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Abstract. An inverse method for automatic identification of the parameters involved in a
polycrystalline viscoplastic selfconsistent (VPSC) model is presented. The parameters of the
constitutive viscoplastic law at the single-crystal level, i.e. the critical resolved shear stresses (CRSS)
of slip and twinning and the micro-hardening coefficients, can be identified using experimental
data at the polycrystal level, i.e. stress–strain curves and deformation-induced textures. The
minimization problem is solved by means of a Gauss–Newton scheme and the sensitivity matrix
is evaluated by analytical differentiation of the direct model equations. As a particular case, the
optimization procedure for the Taylor full constraints (FC) formulation is also presented. The
convergence and stability of the identification scheme are analysed using several validation tests
for different deformation paths imposed to a polycrystal of hexagonal structure. As an example
of application of this inverse method, the relative CRSS of the active deformation systems of a
Zircaloy-4 sheet are identified, based on several textures measured for different reductions and
rolling directions.

(Some figures in this article appear in black and white in the printed version.)

1. Introduction

In recent years, viscoplastic selfconsistent (VPSC) models have been developed in order to
describe the mechanical behaviour and the texture evolution of polycrystalline anisotropic
materials [1–3]. Different polycrystalline models like the Taylor full constraints (FC) model
[4, 5] and the VPSC approach [6–8] have been introduced inside finite element method
(FEM) codes in order to account for the evolution of the plastic anisotropy inside each
polycrystalline element. Large-scale industrial problems can now be simulated with these
coupled FEM–VPSC codes [6], but the results obtained are strongly influenced by the selection
of the microscopic (i.e. at a single-crystal level) constitutive parameters of the VPSC model.
Usually, these single-crystal constitutive parameters cannot be measured directly, but they must
be estimated by indirect methods. This is especially the case for most of the Zr alloys used by
the nuclear industry for which the growth of single crystals is extremely difficult. Therefore,
the constitutive parameters of these materials, such as critical resolved shear stresses (CRSS) of
slip and twinning systems, microscopic rate sensitivity or micro-hardening coefficients, cannot
be measured directly. A systematic determination of these parameters, therefore, requires an
optimization scheme to find the set of values that gives the best possible agreement between
the model predictions and the experimental data available on the mechanical behaviour and
the deformation texture development of a given material.
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In this work we present an inverse method for the automatic identification of the
microscopic constitutive parameters involved in the VPSC model. The solution of such
an inverse problem consists of finding the set of parameters that minimizes the difference
between the model predictions and the available experimental results [9–11]. This difference
is computed by means of a cost function. This function is defined as a weighted summation of
the deviations of the model predictions from the corresponding experimental data. In order to
perform an automatic optimization, an iterative Gauss–Newton algorithm is used [12]. This
algorithm updates the model parameters using a sensitivity matrix, which is defined by the
derivatives of the predicted observable quantities with respect to the parameters to be identified.
In the present formulation, these derivatives are calculated by analytical differentiation of the
direct model equations. As a particular case, we also present a similar optimization procedure
for the Taylor FC formulation.

The paper is organized as follows. In section 2, the main equations of the direct VPSC
model are reviewed. In section 3, the implementation of the inverse Taylor FC and VPSC
models and the strategy for parameter identification are described. In section 4, the convergence
and stability of the identification scheme is tested by defining the cost function in terms
of theoretical textures calculated using the direct VPSC model, in the case of hcp material
deforming by slip and twinning. In section 5, the inverse method is applied for the identification
of the CRSS of a Zircaloy-4 (Zrly-4) sheet.

2. Direct model

Unlike the Taylor FC model for which the local strains in the grains are considered to be equal
to the macroscopic strain applied to the polycrystal, the VPSC formulation allows each grain
to deform differently, according to its directional properties and depending on the strength
of the interaction between the grain and its surroundings. In this sense, each grain is in turn
considered as an ellipsoidal inclusion surrounded by a homogeneous effective medium (HEM),
which has the average properties of the polycrystal. The interaction between the inclusion and
the HEM is solved by means of the Eshelby formalism [13]. The HEM properties are not
known in advance, but have to be calculated as the average of the individual grain behaviours,
once convergence is achieved. Here we present the main equations of the direct VPSC model
that are needed to formulate the inverse problem. An exhaustive presentation and discussion
of the VPSC formulation can be found in [2].

The polycrystalline aggregate is represented by a set of discrete orientations (hereafter
also denoted as grains or single crystals) characterized by three Euler angles and a weight
associated with the corresponding volume fraction of material in that orientation. At grain
level, slip and twinning are the available deformation modes, while other mechanisms related
to diffusion or grain boundary sliding are not taken into account in the present formulation.
Each deformation system is characterized by a unit vectorn(s) (normal to the slip or twinning
plane) and a unit vectorb(s) (Burgers vector in the case of slip and twin shear direction in the
case of twinning), which allow us to define the Schmid tensorm(s) as:

m(s) = 1
2(n

(s) ⊗ b(s) + b(s) ⊗ n(s)). (1)

The viscoplastic behaviour can be described by a power law relating the applied shear
stress on a slip (or twinning) system (s) to the shear rate ˙γ (s) in the slip (or twinning) direction:

γ̇ (s) = γ̇o

∣∣∣∣τ (s)r

τ
(s)
c

∣∣∣∣n−1
τ
(s)
r

τ
(s)
c

= γ̇o

∣∣∣∣m(s) : σ ′c

τ
(s)
c

∣∣∣∣n−1
m(s) : σ ′c

τ
(s)
c

(2)

where ˙γo is a reference rate,σ ′c is the deviatoric stress in crystal (c),τ (s)c is the current CRSS
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of system (s) and the exponentn is the inverse of the microscopic rate sensitivity associated
with system (s). The strain rate in the single crystal is given by the sum of all the contributions
of the potentially active slip and twinning systems:

ε̇c =
∑

s

m(s)γ̇ (s) = γ̇o

∑
s

m(s)
∣∣∣∣m(s) : σ ′c

τ
(s)
c

∣∣∣∣n−1
m(s) : σ ′c

τ
(s)
c

(3)

which can be written in a pseudo-linear form:

ε̇c =
{
γ̇o

∑
s

m(s) ⊗m(s)
τ
(s)
c

∣∣∣∣m(s) : σ ′c

τ
(s)
c

∣∣∣∣n−1}
: σ ′c = Mcsec

(σ ′c) : σ ′c (4)

whereMcsec
is the secant viscoplastic compliance tensor that relates the microscopic deviatoric

stress tensor and the strain-rate tensor. Another possible linearization of the single-crystal
behaviour can be performed by means of a Taylor expansion of expression (4) in terms of the
tangent modulusMctg

and a back-extrapolated term ˙εo:

ε̇c = Mctg
(σ ′c) : σ ′c + ε̇o(σ ′c). (5)

Similarly, the polycrystal response can be expressed in terms of the overall secant or tangent
viscoplastic compliance tensors, which relate the macroscopic strain rate and deviatoric stress:

Ė = Msec(6′) : 6′ (6)

Ė = M tg(6′) : 6′ + Ėo(6′). (7)

If the microscopic rate sensitivity is unique (i.e. the same exponentn for every deformation
system in every grain), the tangent and secant compliance tensors are proportional to each other
at both microscopic and macroscopic [14] levels:

Mctg = nMcsec
(8)

M tg = nMsec. (9)

The interaction equation relates the differences between the micro and the macro strain rates
and deviatoric stresses, as follows:

ε̇c− Ė = −M̃ : (σ ′c−6′) (10)

whereM̃ is the interaction tensor, explicitly given by:

M̃ = n(I − S)−1 : S : Msec (11)

whereI is the fourth-order identity tensor andS is the viscoplastic Eshelby tensor, a function
of the shape of the inclusion and the macroscopic viscoplastic tangent modulus.

Starting from an initial guess, the macroscopic secant modulusMsec can be adjusted
iteratively using the following self-consistent equation:

Msec= 〈Mcsec
: Bc〉 (12)

where 〈 〉 denotes a weighted average over all the grains in the polycrystal andBc is the
accommodation tensor, given for each single crystal by:

Bc = (Mcsec
+ M̃)−1 : (Msec+ M̃). (13)

The accommodation tensor relates the microscopic and macroscopic deviatoric stresses:

σ ′c = Bc : 6′ (14)

and therefore

〈Bc〉 = I. (15)
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After each strain increment, once convergence is achieved, the reorientation of the grains due
to slip and twinning should be performed. If only slip is active, the lattice rotation rate for
each grain is given by:

ω̇ = �̇− ω̇p + ω̇e (16)

where�̇ is the macroscopic rotation rate, ˙ωp is the skewsymmetric part of the plastic distortion
rate due to slip and ˙ωe is related to the rotation of the ellipsoid representative of the grain. The
explicit expressions for ˙ωp andω̇e are:

ω̇p =
∑

s

1

2
(n(s) ⊗ b(s) − b(s) ⊗ n(s))γ̇ (s) (17)

ω̇e = 5 : S−1 : (ε̇c− Ė) (18)

where5 is the skewsymmetric Eshelby rotation tensor [2].
Texture updating during a VPSC calculation can be performed in two different ways.

The classical scheme consists of letting each orientation evolve after each time increment1t ,
according to the rotation calculated as ˙ω1t (with ω̇ prescribed by equation (16)), while the
weights associated with each orientation remain fixed. The other possible scheme is called vol-
ume fraction transfer (VFT) [15] and is used in this work in connection with the inverse formu-
lation. Within the VFT scheme, the polycrystal is represented by means of a set of fixed orienta-
tions, while the weights are allowed to evolve after each time increment. The Euler space is par-
titioned regularly into cells of 10◦ by side. The orientations of the representative grains are made
to coincide with the centre of the cells. When plastic deformation is imposed on these grains,
the resulting orientations can be regarded as rigid displacements of the cells as a whole. When
displaced, the cell partially overlaps with other cells and the volume fraction of material con-
tained in the overlapped portions are transferred to the corresponding cells. The VFT scheme
described above is applicable to both slip and twinning reorientation (for details see [15]).

3. Inverse model

3.1. General formulation

The identification of parameters by inverse analysis can be performed by solving a minimization
problem. The procedure can be written in the classical form:

find p̂/Q(C̄cal(p̂), C̄exp) = min
p̄∈P

Q(C̄cal(p̄), C̄exp) (19)

where p̄ = {p1, . . . , pNpar} is the parameter vector, Npar is the number of parameters
to be identified and the parameter spaceP is defined by the physically admissible set
of values. C̄exp = {Cexp

1 , . . . , C
exp
Nob} is the vector of experimental measurements (i.e.

observable quantities), Nob is the total number of these observable quantities andC̄cal(p) =
{Ccal

1 , . . . , Ccal
Nob} is the vector of the analogous model predictions, obtained with a given set of

parametersp.
Identification problems are usually formulated as a sequence of three steps: (1) definition

of the cost functionQ which should express a ‘distance’ between simulated and experimental
data; (2) evaluation of the sensitivity matrix for the selected cost function; and (3) minimization
of the cost function. In most cases, the cost function is defined as a weighted least square
expression:

Q =
Nob∑
i=1

βi [C
cal
i (p̄)− Cexp

i ]2 (20)
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whereβi are weighting factors. In the present case the measured data can be deformation
textures and/or stress–strain curves for different deformation processes. For better accuracy of
the identification method, theQ function should take into account not only the final but also
the intermediate crystallographic textures:

Q =
Nproc∑
proc

[
wtext

Ntext∑
text

Nobtext∑
i

β text
i (Ccal

i − Cexp
i )2 +wmech

Nobmech∑
i

βmech
i (Ccal

i − Cexp
i )2

]
. (21)

In (21), Nproc is the number of different deformation processes to be considered in the
optimization procedure, Ntext is the number of intermediate and final textures to be considered
in each process and Nobtext and Nobmechare the numbers of individual observations needed to
define a single texture and a single stress–strain curve, respectively. The first and second terms
account for the differences between the measured and predicted textures and stress–strain
behaviour, respectively. The numberswtext, wmech, β text

i andβmech
i are appropriate factors

which define the relative weight of each set of observable quantities.
An iterative algorithm is used to solve the non-linear problem given by expression (19).

The cost functionQ is minimized using the Gauss–Newton method in combination with a linear
search to find the optimal direction and magnitude of a correction vector, at each iteration step.
The gradient of the cost function reads:

∇Qr(p̄) =
Nob∑
o

2βi(C
cal
i (p̄)− Cexp

i )
dCcal

i (p̄)

dpr
. (22)

The HessianH is given by:

Hrs = ∇ ⊗ ∇Q(p̄) =
Nob∑
i

2βi
dCcal

i (p̄)

dpr

dCcal
i (p̄)

dps
+ 2βi(C

cal
i (p̄)− Cexp

i )
d2Ccal

i (p̄)

dpr dps
. (23)

To evaluate the Hessian, both the first- and second-order derivatives ofCcal
i (p̄) are required.

Neglecting the second-order derivative:

Hrs
∼=

Nob∑
i

2βi
dCcal

i (p̄)

dpr

dCcal
i (p̄)

dps
. (24)

When the parameter vectorp̄ tends to the solution̂p, the difference(Ccal
i (p̄) − Cexp

i ) tends
to a minimum value and the approximate Hessian (24) tends to the exact Hessian (23). The
iterative scheme for solving the minimization problem based on a gradient method leads to the
following recursive equation:

p(l+1)
r = p(l)r + α(l)H−1

rs (p̄
(l))∇Qs(p̄

(l)) (25)

where the convergence factorα(l) guarantees the conditionQ(l+1) 6 Q(l) after iteration (l) and
should be determined using a linear search based on the evaluation of theQ function by means
of a direct VPSC calculation.

3.2. Evaluation of the sensitivity matrix

In order to implement the iterative scheme given by equation (25), together with equations (22)
and (24), it is necessary to evaluate the sensitivity matrix [dCcal

i (p̄)]/(dpr) with i = 1, Nob
and r = 1, Npar. The measured and predicted observable quantitiesC

exp
i andCcal

i (p̄) are
related to the crystallographic texture or to the stress–strain relationship after each deformation
increment. For the sake of simplicity, the algorithm will be described considering that the
generic cost function is given by expression (20) such that all the observable quantities are
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texture related (i.e. Nob= Nobtext). Moreover, the microscopic parameters to be identified
are the initial CRSS of the active deformation modes (i.e. Npar= number of slip and twinning
modes). Other parameters like those associated with microscopic hardening or rate sensitivity
are assumed to be known in advance. As discussed earlier, a texture predicted using the VFT
scheme is given by a set of orientations fixed in Euler space with associated weights that evolve
as deformation proceeds. These weights can be taken as textural observable quantities:

Ccal
i (p̄) = wi(p̄). (26)

Accordingly, the measured observable quantitiesC
exp
i can be obtained by a direct integration

of the experimental orientation distribution function (ODF). The sensitivity matrix is therefore
given by:

dCcal
i (p̄)

dpr
= dwi(p̄)

dpr
. (27)

Considering the weights as functions of the rotation rate associated with each orientation, the
derivatives in expression (27) can be calculated using finite differences:

dwi(p̄)

dpr
= wi(ω̇ + (dω̇/dpr)1pr)− wi(ω̇ − (dω̇/dpr)1pr)

21pr
. (28)

Using (16), the derivatives of the rotation rates can be expressed as:

dω̇

dpr
= d�̇

dpr
+

dω̇e

dpr
− dω̇p

dpr
. (29)

If the macroscopic velocity gradient is assumed completely imposed and fixed during the
deformation process, the first term on the right of expression (29) vanishes:

d�̇

dpr
= 0. (30)

Taking derivatives of equation (17), the plastic spin derivative reads:

dω̇p

dpr
=
∑

s

1

2

[
dn(s)

dpr
⊗ b(s) + n(s) ⊗ db(s)

dpr
− db(s)

dpr
⊗ n(s) − b(s) ⊗ dn(s)

dpr

]
γ̇ (s)

+
1

2
(n(s) ⊗ b(s) − b(s) ⊗ n(s))dγ̇

(s)

dpr
(31)

where the first term in the right expression can be considered negligible compared with the
second one. Indeed, calculations using the direct model show that the former is two or three
orders of magnitude lower than the latter. Hence:

dω̇p

dpr
∼= 1

2
(n(s) ⊗ b(s) − b(s) ⊗ n(s))dγ̇

(s)

dpr
. (32)

Finally, taking derivatives of equation (18) gives:

dω̇e

dpr
= d5

dpr
: S−1 : (ε̇c− Ė)−5 : S−1 :

dS

dpr
: S−1 : (ε̇c− Ė) +5 : S−1 :

d(ε̇c− Ė)
dpr

.

(33)

To evaluate (32) and (33), the derivatives of the internal variables d5/dpr , dS/dpr ,
dγ̇ (s)/dpr , d(ε̇c− Ė)/dpr must be determined. Concerning the first two terms, the algorithm
to calculate the derivatives of the Eshelby tensors is described in appendix B. On the other hand,
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the last two terms can be obtained by taking derivatives of expressions (2) and (3). Neglecting
the derivatives of the Schmid tensors with respect to the parameters we get:

dγ̇ (s)

dpr
∼= γ̇on

∣∣∣∣m(s) : σ ′c

τ
(s)
c

∣∣∣∣n−1[
m(s)

τ
(s)
c

:
dσ ′c

dpr
− m

(s) : σ ′c

(τ
(s)
c )2

dτ (s)c

dpr

]
(34)

d(ε̇c− Ė)
dpr

= dε̇c

dpr
∼=
∑

s

m(s)
dγ̇ (s)

dpr
. (35)

3.3. Taylor approach

In this case, for each grain (independently from the other grains of the aggregate) it is possible
to find a linear system of equations whose solution gives directly the derivatives with respect
to the parameters of the local stress tensor, the current CRSS and the single shear rates of each
deformation system. To build up this system it is necessary to consider: (a) the microscopic
hardening law, which gives the expression of the current CRSS of each system given by:

τ (s)c = τ o(s)
c +

∑
s′
Ĥss′ |γ̇ s′ |1t (36)

whereĤss′ is the known microscopic hardening matrix andτ o(s)
c is the initial CRSS of system (s),

i.e., each one of the microscopic parameters to be identified; and (b) the strict enforcement of
compatibility in the Taylor model that prescribes all local strain rates equal to the macroscopic
strain rate. Hence, the derivatives of the local strain rate vanish, i.e.

dε̇c

dpr
= 0. (37)

Taking derivatives with respect to the parameters in (36), recalling (34), replacing (35) in (37)
and bearing in mind thatpr = τ o(r)

c , we obtain the following linear system of equations:

dτ (s)c

dpr
= δrs +

∑
s′
Ĥss′ sign(γ̇ (s

′))
dγ̇ (s

′)

dpr
1t (S equations) (38a)

dγ̇ (s)

dpr
= γ̇on

∣∣∣∣m(s) : σ ′c

τ
(s)
c

∣∣∣∣n−1[
m(s)

τ
(s)
c

:
dσ ′c

dpr
− m

(s) : σ ′c

(τ
(s)
c )2

dτ (s)c

dpr

]
(S equations) (38b)

0= γ̇o

∑
s

m(s)
dγ̇ (s)

dpr
(5 equations). (38c)

The system (38) consists of 5 + 2S equations and the same number of unknowns, whereS

is the number of deformation systems. The unknowns are the five derivatives of the stress
components dσ ′c/dpr , S derivatives of the current CRSS dτ (s)c /dpr and anotherS derivatives
of the single shear rates d ˙γ (s)/dpr . The sensitivity matrix is then obtained by replacing the
latter in (34) and going back to equations (32), (29) and (28) while recalling that ˙ωe = 0 in
the Taylor FC case.

3.4. Self-consistent approach

Unlike the Taylor model, the VPSC formulation does not allow the evaluation of the derivatives
with respect to the parameters of the stress and strain rate in each grain independently from the
values of these derivatives in the other grains of the aggregate. Indeed, the stress- and strain-
rate tensors in each grain are related to the average macroscopic values through the interaction
equation (10). In what follows, we describe a specific algorithm to obtain those derivatives.
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For the sake of simplicity we consider a case of saturated hardening (i.e.Ĥss′ = 0). Hence,
equation(38a) reads:

dτ (s)c

dpr
= δrs. (39)

Taking derivatives in equation (14) gives:

dσ ′c

dpr
= dBc

dpr
: 6′ +Bc :

d6′

dpr
. (40)

Using (13) and (6) we obtain:

dσ ′c

dpr
= (Mcsec

+ M̃)−1 :

[
−
(

dMcsec

dpr
+

dM̃

dpr

)
: (Mcsec

+ M̃)−1 : (Msec+ M̃)

+

(
dMsec

dpr
+

dM̃

dpr

)
− (Msec+ M̃) : Msec−1

:
dMsec

dpr

]
: 6′. (41)

The derivatives of the local compliances and the interaction tensor can be obtained from
equations (4) and (11):

dMcsec

dpr
= γ̇o

∑
s

[
(n− 1) sign(m(s) : σ ′c)

|m(s) : σ ′c|n−2

(τ
(s)
c )n

(
m(s) :

dσ ′c

dpr

)
−n |m

(s) : σ ′c|n−1

(τ
(s)
c )n+1

δrs

]
m(s) ⊗m(s) (42)

dM̃

dpr
= n(I − S)−1 :

[
dS

dpr
: (I − S)−1 : S : Msec+

dS

dpr
: Msec+ S :

dMsec

dpr

]
. (43)

If the Eshelby tensor derivative dS/dpr is assumed to be known, equations (41)–(43) can
be combined to give the following system of linear equations for each single crystal in the
aggregate:

Ac
ij

dσ ′cj
dpr

+Bc
ijk

dMsec
jk

dpr
= Dc

i (i, j, k = 1, 5) (44)

where an implicit summation on the repeated subscripts (j ) and (k) is assumed. The explicit
expressions of matricesAc

ij ,B
c
ijk andDc

i are given in appendix A. IfC is the number of single
crystals in the polycrystal, expression (44) gives 5C equations and 5C + 25 unknowns, i.e.,
five derivatives of the local stress components dσ ′cj /dpr (j = 1, 5) for each single crystal and
25 derivatives of components of the macroscopic compliance dMsec

jk /dpr (j, k = 1, 5).
Another 25 additional equations (without increasing the number of unknowns) can be

obtained taking derivatives of equation (15) and using (13), (42) and (43) to give:

dMsec

dpr
=
〈
(Mcsec

+ M̃)−1〉−1〈(Mcsec
+ M̃)−1 :

[∑
s

(
(n− 1)

(m(s) : σ ′c)n−2

(τ
(s)
c )n

)
×m(s) ⊗m(s) ⊗m(s) :

dσ ′c

dp
−
∑

s

(
n
(m(s) : σ ′c)n−1

(τ
(s)
c )n+1

δrs

)
×m(s) ⊗m(s) + n(I − S)−1 :

(
dS

dpr
: (I − S)−1 : S : Msec

+
dS

dpr
: Msec+ S :

dMsec

dpr

)]
: (Mcsec

+ M̃)−1

〉
: (Msec+ M̃)− n(I − S)−1

:

(
dS

dpr
: (I − S)−1 : S : Msec+

dS

dpr
: Msec+ S :

dMsec

dpr

)
. (45)
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Equation (45) can be written in the following compact form:∑
c

Ec
ijk

dσ ′ck
dpr

+ Fijkl
dMsec

kl

dpr
= Gij (i, j, k, l = 1, 5) (46)

where an implicit summation on the repeated subscripts (k) and (l) is assumed. The explicit
expressions of matricesEc

ijkl , Fijkl andGij are given in appendix A.
The linear system composed by expressions (44) and (46), i.e.

Ac
ij

dσ ′cj
dpr

+Bc
ijk

dMsec
jk

dpr
= Dc

i (47a)∑
c

Ec
ijk

dσ ′ck
dpr

+ Fijkl
dMsec

kl

dpr
= Gij (47b)

should be solved assuming a certain value of the Eshelby tensor derivative. As a first guess, it
can be assumed thatS is not a function of the parameters (i.e. dS/dpr = 0). Once the system
is solved and therefore the macroscopic compliance derivatives are obtained, an improved
estimation of the Eshelby tensor derivatives can be evaluated using the method described in
appendix B. This new guess of the Eshelby tensor derivatives is then injected into the system
(47). This iterative procedure is repeated until the input and output estimations of the Eshelby
tensor derivatives coincide within a certain tolerance. The values obtained after convergence
of the grain stress derivatives and the Eshelby tensor derivatives can be used in combination
with (34) and (35) to evaluate successively the rotation-rate derivatives (equations (32), (33)
and (29)) and the sensitivity matrix (equation (28)).

4. Convergence and stability

As for every optimization scheme, it is necessary to assess the numerical stability and the
robustness of the present algorithm when dealing with local minima of the cost function. Here,
we do not derive an analytical proof, but the identification method is tested for various cases
for which the solution is knowna priori. Instead of using experimental data as observable
quantities, deformation textures were calculated using the direct VPSC model for various
deformation paths and for a given set of deformation systems with prescribed values of
CRSS.

In order to perform an initial convergence test, let us consider an ideal hcp material
(c/a = 1.59) having the following active deformation modes:{101̄0}〈12̄10〉 prismatic slip
(pr〈a〉), {101̄0}〈112̄3〉 pyramidal〈c + a〉 slip (pyr〈c + a〉) and{101̄2}〈101̄1〉 tensile twinning
(ttw). The viscoplastic exponent (inverse of the rate sensitivity) is taken asn = 19.
Starting from an initially random polycrystal, four deformation textures were calculated
usingτpy〈c+a〉/τpr〈a〉 = 4.0 andτttw/τpr〈a〉 = 1.5 as nominal CRSS ratios keeping them fixed
throughout the calculation. Four different deformation paths were used: (a) uniaxial tension
up to 0.5 Von Mises (VM) equivalent strain, (b) plane-strain compression up to 0.2 VM
strain, (c) plane-strain compression up to 0.5 VM strain, and (d) plane-strain compression
up to 0.5 VM strain followed by a ‘cross’ plane-strain compression (i.e. the final extension
direction corresponds to the initial transverse direction) of 0.2 VM strain. The optimization
scheme was tested using the weights of the final deformation textures as observable quantities.
Regarding the general expression of the cost function (equation (21)), this means:wtext = 1,
wmech = 0, Nproc= 4 and Ntext= 1. In order to perform a reliable convergence test,
the initial values of the CRSS ratios were taken far enough from the actual values, i.e.,
τpy〈c+a〉/τpr〈a〉 = 1.0 andτttw/τpr〈a〉 = 1.0. Table 1 shows that the convergence was reached
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Table 1. Results of a convergence test performed for an ideal, initially random hcp polycrystal.
Four theoretical textures obtained for the nominal values of CRSS and for different strain paths
were used as observable quantities. In parentheses: number of iterations needed for convergence.

Initial values Identified values Nominal values

τpy〈c+a〉/τpr〈a〉 1.00 3.99 4.00
τttw/τpr〈a〉 1.00 1.50 1.50
Q function 0.59 0.000 19(6)

Table 2. Results of the second convergence test performed for an ideal, initially random hcp
polycrystal. A theoretical texture (plane-strain compression, 0.5 VM strain), obtained for the
nominal values of CRSS, was used as the source of observable quantities. The identified values
converge to the nominal values for three different initial guesses of CRSS considered in this test.
In parentheses: number of iterations needed for convergence.

Guess No 1 Guess No 2 Guess No 3

Initial Identified Initial Identified Initial Identified Nominal

τttw/τpr〈a〉 1.00 1.48 2.00 1.49 2.00 1.48 1.50
τctw/τpr〈a〉 1.00 2.95 1.00 2.97 4.00 2.95 3.00
Q function 0.57 0.011(10) 1.47 0.011(16) 0.16 0.011(8)

Table 3. Results of the stability test performed for an ideal, initially random hcp polycrystal. A
perturbed theoretical texture (plane-strain compression, 0.5 VM strain), obtained for the nominal
values of CRSS, was used as the source of observable quantities. The identified values converge
to the nominal values before perturbation. In parentheses: number of iterations needed for
convergence.

Guess No 1 Guess No 2 Nominal
before

Initial Identified Initial Identified perturbation

τttw/τpr〈a〉 1.5000 1.5009 1.0000 1.5094 1.5000
τctw/τpr〈a〉 3.0000 3.0018 2.0000 3.0020 3.0000
Q function 0.158 22 0.158 20(2) 0.215 68 0.158 19(8)

after six iterations and that the identified CRSS values match almost exactly with the nominal
values.

A second convergence test has been carried out in order to evaluate the sensitivity of
the method to the choice of different initial guesses of the CRSS ratios. Once more, we
performed this test for an ideal hcp polycrystal with an initial random texture. In this case,
the deformation modes were assumed to be prismatic slip, tensile twinning and{112̄2}〈112̄3̄〉
compressive twinning (ctw). A single theoretical texture of plane-strain compression up to
0.5 VM strain withτttw/τpr〈a〉 = 1.5 andτctw/τpr〈a〉 = 3.0 was used to identify thea priori
known CRSS ratios starting from different initial guesses. The results are shown in table 2,
while figure 1 displays the oscillations of the CRSS values until the stagnation condition is
reached. The identified values effectively converge to the nominal values for three different
initial guesses of CRSS considered in this test.

Experimental measurements always contain a certain level of error or noise. It is therefore
interesting to study how an inverse method would perform with perturbed observable data. Such
tests are often referred to as stability tests. In order to perform such a test, the former plane-
strain compression experimental texture was slightly modified by adding a random perturbation
of 5% to the original ODF values. This leads to a cost function of 0.158 22 when evaluated for
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Figure 1. Results of the second convergence test performed for an ideal, initially random hcp
polycrystal (see also table 2 caption). Oscillations of the CRSS values, until the stagnation condition
is reached.

the original nominal CRSS ratios. Then, the identification scheme was run using the perturbed
texture as the source of observable quantities, for a set of initial CRSS ratios equal to the
original nominal ratios and another set far enough from the original ratios. Table 3 shows the
corresponding results. The perturbation introduced in the original texture does not affect the
tendency towards the original nominal values of CRSS for both choices of the initial CRSS
ratios, although the value of the cost function after stagnation is one order of magnitude higher
than in the non-perturbed cases.

5. Application to zirconium alloys

The inverse VPSC method has been applied to identify the CRSS of the active deformation
modes of Zrly-4 deformed at room temperature. Samples cut from a Zrly-4 sheet were rolled
in different directions and the textures were measured for different reductions. The initial basal
and prismatic pole figures are shown in figure 2. Four textures corresponding to 20 and 50%
thickness reduction by rolling along the original rolling direction (direct rolling) and along the
original transverse direction (cross rolling) were measured by the x-ray diffraction technique.
The measured textures are shown in the left column of figure 3. Each ODF was discretized
and all of them were used as observable quantities in the identification procedure.

Different slip and twinning modes have been observed in cold-rolled Zrly-4. Prismatic
〈a〉 is acknowledged as the softest and therefore the most active deformation mode [16–18].
The activity of (0001)〈12̄10〉 basal〈a〉 slip (bas〈a〉) has also been reported in Zr alloys
[16, 19, 20]. On the other hand, the straining of a Zr alloy crystal along its crystallographic〈c〉
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Figure 2. Initial (0002) and (01̄10) pole figures of the Zrly-4 samples. Lines are multiples of
random distribution (mrd).

Table 4. Results of the identification procedure for Zrly-4 samples. Four cold-rolling textures (see
figure 3, left column) were used as observable quantities. In parentheses: number of iterations
needed for convergence.

Initial values Identified values

τpy〈c+a〉/τpr〈a〉 1.00 5.1
τbas〈a〉/τpr〈a〉 1.00 4.1
Q function 2.003 0.933(4)

Table 5. Results of the identification procedure for Zrly-4 samples including tensile twinning as
a potentially active deformation mode. Four cold-rolling textures (see figure 3, left column) were
used as observable quantities. In parentheses: number of iterations needed for convergence.

Initial values Identified values

τpy〈c+a〉/τpr〈a〉 1.00 5.2
τbas〈a〉/τpr〈a〉 1.00 4.3
τttw/τpr〈a〉 1.00 3.6
Q function 2.003 0.921(4)

axis requires the activation of harder modes such as tensile or compressive twinning [17, 18]
or pyramidal〈c + a〉 slip [18, 21, 22].

In the case of the cold-rolled Zrly-4 samples, very little twinning activity was found [23].
Therefore, as a first attempt, prismatic, basal and pyramidal〈c + a〉 were assumed to be the
active deformation modes. The parameters to be identified were the CRSS ratiosτbas〈a〉/τpr〈a〉
andτpy〈c+a〉/τpr〈a〉 which were assumed to remain constant throughout the deformation. The
viscoplastic exponent was taken asn = 19. The identification procedure was applied to
determine the set of CRSS ratios that gives the best simultaneous agreement between the
calculated and the measured textures. The results of the identification procedure are shown in
table 4 and the calculated textures using the identified CRSS ratios are shown in the right column
of figure 3. The final value of the cost function is significantly higher than those obtained in
the test cases discussed in section 4. The predicted textures compare acceptably well with the
measured values in the direct rolling case, except for a minor component appearing in TD. In
the cross-rolling case, the tendency of the basal poles to rotate towards the normal direction
(ND) (i.e. in the centre of the pole figure) is not predicted by the model. The simulations
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Figure 3. Left: measured (0002) pole figures of cold-rolled Zrly-4 samples for direct rolling at:
(a) 20% and (c) 50% thickness reduction and cross rolling at: (e) 20% and (g) 50% thickness
reduction. Right: calculated (0002) pole figures with identified parameters for direct rolling at:
(b) 20% and (d) 50% thickness reduction and cross rolling at: (f) 20% and (h) 50% thickness
reduction. Lines are mrd. The labels RD and TD indicate the original rolling and transverse
directions (same for all pole figures), while the arrows indicate the new rolling direction.

show that the basal maxima lying in the original ND–TD plane tend to increase in intensity,
but remain in their same original position, at 35◦ from ND. It is also interesting to analyse the
predicted activity of the different deformation modes. In fact, the simulations of both rolling
processes performed using the identified CRSS ratios give a relative activity of prismatic slip
of the order of 98%, while the remaining 2% corresponds to basal (1.5%) and pyramidal slip
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(0.5%).
In the former example only prismatic, basal and pyramidal slip were assumed to be active

deformation modes. It is also important to study what would be the identified CRSS ratios
if tensile twinning was nota priori eliminated from the list of potentially active modes. In
this case, three instead of two parameters should be identified:τbas〈a〉/τpr〈a〉, τpy〈c+a〉/τpr〈a〉 and
τttw/τpr〈a〉. All other inputs were identical to the former case. The results of the identification
procedure are shown in table 5. If the identified CRSS ratios are used to simulate either direct
rolling or the cross rolling, the predicted twinning activity always remains lower than 0.1%.
This is consistent with the fact that almost no traces of twinning were found in the rolled
samples [23].

6. Conclusion

An inverse method based on the VPSC model for automatic identification of model
parameters was presented. In the examples shown in this paper, texture measurements
were used as the source of observable quantities and CRSS ratios were the parameters
to be identified. However, the present scheme allows us to identify other microscopic
constitutive parameters, e.g., microscopic hardening or rate sensitivity, etc, using other
measurements (besides crystallographic texture) at a polycrystalline level, e.g., stress–strain
curves, grain shape distribution or twinning fraction, etc. The present approach is thought
to be a useful tool for the analysis of deformation textures of low symmetry materials in
which different deformation modes can be activated depending on the imposed deformation
conditions.
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Appendix A

The explicit expressions of matricesAc
ij , B

c
ijk andDc

i in equation (44) andEc
ijk, Fijkl andGij

in equation (46) are (indicesi, j , k, l andm run from 1 to 5):

Ac
ij = δij + [(Mcsec

+ M̃)−1 : M∗c]ikj [(Mcsec
+ M̃)−1 : (Msec+ M̃) : 6′]k (A1)

Bc
ijk = [(Mcsec

+ M̃)−1 : n(I − S)−1 : S]ij [(M
csec

+ M̃)−1 : (Msec+ M̃) : 6′]k

−[(Mcsec
+ M̃)−1 : (I + n(I − S)−1 : S −M + M̃) : Msec−1

]ij [6
′]k (A2)

Dc
i =

[
(Mcsec

+ M̃)−1 :

(
M̂c + n(I − S)−1 :

dS

dpr
: (I + (I − S)−1 : S) : Msec

)
: (Mcsec

+ M̃)−1 : (Msec+ M̃) : 6′
]
i

+

[
(Mcsec

+ M̃)−1 : n(I − S)−1 :
dS

dpr
: (I + (I − S)−1 : S) : Msec : 6

]
i

(A3)

Ec
ijk = −wc[〈(Mcsec

+ M̃)−1〉−1]il [(M
csec

+ M̃)−1 : M∗c]lmj [(Mcsec
+ M̃)−1 : (Msec+ M̃)]mk

(A4)
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Fijkl = [〈(Mcsec
+ M̃)−1〉−1〈(Mcsec

+ M̃)−1 : n(I − S)−1 : S〉 ⊗ 〈(Mcsec
+ M̃)−1

: (Msec+ M̃)〉]ijkl − [n(I − S)−1 : S]ij δkl − δij δkl (A5)

Gij = [〈(Mcsec
+ M̃)−1〉−1]ik

[〈
(Mcsec

+ M̃)−1 :

(
M̂c + n(I − S)−1 :

dS

dpr

: ((I − S)−1 : S + I ) : Msec

)
: (Mcsec

+ M̃)−1 : (Msec+ M̃)

〉]
kj

−
[
n(I − S)−1 :

dS

dpr
: ((I − S)−1 : S + I ) : Msec

]
ij

(A6)

where:

M∗c =
∑

s

(
(n− 1)

(m(s) : σ ′c)n−2

(τ
(s)
c )n

)
m(s) ⊗m(s) ⊗m(s) (A7)

M̂c =
∑

s

(
n
(m(s) : σ ′c)n−1

(τ
(s)
c )n+1

δrs

)
m(s) ⊗m(s). (A8)

Appendix B. Calculation of Eshelby tensor derivatives

The symmetric and skewsymmetric Eshelby tensors of an ellipsoidal inclusion in an anisotropic
medium is given by [13]:

Sijmn = 3S
ijpqLpqmn (B1)

5ijmn = 35
ijpqLpqmn (B2)

whereL is the stiffness tensor of the medium, expressed in the system of principal axes of
the ellipsoid (in the case of the VPSC modelL is the inverse of the macroscopic tangent
complianceM tg) and3S and35 are tensors expressed as:

3S
ijpq =

1

16π

∫ π

0
sinθ

∫ 2π

0
λS
ijpq dφ (B3)

35
ijpq =

1

16π

∫ π

0
sinθ

∫ 2π

0
λ5ijpq dφ (B4)

where:

3S
ijpq = [U ]−1

ip (ζ )ζj ζq + [U ]−1
jp (ζ )ζiζq + [U ]−1

iq (ζ )ζj ζp + [U ]−1
jq (ζ )ζiζp (B5)

35
ijpq = [U ]−1

ip (ζ )ζj ζq − [U ]−1
jp (ζ )ζiζq + [U ]−1

iq (ζ )ζj ζp − [U ]−1
jq (ζ )ζiζp (B6)

and whereU is a symmetric tensor defined by:

Uip(ζ ) = Lijplζj ζl (B7)

with:

ζ1 = sinθ cosφ

a1
, ζ2 = sinθ sinφ

a2
, ζ3 = cosθ

a3
(B8)

wherea1, a2, a3 are the lengths of the ellipsoid’s principal axes and where the anglesφ andθ
(0< φ < 2π and 0< θ < π) are the spherical coordinates defining the vectorζ .

Taking derivatives of equations (B1) and (B2) with respect to a parameterpr gives:

dSijmn
dpr

= d3S
ijpq

dpr
Lpqmn +3S

ijpq

dLpqmn
dpr

(B9)

d5ijmn

dpr
= d35

ijpq

dpr
Lpqmn +35

ijpq

dLpqmn
dpr

. (B10)
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The first terms in (B9) and (B10) are given by:

d3S
ijpq

dpr
= 1

16π

∫ π

0
sinθ

∫ 2π

0

dλS
ijpq

dpr
dφ (B11)

d35
ijpq

dpr
= 1

16π

∫ π

0
sinθ

∫ 2π

0

dλ5ijpq
dpr

dφ (B12)

with:

dλS
ijpq

dpr
= d[U ]−1

ip (ζ )

dpr
ζj ζq +

d[U ]−1
jp (ζ )

dpr
ζiζq +

d[U ]−1
iq (ζ )

dpr
ζj ζp +

d[U ]−1
jq (ζ )

dpr
ζiζp (B13)

dλ5ijpq
dpr

= d[U ]−1
ip (ζ )

dpr
ζj ζq −

d[U ]−1
jp (ζ )

dpr
ζiζq +

d[U ]−1
iq (ζ )

dpr
ζj ζp −

d[U ]−1
jq (ζ )

dpr
ζiζp (B14)

where:
dUip(ζ )

dpr
= dLijpl

dpr
ζj ζl. (B15)

The Eshelby tensors and their derivatives can be directly evaluated by numerical integration.
In the VPSC case, if the macroscopic tangent compliance and its derivatives are known, the
stiffness tensor derivatives can be calculated as follows:

dL

dpr
= −M tg−1

:
dM tg

dpr
: M tg−1

. (B16)
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