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Abstract—A large strain self-consistent viscoplastic model is proposed, developed and applied to a
two-phase polycrystal. This model accounts for crystallographic textures and grain morphologies, as well
as for the phase correlation, both in space and orientation. The basic formulation is shown and the case
of lamellar (x + f) Ti alloys in rolling is studied. In these alloys, the two phases exhibit specific
morphologic and crystallographic correlations. The present study shows that the model leads to better
texture predictions when all these correlations are accounted for. © 1997 Acta Metallurgica Inc.

1. INTRODUCTION

Due to the increasing complexity of the materials
used for engineering applications, more sophisticated
models need to be developed. In the past, the main
source of anisotropy of polycrystals was considered
to be due to crystallographic textures and the well
known Sachs [1] and Taylor [2] models were
developed mainly to account for these effects. The
latter has been quite successful for single-phase
materials exhibiting a not too large crystal an-
isotropy, such as high SFE cubic metals. For crystals
of higher anisotropy, like the ones having hexagonal
symmetry, somewhat more complex models are
required, e.g. self-consistent models, such as the one
developed by Hutchinson [3] in the small strain
elastic—plastic context. In some cases, viscosity effects
are quite important and a rate-sensitive approach
must be used, which can also be done in the
framework of viscoplastic self-consistent (VPSC)
models [4-6]. These VPSC models can be formulated
either in terms of the general Zeller-Dederichs
approach [7] (as in Ref. [5]) or the more restricted
(but completely equivalent) Eshelby-Hill approach
[8,9] (as in Refs [4] and [6]). When grains become
heavily distorted their morphology can affect their
mechanical response and the Relaxed Constraints
approach [10, 11] can be used, which is rigorous as a
limit of infinitely flat grains. These effects can also be
introduced within self-consistent schemes as shown
by Tiem et al. [12], and this has been done extensively
in many applications.

When different phases are present in the material,
then their spatial distribution can be of some
importance, and different types of modelling can be
developed depending on that distribution. The model

proposed by Molinari er al. [5], in its general n-sites
formulation, is an adequate framework for this case.
Canova et al. [13] implemented this n-sites approach
for the calculation of texture development of a
quartz-mica aggregate. In doing this, they divided a
representative set of grains into small cubes, in such
a way that each grain contains several cubes and sach
cube has the properties of the grain where it is
located. Then, they accounted for the interaction of
each cube with their 26 neighbours, all of them
embedded in a Homogeneous Equivalent Medium
(HEM) with average properties over the complete set
of cubes. There are, however, many cases of
two-phase polycrystals for which the vicinity effect
between phases is mainly due to a strong correlation
in orientation and morphology between neighbour
regions of both phases. Furthermore, as the regions
of both phases usually form a stack, this correlation
is periodically repeated. Therefore, the proper way to
account for the effect of this correlation is to consider
two interacting regions of different phases deforming
in the HEM.

Good examples of these “correlated” two-phase
materials are the lamellar (o + ) Ti alloys. In these
alloys, the regions corresponding to one phase are
rather flat, and each region of a given phase is always
a neighbour to a region of the other phase. Their
crystallographic orientation is also subjected to
certain rules described by the Burgers relation that
puts one given crystallographic line and plane of one
grain in coincidence with another plane and line of
the other grain. The large strain rolling texture of
these alloys has not been explained yet by any model,
and here we propose a solution to it.

In the following section, the model will be firstly
explained and then developed. In doing this, we
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choose to use Eshelby-Hill formalism (rather than
the Zeller-Dederichs one) and, therefore, we will
extend the one-inclusion problem to the case of two
interacting ellipsoidal inclusions. An application will
be presented afterwards for the (x + p) Ti alloys,
accounting for an increasing number of microstruc-
tural features, e.g. texture, grain morphologies,
spatial correlation and orientation correlation
between phases.

2. MODEL

2.1. Notation

In what follows, scalars are denoted by italic
letters, vectors (without subindices) are bold-face
letters, second-order tensors are bold-face letters
underlined once and fourth-order tensors are
bold-face letters underlined twice. Tensorial and
twice contracted products are denoted by “®™ and

T3]

.7, respectively. For example:

C=A®B<=Cu=A;By (la)

C=AB<C=A4,B, (1b)

Square brackets are used for matrices without
subindices (e.g.: [4]).

2.2. The two-inclusions problem

Eshelby’s solution for the one-inclusion problem
[8, 14] is extended here to the case of two interacting
ellipsoidal inclusions (# 1 and #2) with eigen-strains
¢'* and €*, respectively, embedded in a matrix which
undergoes a macroscopic stress—strain state (£, E). If
(a', ¢') and (a?, €*) are the local states, the stress and
strain deviations are written as:

d'=¢'—L (2a)
§=¢"—L (2b)
&=¢—E (2¢)
&=¢—-E (2d)

The strain deviations and eigen-strains are related
according to the following extended Eshelby’s
relations:

(- S”:EI* + SI2:§2* (33)

1

g"?. :SZI:EI* +S22:§2* (3b)
where:

(a) S" and S* are the ordinary Eshelby tensors for
inclusions #1 and #2, respectively. For an
ellipsoidal inclusion, the Eshelby tensor depends on
the properties of the homogeneous medium and the
shape of the ellipsoid;

(b) S™ and S* will be naturally designed as 2-site
Eshelby tensors, i.e. the coupling factors between the
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eigen-strain in one inclusion and the local deviation
in strain of the other one.

A general expression for Eshelby tensors is given
by (« and f being | or 2):

S¥ = sym(I'#):L (4)

where L is the stiffness of the medium. For a = §, '™
depends on L and on the shape of the ellipsoid. For
a # B, I'* also depends on the relative orientation,
relative distance and relative volume of the ellipsoids.
The integrals for the calculation of T'* can be
deduced from Berveiller ef al. [15] and are given in the
Appendix.
Inverting equations (3) we get:

e*=ThUu"g - T:& (5a)
& = —Thé + T2 U:é (5b)
where:
T' = (§%[S"]:S" — §*) ! (6a)
U' = S*:[S¥7]-! (6b)

and where T? and U? can be obtained interchanging
indexes 1 and 2 in equations (6).

2.3. Viscoplastic self-consistent model

The secant viscoplastic constitutive relation be-
tween the strain-rate ¢ and the stress g, for a single
crystal with different active slip systems is given by
{4, 6}:

i {iroz m® (msig>"“}:g — M*(a):a (7)

where m® is the Schmid tensor which expresses the
orientation of the slip system (s) in crystal axes, 7, is
a reference rate, 75 is a threshold stress which can be
identified with the critical resolved shear stress
(CRSS) of the slip system and # is the inverse of the
rate sensitivity. The sum runs over the complete set
of active slip systems. M is the secant viscoplastic
compliance modulus. The tangent constitutive
equation can be expressed as:

de

30| 16+ € =M2@)a + (o)

®)

€=

where M(® is the tangent viscoplastic modulus and €
is a back extrapolated term. M& and M{®? are related
by:

MU = nME, )

The secant and tangent constitutive relations and
the secant-tangent connection for a polycrystal
formed by grains with local properties described by
equations (7)-(9) which undergoes a macroscopic
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stress—strain rate (E, L) are formally equivalent to the

microscopic ones [4, 6]:
E = M*)(Z):L (10)
E=M%E):L +EE®) (11)
M(Lg) _ nM(sec). (12)

Due to the extremely simple secant-tangent
connection, both at micro- and macro-levels [i.e.
equations (9) and (12)], we can write the equations of
the VPSC model—which is essentially a rangent
Jormulation—in terms of either the secant or the
tangent moduli.

A two-phase polycrystal is regarded as an
aggregate of pairs of sites. Each site can be a grain
or a representative region inside a grain. The local
behaviour is described by equations (7)—(9). The
2-site viscoplastic self-consistent (VPSC-2S) model
consists of solving the problem of each pair of sites
considered as two viscoplastic inhomogeneities
embedded in a HEM which has the average
properties of the polycrystal. This problem can be
readily solved replacing the inhomogeneities by
equivalent inclusions with appropriate eigen-strain
rates ¢* and &* [14]. For this equivalent two-in-
clusions problem, the relations derived in the former
section still hold, considering the strain-rate (instead
of the strain) as state variable. It can be easily
demonstrated [6] that the local deviations in stress
and strain-rate are related by:

El — € = M(tg):g"l

(13a)

3

— €% = Mg (13b)

1mq

Replacing equations (5) in (13) we get a pair of
interaction equations:

&= —M'":g' — M6 (14a)
é = —Mg' — M2:é (14b)
Explicitly, the interaction tensors M* are written as:
M!'= —V:W:M® (15a)
M? = VM@ (15b)
M2 = —V:WiM®@ (15c¢)
M = VM@ (15d)

where
Vi=[1-T=U)[T] 1 -TUY)—T]"" (16a)
W= (I T=U):[T']"' (16b)

and where V?* and W? can be obtained by
interchanging indexes 1 and 2 in equations (16).

Using the secant microscopic relations for sites # |
and #2:
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¢ = Mg’ (172)
& = M=) g2 (17b)

and the secant macroscopic relation [equation (10)]
to remove the strain-rates from the interaction
equations (14), we obtain a pair of localization
equations:

o' = BLE (18a)
¢’ =BLL (18b)

where the location tensors B? are given by:
B! = F.:G! (19a)
B! =F.G! (19b)

with

Fi- - {(Mz(sec) + MZZ):[MIE]ﬂl:(Mllsec) + 1\7[11)

—M} -t (20a)

Gé — (Mglbec) + Mzz):[M'z]*‘:(M” + sz + M(sex:))
— (M + M + M*9)  (20b)

and where F! and G! can be obtained by
interchanging indexes 1 and 2 in equations (20).

Using the connection between micro- and macro-
stresses, i.e.

L={a> @n

(where { ) denotes a weighted average over both
populations of grains) and taking an average of
equations (18), we get the self-consistent equation:

Mo = T (M Bw! + (M2:B2)w?

pairs

= (MF=:B)  (22)

where w! and w? are the volume fraction of site #1
and #2 of each pair with respect to the whole
polycrystal. If all the grains in both phases have the
same shape, the latter equation also guarantees that
the micro—macro strain-rate connection also holds:

E={o. (23)

However, if the grains have different shape, the
fulfilment of both closure conditions (21) and (23)
requires that [16, 17]:

M) — <Ml.2(sec):Bé.2>:<Bé.2>—|_ (24)

If a given macroscopic strain-rate applied to the
polycrystal E® is known, the self-consistent scheme
consists of choosing trial values for the local stresses
(to get M, o =1,2) and for the macroscopic
compliance M®9_ With the latter, Eshelby’s (§*),
interaction (M*) and localization (B?) tensors can be
calculated for each pair of sites. Next, equation (24)
can be used iteratively to adjust the value of
macroscopic compliance M®® and the following
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10 x 10 non-linear system can be solved to get an
improved estimation for the local stresses:
Mi‘“““’(g_)lgl _ E — (Mll + Ml:):([M(sec)]~1:Eqap|))
- M'':ig' — Mg (25a)

Mg(sm(g):gz _ E — (le + M??):([M(sec)]—l:E(apl))

— M¥:g' — M2:6% (25b)
After reaching convergence, the crystallographic

orientation of each site is updated according to the
total lattice rotation-rates:

o= oW+ (60

W =0 — @ + @ (26b)

where € is the macroscopic rotation-rate, @ are the
plastic rotation-rates and @* are the local rotations-
rates, calculated as

él =Y" _é.l +y"” ? (27a)
@ = Y& 4+ Y& (27b)
The Y* tensors are defined as
Y'=Mm:T:U' —I1'%:T? (28a)
Y'? =170 - T (28b)

where, complementary to equation (4), the skew-sym-
metric Eshelby tensors IT*# are defined as

I = skewsym(I'*#): L

and where Y» and Y® can be obtained by
interchanging indexes 1 and 2 in equations (28).

(29

3. APPLICATION

In this section, the VPSC-2S model is used to
predict the texture evolution of two-phase titanium-
based alloys. These (a + f) Ti alloys have found
several technological applications and therefore their
microstructure and texture were intensively investi-
gated. Depending on the previous thermomechanical
treatments, these alloys exhibit two different kind of
microstructures, i.e. globular and lamellar [18-20].
While in the former case, the grains of both phases
are approximately equiaxed and there is no
correlation between the orientations of two neigh-
bour «- and f-grains, in the latter very elongated
o-grains grow inside initially large -grains. The final
structure consists of elongated «- and p-grains
(lamellae) which orientations are correlated by means
of the Burgers relationship [20]:

(0001),//{110}, (30a)

<1210),//<111 (30b)
from where other relationships follow:

{10T0}.//{ 112}, (31a)
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1210%, /<111 Y,. (31b)

Moreover, the habit plane between phases is given by
{5140},, near to {1010}, [20]. The existence of these
strong correlations in orientation and morphology
between «- and f-grains in lamellar structures should
give a non-negligible influence of the neighbourhoods
on the local plastic behaviour of each phase.
Therefore, the texture evolution of these lamellar
structures appears as a challenging bench case to test
the validity of the VPSC-2S model. In fact, the
texture evolution of Ti—Al-V alloys has been widely
reported by Mecking and co-authors for different
structures, phase fractions and temperatures
[18,19,21-24]. In the specific case of lamellar
structures with low f-content (e.g. around 20%)
heavily rolled at high temperature, the texturz of the
a-phase shows a strong {1210}<10T0) component
which gives a basal maximum in the transverse
direction (TD) [21-24]. On the other hand, for similar
p-content, temperature and loading path, the
globular structure develops a rather smooth
{hkil}<1010) fibre [21-24].

In what follows, we use the VPSC-2S to show how
the main features of the a-texture of a lamellar
material can be ascribed to the vicinity effects which
arise from the existing correlations in orientation and
morphology between phases. Figure 1 shows five
different calculated basal pole figures. All of them
were obtained by assuming:

(a) 20% p-content;

(b) rolling up to 1.2 true strain;

(c) initial morphology for «-grains, 2.0:1.0:0.2
(ellipsoid’s radii) and for f-grains, 2.0:1.0:0.05.
The ellipsoids are tangent and they are aligned
along their short axes (therefore the distance
between centres is 0.25). The initial morpho-
logic texture (i.e. the spatial orientation of the
ellipsoids) is random:;

the active slip modes in the p-phase are
{1T0}<111> slip and {112}<111) slip. The
initial CRSS of both g-phase slip modes is 0.25
(arbitrary units). For the o-phase, the active
slip modes are the prismatic {1010}<1210) slip
and basal (0001)<{1210)> which are assumed to
be four times harder than the f-phase modes
(the initial CRSS of both {a)-modes is 1.0) and
the pyramidal <{c+a) {l10T1}<1213) slip
which is assumed to be eight times harcer than
the prismatic and basal modes (the initial
CRSS of pyramidal {c¢ + a) is 8.0 in the same
units);

homotetic hardening, i.e. the relative CRSS do
not change as deformation proceeds;

(f) viscoplastic exponent n = 5.

C))

(e)

In order to compare both models, the first two
cases were obtained using the 1-site apprcach [6]
while the last three cases are 2-site simulations. The
five simulations were performed by assuming an
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initial random texture of 400 grains of each phase but
different correlations in orientation and morphology
were assumed in each case. Cases (a) and (c)
correspond to non-correlated a- and B-textures, i.e.
400 (o + p) pairs were formed by choosing randomly
400 o-phase and 400 f-phase crystallographic
orientations and an arbitrary morphologic orien-
tation (orientation of the ellipsoid’s principal axes)
was assigned to each pair. On the other hand, the
initial configuration for cases (b) and (e)—labelled
“full correlation”—was built as follows: (1) 400
«-orientations were randomly selected; (2) from each
«-orientation, a f-orientation was obtained to form
the pair by using the Burgers relationship (a random
variant selection among the 12 possible choices was
performed); (3) the morphologic orientation was
selected so as to align the short axes of the ellipsoids
(i.e. the habit plane’s normal) with a {1010} « plane.
Case (d) is an intermediate case: the f-orientations
were determined from the x-ones but the morpho-
logic orientation of each pair of grains was randomly
selected giving, in crystal axes, a random orientation
of the habit plane. For the latter initial configuration,
only the 2S result is reported provided the 1S
approach is insensitive to  crystallographic
correlations and it would give the same results as case

(a).

a) 1S - NO CORRELATION

c) 2S - NO CORRELATION

d) 2S - CRYSTALLOGRAPHIC
CORRELATION - RANDOM
HABIT PLANE

TEXTURE DEVELOPMENT 3691

Although the simulation was carried out assuming
an initial morphology of flat grains, the 1S
non-correlated texture [case (a), Fig. 1(a)] resembles
the experimental textures measured in globular
materials. This result is expected since the non-corre-
lated configuration is compatible with the globular
material and the initial existence of flat grains just
speeds up the grain shape effect which will appear in
the actual globular case. Remaining within the 1S
approach, but when the full correlation is considered
[case (b), Fig I(b)] a slight tendency of the basal poles
towards TD can be observed but the {Akil}{10I0)
fibre is still the main feature of the predicted texture.
In this case, although the initial correlations were
adequate, the model itself is unable to account for the
vicinity effects which may affect the texture
formation.

If the VPSC-2S model is used in the non-correlated
case [case (c), Fig. 1(c)] the results are not very
different from the 1S approach. In this case, provided
the pairs of interacting grains were randomly
selected, the overall neighbour effect is cancelled.
When the crystallographic correlation (but not the
morphologic one) is taken into account the results are
not improved [case (d), Fig 1(d)] showing that the
orientation of the habit plane may also be relevant
(and not only the Burgers relationship, as considered

e) 2S - FULL CORRELATION

Fig. 1. 1-site and 2-site calculated a-textures (basal poles figures) of a lamellar (« + f) Ti-alloy with 20%
of f-content, rolled up to 1.2 true strain, assuming different morphologic and crystallographic correlations
between phases. Lines are multiples of random distribution (mrd). Dots are orientations below 1 mrd.
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Fig. 2. Relative activity of both S-phase slip modes and prismatic and basal «-phase slip modes, calculated
with the 1-site and 2-site viscoplastic models, considering full correlation between phases.

in Ref. [21]). In fact, only the 2S fully correlated
simulation [case (e), Fig. 1(e)] shows the appearance
of the basal maximum in TD. We can therefore
conclude that the mean feature of the texture of a
lamellar material (i.e. the basal maximum in TD) is
well reproduced by the VPSC-2S model when the
actual correlations between phases are properly taken
into account.

It is also revealing to regard how both phases share
the applied strain. Figure 2 shows the relative activity
of the different a- and f-slip modes as a function of
the accumulated strain, predicted by the 1S and 28
models for the fully correlated case [cases (¢} and (e),
respectively]. In both cases, most of the deformation
is carried by the softer f-phase (the global
contribution of both f-slip modes is plotted: each of
them accommodates half of the total strain of the
f-phase). The S-phase slip activity starts at around
80% and decreases as deformation proceeds. In the
a-phase, the activity of the prismatic slip increases
faster than the basal slip. Hence, provided the main
difference between the 1S and the 28 cases is given by
a higher contribution of the prismatic slip with
detriment to the f-phase activity, it can be stated
that:

(a) the formation of the basal maximum in TD can
be ascribed to this higher prismatic activity, as
proved in Ref. [25] for a single-phase hcp
material;

(b) the correlations between the «- and fS-grains
favour the prismatic activity in the a-phase. As
can be seen from the relationships (27) and
(28), each pair of normal and Burgers vectors
of the {1010}<1210} prismatic slip mode in the
a-phase is parallel to another pair of normal
and Burgers vectors of the {112}<111) slip

mode in the f-phase. Moreover, one of the
prismatic slip systems in each a-grain is almost
parallel to the habit plane. Therefore, the
simultaneous activation in each phase of these
“parallel” slip systems [20] may minimize the
discontinuity of the distortion across the habit
plane, which is a sound condition when the
interaction between neighbours is taken into
account.

Finally, we will discuss the VPSC-2S predictions
for the f-texture. Although most of the deformation
is carried by the softer b.c.c. phase, we will show
that the severity of the f-texture is controlled by
the grain shape effect. Figure 3 shows predicted «-
and f-textures (basal and {110} pole figures,
respectively) for two different initial shapes and
updating criteria of the §-grains. Case (a) in Fig. 3 is
identical to case (e) in Fig. 1 (i.e. the initial grain
shapes are 2.0:1.0:0.2 for «-grains and 2.0:1.0:0.05
for -grains) while case (b) was obtained by assuming
more rounded f-grains (but keeping the relative
volume, i.e. 1.25:0.8:0.1 for f-grains) and preventing
the grain shape updating of the f-phase. The latter
condition can be justified by regarding that the soft
phase actually flows around the hard grains.
Consequently, there is only an “effective” portion
of the f-grains which keeps the correlations with
the a-phase. The long axis of the effective f-grain
would be approximately as large as the one of
the neighbour a-grains. On the other hand, if this is
the actual behaviour of the f-phase, we are aware
that the VPSC approach fails to describe the
behaviour of those f-regions which flow around the
hard phase.

In the first case, the predicted S-texture is rather
smooth: it reaches a maximum of 2 mrd (multiple of
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o phase

(a)

'f
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B phase

a grain: 2:1:0.2 - updated
B grain: 2:1:0.05 - updated

(b) a grain: 2:1:0.2 - updated
B grain: 1.25:0.8:0.1 - fixed

Fig. 3. a- and p-textures [basal and (110) poles figures, respectively] calculated with the VPSC-28 (full

correlation case) of a lamellar (x + B) Ti-alloy with 20% f-content, rolled up to 1.2 true strain, assuming

different initial shapes and updating criteria for the §-grains. Lines are multiples of random distribution
(mrd). Dots are orientations below I mrd.

random distribution). This result is due to a strong
grain shape effect: flat §-grains have associated high
local rotations [see equations (27)] which tend to
align their long grain axes with the normal direction
(ND) and their short axes with the rolling direction
(RD) and therefore determine a high reorientation
rate that prevents the formation of strong
stable texture components. On the other hand,
when the §-grains are assumed to be more rounded
and their shape is kept fixed throughout the
calculation, the relative magnitude of the local
rotation decreases and allows the formation of a
maximum of around 4 mrd. Nevertheless, although
this is approximately the severity measured for
a p-texture under similar conditions [23, 24], the
main component of the latter, ie. a partial
{111}<hk!y fibre, does not match with the experimen-
tal results which give a mean texture component in
{001}<110). As stated earlier, these disagreements
may be due to the lack of an accurate description of
the flow of part of the B-grains around the harder
®-regions.

4. CONCLUSIONS

This work shows that the correlation between
phases in a two-phase material has a strong influence
on texture formation. In the case of (« + f) Ti-alloys,
the VPSC-2S calculations make it evident that the
Burgers relationship together with orientation of the
habit plane contributes to an increase of the relative
activity of the prismatic slip which is known to be
associated with the formation of a TD maximum of
the o-texture. The p-texture formation, however,
cannot be fully explained by means of the present
model. This disagreement can be ascribed to the flow
of the -phase around the a-regions, an effect that the
present model cannot account for.

On the modelling side, a comprehensive description
of the VPSC-2S model has been accomplished using
the Eshelby-Hill formulation. Further applications
of this 2-site approach, conceived to account for
neighbour effects in the frame of homogenization
methods, are currently being developed for materials
under different deformation regimes, e.g. a 2-site
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elastoplastic model to treat damaged Al-alloys [26]
and a 2-site linear viscous model to describe the
under-irradiation behaviour of (x + f) Zr-alloys [27].
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APPENDIX

The integrals for the calculation of I'** are derived from
the solution of the equilibrium equation inside both
interacting inclusions using the Fourier transform of
Green’s functions technique (for details, see Bervellier ef al.
[15]). For example, '™ (in main axes of site 1) can be
calculated as:

3 ' (2n
2 — (b 53
I = PP (aAch_)j J
0 JO

» aw, Ky sin 6K (8, @)

dop d6 (A1
pip3 ? A
with
@ = (sin @ cos ¢, sin @ sin @, cos 0) (A2)
K,—ZI = [L[IHOCJOCI]il (A3)
P = (@i, b, 1003) (A4)
P2 = (@0, by, caipryoy)
F(95 (P) = 21_4 (_)-3 + 3p2}.2 + 30112
—6p.p23) 5 sgn(d)
1 2
+53 (B =308+ 3p B — 6pipaf) 5 sgn(p)
o (7 3o = 301 — Gpip) G sen(y)
24 ni pa 1y 12 2
_]‘ 3 2 52
55 (—8° + 30:67 + 39,0
—6p1p:8) 5sen(d). (A.5)

In equation (A.1)~(A.5), (ai, b\, ¢) and (a, b, c2) are
the radii of the ellipsoids in sites # 1 and #2, ¢, is
the transformation matrix from main axes of site 2 to
main axes of site 1 and

A=pi+pr—c¢

B=p:+c—p
y=ctpi—p
d=p+p+c
with
c=% x R,

where R, is the vector from the centre of site 1 to the
centre of site 2.



