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Abstract

This paper presents recent advances in modelling mechanical behavior of polycrystalline materials having some kind of
spatial correlation between neighbour crystals. In the case of a lamellar (& + B) alloy, we use a 2-site viscoplastic
selfconsistent (VPSC) model to show that the correlation between phases has a relevant influence on texture development. In
the case of a TiAl intermetallic, we consider a stacking sequence of lamellar twins deforming as an ensemble. This leads to a
local constitutive behavior different from the one expected for a single crystal and, therefore, gives a different plastic

response at macroscopic level. © 1997 Elsevier Science B.V.

PACS: 62.20.fe; 81.40; 82.20.wt
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1. Introduction

In the present work we are concerned with the
prediction of plastic behavior and texture develop-
ment of heterogeneous materials with complex mi-
crostructures. We will focus our analysis on two-
phase polycrystals and single-phase materials with a
lamellar structure. Modelling plasticity of these kind
of materials requires more sophisticated formulations
than those provided by the classical Taylor full (FC)
[1] and relaxed constraints (RC) [2] hypothesis. These
classical polycrystalline models usually give accept-
able results when applied to single-phase non-corre-
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lated materials, in which the major source of hetero-
geneity in the local plastic response is given by the
difference in orientation of the constituent anisotropic
crystallites. In a two-phase polycrystal, instead, the
two phases may exhibit large differences in critical
stresses, strain-rate sensitivity, microscopic work-
hardening or grain shape. These differences can be
accounted for by means of large strain selfconsistent
approaches [3,4]. In fact, several authors [5-7] have
used the 1-site viscoplastic selfconsistent (VPSC-1S)
approach to model texture development of two-phase
polycrystals, obtaining satisfactory results,

The VPSC-1S approach, however, is not enough
to account for some important microstructural fea-
tures of some kind of two-phase polycrystals. Sev-
eral two-phase materials exhibit a strong crystallo-
graphic and morphologic correlation between phases
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that may give a non-negligible influence in the over-
all plastic response. This vicinity effect can obvi-
ously not be accounted for within the frame of a
1-site model. A general n-sites approach [3,8] should
give a good representation of this kind of correlated
polycrystals. However, whereas both phases usually
form a stack and the correlation is periodically re-
peated, it turns out to be a good enough approxima-
tion to consider two interacting regions of different
phases deforming embedded in an effective medium.
Having this in mind, we present here two different
approaches to consider interaction between corre-
lated neighbour regions.

We present a micro—macro approach, an exten-
sion of the VPSC-1S called a 2-sites viscoplastic
selfconsistent model (VPSC-2S), and make use of it
to discuss some aspects of texture formation in
lamellar (a + B) Ti alloys. In these alloys, the re-
gions corresponding to one phase are plane layers
and each region of a given phase is always neigh-
bour to a region of the other phase. Their crystallo-
graphic orientation is also subjected to certain rules
described by the Burgers relation that puts one given
crystallographic line and plane of one grain in coin-
cidence with another plane and line of the other
grain.

The second approach we present here, called a
lamellar structure model (LS), is specially conceived
to describe the local mechanical behavior of polysyn-
thetically twinned (PST) crystals of y-TiAl. Further-
more, we will also discuss how this LS model can be
used as microscopic constitutive relation in the frame
of any micro—macro approach to deal with an aggre-
gate of families of correlated, very flat regions that
form stacks or lamellar structures. For these materi-
als it is more adequate to consider, at the micro-
scopic level, the constitutive behavior of these lamel-
lar structures, rather than the usual set of individual
grains.

2. Models and results

2.1. VPSC-2S model: Texture development of lamel-
lar (e + B) Ti alloys

In a ‘correlated’ two-phase polycrystal, like the
lamellar (« + 8) Ti alloys, the regions correspond-

ing to both phases are layers and their relative
crystallographic orientations are subjected to the
Burgers relation. For modelling purposes, this mi-
crostructure can be represented as an aggregate of
pairs of sites. The VPSC-2S model acts in solving
the problem of each pair of sites considered as two
viscoplastic inhomogeneities embedded in an effec-
tive medium which has the average properties of the
polycrystal. The main equations of VPSC-2S to-
gether with a comparison with similar equations
corresponding to the 1-site approach are summarized
in Table 1. A thorough description of the model and
the explicit expressions for Eshelby, interaction, lo-
calization and rotation tensors can be found in Ref.
91

Depending on the previous thermomechanical
treatments, the (a + B) Ti alloys exhibit two differ-
ent kinds of microstructures, i.e. globular and lamel-
lar. While in the former case the grains of both
phases are approximately equiaxed and there is no
correlation between the orientations of two neigh-
bour a- and B-grains, in the latter very elongated
a-grains grow inside initially large B-grains. The
final structure consists of elongated a- and S-re-
gions, correlated by the Burgers relation [10]. Two
important correlations between a- and S-planes and
directions are given by: {10T0}a//{1 12},
(1210%4//€111)s and the habit plane between
phases is the {5140} , near to {1010}, [10].

Fig. la shows the rolling texture (basal poles)
after 70% thickness reduction of a lamellar alloy
with 22% B-content [7]. The other five are theoreti-
cal rolling textures (same strain and 20% B-content)
with the 1-site or 2-sites models, for different as-
sumptions about the initial microscopic correlation
between phases. In all cases, the active slip modes
were assumed to be {110}{111) and {112}{111) in
the B-phase and {1010}{1210), (0001){1210) and
{1011){1213) in the a-phase. The first two slip
modes ({a)-slip) are assumed to be four times harder
than the B-phase slip modes and the latter ({c + a)
slip) eight times harder.

The five simulations were performed assuming an
initial random texture of each phase. In the non-cor-
related cases (Fig. 1b and d), the (a + B) pairs were
formed randomly. Also an arbitrary morphologic
orientation was assigned to each pair. On the other
hand, the initial configuration of the fully correlated
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Table 1
Summary of the VPSC-2S equations and comparison with the 1-site approach
Equation 1S 28
Inclusion® E=S¢" ElaSigr! 4 §12:6%2
T2l 4o g2 g2
Interaction” E=—-M§F 3= M6
E _ M‘I 1 Mv 2
Localization® o' = B¢:o’ o= B o
12 2 ’
=B“"o
SC relation® M={(MB) M=(M BN+ M2 B?)
Micro-macro S=M“E S'=MVE

(o y—E=—M(ac'—3)

Rotations® o=1I15""é

(o)~ E=—-M"(o"' = 3)- M'(a” - 39
o™ - E=~ Mo = 3)- MP(a” - 3)
pl=y'E y‘z;é2

=y?& v

Notation: E — E’ macro strain-rate and deviatoric stress. é — o', é — g}, é — o’

"o
Do o

°M. M*? («, B =1, 2): interaction tensors.

. micro strain-rates and deviatoric stresses. é — &,

local deviations in strain-rates and deviatoric stresses. @, @', @2: local rotations rates.
25, S, §22: l-site Eshelby tensors; S'2, $2': 2-site Eshelby tensors.

“M¢, M', M*?: secant microscopic compliance; B¢, B¢', B¢2: localization tensors.

M secant macroscopic compliance; { ): weighted average.
“IT: skewsymmetric Eshelby tensor; y#

cases (Fig. 1c and f) consists in «-orientations re-
lated with B-orientations that fulfill the Burgers rela-
tion. Moreover, the morphologic orientation was se-
lected so as to align the short axes of the ellipsoids
(i.e. the habit plane’s normal) with a {1010}, plane.
Finally, in the intermediate case of Fig. le, the
reorientations are correlated with the a-ones but the
morphologic orientation of each pair was randomly
selected, so as to get a random orientation of the
habit plane.

Although the simulations were carried out assum-
ing an initial morphology of flat grains, both 1S
textures (non-correlated and correlated cases) resem-
ble the experimental textures measured in globular
materials (i.e. a mild {hkil}{1010) fiber [5—7]). Both
results were expected. In the first case, the non-cor-
related configuration is obviously compatible with
the globular material. In the latter case, the initial
correlation does correspond to a lamellar case but the
1S model itself is unable to account for the vicinity
effects which may affect the texture formation.

The VPSC-2S non-correlated texture is not very
different from the 1S ones. Since the pairs were

: rotation tensors (functions of S’/ and IT'/).

randomly selected, the overall neighbour effect is,
therefore, canceled. Moreover, if only the crystallo-
graphic, but not the morphologic, correlation is con-
sidered, the predictions are not improved (Fig. le).
This means that the orientation of the habit plane
may also be relevant. In fact, only the 2S fully
correlated simulation (Fig. 1f) shows the actual basal
maximum in TD. In conclusion: the mean features of
the texture of a lamellar material is well reproduced
only if the actual correlations between phases are
properly taken into account.

This better agreement between the actual a-tex-
ture and the 2S correlated predictions can be ex-
plained in terms of a higher activity of prismatic slip
in the a-phase. An increment in the relative pris-
matic slip activity is indeed observed in the 2S full
correlated case, compared with similar 1S results. In
the case of lamellar (a + B) Ti alloys, each pair of
normal and Burgers vectors of the {1010}{1210)
prismatic slip mode in the a-phase is parallel to
another pair of normal and Burgers vectors of the
(112)(111) slip mode in the B-phase and these
{1010}, and {112}B planes are, in turn, almost paral-
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Fig. 1. (a) Measured a-textures (basal pole figure) of a lamellar (o + B) Ti-alloy with 22% B-content, hot-rolled up to 70% thickness
reduction [7]. (b—e) VPSC 1-site and 2-site calculated a-textures, 20% B-content, rolled up to 70% thickness reduction, assuming different
morphologic and crystallographic correlations between phases. Lines are the multiple of random distribution (mrd). Dots are orientations

below 1 mrd.

lel to the habit plane. Therefore, following Ankem
and Margolin [10], the simultaneous activation in
each phase of these ‘parallel’ slip systems should be
favoured since it makes easier the slip transfer across
the interface. This expected increment of prismatic

slip activity in the fully correlated case leads to an
enhancement of the transverse component in the
a-texture since the prismatic slip in hexagonals is
known to give rolling textures with a strong basal
TD component [11].
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2.2. LS model: Plastic behavior of y-TiAl PST crys-
tals

The aim of the LS model is to determine the
plastic response of a PST crystal (for a detailed
description of these structures see, for example, Ref.
[12]). According to Mecking et al. [13], the active
deformation modes of a y-TiAl single crystal are:
{111}<110] slip by ordinary dislocations, {111}{011]
slip by super dislocations and {111}{112] twinning.
In the present formulation, twinning is treated as an
additional deformation mode with an assigned criti-
cal resolved shear stress. Unlike slip, the twinning is
not operative in the opposite sense of the twinning
vector.

The simplest structure that can be considered is
that formed by a matrix and a twin. If, for instance,
they correspond to a (111)[112] twin, the reference
frame that should be adopted is the one having axis
x, lying along the twinning direction [112], axis x,
normal to the twinning plane and axis x, along the
[110] direction.

When a given strain-rate € is applied to a single
crystal, its plastic response can be described by
means of the rate-sensitive approach:

L) 0

where ¢’ is the deviatoric stress tensor in the single
crystal, m® and 7° are the Schmid tensor and the
critical stress for system s, ¥, is a reference strain-
rate and n is the inverse of the rate sensitivity. In Eq.
(1), the traceless tensors are expressed as vectors
using a modified Lequeu [14] convention'. From
Eq. (1), a 5 X 5 non-linear system should be solved
to obtain the 5 components of o;.

" Modified Lequeu convention: T,=1/v2(Dy, ~T,)); T,
=V3/2Tsy; Ty=V2T\y: T,=V2 T,y and Ty =V2 Ty, where T,

is the vectorial representation of tensor T;;.

On the other hand, considering a PST crystal
made of 2 lamellae, I and II, of the same volume, the
constitutive relation can be written as:

1 mile" "
T s _ a1 J )
€ =%0 Zmi ( A )

25
m 'L

-3 Dt M )) Ca)

él =gl (2b)
& =é&) (2¢)
€] =& (2d)
U4" =g/ (=0a)) (2e)
=" (= of) 2

where € is the strain-rate applied to the PST, (é';

o' and (¢"; &™) are the local states inside lamel-
lae T and II and s,I and s,II identify the deformation
systems of lamellae I and 1I, respectively. We have
assumed in writing Eq. (2a) that the overali strain-rate
is given by a weighted average of the strain-rate
inside each lamella. To illustrate this, we could think
on an extreme case in which one lamella is not
deforming at all. Then, this averaging assumption for
the strain-rate would determine that the other lamella
should undergo a local strain-rate equal to twice the
applied one. Moreover, in writing Egs. (2b), (2c¢),
(2d), (2¢) and (2f) we have used the usual relaxed
constraints concept [2]: provided the lamellae are flat
(being the short direction along x,) the only differ-
ences in the local strain-rate components which can
be accommodated without large spatial incompatibil-
ities correspond to shears &, (é,;) and & (&)
Therefore, the continuity across the interface of the
other three strain-rate components and of the 4th and
5th components of the stress should be enforced.
Moreover, Eqgs. (2e) and (2f) are two (out of three)
necessary conditions for equilibrium of forces across
the interface. The third condition, i.e. the continuity
of the Cauchy stress component across the interface
(033 = o3}), can be also fulfilled by imposing ade-
quate hydrostatlc states inside each lamella.

With Egs. (2a), (2b), (2¢) and (2d), and using
conditions Egs. (Ze) and (2f), it is possible to build
an 8 X 8 non-linear system of equations where the
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1 Lo
unknowns are o, o3, o}; o/, o3, o3 and oy,

ai. Egs. (2a), (2b), (2¢), (2d), (2e) and (2f) can be
extended to the case of a structure with N lamellae,
each of them having different orientation and vol-
umes:

N mo Ky KA
R N ey (o)
K R T
él=¢ll= .. =¢&V (3b)
=¢él= . =¢&F (3¢)
G=¢&) = ... =¢l (3d)
a'=a'=. =o" (3e)
a'=al"= =0V (3f)
where w¥ is the volume fraction of lamella K with

respect to the whole structure. In the TiAl case,
provided the four twinning systems have different
twinning planes (see Table 1), the most general
lamellar structure is a stacking sequence of matrix
(M) and twinned (T) regions (i.e.: M—=T-M-T-...).
Hence, if w™ and w" are the volume fractions of the
matrix and the twinned regions, respectively, Egs.
(2a), (2b), (2¢), (2d), (2¢) and (2f) can be rewritten
as:

M n
; My e [ 750

e — A ) 5. —_—
€= Yol W Zmi M

5 T
m T\
; J
+WTZm;‘T( T.s.'rj ) (4a)
' -d (40)
- dl (40)
- ()
o =o' (4e)
o= ol (4f)

Egs. (1), (4a), (4b), (4c), (4d), (4e) and (4f) can
be solved to get m-plane projections of the yield
surface (YS) of each single crystal (i.e. each individ-
ual lamella) and lamellar structure, respectively. The
{m}-projection is the locus of points for which é; =
&, = & =0 [15]. Therefore, the single crystal or
lamellar structure must be proven in different direc-
tions in the deviatoric plane to obtain the stress ¢’

in the single crystal or the local stresses o'!, o'" in

the lamellae. In the latter case, the overall stress is
given by:
7 =wMoM +wlo/T (5)

The stress vector & gives a point of the YS for
which the normal to the YS lies along the é direc-
tion. With a point and the normal it is possible to
trace a tangent plane to the YS. The inner envelope
of the set of tangent planes gives a good approxima-
tion to the actual YS. The magnitudes of the various
& are so that all the states correspond to the same
plastic potential.

Fig. 2 displays the single crystal yield surface
(SCYS) of the matrix and the twin, considered as
single crystals and the yield surfaces of two lamellar
structures (LYS), corresponding to a wM =wT =0.5
(50-50 case) and w" =0.75, w'=025 (75-25
case). In both cases, the critical stresses of ordinary
slip, super slip and twinning are assumed to be equal
to 1, in arbitrary units. Due to symmetry, both SCYS
projections are coincident. In the 50-50 case, the
lamellar structure is softer than the individual single
crystals, specially for loading paths which are close
to uniaxial stress states along x,. Also, by compar-
ing the results for various volume fractions, it is

5.0 r , ,
—{1—SCYS Matrix
—O—SCYS Twin
——LYS M-T: 50/50
—O~—~LYS M-T: 75/25

-2.5 |-

5.0 y N I N
-5.0 -2.5 0.0 2.5 5.0

Fig. 2. Yield surfaces of two single crystals (SCYS) having the
matrix orientation and the (111)[112] twin orientation and of two
lamellar structures (LYS) formed by those matrix and twin crys-
tals, in 50~50 and 75-25 proportions. The reference frame is
x, =[112], x, =[110} and x,=[1T1]
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clear that the 75-25 is located in between the 50-50
and the SCYS cases. It follows that, if some mechan-
ical twins are formed inside a grain and they tend to
grow as deformation proceeds, the ‘softening’ effect
will smoothly increase, together with the increasing
of the twinned volume fraction. The predicted anisot-
ropy of the PST crystals are in good agreement with
most of the available experimental data [12]. A
comparison between model predictions and experi-
ments can be found elsewhere [16]. This simple
model for the description of the plastic behavior of
lamellar structures can be used as local constitutive
equation of any polycrystalline approach. It can be
implemented, for example, inside a FC Taylor model.
In this case, for every lamellar structure in an aggre-
gate, -é,' in Eq. (4) is given by the following micro—
macro connection:
-éi = E:ﬂ P (6)
where E® is the strain-rate applied to the polycrys-
tal. It is also possible to use the LS model as local
constitutive behavior in a VPSC 1-site model. For
this it is necessary to know the expression of the
local tangent modulus of the structure.
e = 25 (7)
Y da,
The expression of A_/I,.‘jg for a matrix—twin structure
(with volume fractions w™ and wT, respectively) is
given by:

M= [wMMEM A+ WTMET WA + W]

(8)
where M'®M and M'®T are the tangent moduli of
each single crystal and:

A=[KimeM 4 q] L [KiimMeT 4] (9)
with:
[« 0 0 0 0
0 = 0 0 0
K=|0 0 = 0 0
0 0 0 0 0
(0 0 0 0 O
10" 0 0 0 0
0 10" 0 0 0
=10 0 10" 0 0 (10)
0 0 0 10" 0
0 0 0 0 10"

where the latter matrix is a handy approximation of
the former one, with m > 1.

The derivation of these expressions together with
the numerical implementation of these coupling be-
tween the local LS model an the VPSC-1S formula-
tion can be found elsewhere [17). Tt is worth noting
that this approach ‘in two scales’ should give essen-
tially the same results as the VPSC-2S approach in
its limit for extremely flat grains.

3. Conclusions

Concerning the VPSC-28 model and the (¢ + )
Ti alloys:

(1) We showed that, only with a model which is
able to account for the local spatial correlations, is it
possible to predict the main features of the texture
development in highly correlated two-phase materi-
als.

(2) In the case of rolled lamellar (a+ 8) Ti
alloys with low B-content, the TD component in the
a-phase is related to the preferred activity of pris-
matic slip associated with the Burgers crystallo-
graphic relation and the particular orientation of the
habit plane.

Concerning the LS model and the TiAl PST
material:

(1) We proposed some simple equations to find
the plastic behavior of a lamellar structure. The
correlation between the local states inside each
lamella are based on the relaxed constraint concepts.

(2) In the TiAl case, the particular symmetry of
matrix—twin pair allows a cooperative mechanism of
deformation of the lamellae which, for certain load-
ing paths, makes the structure to be softer than the
single crystals alone.

(3) We showed how the LS model can be coupled
with a polycrystal formulation, both in a simple FC
case or in a more sophisticated selfconsistent case.

References

[1] G.L Taylor, J. Inst. Metals 62 (1938) 307.

[2] H. Honneff, H. Mecking, in: S. Nagashima (Ed.), Proc. Sixth
Int. Conf. on Texture of Materials, ICOTOM-6, Iron and
Steel Inst. Japan, Tokyo, 1981, p. 347.



236 R. Lebensohn et al. / Computational Materials Science 9 (1997) 229-236

[3] A. Molinari, G.R. Canova, S. Ahzi, Acta Metall. 35 (1987)
2983.

{4] R.A. Lebensohn, C.N. Tomé, Acta Metall. Mater. 41 (1993)
2611.

(5] B. Bacroix, G.R. Canova, H. Mecking, in: C. Teodosiu, J.L.
Raphanel (Eds.), Proc. MECAMAT’91, Balkema, Rotterdam,
1993, p. 101.

[6] D. Dunst, R. Dendievel, H. Mecking, Mater. Sci. Forum
157-162 (1994) 665.

[7] D. Dunst, H. Mecking, Z. Metallkd. 87 (1996) 506.

{8] G.R. Canova, H.R. Wenk, A. Molinari, Acta Metall. Mater.
40 (1992) 1519.

[9] R.A. Lebensohn, G.R. Canova, Acta Mater. (1997), in press.

[10] S. Ankem, H. Margolin, Met. Trans. A 17A (1986) 2209.

[11] R.A. Lebensohn, Ph.D. Thesis, Universidad Nacional de
Rosario, Argentina, 1993.

[12] M. Yamagushi, ISH Int. 31 (1991) 1127.

[13] H. Mecking, C. Hartig, UF. Kocks, Acta Mater 44 (1996)
1309.

[14] P. Lequeu, P. Gilormini, F. Montheillet, B. Bacroix, J.J.
Jonas, Acta Metall. 35 (1987) 439.

15} G.R. Canova, U.F. Kocks, C.N. Tomé, J.J. Jonas, J. Mech.
Phys. Solids 33 (1985) 371.

[16] H. Uhlenhut, R.A. Lebensohn, C. Hartig, H. Mecking, this
conference.

[17] R.A. Lebensohn, G.R. Canova, to be published.



