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Abstract:

Two types of damage growth models are presented here, for the cases where damage
nucleation sites are randomly spread in the matrix and where they are located at grain
boundaries. In the former case, the cavity can be due both to fragmentation or decohesion, and
the model is based on a 3D FEM description, whereas in the latter case, account must be taken
of textures and grain shapes, which is done via a self-consistent scheme.

Introduction:

Hard particles are often present in aluminum alloys for different reasons, and their high
stiffness makes that they play the role of stress concentrators. This can induce fracture of those
particles or debonding of those with respect to the surrounding matrix. Three stages are
known to represent the whole damage mechanism: cavity nucleation, which occurs due to
fracture or debonding, cavity growth, which depends on the strain path and trixiality, and
coalescence, which is the linkage of those cavities, and that can lead to final fracture.
Depending on average distance between those hard particles, the different stages can be of
different importance. For a rather random and dilute distribution of particles, the growth
mechanism is particularly important since it has to be quite significant to lead to coalescence
and overall fracture. However, when those particles are present at grain boundaries, ie with a
realatively small interspacing, then a local coalescence (that will be called meso-damage) can
occur, which creates a cavity that needs, in turn, to grow significantly to lead to overall
fracture. Those two cases will here be investigated. In the first case, a simple model based on
a Finite Element representation will be proposed, whereas in the second case, an alternative
model based on a micromechanics approach in elastoplasticity will be shown.

Damage growth due to a random dilute distribution of hard particles: Modelling

The large majority of the work done on cavity growth is based on the modelling of
simple cavities in a matrix, taking account or not of the cavity shape. It is usually done either
by making use of the variational principle [1-4], or by micromechanical approaches [5, 6], or
by FE method [7-18]. Very little has been done for the case of cavities created by fracture of
debonding of hard particles. The present study is based on a 3D FE representation of an
initially spherical particle which exhibits fragmentation or decohesion (fig.1a-d). On each face
a master mode is connected to a spring element, so that its displacement is monitored
according to a given prescribed stress ratio. In particular, this enables us to add some
hydrostatic stresses in order to investigate the effect of triaxiality. Each master node controls
as well the displacement of all nodes of the same corresponding sample face. The FE structure
is built by means of three types of linear isoparametric elements, ie tetraedra, prisms and
hexaedra. The matrix behaviour is described by means of the Prandl-Reuss equations in large
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Figure 1: Representation of 1/8 th of the 3D global F.E. structure (a). Local view of the mesh
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Figure 2: Evolution of the relative cavity volume change versus axial strain in uniaxial
tension along the fragmentation plane normal, for the case of the simple cavity (a), the broken
particle (b) and the decohesion (c). Note the linear increase in the latter cases as opposed to
the exponential increase in the first case. Curves are obtained for different amounts of

triaxiality T.
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strain isotropic clastoplasticity fitting the appropriate elastic and hardening parameters to the
real behaviour of the material. Different tests were done to this FE sample, for different stress
ratios, and the cavity volume was recorded as a function of axial strain and triaxiality. The
triaxiality factor is simply the ratio of the hydrostatic stress to the flow stress. A typical result
shown on fig.2 seems to demonstrate that, although the cavity growth for simple cavities
(fig.2a) is exponential with strain, as has often been found, it is linear with axial strain
(figs2b,c), for the cases of fragmentation and decohesion. In all cases the rate of cavity growth
is increased with an increasing triaxiality. This case corresponds to a strain path that tends to
open the cavity, in collaboration with the positive triaxiality. Another interesting case, shown
on figs3a-c, is the case where the tension is done orthogonal to the fracture plane normal, so
that the strain path tends to close the cavity. Of course, the simple cavity case is same as found
previously, ie an exponential ,dependence of the cavity volume with respect to the axial strain
(which is negative in this case), whereas a linear dependence is found for the cases of
fragmentation and decohesion. However, an interesting point is that the triaxiality, if it is large
enough. can somewhat prevent the cavity closing, bringing therefore a competitive effect. It is
possible to represent the rate of cavity growth as a function of the triaxiality factor, figs 4a-c.
Fig.4a shows the case of the simple cavity, compared with the results of Rice-Tracey [1] and
those more recent of Huang [2]. It can be roughly observed that the FEM results lie between
the ones of these authors. This is explained by the fact that those theoretical results do not
account for the shape changes in the cavity growth, which is done in our FEM estimation, and
it is known that elongated cavities tend to have a smaller volume increase than spherical
voids, which explains why FEM results lie below the more exact results of Huang. Another
interesting point is for zero triaxiality, which was simulated as equibiaxial tension-
compression. In this case an initially spherical void will become flat, with a decreasing
volume, which can be explained on a morphological argument. It means that the rate of
growth, tends to be negative, and not zero as would be obtained for spherical voids. Most
interesting are the curves of figs4b and c, where a difference is observed depending on
whether the triaxiality competes or not with the strain-path to open the cavities, in the
fragmentation and decohesion cases. Both upper and lower curves can be well fitted by an
exponential, and a rather general formulation has been found that covers all those cases:

LAY A+ sen[TEs e - 1 1
—VdE3_ A1 +sgn[T.Esl.(e” - 1)} €]

where the parameter A depends strongly on the type of cavity considered, ie fragmentation or
decohesion. In our cases, A=6.5 for decohesion and 12 for fragmentation. It is important to
note that the exponential dependence on T occurs with a factor I, instead of 3/2 for simple
cavities. This strong sensitivity of the parameter A to the type of damage means that, for
engineering purposes, a fitting parameter seems unavoidable, also when particles do not
present the same geometry as the one presented here.

Damage growth due to a random dilute distribution of hard particles: Application
The present case is the one where the initial cavity volume fraction is known as f,, as
well as the statistical angular distribution of the damaged particles f°(8) and £7(8), that has

been characterized experimentally. Knowing the definition of the damage factor:

D=1-V/Vo 2)



1444 Aluminium Alloys — Their Physical and Mechanical Properties

T=53 T=an
ol Tean ol ren
e TN
| T .
b T3 "
1 )
L)
B

T=4n
P or=an
Ty

: Un. Tension L Xj

o //
" ———
- )
.
an .o o . o .

Figure 3: Same curves as for Fig.2 but for uniaxial tension orthogonal to the fragmentation
plane normal. Note the competitive effects of the strain direction and the triaxiality.

© rinrar 8 g e o oA

Raraseze me

T R

in J - LI - _//‘
. . /, " . et T T -
: Simple Cavity et grmEa s SN e e
' i @ Fragmentation T~

.
.
P
i =
- e
—
. e
- ==l
IS O . ..“'TJ:E»‘N_,.,\.:\. .....................
»| Decohesion T~
.

Figure 4: Evolution of the relative growth rate as a function of the triaxiality in the three
investigated cases. Dots correspond to the FE results, and curves to analytical representations.
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its evolution can be obtained by a simple relation:

D=(1-D).e™" [ fo(1-D) + D] 3)
where £ is obtained as:

g =V VY 4

which can be obtained by the integral over the angular statistical distribution:

vz @ (120,0.6°(0.0.+ F(6.0.G70.0) Nror.dom. %)

Both quantities G" and G" are computed according to the model previously proposed, and the
parameter Q is simply a fitting parameter which accounts for the fact that the particles have
shapes which are not spherical. In our case, Q was adjusted to the value 2/3 and was kept
constant and unique for all the laboratory tests investigated. The results of this simple model
are shown and compared with the experimental results on fig.5, where a good agreement is
observed.

This model, which is based on the 3D FEM results, is a kind of extension of the
models of Rice und Tracey, and also of Huang, for the case of hard particles associated to
fracture or decohesion. Another case will now be investigated where the hard particles are
relatively clsse to cach other, and located at grain boundaries.

Case of hard particles being close and at grain boundaries:

An Al-Zn-Mg alloy has been studied, where the damage occurs by decohesion of
particles present at grain boundaries, but where the growth process leads rapidly to
coalescence. This phenomenon has been studied extensively, and seems relatively well
described by the Embury-Nes model [19]. However, in this case, grains are very flat as a result
of the rolling process, and the material exhibits a sharp texture, both effects being important.
A relevant modelling must therefore account for those. When coalescence occurs, it is first
limited to the grain boundary region, and a meso-damage therefore appears, for which a
significant growth process must occur before materials overall failure happens. The present
model aims at describing this latter growth process, starting from the microstructural state of
the material, and some critical conditions due to the Embury-Nes model, provide an estimate
of the growth mechanism that will lead to overall failure.

The material is made of grains with given aspect ratios, and its plasticity is due to the
cooperative effect of slip systems, which are assumed to obey the Schmid law. Since both
texture and grain shapes are quite sharp, the small strain formalism is used, ie no texture nor
grain shape evolution is assumed to take place here. In this model, each crystallite follows a
flow law of the kind:

o=L:¢ ()

where L is the grain tangent modulus. The overall material is assumed to follow a flow law of
the same kind with L, its tangent modulus to be determined at each strain step, by a self-
consistent procedure. For each grain, the knowledge of its orientation, of its active slip
systems, of their hardening characteristics, is enough to determine uniquely the tensor L. Then
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Figure 5: Comparison of damage results obtained by the modelling

obtained by experimental results on a Al alloy.
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Figure 6: Typical stress-strain curves obtained from the elastoplastic self-consistent model
including the effects of damage only (a), grain shape and damage (b), texture, grain shapes
and damage (c).
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an inclusion analysis provides the mechanical response of the grain in its neighbourhood,
which is used, by an iterative scheme to derive the macroscopic tangent properties. This
enables us to compute the state of stress in each grain and its vicinity, which, in turn helps
determining the critical conditions for the occurrence of meso-damage. Once such a condition
is reached, then a flat void is created which is, in turn , treated as an inclusion of zero
stiffness, that is allowed to grow. However its growth will weaken the material, by decreasing
the macroscopic tangent tensor, and here again, it is estimated by using the self-consistent
technique.All details concerning this approach are explained by Lebensohn et al [20].

From this technique, it is possible to investigate separately the effects of texture, grain
shape and damage evolution on the macroscopic behavior. As seen on fig.6a, for spherical
grains and random texture, all curves, which correspond to tensile tests at different angles
with respect to the RD-ND axes, lie on a unique curve, except when the damage process is set
in. Fig.6b shows the case of no texture, but flat grains, where a discrepancy is expected and
observed. Finally when a typical rolling texture for f.c.c. materials is used, then the tensile
behavior turns out to be very different with the tensile angle, as seen on fig.6c.

Typical profiles are then obtained, and it can be observed that the texture plays a
dramatic role, as compared to the one of the grain shapes.The same kind of conclusion can be
drawn from the limit strains obtained from the bifurcation analysis.

This method has been applied in a companion paper by Solas et al [21], with real
texture data. and is shown to provide useful results.

Conclusions:

The modelling of damage has been proposed for alloys having hard particles present in
the matrix, in two cases, namely where those particles are rather diluted and randomly spread
into the matrix, and where they are quite close to each other and distributed at the grain
boundaries. In both cases decohesion or fragmentation of the particles is the source
mechanism of damage, but final overal failure only occurs after significant growth. In the
latter case. in turn, he damage initiation is rapidly followed by local coalescence, at the grain
boundary level, and the meso-damage that is created must grow significantly again to lead to
overall failure. In the former case, a reliable growth model is required, based on the local
geometry, whereas in the latter case, a micromechanical model, making use of the
crystallographic texture and the grain morphology is needed, since the local stresses and
strains are useful. Those two types of models have been proposed, by means firstly of a 3D FE
model. and secondly by means of a small strain elastoplastic self-consistent scheme. Those
two approaches provide satisfactory results as compared with experiments.
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