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AbstractÐA micromechanical model for the calculation of the plastic behavior of a lamellar structure is
presented. This model is based on a rate-sensitive approach to describe the plasticity at the single crystal
(lamella) level and on the relaxed constraints theory to account for the in¯uence of the lamellar mor-
phology on the overall plastic response of the structure. The equations for the cases of 2- and N-lamellae
structures undergoing states of applied stress or strain rate are presented. The model is applied to a lamel-
lar matrix±twin pair which is a simpli®ed representation of a g-TiAl polysynthetically twinned (PST) crys-
tal. For this case, a morphology-based classi®cation of the critical stresses of the g-TiAl deformation
systems is also presented. This model for PST plasticity is successfully validated by comparison with avail-
able experimental data. # 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights
reserved.

1. INTRODUCTION

Due to intensive research, TiAl-based alloys have

gained a great potential as high temperature struc-

tural materials. On the basis of experimental e�orts,

a technology has been developed which allows the

®rst applications at the industrial scale [1±3].

Nevertheless, the interpretation of the available ex-

perimental data as well as the optimization of the

experimental procedures require a better under-

standing of the basic mechanisms that determine

the material properties. This necessity has given rise

to an increasing modeling activity in this ®eld.

Micromechanical models of crystal and polycrystal

plasticity are good candidates for this task.

Nevertheless, these models should be re®ned in

order to account for the complex microstructures of

the TiAl alloys.

The g-TiAl-based alloys exhibit a variety of

di�erent microstructures [4]. TiAl sheets, for

example, have a homogeneous, ®ne grained,

equiaxed microstructure after rolling which allows

superplastic forming (SPF) [1, 2]. During rolling

and subsequent SPF, a texture develops and this

causes a strong plastic anisotropy of the sheet [5]. If

a good creep resistance of these alloys is required,

the formation of lamellar microstructures should be

favored [6±8]. These kind of microstructures can be

obtained by appropriate heat treatments or just

after casting [4, 9]. Especially the as-cast

material [10] and also the directionally solidi®ed

material [11] are expected to be highly anisotropic

due to preferred orientations of the lamellar colo-

nies. A lot of experimental work has been devoted

to understanding the basic mechanisms of plastic

deformation of polysynthetically twinned (PST)

crystals. A PST crystal consists of a single set of

lamellae (i.e. a unique direction of the normal to

the lamellar planes can be de®ned). The crystallo-

graphy, morphology and strong plastic anisotropy

of PST crystals have been described in great detail

(for a thorough discussion, see Refs [12±14]). A

PST crystal is formed essentially by g-TiAl lamellae

(tetragonal L10 structure) and also by a few per-

cents of a2-Ti3Al lamellae (hexagonal D019 struc-

ture). The orientation relationship between g- and

a2-phases is f111gg==�0001�a2 and h110ig==h1120ia2
with the basal plane of the a2-phase being parallel

to the habit plane of the lamellae. In the g-phase,
due to its tetragonality, there are six di�erent crys-

tallographic orientations which ful®ll the above

orientation relations. This results in the so-called

``domain structure'' of twin lamellae which is

sketched in Fig. 1. Each matrix lamella consists of

three types of domains (IM, IIM and IIIM) which

can be distinguished by a 1208 rotation around the

�111� direction and the corresponding twin lamella

consists of domains having the corresponding

twinned orientations (IT, IIT and IIIT). Therefore,

there are six possible orientations of these domains.

Concerning the stacking sequence, a g-lamella can

have a lamellar boundary in common with a a2-
lamella or with another g-lamella of a twinned
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orientation. For typical g-TiAl-based alloys, the lat-

ter is more frequently found.

Classical crystal and polycrystal plasticity models

assume that at the single crystal level dislocation

glide is the only available mechanism of plastic de-

formation. At the polycrystal level, both the simple
approaches like the Taylor model [15]Ðwhich

assumes homogeneous deformation in the whole

polycrystal and disregards grain morphologyÐor

the more sophisticated formulations like the relaxed
constraints (RC) model [16] or the one-site visco-

plastic self-consistent (VPSC) model [17, 18]Ðwhich

allow di�erences in deformation from grain to grain

and account for grain morphology e�ectsÐare
based on the assumptions of homogeneous defor-

mation inside the grains and of a perfectly disor-

dered polycrystal (i.e. no crystallographic or
morphologic correlations between neighboring

grains).

In recent years, crystal and polycrystal plasticity

models were improved in order to consider more

complex types of intracrystalline deformation.

Examples of this are the di�erent e�orts to model
the role of deformation twinning [19, 20] and the

e�ect of phase morphology and orientation re-

lationship between phases in lamellar two-phase

polycrystals [21]. Following similar lines, the aim of
this paper is to describe the plastic behavior of a

PST crystal taking explicitly into account the role

of crystallography and morphology of the twin

lamellae. In doing this, use is made of a rate-sensi-
tive approach at the single crystal (lamella) level

and of the RC theory at the PST level, respectively.

It will be also shown that this model can be easily

adapted to other lamellar structures.

The plan of the paper is as follows: in Section 2

the main equations of the model are presented and
how the PST morphology a�ects the critical stresses

and the constitutive behavior inside each lamella
are discussed. In Section 3 the predicted PST aniso-

tropy is validated by comparison with the present
experiments and also with classical results found in
the literature. In Section 4 some advantages, limi-

tations, possible improvements and further appli-
cations of this basic model of PST plasticity are
addressed.

2. MODEL

The morphology of PST crystals in¯uences the
mechanical behavior of the g-TiAl phase in various
ways. Thus, the plastic behavior of an isolated g-
TiAl single crystal is ®rst described, then how the
morphology of a PST crystal can a�ect the critical
stresses of slip and twinning systems is discussed

and ®nally two of these single crystals as constitu-
ent lamellae (i.e. matrix and twin) of a PST are con-
sidered in order to account for the e�ect of
morphology on the constitutive behavior of the

lamellar structure as a whole. Although this
assumption of a 2-lamellae structure is a simpli®ca-
tion of the actual six-domain structure (Fig. 1), it

will be shown that it allows the main e�ect of mor-
phology on the PST behavior to be captured.

2.1. Constitutive behavior of a g-TiAl single crystal

According to Mecking et al. [22], the active defor-
mation modes in g-TiAl are: f111gh110� slip by

ordinary dislocations, f111gh101� slip by super dislo-
cations and f111gh112� twinning (Table 1). These de-
formation modes have been con®rmed to be the
most active ones in PST crystals by Kishida et

al. [23]. In the present formulation, twinning will be
treated as a deformation mode with an assigned
critical resolved shear stress like the other slip

modes. Unlike slip, twinning is not operative in the
opposite sense of the twinning vector because this
would require an extremely high shear stress.

When a stress is acting upon a single crystal, the
shear rate on a given slip system (s): _gs can be

Fig. 1. Schematic matrix±twin pair of lamellae, represent-
ing the structure of a PST crystal. Each lamella contains
three g-domains (matrix: IM, IIM and IIIM, twin: IT, IIT

and IIIT) which share the �111�-axis but can be distin-
guished by the orientation of the h110i directions as indi-
cated with arrows for the matrix lamellae. The simpli®ed
PST model consists of the domains IM and IT only, which
are sketched with solid lines. The coordinate system indi-
cates the de®nition of the ``lamellar axes'' reference frame
for the matrix±twin pair which has been chosen to formu-

late the present model.

Table 1. Deformation systems of g-TiAl and their ``mechanism-
based'' and ``morphology-based'' classi®cation

System
Mechanism-based

classi®cation (modes)
Morphology-based
classi®cation (types)

�111��110� ordinary slip transversal slip
�111��110� ordinary slip transversal slip
�111��110� ordinary slip mixed slip
�111��110� ordinary slip longitudinal slip
�111��011� super slip transversal slip
�111��101� super slip transversal slip
�111��011� super slip transversal slip
�111��101� super slip transversal slip
�111��011� super slip mixed slip
�111��101� super slip mixed slip
�111��011� super slip longitudinal slip
�111��101� super slip longitudinal slip
�111��112� twinning transversal twinning
�111��112� twinning transversal twinning
�111��112� twinning transversal twinning
�111��112� twinning longitudinal twinning
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expressedÐfor constant temperature and thermally
activated slipÐby means of the rate-sensitivity

approach, i.e. a microscopic equivalent of the
Norton law for creep:

_gs � _g0
tsr
ts0

� �n

� _g0
ms

ijsij
0

ts0

� �n

�1�

where tsr and ts0 are the resolved and critical stress
of system (s), respectively; ms

ij is the Schmid tensor

of system (s); sij 0 is the deviatoric stress; _g0 is a
reference strain rate and n is the inverse of the rate
sensitivity. Then, if a given strain rate is applied to

a single crystal, its response can be obtained as

_ei �
X
s

ms
i _g

s � _g0
X
s

ms
i

ms
jsj
0

ts0

� �n

�i,j � 1,5�: �2�

In equation (2) there is an implicit summation over
the repeated index j and the traceless tensors are
expressed as 5-dim vectors using a modi®ed

Lequeu [24] convention (i.e. with the third and
fourth components interchanged):

T1 � 1���
2
p �T22 ÿ T11�, T2 �

���
3

2

r
T33,

T3 �
���
2
p

T13, T4 �
���
2
p

T23, T5 �
���
2
p

T12 �3�
where Tij and Tk are a generic traceless tensor and
its vectorial representation, respectively. From
equation (2) the stress can be calculated by solving

a 5�5 system of non-linear equations for each
single crystal. As in equation (2), in the following
equations indexes i and j will vary from 1 to 5,

unless they are explicitly quoted.

2.2. Critical stresses

In an isolated g-TiAl single crystal, prior to any

deformation, the critical stresses ts0 of every defor-
mation system of the same mode (i.e. ordinary slip,
super slip and twinning) should be the same but

they can vary from mode to mode (e.g. the critical
stresses of ordinary slip can be di�erent from super
slip, etc.). This distinction between ordinary and

super slip and twinning will be referred to in what
follows as mechanism-based classi®cation of critical
stresses (Table 1, second column).
Now consider a simpli®ed lamellar PST structure,

formed by one matrix and one twin, having the
matrix and the twin lamellae the orientations of
domains IM and IT in Fig. 1, respectively. This

matrix±twin pair corresponds to a �111��112� twin-
ning system and therefore a reference frame (called
``lamellar axes'' in what follows) is adopted having

axis xL
3 lying along the twinning direction �112�,

axis xL
2 along �111� (i.e. normal to the twinning

plane) and axis xL
1 along �110� (see Fig. 1).

When a single crystal is a part of this structure, it
can be rationally assumed that the morphology
determines di�erences between the critical stresses
of deformation systems of the same mode, at very

early stages of deformation, i.e. the critical stress

may be di�erent for systems of the same slip or

twinning mode depending on the orientation of

each system with respect to the lamellar plane.

This feature allows a new classi®cation of defor-

mation systems, i.e. the morphology-based classi®-

cation (Table 1, third column). For instance, it is

possible to ®nd (in both lamellae) one ordinary slip

system, two super slip systems and one twinning

system (i.e. the �111��110�, �111��011�, �111��101� and
�111��112� systems, respectively) which have their

slip (or twinning) direction and slip (or twinning)

plane parallel to the interface. In this new mor-

phology-based classi®cation these slip (or twinning)

systems will be grouped in the longitudinal slip (or

twinning) type of deformation. Furthermore, each

lamella contains one ordinary slip system and two

super slip systems with their slip direction parallel

to the interface and with the slip plane transversal

to the interface (i.e. �111��110�, �111��101� and

�111��011�). These slip systems will be grouped in

the mixed slip type. Finally, the rest of the ordinary,

super and twinning systems have their slip (or twin-

ning) directions and their slip (or twinning) planes

transversal to the interface. These slip (or twinning)

systems will belong to transversal slip (or twinning)

type.

The Hall±Petch e�ect has been actually con-

®rmed in equiaxed microstructures of g-TiAl

alloys [2, 25] and also by Umakoshi and Nakano in

PST crystals deformed under compression for

di�erent orientations [26]. This allows a qualitative

analysis of the expected relative critical stresses of

the di�erent morphology-based types of defor-

mation. Due to the high aspect ratio of the lamellae

of PST crystals di�erent ``e�ective'' grain sizes for

systems of the longitudinal and the transversal

types of deformation should be considered in the

Hall±Petch law. When the lamellae are perpendicu-

lar to the loading axis, the yield stress can be corre-

lated with the lamellar spacing, i.e. the short axis of

the lamellae. In this case, the deformation is carried

out mainly by systems of the transverse type which

should have high critical stresses. When the lamellae

form an angle of 458 with the compression axis, the

yield stress can be correlated with the domain size,

i.e. the long axis of the lamellae. It follows that the

active deformation systems are of the longitudinal

type and their critical stresses are low. Finally,

when the lamellae are parallel to the compression

axis the systems of the mixed slip type are the most

active. In terms of slip geometry, it is expected in

this case that the yield stresses were controlled by

the domain size, as well. Nevertheless, Umakoshi

and Nakano found that the lamellar spacing also

has a strong in¯uence on the critical stress of slip

systems of the mixed type [26]. Therefore, an inter-

mediate yield stress is expected for these mixed type

systems.
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The reason why the simpli®ed 2-lamellae struc-
ture is able to capture the main e�ect of mor-

phology on the PST behavior relies on this
morphology-based classi®cation. The latter provides
a rational way to average over the whole set of de-

formation systems, within all the six domains of a
PST, to give a good representation of the overall
behavior of a PST crystal. In fact, due to the crys-

tallographic arrangement of the domains, a PST
crystal should deform activating all deformation
modes simultaneously. This becomes obvious in the

case of slip (or twinning) of the longitudinal type
propagating along a lamella from one domain into
another. In this case, due to the 1208 rotation of
the domains around the normal direction of the

lamella, a dislocation must switch from an ordinary
one to a super dislocation (and vice versa) several
times and, in some domains, a combination of

ordinary slip and twinning is favorable instead of
super slip. A detailed analysis of this has been given
by Kishida et al. [23].

2.3. Constitutive behavior of a lamellar structure

1. Consider a strain rate �_e i applied to the matrix±
twin structure sketched in Fig. 1. If labels M and

T identify the matrix and twin, respectively, the
constitutive relation of the ensembleÐin lamellar
axesÐcan be written as

�_e i � _g0

 
wM

X
s

ms,M
i

 
ms,M

j sj 0M

ts,M0

!n

�wT
X
s

ms,T
i

 
ms,T

j sj 0T

ts,T0

!n!
�4a�

_eM1 � _eT1 �4b�

_eM2 � _eT2 �4c�

_eM3 � _eT3 �4d�

s4 0
M � s4 0

T �4e�

s5 0
M � s5 0

T �4f�
where �_eM,s 0M� and �_eT,s 0T� are the local states
inside the matrix and the twin; s,M and s,T
identify the slip and twinning systems in both

lamellae and wM and wT are weight factors pro-
portional to the relative volumes of matrix and
twin, respectively. In writing equation (4a) it has

been assumed that the overall strain rate is given
by a weighted average of the strain rate inside
each lamella. Moreover, equations (4b)±(f) are

based on the RC concept [16]. According to the
RC theory, since the lamellae are ¯at (being the
short direction along xL

2 ) the only local strain-
rate components that are allowed to be di�erent

are shear rates _e4 and _e5 (_e23 and _e12, respect-

ively). This follows from the fact that the di�er-

ences in those shears between both lamellae can

be accommodated without large spatial incom-

patibilities. Correspondingly, the continuity

across the interface of the other three strain-rate

components and of the fourth and ®fth com-

ponents of the stress should be enforced.

Moreover, equations (4e)±(f) are two (out of

three) necessary conditions for equilibrium of

forces across the interface. The third condition,

i.e. the continuity of the third component of the

Cauchy stress (i.e. sT22 � sM22) can be also ful®lled

by imposing adequate hydrostatic states inside

each lamella. Equations (4) give a 10�10 non-

linear system of equations where the unknowns

are the ®ve components of stress inside each

layer. The overall stress in the structure is

obtained as

�sj 0 � wMsj 0
M � wTsj 0

T: �5�
System (4) can be extended to the general case of

a stack formed by N lamellae. Each lamella can

have di�erent crystallographic orientation and

volume but they should be parallel to each

other. The constitutive behavior of such a struc-

ture can be obtained from

�_e i � _g0
XN
K�I

wK
X
s

ms,K
i

ms,K
j sj 0K

ts,K0

 !n

�6a�

_eI1 � _eII1 � . . . � _eN1 �6b�

_eI2 � _eII2 � . . . � _eN2 �6c�

_eI3 � _eII3 � . . . � _eN3 �6d�

s4 0
I � s4 0

II � . . . � s4 0
N �6e�

s5 0
I � s5 0

II � . . . � s5 0
N �6f�

where the indexes K= I, II, . . . , N identify the

di�erent lamellae and �_eK ,s 0K �, s,K and wK are

the local state, the slip and twinning systems and

the weight factor of lamella K, respectively.

System (6) consists of 5�K unknowns, i.e. the

®ve components of the local stress in each layer

and 5�K equations, i.e. ®ve from equation (6a)

and 5� (Kÿ 1) from equations (6b)±(f). The

overall stress in the structure is

�si 0 �
XN
K�I

wKsi 0
K : �7�

The general case of N lamellae is not analyzed in

detail here. The latter equations can be even-

tually used as an extension of the present model

for more complicated lamellar structures consist-

ing of a stack of more than two lamellae.
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Nevertheless, equations (6) and (7) should not be

confused with the general solution for the six-

domain PST structure. In the latter, sets of three

domains are adjacent within each lamella, i.e.

they do not form a 6-lamellae stack.

2. Consider there is a stress �si 0 (instead of a strain

rate) applied to the matrix±twin structure. Using

similar considerations as in the former case

based on the RC theory, the set of equations

that describes the mechanical behavior of such a

structure is given by

�si 0 � wMsi 0M � wTsi 0 T �i � 1,3� �8a�

_g0
X
s

ms,M
i

ms,M
j sj 0M

ts,M0

 !n

�

_g0
X
s

ms,T
i

ms,T
j sj 0T

ts,T0

 !n

�i � 1,3� �8b�

s4 0
M � s4 0

T � �s4 0 �8c�

s5 0
M � s5 0

T � �s5 0: �8d�
Formally, the set of equations (8) is also a

10�10 non-linear system, the unknowns being

the ®ve stress components inside each lamella.

Nevertheless, the fourth and ®fth components in

each lamella can be trivially obtained from

equations (8c)±(d) and therefore a 6�6 system

should be actually solved. Once the stresses are

known, the overall strain rate can be obtained as

�_e i � _g0

 
wM

X
s

ms,M
i

 
ms,M

j sj 0M

ts,M0

!n

�wT
X
s

ms,T
i

 
ms,T

j sj 0T

ts,T0

!n!
: �9�

Finally, if a stress state is applied to an N-lamel-

lae structure, the system to be solved to get its

mechanical response is

�si 0 �
XN
K�I

wKsi 0 K �i � 1,3� �10a�

_eI1 � _eII1 � . . . � _eN1 �10b�

_eI2 � _eII2 � . . . � _eN2 �10c�

_eI3 � _eII3 � . . . � _eN3 �10d�

s4 0
I � s4 0

II � . . . � s4 0
N � �s4 0 �10e�

s5 0
I � s5 0

II � . . . � s5 0
N � �s5 0 �10f�

and the overall strain rate is given by

�_e i � _g0
XN
K�I

wK
X
s

ms,K
i

ms,K
j sj 0K

ts,K0

 !n

: �11�

3. RESULTS AND VALIDATION

3.1. Experimental evidence

In this section the model will be validated by
comparison with two sets of compression tests done

on g-TiAl-based PST crystals and as-cast material
where the angles between the lamellar boundary
and the loading axis were varied. These are: (a) the

classical Yamaguchi yield stress results for PST
crystals of composition Ti±49.3 at.% Al [13] and
(b) measurements of the transversal strains after

compressing as-cast material with strongly oriented
lamellae and a composition of Ti±48 at.% Al±
2 at.% Cr.

The yield stress of a PST crystal deformed in uni-
axial compression is high when the lamellae are par-
allel or perpendicular to the loading axis and low
for intermediate orientations. Figure 2 shows the

dependence of the yield stress with the angle
between the lamellae and the loading axis. In what
follows, the angle f varies due to a rotation of the

crystal around a h110i direction, as sketched in
Fig. 3. The ``sample axes'' reference frameÐde®ned
by axis xS

3 parallel to the loading direction, axis xS
1

along the rotation axis and axis xS
2 perpendicular to

the former onesÐshould not be confused with the
set of ``lamellar axes'' de®ned earlier to formulate
the constitutive equation of the lamellar structure

(in fact, the ``lamellar axes'' and the ``sample axes''
coincide for f = 0). A similar pro®le is obtained in
the case of uniaxial tension or when the angle f is

varied by rotation around a h112i direction [13].
The orientation of the lamellar boundary with
respect to the (vertical) loading axis is sketched on

top of each experimental point.

Fig. 2. Experimental yield stresses of PST crystals (Ti±
49.3 at.% Al) in uniaxial compression for di�erent angles
f (i.e. the angle between the lamellae and the compression
axis). f varies by rotation around a h110i direction lying

in the lamellar plane [13] (see also Fig. 3).
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The transversal strains of the as-cast material,
measured after uniaxial compression, also exhibit a
strong dependence with angle f. Due to the poly-

crystalline microstructure of the as-cast material, f
is de®ned in this case as the mean angle between
the lamellar planes and the compression axis.

Furthermore, unlike in the case of PST crystals, no
distinction can be made between a rotation around
a h110i or a h112i direction in order to vary f
because the material has a h111i-®ber texture with
the ®ber axis being the normal of the lamellae.
During the solidi®cation of the cast material, lamel-

lar dendrites formed. As the mismatch between the
orientation of the lamellae is very small the material
exhibits an anisotropic behavior which is very simi-
lar to that of a single set of lamellae (i.e. a

PST) [10].
Figure 4 shows the variation of the ratios of the

transversal strains and the compression strain (i.e.

e11/e33 and e22/e33, in sample axes) for di�erent
angles f, after uniaxial compression tests. The
mean orientation of the lamellar boundaries with

respect to the (vertical) loading axis is sketched on
top of the experimental points. When the lamellae
are parallel to the loading axis (f = 0) the strain is
such that the component perpendicular to the

lamellar boundary (i.e. e22 for f = 0) is small and
most of the transversal strain is carried along the
lamellar planes. As soon as the loading axis is

inclined, the trend changes drastically and the strain
component along the e11 direction becomes smaller
than e22. Finally, at f = 90, when the loading axis

is normal to the lamellae, the test becomes axially
symmetric and therefore both transversal strains are
almost equal.

3.2. Model assessment

Unlike a rigid-plastic material, it is not possible
to get true yield points (and therefore a true yield

surface) of a viscoplastic material. Nevertheless, the

relative anisotropy of a viscoplastic material can be

estimated by comparing points that belong to the

same equipotential surface. This requires to prove

the single crystal or the lamellar structure in a given

stress direction and then to correct the stress mod-

ulus in order to be exactly at the reference poten-

tial, using the procedure described in Appendix A.

In the limit, when the rate sensitivity of the visco-

plastic material tends to zero, the shape of this

equipotential surface tends to the shape of the yield

surface of the rate-insensitive material. In what fol-

lows, a high exponent n (i.e. n = 19) will be used to

calculate approximate values of relative yield stres-

ses for a PST crystal loaded in di�erent directions.

Fig. 3. De®nition of the ``sample axes'' reference frame.
x S
3 is parallel to the loading axis, x S

1 is the rotation axis,
lying along a h110i direction in the lamellar plane and x S

2
is perpendicular to x S

1 and x S
3.

Fig. 4. Transversal strains measured after uniaxial com-
pression on as-cast material (Ti±48 at.% Al±2 at.% Cr)
with strongly oriented lamellae, for di�erent angles f (i.e.
angle between the compression axis and the mean direc-
tion of the lamellar plane). Transversal strains are normal-
ized to the compression strain. Black and white symbols
show the values for deformation along x S

1�e11� and x S
2�e22�,

respectively.

Fig. 5. Comparison of experimental yield stresses (black
circles) with model predictions for mechanism-based (solid
line) and optimized morphology-based critical stresses
(dash line). All data are normalized to the yield stress at

f = 908.
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The set of equations (8) (i.e. stress applied to a

matrix±twin structure) has been solved for di�erent

directions of an applied uniaxial compression stress

in order to test the model with respect to the exper-

imental curves shown in Figs 2 and 4. The calcu-

lated results for the yield stresses and macroscopic

transversal deformations are shown in Figs 5 and 6,

respectively. For comparison of the calculated rela-

tive yield stresses and the experimental ones, a nor-

malization with respect to the value at f = 908 was
performed in Fig. 5. This implies that both values,

calculated and experimental, are equal at f = 908
in every case.

In a ®rst attempt the critical stresses for all defor-

mation modes were set equal �tord0 � tsup0 � ttw0 � 1�
which is the simplest choice of critical stresses based

on the mechanism-based classi®cation. This simple

case already reproduces in a qualitative way the

trend of high yield stress at f = 08 and 908 as well

as low yield stress at f = 458. Nevertheless, the cal-

culated relative values of yield stress do not match

quantitatively with the experimental data.

Concerning the predictions of the transversal

strains, the general trend of the experimental curves

in Fig. 4 is well reproduced but the turnover from

plain strain in the x±z plane to plain strain in the

y±z plane appears at an angle of f1258 while in

the experiments this happens at a smaller angle.

However, a very detailed comparison is di�cult

because, as already quoted in Section 3.1, the exper-

iments were done with as-cast material which in

comparison with a PST is expected to exhibit less

signi®cant changes in yield stress [10] and transver-

sal strains.

A better quantitative matching between the pre-

dicted anisotropy and the experimental evidence

can be obtained using the morphology-based classi-

®cation described in Section 2.2. The morphology-

based classi®cation of deformation systems provides

two parameters which can be used to optimize the

model to match with the experimental data. These

parameters are the ratios between the critical stres-

ses of transversal, mixed and longitudinal types of

deformation, i.e. ttrans0 :tlong0 and tmix
0 :tlong0 where

ttrans0 is the critical stress assigned to both the slip

and twinning transversal types (assumed equal for

simplicity) and tlong0 is the critical stress assigned to

both the slip and twinning longitudinal types.

However, in this ®tting procedure, the values of the

critical stresses should not be arbitrary but they

must be consistent with the Hall±Petch arguments

discussed in Section 2.2, which in the present nota-

tion, can be expressed as: tlong0 <tmix
0 <ttrans0 .

As mentioned in Section 2.2, at f = 908 the de-

formation is carried out by systems of the trans-

verse type, at intermediate orientations (around

f = 458) by systems of the longitudinal type and

for f = 08 by systems of the mixed type. This has

been also con®rmed by simulations. Table 2 shows

deformation systems which are active in the matrix

and the twin lamellae. The same pattern of active

systems is obtained for the considered range of criti-

cal stresses. Therefore, the ratios ttrans0 :tlong0 and

tmix
0 :tlong0 can be used separately to optimize the cal-

culated yield stresses for the best matching with the

measured values at f = 08 and 458, respectively. By
performing this optimization procedure, it was

found that the values ttrans0 :tlong0 =3.33 and

tmix
0 :tlong0 =2.72 are the best choice (see Fig. 5).

With these parameters, the calculated transversal

strains show a turnover from plain strain in the x±z

plane to plain strain in the y±z plane at an angle f
between 98 and 108 (see Fig. 6) which is closer to

the experimental observations in as-cast material.

Fig. 6. Calculated transversal strains for uniaxial compression along x S
1 (dash line) and x S

2 (solid line)
(a) mechanism-based and (b) optimized morphology-based classi®cation of critical stresses.
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4. CONCLUSIONS

A crystal plasticity model has been developed

which is able to describe the response of a multi-

layered, lamellar crystal structure under any applied

multiaxial stress or strain rate. The model has been

applied to a g-TiAl-based PST crystal and it has

been validated by comparison with experimental

results.

The PST crystal has been reduced to one matrix±

twin pair of crystals. According to the model, the

plastic response of two joined, twinned crystals with

a high aspect ratio can be calculated from a set of

equations based on: (1) a rate-sensitive approach to

describe the single crystal behavior and (2) the

relaxed constraints theory to account for the in¯u-

ence of the morphology during the co-deformation

of both lamellae. A morphology-based classi®cation

for the assignment of critical stresses of the defor-

mation systems has been introduced. The physical

argument behind this classi®cation is based on the

extension of the Hall±Petch e�ect to each lamella,

i.e. the critical stresses are determined by the ``e�ec-

tive grain size'' associated with each individual de-

formation system (small for transversal and large

for longitudinal dislocation movement) rather than

by the deformation mode (ordinary or super slip

and twinning). Based on this morphology-based

classi®cation, two parameters were introduced to

describe the relative ease of longitudinal, mixed and

transversal slip. These parameters were ®tted to

match the predicted anisotropy with data obtained

from uniaxial compression tests.

Calculations based on crystal plasticity models

allow the yield surface of single crystals as well as

of textured polycrystals to be described. As a natu-

ral extension, the present model of PST plasticity

can be used to calculate the yield surface of a PST

crystal. This means that it will be possible to predict

the PST response under any applied strain and/or

stress state, i.e. information which cannot be easily
accessed by experiments because these are usually
limited to uniaxial tests or other simple geometries.

Examples of these PST yield surface predictions can
be found elsewhere [27].
The model, as presented here, has some simpli®-

cations, i.e. the PST is assumed to be formed by
two twin lamellae instead of by the complete set of
six crystallographically related domains. Therefore,

although the overall behavior of a PST is well
described by this two-lamella model, the present
approach is not able to describe properly the ac-
tivity of the slip systems at a microscopic scale. For

a detailed analysis of the microscopic mechanisms
inside each domain of a PST crystal, the present
model is currently being extended to solve the six-

domain problem.
Among other potential applications of the present

approach, two attractive possibilities are:

1. The PST plasticity model can be implemented as
the local constitutive relation within a Taylor
model or one-site VPSC code. This will allow

the prediction of the plastic response and the
texture development of a textured lamellar poly-
crystal. This kind of model can be thought of as
``2-scale models'', i.e. relaxed constraints at the

local (PST) level and Taylor or VPSC at the
macroscopic level.

2. The present model can be also used within a

crystal plasticity-based ®nite elements (FE) code.
For this purpose, the yield surface of a PST can
be calculated to be used by a FE code to investi-

gate, for instance, the stress and strain inhomo-
geneities at the scale of lamellar colonies.

AcknowledgementsÐThe support of the DFG, within the
scope of the Sonderforschungsbereich 371, is gratefully
acknowledged.

Table 2. Calculated activity of deformation systems under compression in matrix
and twin, respectively and their morphology-based classi®cation, for di�erent
angles f. No change of this pattern has been observed in the considered range of

critical stresses

f

Active systems Morphology-
based

classi®cation

Matrix Twin

08 �111��011� mixed slip
�111��101�

458 �111��011� �111��112�

longitudinal slip/
longitudinal
twinning

�111��011�
908 �111��110� transversal slip

�111��110�
�111��011�
�111��101�
�111��011�
�111��101�
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APPENDIX A

The viscoplastic potential is a function F�sj 0� such as

_ej � @F�sj
0�

@sj 0
: �A1�

Therefore, _ej is perpendicular to an equipotential surface,
de®ned by

F�sj 0� � F0 �A2�
where Fo is a reference state.
In the case of a single crystal (see equation (1)) it is easy

to see that F is given by

F�sj 0� � _g0
X
s

ts0
n� 1

ms
jsj
0

ts0

� �n�1
: �A3�

From equation (A3) follows that F�sj 0� is homogeneous of
degree (n+ 1), i.e.

F�lsj 0� � ln�1F�sj 0�: �A4�
If the applied stress is a vector sj 0�app� lying in a given
direction and with an arbitrary modulus, let the corre-
sponding potential be designated as F1:

F�sj 0�app�� � F1: �A5�
The stress state in the same direction but at the reference
potential Fo is given by

sj 0
�ref � � asj 0

�app� �A6�
where

a �
�
F0

F1

�1=�n�1�
: �A7�
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