity gradient Vi(x) given by equation (40).
This gives two collections of points: the updated
regular grid {xd(t1)} and an irregular set of
points {x(t1)}.

2. Calculate dij(t1), i.e. the distance between every
point xj

d(t1) and every point xi(t1). In general, dij(tk)
is defined as:

dij(tk) = dist[xi(tk);xj
d(tk)]. (45)
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Fig. 3. Schematic representation to illustrate the morphology update procedure.

3. For each point of the regular grid xj
d(tk), find the

point of the irregular grid xm(tk) whose distance to
xj

d(tk) is minimum, i.e. dmj(t1) = min
i

[dij(t1)].

4. Compute the macroscopic Von Mises equivalent
strain acummulated since the latter microstruc-
ture updating:

	EVM = ni	t	2
3DijDij (46)

where ni is the number of deformation increments
imposed to the polycrystal since the latter updat-
ing event.

5. If 	EVM is less than a threshold value (in this work
we use 	EVM�0.1) perform next FFT calculation
leaving the properties of {xd(t1)} unchanged. After
achieving convergence, update {xd(t1)} with
Vi(xd(t1)). To update {x(t1)}, interpolate with the
nearest values of vi(xd(t1)) to obtain vi(x(t1)).

6. If 	EVM becomes greater than the threshold, pro-
ceed with the microstructure update, taking the
following actions:

(a) Determine the points xj
d(tk) of the regular grid

for which m
j† in dmj(tk) and assign to them the
properties (orientation and critical stresses) of
xm

d (tk).
(b) If xm

d (tk) belongs to a grain gm different from
gj, i.e. the one to which xj

d(tk) belongs, reassign
the Fourier point xj

d(tk) to grain gm. This change
in grain belonging of the Fourier points is respon-
sible for the grain’s morphologic changes.
(c) Reset the irregular set of points to the regular
grid, i.e. {x(tk)}
{xd(tk)}.

This updating criterion is largely based on consider-
ing that the actual coordinates of a material point
(updated according to its calculated local velocity)
which initially belongs to the regular Fourier grid,

† This is the case, for instance, of d12(t2) in Fig. 3, since
d12(t2) is the minimum distance associated with x2

d(t2).

will deviate smoothly from the coordinates that would
result from updating them according to the homo-
geneous macroscopic deformation. The latter “homo-
geneous” updating of Fourier points gives rise to an
evolving regular grid, which is convenient to calcu-
late FFTs after each deformation increment.

Provided the proposed criterion involves the evalu-
ation of minimum distances between the points of the
regular grid and the points of the irregular set, the
decision to reassign properties and subsequently reset
the irregular set should be made when the following
conditions are fulfilled: (a) a representative fraction
of the grid points are ready to undergo changes in
their properties; (b) if this is the case of, for instance,
point P of the regular grid, the point of the irregular
grid which is closest to P should have been originated
from a point of regular grid which is a nearest
neighbor of P. If the first condition is not fulfilled,
there is risk of underestimating the morphologic evol-
ution due to a too early reset of the irregular set of
points. If the second condition does not hold, this
indicates that the irregular set is heavily distorted so
that its points are now too far from the regular points
from where they have been originated. After testing
different alternatives, we found that updating every
10% Von Mises macroscopic deformation gives
sound results in the case of f.c.c. polycrystals with
different configurations. In particular, the case dis-
cussed in Section 4.6, i.e. a two-phase polycrystal
with a central hard region undergoing uniaxial ten-
sion, provides a benchmark for the proposed updat-
ing criterion.

4.3. Algorithm

As for the reference medium, a Voigt average
(unless otherwise indicated) is assumed:
Ltg

o = �Mtg�1
(x)�. The algorithm for a single defor-

mation increment can be initialized with d̃o(x) = 0 or,
alternatively, using d̃(x) corresponding to the pre-
vious increment. To get s�o(x), invert the 5×5 non-

linear system given by: D + d̃o(x) = go�
s

ms(x)
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�ms(x):s�o(x)
tso(x) �n

∀ x�{xd}. With d̃i, s�i being known,

iteration (i + 1) reads:

1. ti(xd) = s̃�i(xd)�Ltg
o :d̃i(xd)

2. ŝ�i = fft(s�i) and t̂i = fft(ti)
3. For each frequency x, calculate Ĝ, �iĤ and �̂,

according to equations (29)–(32).
4. p̃̂ i = (�iĤi)xjt̂ i

ij

5. Convergence test: is equilibrium fulfilled accord-
ing to (37)? If yes: calculate ṽ̂k = (�ixj)Ĝkit̂iij with
ṽ̂k|(x = 0̄) = 0 get ṽk = fft�1(ṽ̂k) update orientation,
hardening and morphology (see Section 4.2) and
start next deformation increment.

6. ṽ̂ i + 1
i,j = �̂ijkl:t̂ikl with ṽ̂ i + 1

i,j |(x = 0̄) = 0
7. d̃ i + 1

ij = sym[fft�1(ṽ̂ i + 1
i,j )]

8. Get s�i + 1 solving: D + d̃i + 1(xd) = go�
s

ms(xd)

�ms(xd):s�i + 1(xd)
tso(xd) �n

and start iteration (i + 1) from

step 1.

4.4. Comparison with 1-site VPSC results

As in the elastic case, we start showing a compari-
son between the 1-site viscoplastic selfconsistent
(VPSC) model and the n-site viscoplastic FFT formu-
lation. Figure 4 shows a comparison between the 1-
site VPSC and the n-site FFT predictions of the rela-
tive longitudinal strain-rate deviation as a function of
the Taylor factor (TF) for the case of axisymmetric
deformation†. Under the 1-site VPSC assumptions,
each grain is regarded as a viscoplastic inclusion
embedded in an viscoplastic homogeneous equivalent
medium that has the average properties of the
polycrystal (for details, see [18]). Consequently, the
VPSC model gives average values of the strain-rate
inside each grain that depend only on the viscoplastic
directional properties of the grain relative to the
polycrystal. Both calculations were performed for a
single-phase f.c.c. polycrystal with 512 equiaxed, ran-
domly oriented grains deforming by {111}�110� slip.
In the FFT case, the polycrystal discretization is the
one sketched in Fig. 1. As in the elastic case, the
VPSC gives a single point per grain while the FFT
gives 512 points per grain. Unlike the elastic case,
the VPSC output is not a monotonic function of TF.
In fact, there are two branches at high TF that corre-
spond to hard grains having either the �111�- or the
�110�-direction near the tensile direction. However,
the regression line of the VPSC points still displays
a negative slope as a function of TF. As in the elastic
case, the regression line of the whole set of FFT
points also shows a negative but less pronounced

† For axisymmetric deformation along x3, the Taylor Fac-

tor of a grain (g) is defined as: Mg = �
s

ġ s.g/D33 and gives

the relative plastic hardness of a grain relative to the applied
strain-rate Dij.

slope, due to neighborhood effects. The overall dis-
persion of the local strain-rate predicted by n-site FFT
formulation is twice as high as in the 1-site VPSC
case.

4.5. Convergence

Using the present algorithm, the different input
parameters of the viscoplastic FFT formulation affect
the convergence of the model and the quality of the
results. In what follows, in order to document the
numerical performance of the formulation and to
serve as a guide to future users, we analyze how those
parameters affect the value of the left-hand term of
equation (37) that gives a meassure of how far the
predicted local fields are from the strict fulfillment of
the equilibrium condition.

4.5.1. Spatial resolution. Common sense indi-
cates that the spatial resolution (i.e. the size of the
Fourier grid that discretizes the RVE) should have an
influence on the quality of the results: a more refined
grid provides more degrees of freedom to adjust the
local fields and reach to a better solution of the equi-
librium equation. Fig. 5 shows the evolution of the
error in equilibrium (EQERR) given by the left-hand
term of equation (37) as a function of the number
of iterations for different discretizations of the same
single-phase f.c.c. polycrystal (i.e. the 8×8×8 struc-
ture of 512 cubic randomly oriented grains of Fig.
1) submitted to axisymmetric deformation. The «32»,
«64» and «128» grids discretize each grain with 64,
512, 4096 points, respectively. As expected, EQERR
diminishes as the grid becomes more refined. On the
other hand, the three curves show a minimum around
the 8th and the 10th iteration. After reaching that
minimum, the following iterations deteriorate—rather
than improve—the fulfillment of equilibrium.

Other simulation parameters that have an influence
on the convergence are the rate-sensitivity and the
choice of the reference medium. If the viscoplastic
FFT formulation is applied to two-phase polycrystals,

Fig. 4. Relative longitudinal strain-rate deviation calculated
with 1-site VPSC and viscoplastic FFT vs. Taylor factor for a
f.c.c. polycrystal under axisymmetric deformation. Straight

lines: linear regression of VPSC and FFT points.
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Fig. 5. Convergence of the viscoplastic FFT formulation as a
function of the spatial resolution. The three cases correspond
to the same polycrystal of 512 grains with: 64 (32×32×32 grid),
512 (64×64×64 grid) and 4096 (128×128×128) Fourier points
per grain. The error in equilibrium is defined by equation (37).

the contrast between phases and the phase content
will affect the convergence, as well. Figure 6 shows
the behavior of EQERR vs. number of iterations when
our model f.c.c. polycrystal of 512 grains undergoes
axisymmetric deformation, for different choices of
rate sensitivity, reference medium, contrast between
hard and soft phases and proportion of hard phase.

Fig. 6. Convergence of the viscoplastic FFT formulation as a function of: (a) rate sensitivity; (b) choice of
reference medium; (c) contrast between hard and soft phases and (d) content of hard phase.

4.5.2. Rate sensitivity. Figure 6(a) shows the
cases of n=10, n=20 and n=50 for a single-phase f.c.c.
polycrystal. In all cases, the reference medium corre-
sponds to the Voigt average. Higher viscoplastic
exponents increase the contrast between soft and hard
grains even in a single-phase polycrystal. An interest-
ing finding is that the value of EQERR corresponding
to the first iteration remains almost unaltered. How-
ever, as n increases the minimum of EQERR occurs
at a smaller number of iterations (e.g.: 2 to 4 iter-
ations for n = 20). For n = 50, the equilibrium starts
to deteriorate as early as in the second iteration.

4.5.3. Reference medium. Figure 6(b) shows the
case of different choices for the reference medium
[see equation (19)]. The Voigt and Reuss averages
(derived from homogeneous strain and stress assump-
tions, respectively), given by: Ltg(Voigt)

o = �Mtg�1
(x)�

and Ltg(Reuss)
o = �Mtg�1

(x)��1 and the tangent modulus
obtained with the 1-site VPSC, given by:
Ltg(VPSC)

o = �Mtg(x):Bc(x)��1 (where Bc(x) is a localiz-
ation tensor, see [18] for details) were alternatively
chosen as stiffness of the reference medium. Evi-
dently, the Voigt average appears as the only good
choice while either Reuss or VPSC assumptions lead
to high and oscillating EQERR values. In this case,
the viscoplastic FFT formulation—due to its intrinsic
non-linearity—behaves differently from the elastic
FFT model which, in general, converges to the same
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result for any choice of the reference medium
between Voigt and Reuss, differing only in the num-
ber of iterations required [19, 20].

4.5.4. Contrast between hard and soft phases.
Figure 6(c) shows the convergence behavior for a

two-phase f.c.c.-f.c.c. polycrystal for different con-
trasts between the hard and the soft phase. In all
cases, n = 10 and the Voigt average is chosen as ref-
erence medium. Starting from our model polycrystal
of 512 grains, a periodic two-phase polycrystal with
8/512 = 1.5625% of hard phase can be constructed as
shown in Fig. 7(a): a cluster of eight grains in the
center of the RVE is considered to be formed by f.c.c.
crystals with ts(hard)

o = C×ts(soft)
o where ts(hard)

o and
ts(soft)

o are the critical stresses associated with the
{111}�110� slip mode of the hard phase and the soft
phase, respectively, and C is the contrast between the
hard and the soft phase. The behavior of EQERR vs
iterations for increasing contrasts is similar to the case
of increasing viscoplastic exponents: the initial values
of EQERR for the same resolution do not change and
the minimum error is reached earlier as the contrast
increases.

4.5.5. Hard phase content. Finally, Fig. 6(d)
shows how the hard phase content affects the conver-
gence. Three cases with different hard phase content
of periodic f.c.c.-f.c.c. two-phase polycrystals with
contrast C = 2 between a non-percolating hard phase
and a majoritary soft phase were considered: (a) the
case shown in Fig. 7(a), having 1.5625% of hard
phase; (b) the case shown in Fig. 7(b), with eight
evenly distributed hard clusters of eight grains each,
amounting to 64/512 = 12.5% of hard phase and (c)
the case (not shown in the figure) of eight evenly dis-
tributed hard clusters of 27 grains each, amounting
to 216/512 = 42.1875% of hard phase. Compared
with the cases of Fig. 6(a) and (b), for the same spa-
tial resolution, the three curves remain closer to one
another. Moreover, unlike the former cases, the

Fig. 7. Schematic representation of periodic two-phase polycrystals. The cubes drawn with thick lines are the
crystals of the hard phase. (a) Case of one cluster of eight crystals. Content of hard phase

= 8/512 = 1.5625%. (b) Case of eight clusters of eight crystals. Content of hard phase = 64/512 = 12.5%.

curves in Fig. 6(d) do not follow an order relative to
their hard phase content (for the same resolution, the
highest EQERR was obtained in the intermediate case
of 12.5%). Hence, we may conclude that a higher
content of hard phase does not necessarily imply an
overall higher contrast in the polycrystal.

4.6. Morphology evolution

The case of a periodic two-phase f.c.c.-f.c.c.
polycrystal with 1.5625% of hard phase [Fig. 7(a)]
undergoing axisymmetric deformation provides an
illustration on the performance of the ad-hoc criterion
for morphology updating described in Section 4.2.
Figure 8(a) shows the longitudinal section (the arrows
indicate the loading direction) of the RVE, corre-
sponding to layer #28 (out of 64) for the initial
defomation step. The overall applied strain-rate along
the longitudinal direction is 1. The right plot shows
the distribution of Von Mises equivalent strain-rate
with the grain boundary structure superimposed. For
the sake of clarity, the grain boundary structure is
separately shown in the left plot, highlighting the
boundaries of the hard-phase crystals. The strain-rate
distribution shows a minimum in the central hard
phase and two peaks above and below the hard-phase
region. It is worth recalling that the orientation of the
grains where these maxima are located were ran-
domly chosen. Therefore, those locations are not
particularly softer (in a viscoplastic sense) than other
regions of the polycrystal. Hence, the locations of the
maxima are determined by their position relative to
the hard region and not by their crystallographic
orientation. This strain-rate distribution around a hard
region (i.e. two maxima located along the tensile axis
close to but not directly at the interphase) is the vis-
coplastic analogous of what Roatta et al. [28] found
for the elastic regime at the onset of plastic defor-
mation using an Eshelby-Mori-Tanaka approach.

Figure 8(b) shows the strain-rate distribution and
the grain structure for the same section of the RVE
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Fig. 8. Viscoplastic FFT predictions for axisymmetric deformation of a two-phase polycrystal (512 grains,
64×64×64 grid, n = 10, C = 2, 1.5625% of hard phase). (a) Equivalent strain-rate and grain morphology in a
longitudinal section (layer #28 of 64) corresponding to the first deformation step. (b) Equivalent strain-rate
and grain morphology after 25% macroscopic strain. The hard phase crystals (thick lines) increase in width

and decrease in height, relative to the whole polycrystal.

after 25% elongation (reached in 10 deformation
steps of 2.5% each) with no strain-hardening [i.e.
hss� = 0 in equation (44)]. The strain-rate field still
shows a minimum in the central hard region while
the maxima are now more disperse in the soft phase.
The deformed grain-boundary structure consists of
soft-phase grains which adopted a final complicated
shape and hard-phase grains that essentially kept their
original shape. This difference in morphology evol-
ution between the soft-phase and the hard-phase
grains reflects that the hard-phase grains remained
undeformed while the soft material flowed around
them, as intuitively expected from this particular con-
figuration. As mentioned in Section 4.2, this example

provides a validation for the proposed microstructure
updating criterion described in that section.

4.7. Texture development

The classical 1-site models for the prediction of
texture development of polycrystals are based on the
assumption of homogeneous deformation inside the
grains. Under the assumptions of the simple and
popular Taylor [29] Full Constraints (FC) model, the
grains undergo the same strain as the whole polycrys-
tal. As already discussed in Section 4.4, the 1-site
VPSC model is less crude but still, only average
states in the grains are considered. These average
states depend only on the grain directional properties,
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disregarding any influence from the neighbor crystals.
Consequently, every material point inside the domain
of a grain will undergo the same plastic distorsion
and, therefore, the crystallographic orientations asso-
ciated with those points will go through the same
changes. It follows that the crystallographic orien-
tation will remain uniform inside the domain of each
grain throughout the calculation. This determines pre-
dicted textures which are systematically sharper than
the corresponding measured ones [30]. Another limi-
tation of the classical schemes is that the actual
polycrystal topology cannot be taken into account.
This prevents consideration and elucidation of the
role of spatial correlations in texture development.
The n-site models overcome these limitations. In the
following example we show how a given set of orien-
tations can be correlated with a precise location in the
polycyrstal structure and how the viscoplastic FFT
model predicts the development of different orien-
tations inside a grain. Consequently, the calculated
texture will be smoother than an analogous case pre-
dicted with the 1-site VPSC model.

Figure 9 shows the case of our single-phase f.c.c.
model polycrystal of 512 grains submitted to plane-
strain compression with no strain-hardening. Figure
9(a) displays a 3D plot of the polycrystal in its initial,
undeformed state. Figure 9(c) shows a RD-ND
(rolling and normal directions) section of that initial
polycrystal, corresponding to layer #28 (out of 64),
highlighting the boundaries of the initially equiaxed
grain #94. Figure 9(b) shows the resulting 3D
polycrystal after 50% thickness reduction. Figure 9(d)
displays in more detail the complex grain morphology
and topology in the same RD-TD section (layer #28)
at the same reduction. Due to the application of the
updating criterion of Section 4.2, the cross-section of
grain #94 is now a complicated polygon. Figure 9(f)
offers an enlarged representation of grain #94. A
Fourier material point is located in the center of each
rectangle in which the cross-section of the grain is
subdivided. The sides of those rectangles are plotted
with different line types whose thicknesses represent
different misorientations between the orientations
associated with two adjacent material points. In this
cross section, the grain is divided by high-angle
subgrain boundaries (thick interior lines) in three
regions: right-most, left-most and lower central parts.
A plausible interpretation of this result is that each of
these regions has been influenced differently by near-
est-neighbor grains. Moreover, inside each of these
regions there is still some low-angle misorientation
between adjacent positions. The pole figure in Fig.
6(e) is another way to represent the intragranular mis-
orientation predicted by the model. It shows (open
squares) the {111} poles of the initial orientation of
grain #94 which can be considered as a «random»
orientation, i.e. far enough from any of the ideal f.c.c.
rolling components. The open circles corresponds to
the final orientation of grain #94 after a 1-site VPSC
simulation for the same model polycrystal. It can be

seen that under 1-site VPSC that orientation is rather
stable. Meanwhile, the FFT predictions (solid circles)
show a large dispersion. It is worth highlighting that
the 1-site VPSC prediction is not the average of the
FFT results. This behavior predicted by the FFT
model is not restricted to grains in this particular
orientation. It can be generalized to grains with any
orientation. We have verified (not shown here) that
orientations which are less stable under the 1-site
VPSC model show even more spread in the FFT case.

This development of intragranular misorientation
determines lower intensities for the overall textures
predicted with the FFT method compared to the 1-
site models. Figure 10 shows the global textures
obtained with the FFT model in the plane-strain com-
pression case described earlier together with an anal-
ogous 1-site VPSC simulation and a typical rolling
texture of copper, measured after 50% thickness
reduction [31]. In all cases, the level lines represent
intensities of 0.5-1.0-1.5-2.0-etc. multiples of random
distribution. Qualitatively, both simulations look
similar to the copper rolling texture but, comparing
them quantitatively, the maximum intensity of the 1-
site VPSC texture is 66% higher than the measured
one. On the other hand, the FFT texture shows a peak
intensity value which is very close the measured one.
However, there are still some differences between the
experiment and the FFT predictions, which are essen-
tially due to an overestimation of the brass component
at early stages of texture development predicted by
the model, a trend that has been reported for every
formulation that deviates significantly from the
Taylor FC model [32].

4.8. Numerical performance

The FFT method neither involves large matrix
inversions (which are typically N2 processes, where
N is the number of points of the adopted
discretization) like FEM or n-site selfconsistent mod-
els nor time-consuming integrals like the latter.
Hence, the numerical performance of the FFT method
(which is a N×log2N process) is largely superior to
small-scale FEM or n-site selfconsistent calculations
for problems of the same size, at least in a single-
processor machine. With the FFT approach, the inter-
action problem is solved by means of a one-shot pro-
cedure in Fourier space and the passage between real
and Fourier spaces is performed with the highly
efficient FFT algorithm. For example, a viscoplastic
FFT calculation like the ones whose results are shown
in Figs 8 or 9 (involving 643 = 262144 material
points) requires 90 s of CPU per iteration, in a 450
MHz single-processor machine. The updating scheme
takes another 50 s. Therefore, the time to perform a
typical deformation step consisting of eight iterations
plus a final updating is: 8×90 + 50 = 770 s. Further-
more, the FFT algorithm can also be parallelized [19,
20]. In effect, for each material point, the viscoplastic
constitutive law is independent from the other points
of the grid (see step 6 of the algorithm described in
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Fig. 9. Viscoplastic FFT predictions of a single-phase polycrystal (512 grains, 64×64×64 grid, n = 10) for
plane–strain compression. (a) Initial 3D polycrystal with cubic grains. (b) Deformed 3D polycrystal after 50%
thickness reduction. (c)–(d) Grain morphology in a RD–ND section (layer #28 of 64) before and after defor-
mation. (e) {111} poles of grain #94: initial and predicted with 1-site VPSC and FFT models. (f) Morphology

and intragranular misorientation f of grain #94 after deformation.

Section 4.3). Moreover, the Green operators in the
Fourier space (�̂ijkl, Ĝik and �iĤi) are also local func-
tions of each frequency x. Therefore, the correspond-
ing steps of the algorithm can be parallelized. These
advantages, in addition to the intrinsic optimizations
of the FFT algorithm when implemented in multiple-
processor computers, allow an efficient parallelization
of the method.

5. CONCLUSIONS

The FFT formulation developed by Moulinec and
Suquet [19, 20] has been applied to solve the local
response of elastic anisotropic polycrystals and then

extended to the viscoplastic regime, including an ad-
hoc criterion for microstructure updating. The
numerical performance of the FFT method is largely
superior to a FEM calculation for problems of the
same size and, on top of that, the method can be par-
allelized. However, the applicability of the FFT for-
mulation is restricted to those problems in which it
is possible to identify a representative volume
element and periodic boundary conditions applied to
it. Otherwise, more general problems of viscoplastic
deformation of heterogeneous materials would still
require the use of FEM techniques.

The convergence of the viscoplastic FFT model has
been analyzed with these findings: (a) fulfillment of
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Fig. 10. Theoretical {111} pole figures of a f.c.c. polycrystal (n = 10) deformed in plane–strain compression
up to 50% thickness reduction predicted with the 1-site VPSC and the n-site viscoplastic FFT models and
experimental {111} pole figure of rolled copper [31] at 50% thickness reduction. Intensity lines represent 0.5–

1.0–1.5–2.0–2.5, etc. multiples of random distribution.

equilibrium can always be improved by refining the
Fourier grid and (b) there is an optimum number of
iterations that depends on each particular problem and
grid refinement. If the iterative procedure is continued
beyond this optimum, the error in equilibrium starts
to increase monotonically. In general, this optimum
number of iterations is lower as the contrast of the
local properties increases. We are aware that in order
to improve the numerical performance of this formu-
lation, further studies are needed to understand the
reasons why the contrast in local properties influences
in such a way the fulfillment of equilibrium, under
the present algorithm.

A morphology updating scheme has been pro-
posed. Using this scheme in combination with the
FFT formulation, a sound result of grain morphology
evolution has been found in the case of a two-phase
f.c.c. polycrystal. The model has been also used to
predict both local and overall textures of a single-
phase f.c.c. polycrystal deformed in plane-strain com-
pression. In the former case, the model allows the
prediction of intragranular misorientation and
subgrain formation. In the latter, the intensity of the
texture predicted with the FFT model is lower than
the one calculated by means of classical 1-site
schemes, in good qualitatively and quantitatively
agreement with typical f.c.c. textures, measured for
the same reduction.

After having validated the n-site viscoplastic 3D
polycrystal FFT model, we foresee several appli-
cations of this formulation to open problems in the
field of micromechanical modeling, e.g. analysis of
grain subdivision and subgrain formation and their
role in texture development [33], calculation of intra-
granular distribution of stored energy and modeling
of recrystallization [34], study of the role played by
the spatial correlation of orientations in texture forma-
tion [35], calculation of strain heterogeneity and tex-

ture evolution in ordered [6] and random [36] two-
phase aggregates, etc.

Acknowledgements—The author is grateful to Dr Pierre Suquet,
Dr Pierre Gilormini and Dr Javier Signorelli for valuable dis-
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APPENDIX A

The local tangent viscoplastic constitutive equation
is given by:

sij = Ltg
ijkldkl + So

kl�pdij (A1)

where Ltg = Mtg�1
is given by equation (18).

The local fluctuations of the tangent modulus and
the back-extrapolated stress can be defined as:

L̃tg = Ltg�Ltg
o (A2)

S̃o = So�Soo. (A3)

Taking divergence to (A1) and using (A2)-(A3), the
equilibrium condition reads:

sij,j = Ltg
oijkl

vk,lj + Soo
ij,j + (L̃tg

ijkldkl + S̃o
ij),j�p,i = 0

(A4)

sij,j = Ltg
oijkl

vk,lj + tij,j�p,i = 0 (A5)

with:

tij = L̃tg
ijkldkl + S̃o

ij. (A6)

Hence:

t = (Ltg�Ltg
o ):(D + d̃) + (So�Soo).

Rearranging terms:

t = Ltg:d + So�Ltg
o :D�Soo�Ltg

o :d̃ = (A7)
s�����Ltg

o :d̃ = s̃��Ltg
o :d̃.


