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Abstract—Simulating the forming of anisotropic polycrystals, such as zirconium, requires a description of
the anisotropy of the aggregate and the single crystal, and also of their evolution with deformation (texture
development and hardening). Introducing the anisotropy of the single crystal requires the use of polycrystal
models that account for inhomogeneous deformation depending on grain orientation. In particular, visco-
plastic self-consistent models have been successfully used for describing strongly anisotropic aggregates. As
a consequence, using a polycrystal constitutive law inside finite element (FE) codes represents a considerable
improvement over using empirical constitutive laws, since the former provides a physically based description
of anisotropy and its evolution.

In this work we develop a polycrystal constitutive description for pure Zr deforming under quasi-static
conditions at room and liquid nitrogen temperatures. We use tensile and compressive experimental data
obtained from a clock-rolled Zr sheet to adjust the constitutive parameters of the polycrystal model. Twinning
is accounted for in the description. The polycrystal model is implemented into an explicit FE code, assuming
a full polycrystal at the position of each integration point. The orientation and hardening of the individual
grains associated with each element is updated as deformation proceeds. We report preliminary results of
this methodology applied to simulate the three-dimensional deformation of zirconium bars deforming under
four-point bend conditions to maximum strains of about 20%. A critical comparison between experiments
and predictions is done in a second paper (Kaschner et al.,Acta mater. 2001,49(15), 3097–3107).Published
by Elsevier Science Ltd on behalf of Acta Materialia Inc.
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1. INTRODUCTION

Simulating the forming of anisotropic polycrystals,
such as zirconium, requires a description of the ani-
sotropy of the aggregate and the single crystal, and
also of their evolution with deformation (texture
development and hardening). The anisotropy of the
single crystal requires the use of polycrystalline mod-
els that account for inhomogeneous deformation
depending on the grain orientation. Self-consistent
visco-plastic models have been successfully used for
describing strongly anisotropic metallic and geologi-
cal aggregates [1–5] and will be used in what follows
for describing the constitutive response of pure Zr
with a strong initial texture. The ultimate goal of this
study is to provide a realistic description of the consti-
tutive response of the material for use in finite
element (FE) calculations which fully account for
mechanical anisotropy, hardening and twinning
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mechanisms, and their evolution with deformation
as well.

This work has three components which illustrate
the paradigm associated with simulating forming
operations: a robust constitutive description of the
mechanical response; a comprehensive experimental
characterization of the system; and accurate FE tech-
niques for dealing with non-uniform deformation
associated with complex boundary conditions. We
use experimental information (texture, loading
curves, metallographic evidence) to infer the charac-
teristics of the active deformation modes and their
interaction (hardening) in Zr at room temperature
(RT) and liquid nitrogen temperature (LNT). We use
for such purpose a visco-plastic self-consistent
(VPSC) polycrystal model [1] in which we incorpor-
ate an improved treatment of twinning. Secondly, we
implement the polycrystal description into the explicit
FE code EPIC-97 [6], and apply this methodology to
predict the deformation of a rectangular Zr bar sub-
jected to a four-point bend test. A polycrystalline
aggregate is associated with each FE integration
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point. The FE code imposes the computed velocity
gradient on the polycrystal, updates the orientation
and the hardening of the individual grains depending
on the deformation history of the element, and pre-
dicts the macroscopic stress for use in the solution of
the continuum equilibrium equations. The advantage
of this approach is that it accurately accounts for
material anisotropy and its evolution with texture
development. The disadvantage is that the calcu-
lations are computationally intensive, although feas-
ible on modern computers for problems not requiring
fine spatial resolution.

2. MATERIAL AND EXPERIMENTS

The material in this study is crystal-bar zirconium,
purchased from Teledyne Wah Chang, processed via
a series of clock rolling and vacuum annealing cycles
to produce a plate with strong basal texture and
approximate in-plane axisymmetry (Fig. 1). The
aggregate exhibits equiaxed grains with a mean size
of ca 25 µm. Results of compression tests done in
cylindrical specimens cut from the plate and tested
in the through-thickness (TT) and the in-plane (IP)
directions have been reported by Kaschner et al. [7]
and Kaschner and Gray [8], who studied the effects
of texture and interstitial impurities.

In this paper we use the experimental compression
test data to adjust the constitutive response of high-
purity zirconium. In addition, we present new results
of tensile tests meant to provide information on the
asymmetric character of the mechanical response of
Zr. Cylindrical tensile specimens with a nominal cen-
tral gauge of 17.7 mm length and 2.25 mm diameter
were machined with their axes parallel to the plane
of the plate. Mechanical tests were performed at 76
and 293K at a strain rate of 0.001 s�1 to an accumu-
lated plastic strain of ca 25% along the testing direc-
tion. The tensile loading curves, together with the
compression curves, are depicted in Fig. 2. for both
testing temperatures. Notice the striking difference
between the TT compression (TTC) and the IP com-
pression (IPC) response at both temperatures. This
difference can be explained qualitatively by the fact
that the Zr crystals are hard to deform along the c-
axis, while they can accommodate deformation by
easy prism slip when the testing direction is perpen-
dicular to the c-axis. As for comparing specimens

Fig. 1. Initial texture (basal and prism pole figures) of clock rolled Zr used in this study. Direction 3 coincides
with the plate normal (ND).

tested in-plane, notice the different hardening exhib-
ited by the IPT and the IPC curves. This is especially
evident at LNT, where the section aspect ratios of the
tensile and compression samples are also very differ-
ent (see Fig. 3). In what follows we will attribute such
response to grain reorientation by tensile twinning
during IPC, which leads to a texture “ randomization”
in the sample, but which also introduces strong bar-
riers to further propagation of dislocations or twins.

3. POLYCRYSTAL MODEL AND SINGLE CRYSTAL
PARAMETERS

The VPSC polycrystal formulation originally pro-
posed by Molinari et al. [9] and later implemented
for anisotropic plasticity by Lebensohn and Tomé [1]
is used for the polycrystal analysis presented here.
The formulation is briefly reviewed in what follows,
while the hardening and twinning models are
described in some detail because they are relevant to
the interpretation of the experiments. Within the
VPSC formulation the polycrystal is represented as an
aggregate of orientations with weights that represent
volume fractions chosen to reproduce the initial tex-
ture. Each grain is treated as an ellipsoidal inclusion
embedded in an anisotropic medium. The shear rate
in each system is a power of the resolved shear stress
divided by a threshold value. The strain rate in the
grain is given by the sum over the shears contributed
by all systems:

Dc
ij = ġ0�

s

ms
ij�ms:s�c

ts �n

= Mc
ijkl(s�)skl�

c (1)

where Dc, Mc, sc, ms are the strain rate, the visco-
plastic compliance, the deviatoric stress, and the
Schmid tensors for the grain. The exponent n is set
to n = 20 in our calculations, and equation (1) has to
be interpreted as a strategy for resolving the activity
in each system without ambiguity rather than as
describing the actual rate sensitivity of the material
[11]. The overall response of the homogeneous effec-
tive medium is described by a pseudo-linear law relat-
ing overall strain-rate and overall stress:

D̄ = M(sec):s̄�. (2)

When the stress equilibrium equation is solved for
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Fig. 2. Experimental (+) and predicted (———) loading curves for clock rolled Zr at RT and LNT. Through-
thickness compression (TTC), in-plane compression (IPC) and in-plane tension (IPT).

Fig. 3. Cross-section at the midpoint of high-purity zirconium samples deformed at LNT (76K) along the in-
plane direction. (a) Deformed in compression (IPC) to 24% true strain; (b) deformed in tension (IPT) to 25%

true strain. Double-ended arrows indicate the initial orientation of the basal poles.

the visco-plastic inclusion the following interaction
equation results:

(Dc�D̄) = �M∗:(s�c�s̄�) (3a)

where

M∗ = neffM(sec):(I�E)�1:E (3b)

and E is the visco-plastic Eshelby tensor [10].
Observe that we use neff = 10 in the interaction equ-
ation and n = 20 in equation (1). This is done in order
to enforce a more rigid interaction than the neff = n
associated with the tangent formulation [11]. This
feature changes the results quantitatively but not
qualitatively, and provides grain strain deviations
from the average which are intuitively more realistic.
Observe, also, that when neff→0 equation (3) tends to
give the Full Constraints (Taylor) case. The condition
represented by equation (3) allows the deformation to
differ from grain to grain depending on the relative
anisotropy between each grain and the surrounding

matrix. Typically, grains unfavorably oriented for
accommodating an imposed strain will deform less
than those favorably oriented.

3.1. Hardening of slip and twinning systems

The threshold stress ts, which appears in equation
(1), describes (in an average way) the resistance for
activation that the deformation modes experience and
it usually increases with deformation due to strain-
hardening. Here we define a reference hardening
function for each system, described by:

t̂s = ts0 + (ts1 + qs
1�)�1�exp��

qs
0�

ts1
�� (4)

where � is the accumulated shear in the grain. Equ-
ation (4) represents an extended Voce law which,
instead of stress saturation, exhibits an asymptotic
hardening rate qs

1. While the latter could be regarded
as describing stage IV at large strains, for the strains
used in this work it is more of an adjustable hardening
parameter. In addition, we allow for “self” and “ lat-
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ent” hardening by defining coupling coefficients hss�

which account for the obstacles that dislocations in
system s� represent to the propagation of s dislo-
cations. Eventually, the increase in the threshold
stress of a system due to shear activity in the grain
systems is calculated as:

�ts =
dt̂s

d�
�
s�

hss��g s� (5)

when “self” and “ latent” hardening are indistinguish-
able then hss� = 1 and the evolution of the threshold
stress is solely given by the reference hardening func-
tion t̂s

�ts

��
=

dt̂s

d�
and ts(�) = t̂s(�). (6)

Equations (4)–(6) permit us to describe the high hard-
ening rate observed at the onset of plasticity, and its
decrease towards saturation at large strains. Linear
hardening is a limiting case of this law, and takes
place when ts1 = 0.

3.2. Twinning model

We assume that twinning is analogous to slip in
that a twin system has a critical resolved shear of acti-
vation in the twinning plane and along the twinning
direction. However, it differs from slip in its direc-
tionality, which we model by allowing shear only in
the positive sense of the twin “Burgers” vector.
Another aspect of twinning that needs to be incorpor-
ated into the models is the fact that the twinned frac-
tions are regions (usually of lamellar or lenticular
morphology) with a different orientation than the sur-
rounding matrix. These twinned regions not only con-
tribute to the texture of the aggregate but, more
importantly, act as effective barriers for the propa-
gation of dislocations and for the growth of other twin
lamellae. The hardening induced by the twins is
empirically enforced here by assigning high values to
the latent hardening coefficients hss� which describe
slip–twin and twin–twin interactions.

As for the effect on texture of the twinned frac-
tions, here we use the predominant twin reorientation
scheme proposed by Tomé et al. [12], which works
as follows: within each grain g, we keep track of the
shear strain g t, g and of the associated volume frac-
tion Vt, g = g t, g/St contributed by each twin system t
(St is the characteristic twin shear). The sum over all
twin systems of a certain kind (e.g., tensile twins) and
over all grains represents the accumulated twin frac-
tion Vacc in the aggregate (i.e., the volume fraction of
tensile twins that one would measure from a
micrograph):

Vacc = �
g

�
t

g t, g

St . (7)

Since it is not numerically feasible (nor physically
justifiable) to regard each twinned fraction as an inde-
pendent new grain, the predominant twin reorien-
tation scheme adopts a statistical approach. At each
incremental step some grains are fully reoriented by
twinning provided certain conditions are fulfilled.
Calling the volume fraction represented by these fully
reoriented grains for each of the twin modes the effec-
tive twinned fraction (Veff), we define a threshold vol-
ume fraction as

Vth = Ath1 + Ath2
Veff

Vacc. (8)

After each deformation increment we select a grain at
random and identify the twin system with the highest
accumulated volume fraction in the grain. If the latter
is larger than the threshold Vth associated with that
twin mode then the whole grain is reoriented by twin-
ning in the predominant system. The process is
repeated until either all grains are randomly checked
or until the effective twin volume exceeds the
accumulated twin volume. In the latter case we stop
reorientation by twinning and proceed to the next
deformation step. Two things are achieved in this pro-
cess: (a) only the historically most active twin system
in each grain is considered for reorienting the whole
grain by twinning; (b) the twinned fraction is kept
consistent with the shear activity that the twins con-
tribute to deformation. The algorithm equation (8)
prevents grain reorientation by twinning until a thres-
hold value Ath1 is accumulated in any given system
(typically 10–25% of grain volume) and rapidly stabi-
lizes the threshold at a value around Ath1 + Ath2

(typically 50–60% of grain volume). In this work we
have used Ath1 = 0.1 and Ath2 = 0.5, and do not allow
twin-reoriented grains to undergo a second reorien-
tation by twinning.

3.3. Single crystal and polycrystal hardening

The experimental information [8, 13–15] and the
evidence that results from comparing predicted and
measured deformation textures of Zr and Zr-alloys [1,
2, 16–18] indicate that the following systems operate
in Zr. At RT and LNT prismatic (pr) slip of the type
{101̄0}�112̄0� is easily activated. Also tensile twin-
ning (ttw) of the type {101̄2}�101̄1� is active at these
temperatures and, to a lesser extent, tensile twins of
the type {102̄1}�112̄6̄� which are not accounted for
in this work. Tensile twinning, however, cannot
accommodate compression along the c-axis of the
crystal. In addition, the difference between the IPT
and IPC loading curves (Fig. 2) indicates that another
mode has to be active in compression at RT and LNT.
The microscopic evidence (Fig. 4 in Ref. [8]) exhibits
very little twinning taking place at RT, which sug-
gests that {1011̄}�112̄3� pyramidal (pyr) slip may be
active at RT. On the other hand, twinning is plentiful
in the micrographs of samples tested at LNT, suggest-
ing that it replaces pyramidal slip as the favored sys-
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Fig. 4. Active deformation systems in Zr considered in this work: prismatic slip, tensile twinning and pyramidal
slip at 293K; prismatic slip, tensile twinning and compressive twinning at 76K.

tem. As a consequence, we assume compressive twin-
ning (ctw) of the {112̄2}�112̄3̄� type at LNT. In what
follows we try to find the evolution of the CRSSs
associated with the active deformation modes at RT
and LNT (Fig. 4). Specifically, we adjust the para-
meters that appear in the hardening laws equations
(4) and (5) until the predicted loading reproduces the
experimental response of Fig. 2.

The reference threshold stresses t̂ that result from
such a fitting procedure are plotted in Fig. 5 for each
deformation mode and for the two temperatures. At
RT, tensile twinning is only slightly harder than pris-
matic slip, while the fitting indicates that pyramidal
slip is much harder. At LNT the threshold stresses for
activating prismatic slip and tensile twinning
increases, and compressive twinning is favored over
pyramidal slip. The parameters associated with the
aforementioned modes and temperature regimes are
summarized in Table 1. Here we have tried to keep
the number of adjustable parameters to a minimum,
while aiming for a satisfactory fit of the experimental
loading curves (Fig. 2). The initial texture used in the
simulation (Fig. 1) consists of 377 discrete orien-
tations with appropriate weights. The number of
orientations represents a compromise between accu-
racy and the running time and RAM requirements of
the FE application.

Notice that the reference threshold t̂s given by equ-

Fig. 5. Reference hardening of individual systems [equation (4)] adjusted to the experimental curves of Fig.
2.

ation (4) and plotted in Fig. 5 does not necessarily
describe the actual threshold ts for a given system.
The actual threshold, which is updated using equation
(5), is usually higher because it includes a contri-
bution from the latent hardening coefficients (hss��
1). For the fitting procedure we enforce the latent
hardening of slip and twinning systems due to slip
activity to be the same, namely hss� = 1. As for the
effect of twinning upon slip and the other twinning
systems, it is evident from the values of the latent
hardening parameters which fit the data, that these
interactions are much stronger. The interpretation is
that the twin lamellae associated with active twin sys-
tems act as barriers for the propagation of dislocations
or of other twinning systems. This interpretation is
also consistent with the hardening exhibited by the
loading curves of Fig. 2: when twinning is active the
hardening rate tends to increase past about 10%
deformation as a consequence of these barriers.
Observe that, according to Table 1, at LNT prismatic
dislocations seem to be strongly impeded by the ten-
sile twins (hpr ttw = 20), but much less by the com-
pressive twins (hpr ctw = 2). This latter result may indi-
cate either that prismatic dislocations can punch more
easily through the compressive twin interface, or that
tensile twin barriers are more closely spaced in the
grains than compressive twin barriers.

The tensile and compressive stress–strain curves
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Table 1. Parameters describing the evolution of threshold stress with deformation [Equations (4) and (5)] for the deformation modes and temperatures
considered in this work

Temperature System (s) t0 (MPa) t1 (MPa) q0 (MPa) q1 (MPa) Self-hard Latent hardening
hss

hs pr hs pyr hs ttw hs ctw

RT Pr 5 30 1500 50 1 1 1 10 –
Pyr 70 270 3000 25 1 1 1 10 –
Ttw 50 0 75 75 1 1 1 10 –

LN Pr 10 50 1500 100 1 1 – 20 2
Ttw 95 0 150 150 1 1 – 10 10
Ctw 100 250 1700 300 1 1 – 10 10

predicted using the hardening parameters listed in
Table 1 are depicted in Fig. 2, superimposed with the
experimental measurements. It can be seen that the
model captures the major hardening features of these
curves and specifically the increase in hardening rate,
which is characteristic of twinning activity and
appears only after some deformation has accumu-
lated. Another feature entirely related to twinning is
the deviation of IPC from IPT both, at 293 and 76K.
As we will see in what follows, during IPT defor-
mation is entirely accommodated by prismatic slip,
while tensile twins activated during IPC induce a
larger hardening.

3.4. Texture evolution and activity of deformation
systems

The stress–strain evolution is only one aspect of
the mechanical response. A sound constitutive model
should also capture other features of deformation,
such as: texture development, deformation mode
activity and bulk anisotropic deformation. We will
discuss these aspects in what follows. A qualitative
understanding can be achieved if one considers the
characteristics of the initial texture and that the c-axis
represents the hard direction in Zr single crystals. As
a consequence, enforcing deformation along the ND
of the sheet requires the activation of the much harder
compressive twinning (at LNT) or pyramidal slip (at
RT). This explains the higher yield in the case of
TTC, both at RT and LNT. In addition, when analyz-
ing the predicted activity (Fig. 6), it can be seen that
pyramidal slip dominates the deformation at RT,
while compressive twins play an important role at
LNT. In the latter case the predicted twinned fraction
increases rapidly at the beginning and grows to about
70% of the total volume after 24% compressive
deformation.

In the case of IPC or IPT, the sample can deform
within the plane of the sheet, without having to
change dimension along the harder ND. As a conse-
quence, nearly plane strain deformation takes place
via prismatic activity (Fig. 6) and the sample develops
an ellipsoidal section. At this point it is interesting to
compare the measured cross-section after TTC and
IPC tests with the results of the simulations done with
the coupled EPIC-VPSC code that will be described
in next section (Fig. 7). This case was used to bench-

mark the interface between VPSC and the FE code
EPIC, since deformation is uniform in the com-
pression sample and the result of the FE calculation
should coincide with the prediction of the polycrystal
code. In the TTC case, compression takes place along
the axis of symmetry of the sample, which remains
cylindrical in section (Fig. 7b and c).

In what concerns in-plane testing, for the IPC case
at RT the in-plane expansion is e22 = 22% and the
out-of-plane expansion is e33 = 6% for a compressive
strain of e11 = �28%. Figure 7d and e show that the
simulated sections accurately coincide with the
experimental ones [19] for the RT tests. In the case
of IPC, the deviatoric component of stress along the
ND is large enough to activate some tensile twinning
both at RT and LNT. The reorientation associated
with such twinning tends to “spread” the basal texture
component along the ND and make the sample more
“ isotropic” . As a consequence, although there is still
ovalization of the sample, the latter is not so severe
(see LN IPC in Fig. 3a). As for the associated simula-
tions, we do predict tensile twinning activation (Fig.
6) for IPC, but our predictions tend to overemphasize
the ovalization of the sample. In the case of IPT, on
the other hand, the compressive deviatoric component
along the ND is not large enough to activate either
pyramidal slip at RT or compressive twinning at
LNT. As a consequence, and since tensile twinning
cannot be activated, deformation is overwhelmingly
accommodated by plane strain via prismatic slip (Fig.
6) and the samples develop an extreme ovalization
both at LNT (Fig. 3b) and at RT. In this case the
constitutive model correctly captures such behavior.

The history of slip and twinning activity deter-
mines the texture evolution in the deformed samples
(Fig. 8). Since prismatic slip activity does not reorient
the c-axis, the basal pole figures after IPT are nearly
identical to the initial texture. The activation of tensile
twins during IPC causes a nearly 90° reorientation of
the c-axis along the compressive direction. The for-
mation of such component is evident in Fig. 8. As for
the textures associated with TTC, at RT the pyramidal
activity rotates the c-axes away from the compressive
loading axis, while at LNT the compressive twin
reorientation creates a fiber perpendicular to the com-
pressive axis.

Experimental textures obtained by OIM are avail-
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Fig. 6. Evolution of the relative activity of deformation modes and twin fractions with deformation, for TTC,
IPC and IPT simulations.

Fig. 7. Comparison of final sections of the Zr compression samples tested at 293K: (a) initial EPIC FE mesh
of the uniaxial compression test; (b) photograph of the TTC experimental shape after 28% compression; and
(c) the calculated TTC shape using EPIC; (d) photograph of the IPC experimental shape after 28% compression;
and (e) the calculated IPC FE shape. For both (b) and (d) the outer circumference of the calculated shape

(white dashed curve) has been superimposed over the experimental shape.

able for the case of TTC and IPT at 76K, and we
compare them with the predicted textures in Fig. 9.
Except for the difference in intensity, which is sys-
tematically larger for predicted textures, the compari-
son supports the predicted contribution to defor-
mation of the various deformation modes. The basal
pole figures for TTC are consistent with strong reori-
entation by compressive twinning. The pole figures
for IPT, on the other hand, are consistent with pre-
dominant prismatic slip which tends to leave the basal
poles invariant while aligning the {101̄0} planes with
the tensile axis.

Figure 10 shows the evolution of the predicted
polycrystal yield surface (PCYS) during TTC, IPC
and IPT deformation at LNT. These surfaces of equal
work-rate are generated by stopping the simulation at
regular deformation intervals and probing the aggre-
gate, accounting for the actual texture, hardening, and
grain shape at such deformation. A feature common
to the three cases is the non-centro-symmetry of the

yield surface, associated with the directionality of
twinning. For the IPT case deformation is accommo-
dated via prismatic slip and there is no change in the
orientation of the c-axes. As a consequence, harden-
ing is nearly proportional. In the case of TTC, the
strong reorientation of the c-axes by twinning induces
an important evolution with deformation of the shape
of the PCYS, while the effect of twinning on the evol-
ution of the PCYS associated with IPC is not as
marked. Figure 10 illustrates the necessity of account-
ing for texture evolution effects for this class of
materials.

4. SIMULATION OF BEAM BENDING

One of the reasons for developing the polycrystal
constitutive equation described above is to be able to
simulate complex forming operations of Zr with the
help of FE techniques. The interfacing of polycrystal
and FE codes is a rather novel approach which offers
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Fig. 8. Basal pole distributions predicted after 24% TTC, IPC and IPT simulations done at 293 and 76K.

Fig. 9. Comparison of predicted and experimental textures after 24% TTC and IPT at 76K.

the possibility of accounting for the anisotropic evol-
ution of the plastic properties of the aggregate, such
as the TTC case illustrated in Fig. 10. So far it has
being applied mainly to cubic materials [20–24] and,
to the authors’ knowledge, twinning has been incor-
porated in only one of such calculations [24].

The constitutive response developed above will be
used in this Section to simulate a four-point bend
beam test performed on rectangular bars of square

section cut from the clock-rolled Zr described in the
previous sections. The reason for choosing the bend
beam test is because it provides non-homogeneous
forming conditions with deformation gradients and
local variables which are amenable to experimental
analysis. In Part II [25] we present a detailed com-
parison of simulation and experiments for beams
tested in bending at RT and LNT, with the main tex-
ture component (along the ND) contained in the bend-
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Fig. 10. PCYSs (p-plane representation) associated with evolution of texture and hardening during TTC, IPC
and IPT at 76K. Yield surfaces correspond to 0, 8, 16 and 24% deformation.

ing plane (C0 case) or perpendicular to it (C90 case).
In this paper we will describe the procedure for
implementing the polycrystal code VPSC into the FE
code EPIC, and provide preliminary simulation
results that illustrate the role of the constitutive equ-
ation in the predicted response.

4.1. Interfacing VPSC with EPIC

In principle the interface between EPIC-97 [6] and
the polycrystal code VPSC could be very simple:
EPIC could merely interrogate VPSC from every FE
integration point at each time cycle when an update
of the deviatoric stress tensor is required for solution
of the conservation equations. However, the compu-
tational cost of this approach would be prohibitive for
an explicit dynamics code engaged in three-dimen-
sional calculations. For a spatially well-resolved
application problem the Courant–Friedrichs–Lewy
controlled time step is typically on the order of 10 ns
which implies a strain increment of about 10�5 for an
sample strain rate of 103 s�1. As a consequence, a
feasible alternative is to interrogate VPSC and to
update the materials properties at a user specified von
Mises strain increment, δeVm:

δevM� �
tm

tm�1

�2
3

D̄:D̄�1/2

dt (9)

where the interval �tm = (tm�tm�1) represents the
time increment needed to accumulate a user specified
strain increment deuser at some spatial integration
point and contains many EPIC time cycles (typically
ranges from 100 to 1000 cycles); the index “m” in
equation (9) designates a VPSC interrogation time.
Once the criterion devM�deuser has been satisfied, then
VPSC is called from EPIC with an averaged defor-
mation-rate tensor given by:

D̂m =
1

�tm
�
tm

tm�1

D̄ dt =
dēm

�tm
(10)

and the VPSC interrogation index is advanced.
Using the above example of a strain rate of 103 s�1

and specifying deuser to be 2% implies that a VPSC
stress interrogation occurs every �2000 time cycles
in EPIC. However, since EPIC requires a stress state
every time cycle between VPSC interrogations, a sim-
ple extrapolation scheme can be employed as follows.
First we define the VPSC interrogation in functional
form as:

s̄� = �(ē) (11)

where ē is a macroscopic strain measure. Next we
expand the second order tensor function � in a Taylor
series about the strain ē(tm):

�(t) = �(tm) +
∂�

∂ē |tm:dē +
1
2
dē:

∂2�

∂ē2 |tm (12)

:dē +
1
6
dē:

∂3�

∂dē3|tm:dē:dē + …

and assume that a linear extrapolation is sufficient for
our purpose of estimating the stress state at times
between tm and tm + 1, thus giving the simple form:

�(t)	�(tm) +
∂�

∂e |tm:dē⇒s� = s̄�m + Pm:dē.

(13)

The plastic stiffness tensor Pm appearing in equation
(13) is estimated using a backward difference in terms
of the VPSC stress states at times tm and tm�1, and
the associated average strain increment for the time
increment �tm:

Pm
ijkl�

(s̄�m
ij �s̄�m�1

ij )
demkl

. (14)

Since Pm has diagonal symmetry and since s̄� and ē
are deviatoric, Pm has a maximum of 15 independent
coefficients to extrapolate the stress state for a general
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material. Assumptions of material and test symmetry
would of course reduce the number of non-zero inde-
pendent coefficients contained in Pm. In terms of the
homogeneous effective medium response represented
by the compliance form of equation (2), equation (14)
can be rewritten as:

Pm
ijkl =

(M�1
m, ijpqD̄m

pq�M�1
m�1, ijpqD̄m�1

pq )
demkl

. (15)

The use of equation (13) to update the stress
between VPSC interrogations was found to be
numerically satisfactory for the bent beam problem
discussed below. The discontinuous “ jumps” in stress
at time tm + 1 when comparing FE extrapolated stresses
via equation (13) to stand-alone VPSC calculations
were rather small for a deuser of 2%. The VPSC runs
were done at smaller strain increments of 0.5%. The
application of equation (13) to dynamic problems that
involve local stress wave reverberations of significant
amplitude and changing sign could be numerically
problematic.

4.2. Bent beam application

In this section we describe the FE simulations of
the bent beam tests and compare the predicted and
measured final beam sections. Local textures and
local strains are discussed in Part II [25]. For all
simulation cases the initial texture of clock-rolled Zr
(Fig. 1) and the active modes and hardening laws cor-
responding to LNT and RT from Table 1 are used.
For comparison purposes results obtained with an iso-
tropic continuum approach (von Mises) and a full
constrained (Taylor) polycrystal approach are
reported, in addition to the results of the VPSC
polycrystal constitutive law. For each response we
considered two orientations of the main basal compo-
nent of the Zr texture: a case with the ND of the plate
contained in the bending plane (C0) and a second case
where the ND is perpendicular to it (C90). In both
cases the ND is perpendicular to the beam axis. In
addition, we considered two deformation tempera-
tures (LNT and RT). Thus, a total four bending cases
were investigated and are designated here as LNC0,
LNC90, RTC0 and RTC90.

Since the ND represents the hard direction in this
material, we expect small deformation along the ND
and, as a consequence, the beam cross-sections to be
quite different in geometric shape depending on the
position of the ND with respect to the bending plane.
A comparison between the Taylor and the self-con-
sistent results should indicate the relevance of enforc-
ing at least five active systems per grain versus
accommodation of the deformation with less than five
systems. We expect local plane-strain deformation for
the self-consistent calculation via activity of mainly
prismatic slip, and a harder response from the fully
constrained approach via forced activity of pyramidal
and twinning systems.

Three-dimensional EPIC-97 FE simulations of the

Zr bent beam tests were performed with coupled
polycrystal plasticity as described in Section 4.1, and
starting from the undeformed version of the mesh
shown in Fig. 11 (Fig. 11 portrays the final bent beam
configuration). This beam was initially 50.8 mm long
with a square cross-section of 6.35 mm. Free-surface
boundary conditions for the beam are imposed in the
FE simulations except at the contact points of the four
pins (upper pin contacts are located at
y = ±6.35 mm and lower contacts are located at
y = ±12.7. The beam bends as the upper pins are dis-
placed down by uz = �6 mm and the lower pins are
held rigid. Although the EPIC calculations were per-
formed at strain-rates of roughly 103 s�1, the pre-
dicted deformation and dimensional changes of the
beam are independent of the precise strain-rate
imposed. The mesh shown in Fig. 11 contains 1920
tetrahedral (single-integration-point) elements with
the tetrahedra symmetrically arranged in set of 24 [6]
per hexahedron apparent in the figure. In order to con-
serve elements this mesh uses two symmetry planes
that are coincident with the x–z and y–z planes. The
use of these symmetry planes is justified if the initial
texture is strictly orthotropic, while in our case we
disregard the slight asymmetry displayed by the
clock-rolled Zr plate (Fig. 1). Approximately 16 000
time cycles were required to bend the beam into the
final configuration shown in Fig. 11, producing von
Mises equivalent strains of around 20% in the upper
and lower fibers. Texture and hardening updates were
conducted in the EPIC/VPSC interface at increments
of 2.0% von Mises strain as discussed in Section 4.1,
with an initialization ramp from 0 to 1% strain that
used much smaller increments. The latter is done to
account for the rapid initial hardening of the material
and the fact that we rely on a forward extrapolation
for hardening and stress updates [equation (13)].

Figure 12a presents a calculated x–z cross-section
of the bent beam for the simple constitutive response
of an isotropic von Mises yield surface evolving
according to a mechanical threshold strength harden-
ing equation [26] adjusted to the ND response of the
original Zr plate. The wedge-shaped section shown in
Fig. 12a results from a near uniaxial stress loading
along the beam axis (y-axis) that reverses sign at the
neutral plane in conjunction with the principle of

Fig. 11. Final configuration of the FE mesh for the bend bar
specimen.
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Fig. 12. Final configuration for the x–z section of the bend bar and contours of Ep
xx calculated using (a) a Von

Mises isotropic law, (b) a fully constrained Taylor and (c) a self-consistent polycrystal plasticity constitutive
response for ND contained in (C0) and perpendicular to (C90) the bending plane, and for LN and RT.

plastic incompressibility. Uniaxial compression is
realized above the neutral plane and uniaxial tension
is realized below. Lagrangian strain along the x-direc-
tion is portrayed in Fig. 12 as contour lines that range
(top to bottom) from Ep

xx = �10% to +8% for this
beam deformation.

Figure 12 also presents calculated x–z cross-sec-
tions of the bent beam for the constitutive response
of a Taylor fully constrained polycrystal (Fig. 12b)
and of a self-consistent polycrystal (Fig. 12c). Twin-
ning, texture and hardening evolution are accounted
for in both cases as described above in Section 3.
The wedge-shaped sections shown in Fig. 12b and c
correspond, from left to right, to the cases LNC0,
LNC90, RTC0 and RTC90, respectively. Note that all
four Taylor cases show wedged cross-sections, with
the C90 cases less so (c-axes are mostly perpendicular
to the bending plane) and the C0 cases more so (c-
axes are mostly contained in the bending plane). Fig-

ure 12b indicates that less plastic strain in the x-direc-
tion is realized for the C90 cases versus the C0 cases
(say 3% versus 12%) reflecting that the c-component
along the ND represents the “hard” direction in this
material. As for Fig. 12c, note that only the C0 cases
show wedged geometry, with the C90 cases produc-
ing rectangular geometry and vanishing Ep

xx strain in
the “hard” direction. A comparison of the calculated
self-consistent x–z cross-sections from Fig. 12c with
experimental sections is done in Part II [25], where
we show that the Taylor calculations overpredict the
“wedging” effect for the C90 beams. The self-consist-
ent approach, on the other hand, predicts final beam
sections in better agreement with the experimentally
measured ones.

5. CONCLUSIONS

Describing the constitutive response of anisotropic
materials such as the clock-rolled Zr studied in this
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paper requires to account not only for the initial ani-
sotropy and hardening, but for their evolution with
strain as well. Here we show that a self-consistent
polycrystal model (which features hardening and tex-
ture evolution) captures the constitutive response of
textured Zr. This crystallographic characterization has
the advantage, as opposed to a constitutive formu-
lation based on continuum mechanics, of being inde-
pendent of the deformation path imposed on the
aggregate. The polycrystal approach requires the
active crystallographic mechanisms to be identified
and the associated hardening parameters to be
adjusted using extensive experimental information.
We show that the mechanical response of textured Zr
is the result of a complex interaction between the
active deformation modes, and that accounting for
anisotropic hardening is as important as accounting
for texture evolution when adjusting the constitutive
response.

In what concerns the twinning model, the predomi-
nant twin reorientation scheme used here is primarily
meant to describe twinning contribution to texture
development. The twinning contribution to hardening
is treated here using a very simple approach. Namely,
the barriers that twin lamellae pose to propagation of
other twin and slip systems are accounted for by
means of a latent hardening parameter. A more speci-
alized model proposed recently by Karaman et al.
[27] to describe deformation of Hadfield steel uses
an extra term in the hardening law. This term, which
provides an improved representation of the twinning
process, depends on the evolving twin fraction and
the separation between twin lamellae in the grain.

We show in this work that it is feasible to introduce
the polycrystal response in a FE code, in order to
describe complex forming operations. As an example,
we present a preliminary simulation of bend beam
tests which predicts very different outcomes
depending on temperature and the relative orientation
of texture and bending plane. A detailed comparison
with actual experiments, including texture analysis,
twinning statistics and local deformation measure-
ments is presented in a companion paper [25].
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49(15), 3097–3107.

26. Chen, S. R. and Gray, G. T. III, Phys. IV France, 1997,
7(C3), 741.

27. Karaman, I., Sehitoglu, H., Beaudoin, A. J., Chumlyakov,
Y. I., Maier, H. J. and Tomé, C. N., Acta mater., 2000,
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