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Abstract

In the current presentation we deal with the interpretation of textures of two-phase co-deformable materials. We use a
2-sites visco plastic self consistent (25-VPSC) model computing the spin of each phase through an empirical law describing
spin sharing between both phases. Cu~Fe and Ag—Ni composite materials represent two kinds of two-phase materials that
have been extensively studied in the past. Neutron and X-ray texture measurements of rolied, free compressed and extruded
samples are shown and analyzed in light of the model. Many of the particularities shown by both materials are explained and

a general discussion of the model is provided. © 1997 Elsevier Science B.V.

PACS: 62.20.Fe, 81.40; 82.20.wt
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1. Introduction

Many different Self Consistent (SC) approaches
have been used in the past for texture simulation in
single [1,2] as well as in two-phase materials [3,4].
Most of those SC models have been implemented
numerically in their 1-sit¢ approximation [5-8].
Those approaches amount to consider each grain as
an inclusion embedded in a homogeneous equivalent
medium having the average properties over the whole
set of grains. This implies that the vicinity effects are
neglected. It has been proven that this, somehow
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crude, assumption gives acceptable results for single
phase materials [8]. However, in the case of two-
phase materials a 2-sites, instead of a 1-site, ap-
proach has proven to be relevant to get improved
results [4-9). In multiphase materials, the vicinity
effects may be relevant when the neighbor sites of
different phases are crystallographically and /or mor-
phologically correlated. For the 2S-VPSC Eshelby’s
solution of the 1-inclusion problem [10} is extended
to the case of two interacting viscoplastic ellipsoidal
inclusions embedded in a viscoplastic matrix that
undergoes a macroscopic stress—strain rate state. The
fundamental equations of the 25-VPSC model have
been summarized in Ref. [9] while a complete de-
scription can be found in Ref. [4]. We will deal here
with a modification of the model, that will be de-
scribed in the second section, and with its application
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to special model cases. Cu-Fe and Ag—Ni composite
materials represent two kinds of two-phase materials
well suited for modelization [2,11,12]. A brief on the
experimental results will be presented in the third
section. Neutron and X-ray texture measurements of
rolled, free compressed and extruded samples are
analyzed in light of the model in the fourth section.

2. The kinematics of spin

By far, a 2-sites SC model is an improvement
over ]-site schemes in which the interaction of each
grain has no preference for any of its neighbor
grains. Nevertheless, the self consistent interaction
scheme takes only into account the relative strength
of each phase in two steps: firstly with its only
nearest neighbor and secondly with an average ma-
trix. The known interaction equation is established
between the average stress and strain rate and the
corresponding grain microscopic magnitudes. Cer-
tainly, the spin of each grain is not straightway
related with its neighboring spin but only with the
macroscopic spin of the whole test piece. Hereafter
spin is meant to be the rate of rotation in the same
way as strain rate is related with strain. A ot of
information is lost about the spin of each grain
because, among many reasons, the information about
arrangement of grains in the material is not an input
of the simulation. The relative rotation of grains
around each other is strongly dependent on the inter-
action among them. That interaction has not been
mathematically described until now.

In a 2-sites approach the way both grains share
spins is dependent on at least the following factors:

(1) The crystal structure of both phases.

(2) The shape of both nearest neighbor grains.

(3) The texture or, better to say, the degree of
development of it, of both phases.

(4) The strength of the interface in the sense of
the tendency to fragment and /or deform inhomoge-
neously in the vicinities of the interface.

(5) Crystallographic correlation between phases.

(6) Volume fraction of both phases.

(7) Yield stress ratio between phases.

ANl those factors can influence one another. For
instance, certainly the strength of the interface is a
relative parameter. For well aligned, equally shaped

and well-oriented grains the tendency of each grain
to follow its companion must be strong. In the
opposite case (round grains and randomly distributed
orientations) the process of reorientation of grains
can be energetically less expensive if grain fragmen-
tation (inhomogeneous deformation) occurs. The
grains will spin following their own needs to fulfill
contiguity with an average matrix instead of strongly
interact with their closest neighbors.

2.1. Basic assumptions of current models

The models available in the literature are charac-
terized by dealing with large deformations through
‘cumulative small deformation steps’ or strain rates.
In that scheme, strain rates and spins are separable
which is not true in a real highly deformed material.
However, the approach has proven to be accurate
enough for texture simulations. The main assump-
tions, either in Taylor or self consistent approaches,
are:

(i) The macroscopic strain rate is obtained as a
weighted average over the microscopic strain rates of
all grains

n
E= Y &/n={e*) (1)
k=1

where E is the macroscopic strain rate tensor and £
is the microscopic strain rate tensor for each grain.

That assumption is trivially true for a Taylor
model and self-consistently achieved by SC models.

(i1) For each grain it holds, step by step, that:
0,= 04 =0 +af, 2)
where Q,-"j is the external macroscopic spin, assumed
constant and equal to {2;; for every grain £, ()i'j" is
the crystal system spin and (2,-’;" is the spin of the
grain shape due to plastic crystal slip.

That assumption hides a more general assumption
about the average spin of all grains in the sample.
That is to say that

Ql'j = <Qll;> = <QI’;—. + Dilfip> (3)

what means that, essentially, even self consistent
models use a Taylor like approach to spin sharing
among grains. Even modern versions of SC models,
which consider a local spin of the hole different for
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each hole, do not consider, in the two-sites version,
both coupled grains as a unique entity that has to fit
that hole,

We will show by simple drawings how a more
general approach can be obtained. We will carry out
a schematic explanation of the model in the next
paragraphs.

2.2. Sharing of spins

The present model holds under the assumptions
of:

(i) The sirain is homogeneous inside each grain.

(ii) The ratio among yield stresses is not high. Let
us fix it between 1 to 3 to be arbitrary enough.

(iit) In consequence, there is no wrapping of one
phase around the other by effect of the deformation.
For instance, curling of one phase around the other is
not covered by the current model. Modelization of
bee—fee mixtures like Cu~Nb and Cu-Fe has to be
taken with caution.

Those conditions seem to be not too restrictive
because they are just natural extensions of the valid-
ity conditions of self-consistent models.

(i) One site approach to the spin problem

Each grain tries to fit inside a hole that is the
ellipsoid left by the average strain rate and spin of
the rest of the grains. Those holes are more or less
aligned with the macroscopic shape of the sample
and usually simulations based on single hole orienta-
tion, without considering local reorientations for each

“Hole axes

—  Sample axes

Fig. 1. Schematic drawing of the reorientation of a grain after
deformation under the classical assumption: One grain fits its own
hole.

Sample axes

LN
k k

Fig. 2. Schematic depiction of the spatial orientation of grains in a
polycrystal.

hole, are good enough for I-site and 2-sites SC
approaches (Fig. 1).

(ii) N-sites approach to the spin problem.

All the grains have deformed and spun in such
way that the average strain rate coincides with the
macroscopic one and the average spin coincides with
the spin of the whole sample. For grains as the ones
depicted in Fig. 2, under the conditions of ‘no-wrap-
ping’ and not ‘too-different’ strain rates, the average
for the spin is written:

'Qij = Z kani,j' (4)
k

(iit) 2-sites approach to the spin problem.

If the exact geometry and distribution of each
grain are known, in some cases, we can consider that
the grains can glide along the grain boundaries. In
other words, in some special situations we can as-
sume that there is no need for single grain spin, 2%,
if two grains can complementary fit the two-grains
hole that has been apportioned to them (Fig. 3a).

In some other cases, the grains behave pretty
much the same as in the usual model of each grain
fitting its own hole (Fig. 3b).

Many different situations can be imagined but all
of them require the perfect knowledge of geometrical
and topological features. The relative strain rates and
spins between both grains are straight consequence
of them.

A less detailed vision, always keeping in mind the
conditions assumed in the beginning of the para-
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(a)
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—>  Sample axes
(b)
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—

Sample axes

Fig. 3. Single hole-two grains mechanisms of reorientation. (a)
Spin absent. Both grains fit the hole after deformation with no
need of further spin. (b) Spin in coincidence with one hole—one
grain model. Both grains must counter-spin to fill the original
hole.

graph about strain rates and spins, will be worked
out in the following. Nevertheless, the model will
become operative in that way.

Let us write the Eq. (3) for just two grains of
equal volume

Q,=(0)=(0) +0} +0F+QF) /2 (5)

where { ) means the average magnitude. If the
average spin { {2, ) is associated with the spin of the

‘average hole’ apportioned to each pair of grains,
then

<-().-; )= (‘Qi]; + Oi?i. )/2
=0, (0F+03F) /2 (6)

and we should use an average grain shape spin
(produced by the plastic deformation), for both
grains, subtracted from the macroscopic spin. The
direct consequence is that both grains in a 2-sites SC
approach will keep constant relative orientation. This
must be true after a certain amount of deformation
when the grains are well aligned, well deformed and
well oriented. The question is how much is well
aligned, well deformed and well oriented. Certainly
it does depend on volume fraction of both species,
relative strength (yield stress ratio), etc. The kinetics
of the reorientation problem, stemming from the
current kinematical description, will become evident
in the next sections.

In the fourth section of the paper we will present
some simulations made by using 1-site and 2-sites
approaches. In this last case we will show some
results using different assumptions about the amount
of dragging effect each phase is producing over the
other one. Moreover, in a real two-phase composite,
percolation should play a paramount role in the
behavior of each material. We will deal with that
geometrical phase transition, and different behavior
of phases, by using a physically based ‘ad hoc’
hypothesis about strain rate sensitivity of both phases.

3. Experimental results

The experimental resuits will be a collection of
previously published results plus new ones [2,12].
The new ones were obtained by neutron diffraction
mainly with the purpose of confirmation of some
previously existent data. In multi-phase materials
two effects can obscure the texture results obtained

Fig. 4. Inverse pole figures of Ag—-Ni samples for an equivalent Von Mises deformation of 1.3 in free compression (a) 25%Ag-75%Ni, (b)

50%Ag-50%Ni, (c) 75%Ag—25%Ni.
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Fig. 5. Ag (111) and Ni (111) pole figures for 50%Ag-S50%Ni after rolling at Von Mises equivalent strain of 2.6.

by X-ray diffraction: anisotropic absorption and peak
overlapping. Anisotropic absorption is completely
negligible in neutron techniques. Overlapping of
peaks can be easily overcome by going to a higher
index due to the constant atomic scattering factor of
neutrons that allows to go to high angle reflections.
Also, the high penetration depth of neutrons makes
them a superb tool for texture measurements, in
terms of statistics, on low textured materials. The
typical sample volume of a neutron specimen is 1-4
cm?. Lower volumes (approximately 0.1 cm®) were
measured with high accuracy at the research reactor
FRG-1 at Geesthacht using the neutron texture
diffractometer TEX-2 machine, due to its characteris-
tic very low background.

3.1. Ag—Ni free compressed and rolled samples

The Ag-Ni samples were previously tested sam-
ples [2,9]. 25%Ag-75%Ni, 50%Ag-50%Ni and
75%Ag—25%Ni samples prepared by powder metal-
lurgy techniques had been deformed by free com-
pression and rolling to equivalent Von Mises strains
of 1.3 and 2.6, respectively. The textures had already
been measured by X-ray diffraction [2]. The very
low intensities showed by almost all the composi-

tions and mechanical tests suggested confirmation by
neutron techniques.

3.2. Cu—Fe extruded samples

The samples were prepared by powder metal-
lurgy. The starting materials were pure powders. On
the one hand spherical iron particles of 13 um
average size and on the other hand dendritic copper
powder of which the fraction <32 wm was used
[13]. Sample preparation starts with homogeneous
mixing of volume fractions 75%Fe-25%Cu,
50%Fe—50%Cu and 25%Fe—75%Cu in a turbula
mixer. Thereafter cylinders of 75 mm in diameter are
compacted, heated up to 850°C and extruded to rods
of 19.8 mm in diameter. The final state was obtained
by cold drawing to deformation degrees of 63.5,
86.5, 95.1 and 98.2%. In addition pure iron and pure
copper were processed identically to be able to com-
pare with the rod composites.

3.3. Pole figure measurement

From each Ag-Ni sample the pole figures Ag
(111), Ag (200), Ag (220), Ni (111), Ni (200) and Ni
(311) were measured. It should be noticed that there
is an almost complete overlap of Ag (200) and Ni
(111). Calculation of the orientation distribution

Fig. 6. Experimental inverse pole figures for Cu-Fe powder composites after extrusion at Von Mises equivalent strain of 2.0. (a)

25%Cu~75%Fe, (b) 50%Cu—50%Fe, (c) 75%Cu-25%Fe.



R.E. Bolmaro et al. / Computational Materials Science 9 (1997) 237-250

Cu257z VUon Mises Strain= 2.0 Fe?5x Experimental

4.77 (equal-area proj.) (equal-area proj.) max.= 6.44

III 4.00 |II 4.00
2.83 2.83

. 2.00 . 2.00

1.4

CuS0x Von Mises Strain = 2.0 FeS0x. Experimental
(equal-area proj.) {(equal-area proj.) max.=10.68

1.41
1.00
s
.50

.35

log. scale

Uon Mises Strain = 2.0 Fe25x Experimental
(equal-area proj.) (equal-area proj.)

log. scale

243



244 R.E. Bolmaro et al. / Computational Materials Science 9 (1997) 237--250

function was carried out by the iterative series ex-
pansion method [14] which permits quantitative tex-
ture analysis in the case of multiphase materials with
overlapping reflections [15]. The textures were also
processed and further analyzed by using a PC-based
package, popLA [16]. No significant differences were
obtained by using both approaches.

The inverse pole figures of the three compositions
of Ag—Ni samples, measured by X-ray diffraction,
are shown in Fig. 4(a—c) for an equivalent Von
Mises deformation of 1.3 in free compression. Fig. 5
shows the Ag (111) and Ni (111) pole figures ob-
tained by neutron diffraction from the rolled sample
at Von Mises equivalent deformation of 2.6. All
textures measured by neutron diffraction compare
well with the ones obtained by X-ray measurements
although the first ones present better defined con-
tours due to better statistics. Also, an orthotropic
symmetry was revealed in the free compression sam-
ples. That symmetry was hidden by the low accuracy
of X-ray methods when the textures are not well
developed and the phenomena of peak overlapping
and anisotropic absorption are present. In fact a
non-well-developed Ni (111) component present in
the textures measured by X-rays can be assumed to
be consequence of the orthotropic symmetry and
anisotropic absorption effects. The orthotropic sym-
metry stems from the square shape of the samples
tested under free compression. Although the test
was, in principle, cylindrically symmetric the friction
between the sample and machine tools might have
prevented a real cylindrically symmetric fibre texture
development. This effect will be discussed in a
coming paper [17].

From each CuFe sample the pole figures Cu
(111), Cu (200), Cu (220), Fe (110), Fe (200) and Fe
(211) were measured. Due to the highly symmetric
deformation the pole figures show rotational symme-
try. Thus only a low number of pole figures were
measured completely.

In order to reduce the counting time the high
symmetry was taken into account and o-scans were
measured. An a-scan represents a cross section

through the pole figure and only steps of 5° tiltings
are necessary.

It should be noticed that a partial overlap of Fe
(110) and Cu (111) is present. The same analysis
software as applied to the Ag—Ni system was used in
this case [14-16]. Fig. 6(a—c) show the experimental
inverse pole figures for the three different composi-
tions.

4. Simulations

The simulations were carried out on different
volume fractions and mechanical test situations. The
best physically based and understandable fittings
were obtained by assuming a 50%-~50% average
sharing of the crystal system spin 2*" (see Eq. (6))
between the closest neighbor grains and different
stress exponents for the microscopic constitutive
equation. The model takes care of different volume
fractions of phases by assigning proportional vol-
umes to companion crystals. By assuming a 50%-
50% sharing of spins we assume to have some of the
majority phase grains pared with its own phase for
spin sharing purposes.

In the case of the Ag-Ni textures the relative
strengths of both phases were parametrized by a
starting yield stress for the harder phase (i.e., the
nickel) of twice the yield stress of the softer one,
taken arbitrarily equal to 1. Common FCC {111}
(110> yield behavior was assumed for both phases.
Microscopic strain hardening was assumed linear
with slopes of 1.5 for Ag and 2 for Ni in the same
arbitrary units used for critical stresses. Due to the
codeformation process the average strain rate sensi-
tivity showed by both phases is very high. Other than
stress exponents indicative of the relative compliance
of both phases, also an interaction factor is needed to
take care of the relative compliance of the average
matrix and the pair of closest grains [18]. A discus-
sion of this aspect of the simulation is presented in
Section 5. For the 25%Ag-75%Ni composite we
used stress exponents equal to 9, S and 7 for the Ag,

Fig. 7. Simulated inverse pole figures for Ag—Ni powder composites under free compression at Von Mises equivalent deformation of 1.3. a)

25%Ag-75%Ni, b) 50%Ag—S50%Ni, ¢) 75%Ag-25%Ni.
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AgS0

Uon Mises Strain = 2.6
(equal-area proj.)

Ni50

Z sites SC simulation
max .=

(equal-area proj.)
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Fig. 8. Simulated Ag(111) and Ni(111) pole figures for 50%Ag-50%Ni under rolling conditions at Von Mises equivalent deformation of

26.

and Ni stress exponents and the interaction factor,
respectively. For the 50%Ag—50%Ni composite all
three stress exponents were taken equal to 5. For the
75%Ag—-25%Ni composite we used n =15, 9 and 7,
respectively. Nevertheless, experimental observa-
tions show that Ag behaves as a viscous fluid flow-
ing around the Ni particles for a broad variation of
volume fractions [2,11]. That behavior suggested to
use very different exponents for each phase for the
case of rolling tests. We assigned a stress exponent
of 5 to the Ag phase and a higher stress exponent of
33 to the Ni phase. The Ag behaved more °viscous
like’ than the Ni phase. Those extreme values, neces-
sary to explain the rolling behavior, may be conse-
quence of the high constraint imposed by a rolling
test.

The simulation is shown in Fig. 7(a—c) for the
three different volume fractions deformed under free
compression as inverse pole figures and in Fig. 8 for
50%Ag—-50%Ni under rolling conditions as the Ag
(111) and Ni (111) pole figures. With the current
assumptions about strain rate sensitivities, yield stress
ratio and strain hardening, the intensities are in fairly
good agreement with the ones experimentally ob-
tained for each phase at different deformations and
volume fractions.

Fig. 9(a-c) show the simulated inverse pole fig-
ures obtained for the three different volume fractions
of Cu—Fe composites. The iron was considered to be
harder than the copper. The calculations were per-
formed under the assumption of equal spin sharing.
A final equivalent Von Mises deformation of 2.0 in
extrusion was achieved in order to compare with the
experimental values. That corresponds to an 86%
reduction in area. We considered 500 grains ran-
domly oriented and randomly related in pairs with
other 500 grains of the other phase. The relative
strengths of both phases were parametrized by a
starting yield stress for the harder phase (i.e., the
iron) of twice the yield stress of the softer one, taken
arbitrarily equal to 1. Common FCC {111} {110)
and BCC {110} {111} yield behaviors were assumed
for Cu and Fe, respectively. Strain hardening was
assumed linear with slopes of 1.5 for Cu and 2 for Fe
in the same arbitrary units used for critical stresses.
For the viscoplastic microscopic equation we as-
sumed a stress exponent of 19 for both phases for
50%Cu~50%Fe, 27 for Cu and 11 for Fe for
25%Cu~75%Fe and 5 for Cu and 33 for Fe for
75%Cu-25%Fe. A coefficient of 19 was assumed
for the interaction between both phases in all cases.
The inversion of the exponents used for Cu and Fe

Fig. 9. Simulated inverse pole figures for Cu—Fe powder composites under extrusion at Von Mises equivalent deformation of 2.0. (a)

25%Cu-75%Fe, (b) 50%Cu—50%Fe, (c) 75%Cu-25%Fe.
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for the two extreme compositions stems from the
different behavior assigned to those extreme volume
fractions. Whichever the composition the minority
phase behaves as isolated particles subject to small
variations in the velocity gradient. The majority phase
flows around those particles suffering more variation
in the velocity gradient and acquiring a more viscous
fluid behavior. By those assumptions we introduce
empirically the place to place variation of the veloc-
ity gradient that can be observed in this kind of
co-deforming metal-metal composites. Comparison
between Fig. 6(a) and Fig. 9(a) (Cu25%~Fe75%)
shows that finer adjustments of the proposed active
slip systems or starting grain shapes are necessary to
explain some component splitting in Cu. Also the
‘curling effect’ should be carefully considered in this
kind of two-phase materials.

5. Discussion and conclusions

The commitment of the simulation was to achieve
a coarse explanation of intensity levels of both phase
textures. Small variations between different compo-
nents were well beyond the scope of the research.
For that reason the slip systems and/or possible
combinations with twining systems have not been
extensively investigated. Nevertheless, the close
agreement obtained for the different experimental
and simulated components of cubic textures allows
to get some insights in the micromechanical behavior
of both phases. The proposed sharing of spins seems
to be in agreement with the experimental results. At
least in the narrow range of volume fractions that
goes from 25% to 75% and maximum yield stress
ratio of 2. The scheme might be applicable to any
simulation that considers phases with those charac-
teristics. Nevertheless, the scheme should be con-
firmed by EBSP techniques, or any other local tex-
ture measurement. The relative orientation of both
phases should be checked before and after deforma-
tion and it could be tracked for different deformation
values. That information would be very valuable for
the introduction of sharing parameters at different
stages of the deformation process.

The variation of stress exponents is not meant to
be a description of the real facts but only a physi-
cally based numerical trick to enforce different ve-

locity gradient distributions for each phase. In a
more detailed model (N-sites approach, FEM based
models) that: variation should come out naturally
from the interaction equations between different
grains and phases. In fact, previous calculations per-
formed by Finite Element Models show the effect of
strain path changes and fast changing relative spins
that conform regions of altered flow patterns of
different magnitudes [2]. When those variations are
kept within narrow limits, like in co-deformable
materials, the effect can be introduced by modifica-
tions of the strain rate sensitivities of both phases.
Certainly, what has been called the interaction prob-
lem is matter of further research [19]. In the sense of
having two materials deforming at different paces we
can expect, on average, that the one that is taking the
most of the deformation will do it by exhibiting a
lower strain rate sensitivity. The condition of being
‘harder’ or ‘softer’ can come either from the single
phase material properties or from the interaction
produced by volume fraction or phase distribution.
Two phases with similar yield stresses and strain
hardening coefficients would behave differently
whether one or the other is percolating. The interpre-
tation of the model, when applied to the Cu-Fe
system, is that the iron, while is a minority phase,
will deform less than the copper. That means that the
strain rate is lower and we should use higher strain
rate sensitivity parameters for the iron phase when it
is the minority phase. On the other hand, when the
iron becomes the majority phase and percolates it
will get a larger portion of the strain and it will
behave as having a lower strain rate sensitivity.
When the model is applied to Ag—Ni composites the
Ag is always wrapping the more round Ni particles;
even at large Ni contents. In that case the Ni is
taking always a smaller share of the strain and acting
as having a higher strain rate sensitivity. Although
that assumption seems to be dependent on the
boundary conditions imposed by each test. Highly
constrained deformation paths, like rolling and
‘channel die’ tests, seem to impose different local
behavior to the constituents and the softer phase
flows always easily around the harder phase. Less
constrained tests, like free compression, allow the
components to flow freely and rotate around each
other provided that the yield stress ratio is kept close
to 1. That effect is made evident in the simulation by
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using very low stress exponents. Also the variation
of stress exponents is smaller for both phases in the
case of free compressed Ag—Ni samples.

It is worthy to mention that by using different
stress exponents for each phase we have been able to
achieve degrees of matching between simulations
and experiments unreachable by any other method.
The increment of the number of parameters by itself
could explain the ability of the model. Nevertheless,
we should emphasize that the numerical values we
found best agreeing with experiments are always
rationalizable in terms of yield stress ratio, volume
fraction, distribution of phases, etc.

For the purpose of quantification of the bondage
of each sharing scheme, we calculated experimental
and theoretical percentages of the different usual
FCC ideal components after rolling, for the case of
50%Ag—50%Ni rolled material. The discrete orienta-
tions were supposed to belong to each component
when they were in a cone of approximately 15° of
the ideal components. In Table I we can observe the
adjustment between simulations and experiments of
the percentage represented by each component ob-
tained for each degree of sharing of spins. We also
show the average distance, expressed in radians, of
the experimental or simulated orientations with re-
spect to the ideal orientations. The different degrees

Table 1

Comparison among the relative development of different compo-
nents for I-site and 2-sites models and different sharing of spins.
After rolling for different Von Mises strains
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of sharing of spins are obtained by using an interac-
tion coefficient (denoted by ic in the Table 1) that
allows different amounts of sharing. The ic parame-
ter permits the spins to be shared between both
phases in an amount proportional to the current
deformation following some empirical law. The sim-
ulated values for each component at low deformation
are indistinguishable from the experimental values of
the Ag—Ni composite. Also a column with experi-
mental data for pure Cu has been added. At high
deformation the brass component of Cu is much
lower and the S component percentage is higher than
in the Ag—-Ni composite. We can see that at low
deformations (Von Mises equivalent strain of 0.65)
the adjustment does not improve too much by con-
sidering any amount of sharing. At large deforma-
tions (Von Mises equivalent deformation of 2.6),
when the grains have become well aligned and ellip-
soidal, the adjustment is much better for the 50%—
50% scheme. Except for the Goss component of Ni,
the distribution of simulated components is in agree-
ment with the experimental ones. Actually the agree-
ment between simulations and Ag—Ni experiments is
rather surprising. At low deformations it may be due
to the fact that, even if sharing of spins is low, the
spin itself is low because of the roundness of grains.
At high deformations some of the simulated compo-

Von Mises strain = 0.65 Is ic=0.0 ic=0.1 ic=0.2 ic=0.5 Exp. Exp.
Ag Ni Ag Ni Ag Ni Ag Ni Ag Ni Ag Ni Cul.l
Copper 88 114 7.8 82 7.0 9.0 72 92 6.6 106 9.3 9.4 8.9
Brass 140 150 174 160 132 120 110 9.8 8.8 9.8 43 53 6.2
S 98 144 102 160 110 104 126 126 124 104 100 9.8 159
Goss 108 124 9.8 108 86 118 88 100 6.0 8.4 32 38 34
Cube 1.0 0.6 1.6 0.6 2.0 1.2 2.0 1.0 22 1.6 33 2.7 48
Av.Dist 033 031 032 032 034 033 034 035 036 035 038 038 034
Von Mises Strain = 2.60 s ic=00 ic=0.1 ic=02 ic=05 Exp. Exp.
Ag Ni Ag Ni Ag Ni Ag Ni Ag Ni Ag Ni Cu26
Copper 48 50 5.8 4.6 7.2 100 82 136 6.4 92 7.8 106 8.8
Brass 246 380 254 312 200 170 148 140 108 116 8.6 8.7 3.7
S 152 118 160 156 144 206 128 178 128 13.0 108 132 152
Goss 198 148 180 146 192 140 150 1138 88 112 7.2 34 25
Cube 1.0 0.0 0.6 0.0 0.8 0.0 1.2 02 1.4 0.0 2.5 1.6 4.0
Av.Dist 026 025 026 026 028 028 031 030 035 033 036 035 035
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nents are closer to the experimental ones when equal
sharing of spins is allowed, improving even the
results obtained by 2-sites simulations with low or
no sharing of spins.
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