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The rules for the lattice rotation during rolling (plane strain) deformation of fcc poly-
crystals are studied with a viscoplastic self-consistent model. Very high values of the rate-
sensitivity exponent are used in order to establish Sachs-type conditions with large local
deviations from the macroscopic strain. The lattice rotation depends on the grain shape.
Forequiaxed grains the lattice rotation follows theMArule, which is the one normallyused
in solid mechanics. Forelongated and flat grains the lattice rotation follows a different rule,
thePSA rule. In the standard version themodelperforms a transition fromMAtoPSAwith
increasing strain. There is avery clear difference between the textures resultingfrom the two
different rules. MA leads to a copper-type texture, and PSA leads to a brass-type texture.
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INTRODUCTION

Already Hosford (1977) pointed at the ambiguity in the calculation of
the lattice rotation corresponding to a specific slip activity in a grain
(a crystallite) an ambiguity which has nothing to do with the "Taylor
ambiguity" (e.g. Leffers et al., 1988) expressing an uncertainty in the
selection of slip systems. More recently the problem has been discussed
by Kocks and Chandra (1982) and Tiem et al. (1986). Hosford pointed

* Corresponding author.

217



218 R.A. LEBENSOHN AND T. LEFFERS

at three different sets of rules for the calculation of the lattice rotation:
"Schmid tension analysis", "Taylor compression analysis" and "mathe-
matical analysis". The first and the second are identical to the rules for
the lattice rotation in single crystals subjected to tension and compres-
sion, respectively. The third calculates the lattice rotation from the
skewsymmetric component of the plastic distortion; it is the one nor-
mally used in solid mechanics (e.g. Kocks et al., 1998). Recently it has
been demonstrated that plastic deformation with special microstructural
conditions may require specific rotation rules adjusted to the specific
microstructure, e.g. Leffers (1994), Lebensohn and Canova (1997) and
Bolmaro et al. (1997).
The present authors (Leffers and Lebensohn, 1996) have demon-

strated the effect of the choice of rotation rule on the simulated rolling
texture of fcc materials. In their work, the Schmid tension analysis and
the Taylor compression analysis were combined to "plane-strain anal-
ysis" (PSA). PSA infers that a string ofmaterial originally oriented along
the rolling direction maintains its orientation and a plate of material
originally oriented parallel to the rolling plane also maintains its orien-
tation. PSA is identical to the lattice rotation rule for single crystals
subjected to plane strain in a channel-die experiment (but channel-die
deformation imposes special constraints which are not part ofPSA). The
mathematical analysis (MA) is independent of the deformation mode
(tension/compression/plane strain). The lattice rotations according to
MA and PSA are sketched in Fig. 1 (taken from Leffers and Lebensohn
(1996)). An alternative illustration ofthe two types oflattice rotation has
been presented by Van Houtte (1996), who is working with problems
closely related to those dealt with in the present work (in Van Houtte’s
terminologyR 0 andR 1 corresponds toMAand PSA, respectively).
For the Sachs model and the modified Sachs model (Sachs, 1928;

Pedersen and Leffers, 1987) the rotation rule turned out to have a
decisive effect on the simulated texture: PSA led to a brass-type simu-
lated texture while MA led to a copper-type simulated texture. For
the relaxed-constraint Taylor model (in the "pancake" mode, e.g.
Van Houtte, 1981) there was a certain, not very pronounced, difference
between the textures simulated with PSA and MA. For the full-con-
straint Taylor model (Taylor, 1938) the textures simulated with PSA and
MA were identical as they should be theoretically, e.g. Van Houtte
(1996) and Leffers and Lebensohn (1996).
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FIGURE Sketch of the lattice rotation according to MA and to PSA; (a) before slip,
(b) after slip, before lattice rotation, (c) after slip and lattice rotation according to MA,
(d) after slip and lattice rotation according to PSA. In (c) the parallelepiped has no
simple orientation relation to the axes of the sample coordinate system, whereas in (d)
the parallelepiped has four edges parallel to the rolling direction and two faces parallel
to the rolling plane. Slip plane and slip direction are indicated in (a).

As pointed out by Hosford, the logical choice ofrotation rule is linked
to the shape of the grains: MA is the logical choice for equiaxed grains
whereas, for rolling deformation, PSA is the logical choice for the flat-
tened and elongated grains at large strains. In various versions ofthe self-
consistent model, e.g. Tiem et al. (1986) and Lebensohn and Tom
(1993), the grain shape enters explicitly in the calculation of the lattice
rotation. In the present work we demonstrate, for fcc polycrystals, how
such models (in this case that of Lebensohn and Tom) infer a change
from MA to PSA with increasing strain (increasing deviation from
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equiaxed grains), and we discuss the basic assumptions behind the cal-
culation of the lattice rotation in these models. We also discuss the
reasons why one has to deal with non-Taylor models and hence with
the different rules for the calculation of the lattice rotation.

THE SELF-CONSISTENT MODEL

Self-consistent texture calculations were made with a viscoplastic self-
consistent model (VPSC) (Lebensohn and Tom6, 1993). The VPSC
model allows each grain to deform and rotate according to a local
velocity gradient that can be different from the macroscopic velocity
gradient. How much the local behaviour differs from the overall behav-
iour is determined by the strength of the interaction between the indi-
vidual grain, considered as an ellipsoidal inclusion, and its surroundings,
considered as a homogeneous equivalent medium (HEM) with behav-
iour and properties derived as the average for the whole polycrystal. The
interaction equation can be expressed as:

ij /[iJ’klJkl" (1)

In (1) 0 and t are the local deviations relative to the macroscopic
state of strain rate and deviatoric stress, respectively, and Mijk is the
interaction tensor defined as:

"lijk n I S)ijmnSmnpqMpqkl (2)

where n is the rate sensitivity exponent and/, SandMare the symmetric
identity tensor, the viscoplastic Eshelby tensor and the secant visco-
plastic compliance tensor. It should be noticed that a high value of the
rate sensitivity exponent n corresponds to a low degree ofrate sensitivity,
e.g. Kocks et al. (1998).

After each deformation step, the local strain and rotation represent
a compromise between what the individual ellipsoidal grain would have
done if it were unconstrained and what the polycrystal is doing as a
whole. The total crystallographic rotation rate of a grain, calculated
with a self-consistent model, can be expressed as:

-pl (3)03iJ riO" At- Odij OJij
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plHere 0 is the macroscopic rotation rate tensor, and wij is the rotation
rate associated with plastic deformation:

wij - nb} n}b (4)

where the summation includes all the active slip systems and s, and-are the normal ((111)) and Burgers ((110)) vectors and the shear rate of
systems s. b0- is an additional rotation rate associated with grain
morphology given by:

03iJ . .I. SklmnEmn (5)
ijkt

where II is the skewsymmetric Eshelby tensor for rotation (Lebensohn
and Tomr, 1993). Both S and II depend on the anisotropy of the HEM
and on grain shape. As a consequence, the relative weight of oij in
Eq. (3) increases with increasing flatness and elongation of the grains.
Thus, the strain dependence of the rotation rules comes via bij.

Within the VPSC scheme, the principal axis of the ellipsoidal grains
will try to keep as aligned as possible with the principal directions of the
sheet. Since an arbitrary strain applied to an ellipsoid changes the
orientation of its principal axis, the term ij can be regarded as an sup-
plementary rotation that tends to realign the new ellipsoid axes with the
macroscopic principal directions.
As it can be seen from Eqs. (1) and (2), the assumption ofa high value

of the rate sensitivity exponent n (a low degree of rate sensitivity) can
make the VPSC model approach a Sachs type model, i.e. we can produce
calculated textures derived from a slip pattern which is similar to that of
the Sachs/modified Sachs model used by Leffers and Lebensohn (1996).
Consequently, using a sufficiently high value of n (in the present case
n- 47), we can compare the lattice rotations and the texture evolution
prescribed by VPSC with those corresponding to PSA and MA in the
work of Leffers and Lebensohn.
For the comparison of VPSC with PSA we determine, after a given

deformation increment, the updated orientations of a string ofmaterial
originally oriented in the rolling direction and of a plate of material
originally oriented in the rolling plane. The coordinates in sample axes
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of a vector after a deformation increment (i) are updated as:

vi) ’*/J(i)"*kj"(i-1)(l -+- e-Pl’)klVl(i-1) (6)

where a# is the transformation matrix from crystal to sample, I is the
symmetric second order identity tensor, e pl is the plastic distortion
tensor and the indices (i 1) and (i) refer to coordinates before and after
the deformation step, respectively. If and are vectors parallel to the
rolling direction and perpendicular to the rolling plane, respectively, the
incremental (inc) and integrated (int) RD and ND misorientations
(reflecting deviations from PSA) for deformation increment (0 are
defined as:

RDine (angle(?(i), (i-l)))

RDint (angle(?(i), (o)))
NDiH (angle((i), (i-1)))

NDint (angle((i), n()))

(7)

(8)

(9)

(lO)

where expresses a weighted average over the whole set of grains.
For the comparison ofVPSC with MA we refer to vij in Eq. (3) which

represents the deviation from MA. We express the deviation by the
following parameters:

average misorientation (angle@0), pl(i))) (ll)

/ [(i)l >average relative modulus
\ IP’(i)

(12)

where (i), pl(i) and t(i), _tpl(i) are the pseudo-vectors associated with
the corresponding skewsymmetric tensors. Since 1)0 0 in rolling, the
first parameter is the average misorientation of the instantaneous rota-
tion axis associated withVPSC and MA, respectively, while the second is
an average of th} normalized modulus of the extra term o0. The
smaller these two parameters are, the smaller is the difference between
VPSC and MA.
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RESULTS

As it turns out, the VPSC model does not, even with n as high as 47,
lead to a proper Sachs-type deformation pattern. At the early stage of
deformation (with spherical grains) the average number of active slip
systems in the grains is 1.77 to be compared with an average number
very close to 1.0 for Sachs. For practical computational reasons we
cannot go to higher n values than ,,47. However, the strain in the
individual grains deviates very significantly from themacroscopic strain,
which means that the different rotation rules do give different rotations.
After 1% strain the average local absolute deviation of the strain from
the macroscopic strain (average for all grains and all strain components)
is 0.27%, which is about the same as the 0.25% quoted for the Sachs
model by Pedersen and Leffers (1987).

Figure 2 shows the development With strain of the four indicators of
deviation from PSA defined in Eqs. (7)-(10). Three cases are con-
sidered: change in grain shape with strain starting with equiaxed grains
("updated"), permanently spherical grains ("spherical") and perma-
nently fiat grains ("fiat"). With updating the incremental ND and RD
misorientations (Fig. 2(a) and (b)) very clearly show a development
towards PSA (low incremental ND and RD misorientations) with
increasing strain. For spherical grains the misorientations remain high
with minor variations due to texture formation. For fiat grains the
misorientations remain low.

Figure 3 shows the development with strain of the two indicators
of deviation from MA defined in Eqs. (11) and (12) for the same three
cases as above. With updating, there is a clear change away from the
initial MA conditions (low modulus and low misorientation) with
increasing strain. For spherical grains the deviations from MA remain
low, and for fiat grains they remain high with fluctuations due to
texture.
From Figs. 2(a), (b) and 3(a) the "transition poinff, the strain where

the lattice rotation is halfway between MA and PSA, may be estimated.
The transition point is at a strain of 0.5.

Figure 4 shows the development ofthe five major texture components
with strain for the three eases (updated, spherical, flat): the copper
component {211} (111), the brass component {110} (112), the S com-
ponent {123} (634), the Goss component {110} (001) and the cube
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FIGURE 3 Development with strain of the two indicators of deviation from MA:
(a) relative modulus; (b) misorientation.

component { 100} (001). For all components orientations within 15
from the ideal orientation are included.
For permanently spherical grains (which should correspond to MA)

the final texture is an extreme copper-type texture with a strong pre-
dominance of the copper component. For permanently fiat grains
(which should correspond to PSA) the final texture is a brass-type tex-
ture with a very strong brass component, a fairly strong S component
and a significant Goss component. For updating, the development ofthe
different texture components is not just somewhere between that for
spherical grains and that for flat grains. At a strain of 0.5, which cor-
responds to the transition strain estimated above, the copper component
is weaker for updating than for spherical grains and flat grains.

Figure 5 shows the calculated { 111 } and {200} pole figures for a strain
of0.5. Again one notices that updating does not lead to a texture between
the textures for spherical and fiat grains. The pole figures for updating
are brass-type pole figures like those for flat grains (the { 111 } pole figure
for updating actually comes closer to the brass-type texture than that for
flat grains). For permanently spherical grains (MA) and permanently
flat grains (PSA) the pole figures qualitatively agree with those presented
by Leffers and Lebensohn (1996): copper-type for MA and brass-type
for PSA.
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FIGURE 4 Development with strain ofthe five main texture components: (a) for updat-
ing ofthe grain shape; (b) for permanently spherical grains; (c) for permanently flat grains.
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FIGURE 5 {l l} and {200} calculated pole figures (in equal area projection) for a
von Mises equivalent strain of 0.5. Dotted areas are below random pole density, and the
contour lines represent 1, 2, 3, 4 and 5 times random pole density: (a) for updating of the
grain shape; (b) for permanently spherical grains; (c) for permanently flat grains.
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DISCUSSION

It is an integral part of the present VPSC scheme that the initial lattice
rotation rule is MA and that the rule changes with increasing deviation
from equiaxed grain shape. The present work has shown that the change
is towards PSA a rule formulated completely independently of the
VPSC scheme. This must be seen as ajoint support for the VPSC scheme
and the PSA concept.
For the specific case dealt with the maximum deviation ofthe strain

in the individual grains from the macroscopic strain which the VPSC
program can provide we perform an objectively based transition from
MA to PSA. It should be noticed that there is not a one-to-one corre-
spondence between the MA to PSA transition as monitored by the
indicators in Figs. 2 and 3 and the MA to PSA transition in the texture
development. Asjudged from the incremental indicators, the transition
is halfway through at a strain of 0.5. For updating one would there-
fore expect the texture after a strain of 0.5 to be dominated by MA (the
strain range up to 0.5 starts with pure MA rules and ends halfway
between MA and PSA rules). As a matter of fact the pole figures are
much closer to those for flat grains (PSA) than to those for spherical
grains (MA). For the copper componentupdating even leads to a volume
fraction outside the range defined by pure MA and pure PSA.
The importance of the whole problem of the lattice rotation rules

obviously depends on the occurrence of local deviations from the mac-
roscopic strain. There is an increasing awareness that such deviations,
deviations from the full-constraint Taylor model (Taylor, 1938), do
occur for a number of reasons (for a recent general discussion see
Van Houtte (1996)). The deviations may be dictated by the micro-
structure or the phase structure (e.g. Leffers, 1996; Bolmaro et al., 1997;
Lebensohn and Canova, 1997; Christoffersen and Leffers, 1997). With
the VPSC model even single-phase materials without an extreme n value
as in the present work show very significant deviations from the full-
constraint Taylor model (e.g. Molinari et al., 1987). Finite-element
modelling provides a very direct theoretical proof of local deviations
from the macroscopic strain, e.g. the FEM work on rolled iron by
Dawson et al. (1994) and the FEM work on rolled copper by Mika
and Dawson (1998). And of course there are strain deviations in the
relaxed-constraint model in any of its variants linked to grain shape
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or in the recent formulation without direct link to grain shape by
Van Houtte (1995).
The actual texture development under the imposed Sachs-like con-

ditions (imposed by a very low degree of rate sensitivity) confirm
the results of Leffers and Lebensohn (1996), including the surprising
observation that Sachs-type deformation with MA lattice rotation
(permanently spherical grains) leads to a copper-type texture. For the
simple Sachs model Leffers and Lebensohn found a texture with the
copper component as the one predominant texture component already
at 50% rolling reduction, corresponding to avon Mises equivalent strain
of0.78. In the present work considerably higher strains (strains > 1.5) are
required to get such a predominance ofthe copper component. We refer
this difference to the fact that even with n 47 the present model does
not really reach proper Sachs conditions. Using the modified Sachs
model (Pedersen and Leffers, 1987), which also deviates from the rig-
orous Sachs model, Leffers and Lebensohn found a multicomponent
copper-type texture at 50% reduction.
As our final remark we want to state that the updating scheme is based

onthe assumptionthatonemayconsideranelongatedandflattened grain
as a homogeneouslydeformingentity (an assumptionwhich is an integral
part ofthe great majority ofpolycrystal models, including all variants of
the Taylor and the Sachs model). This is not necessarily correct; a fiat
grain may split up into approximately equiaxed crystallites with their
individual deformation and rotation patterns (e.g. Mika and Dawson,
1998). Actually, the microstructural conditions may determine whether
the grains maintain their identity or split up. One might imagine that the
twinned/bundled grains in materials developing the brass-type texture
(Duggan et al., 1978; Leffers, 1996; Christoffersen and Leffers, 1997)
maintain their identity, thus enforcing updating, while the grains in
materials developing the copper-type texture (without identity conserv-
ingtwins) splitup, thuseffectivelyremainingequiaxed. Thiscouldprovide
a completely new explanation for the fcc rolling-texture transition.

CONCLUSION

The viscoplastic self-consistent model leads to a transition from MA
lattice rotation to PSA lattice rotation with increasing deviation from
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equiaxed grain shape. The textures resulting from MA and PSA are
quite different.

Acknowledgement

This work was partially carried out within the Engineering Science
Centre for Structural Characterization and Modelling of Materials at
Ris. The authors are grateful for the support from the Fundacion
Antorchas. The authors want to thank D.P. Mika and P.R. Dawson
for access to their unpublished work.

References
Bolmaro, R.E., Lebensohn, R.A. and Brokmeier, H.-G. (1997). Comp. Mater. Sci., 9, 237.
Christoffersen, H. and Leffers, T. (1997). Scripta Mater., 37, 1429.
Dawson, P.R., Beaudoin, A.D. and Mathur, K.K. (1994). Numerical Prediction of

Deformation Processesandthe Behaviour ofRealMaterials. Andersen, S.I. et al. (Eds.)
Rise National Laboratory, Roskilde, p. 33.

Duggan, B.J., Hatherly, M., Hutchinson, W.B. and Wakefield, P.T. (1978). Mater. Sci.,
12, 343.

Hosford, W.F..(1977). Text. Cryst. Solids, 2, 175.
Kocks, U.F. and Chandra, H. (1982). Acta Metall., 30, 695.
Kocks, U.F., Tom, C.N. and Wenk, H.-R. (1998). Texture and Anisotropy. Cambridge

University Press, Cambridge, pp. 326-389.
Lebensolm, R.A. and Canova, G.R. (1997). Acta Mater., 45, 3687.
Lebensohn, R.A. and Tom, C.N. (1993). Acta Metall. Mater., 41,2611.
Leffers, T. (1994). Materials Science Forum, 157-162, 1815.
Leffers, T. (1996). ProceedingsICOTOM11. Liang, Z. et al. (Eds.) International Academic

Publishers, Beijing, p. 299.
Leffers, T., Asaro, R.J., Driver, J.H., Kocks, U.F., Mecking, H., Tom, C. and Van

Houtte, P. (1988). ProceedingsICOTOMS. Kallend, J.S. and Gottstein, G. (Eds.) The
Metallurgical Society, Warrendale, p. 265.

Leffers, T. and Lebensohn, R.A. (1996). Proceedings ICOTOM 11. Liang, Z. et al. (Eds.)
International Academic Publishers, Beijing, p. 307.

Mika, D.P. and Dawson, P.R. (1998). Mater. Sci. Eng. A, 257, 62.
Molinari, A., Canova, G.R. and Ahzi, S. (1987). Acta Metall., 35, 2983.
Pedersen, O.B. and Leffers, T. (1987). Constitutive Relations and Their Physical Basis.

Andersen, S.I. et al. (Eds.) Rise National Laboratory, Roskilde, p. 147.
Sachs, G. (1928). Z. verein, deut. Ing., 72, 155.
Taylor, G.I. (1938). J. Inst. Metals, 62, 307.
Tiem, S., Berveiller, M. and Canova, G.R. (1986). Acta Metall., 34, 2139.
Van Houtte, P. (1981). Proceedings ICOTOM6. Nagashima, S. (Ed.) The Iron and Steel

Institute ofJapan, Tokyo, p. 428.
Van Houtte, P. (1995). Acta Metall. Mater., 43, 2859.
Van Houtte, P. (1996). Proceedings ICOTOM 11. Liang, Z. et al. (Eds.) International

Academic Publishers, Beijing, p. 236.


